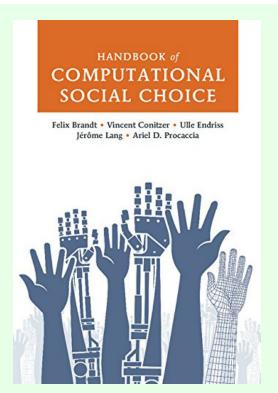
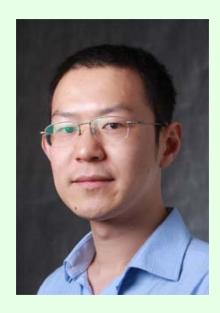
Some Game-Theoretic Aspects of Voting

Vincent Conitzer, Duke University
Conference on Web and Internet Economics
(WINE), 2015

comsoc mailing list: https://lists.duke.edu/sympa/subscribe/comsoc

17th ACM CONFERENCE ON ECONOMICS AND COMPUTATION
JULY 24-28 2016 | MAASTRICHT, THE NETHERLANDS





Lirong Xia (Ph.D. 2011, now at RPI)

Markus Brill (postdoc 2013-2015, now at Oxford)

Rupert Freeman (Ph.D. student 2013 - ?)

Voting

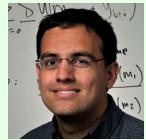
n voters...

... each produce a ranking of *m* alternatives...

... which a social preference function (or simply voting rule) maps to one or more aggregate rankings.

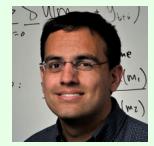
Plurality

1 0 0



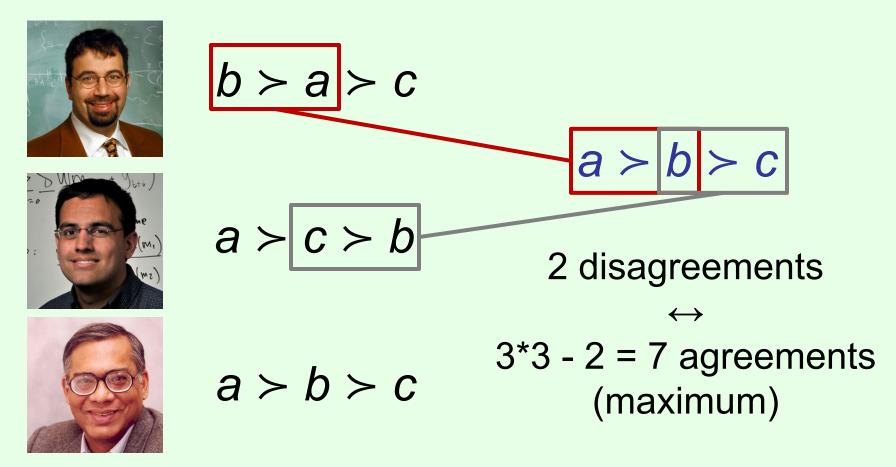
Borda

2 1 0



5 3 1

Kemeny

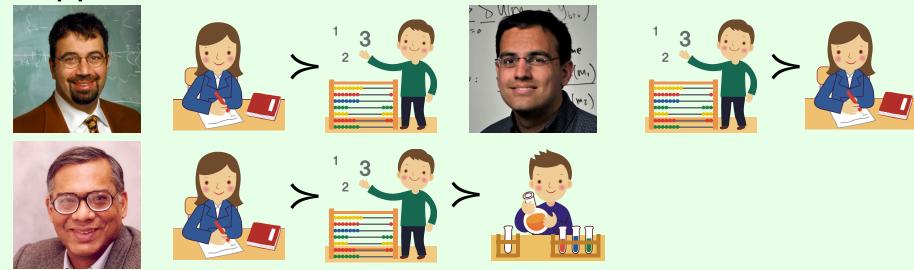


- The unique SPF satisfying neutrality, consistency, and the Condorcet property [Young & Levenglick 1978]
- Natural interpretation as maximum likelihood estimate of the "correct" ranking [Young 1988, 1995]

Ranking Ph.D. applicants

(briefly described in C. [2010])

Input: Rankings of subsets of the (non-eliminated) applicants



Output: (one) Kemeny ranking of the (non-eliminated) applicants

Instant runoff voting / single transferable vote (STV)

- The unique SPF satisfying: independence of bottom alternatives, consistency at the bottom, independence of clones (& some minor conditions) [Freeman, Brill, C. 2014]
- NP-hard to manipulate [Bartholdi & Orlin, 1991]

Manipulability

- Sometimes, a voter is better off revealing her preferences insincerely, aka. manipulating
- E.g., plurality
 - Suppose a voter prefers a > b > c
 - Also suppose she knows that the other votes are
 - 2 times b > c > a
 - 2 times c > a > b
 - Voting truthfully will lead to a tie between b and c
 - She would be better off voting, e.g., b > a > c, guaranteeing b wins

Gibbard-Satterthwaite impossibility theorem

- Suppose there are at least 3 alternatives
- There exists no rule that is simultaneously:
 - non-imposing/onto (for every alternative, there are some votes that would make that alternative win),
 - nondictatorial (there does not exist a voter such that the rule simply always selects that voter's first-ranked alternative as the winner), and
 - nonmanipulable/strategy-proof

Computational hardness as a barrier to manipulation

- A (successful) manipulation is a way of misreporting one's preferences that leads to a better result for oneself
- Gibbard-Satterthwaite only tells us that for some instances, successful manipulations exist
- It does not say that these manipulations are always easy to find
- Do voting rules exist for which manipulations are computationally hard to find?

A formal computational problem

- The simplest version of the manipulation problem:
- CONSTRUCTIVE-MANIPULATION:
 - We are given a voting rule r, the (unweighted) votes of the other voters, and an alternative p.
 - We are asked if we can cast our (single) vote to make p win.
- E.g., for the Borda rule:
 - Voter 1 votes A > B > C
 - Voter 2 votes B > A > C
 - Voter 3 votes C > A > B
- Borda scores are now: A: 4, B: 3, C: 2
- Can we make B win?
- Answer: YES. Vote B > C > A (Borda scores: A: 4, B: 5, C: 3)

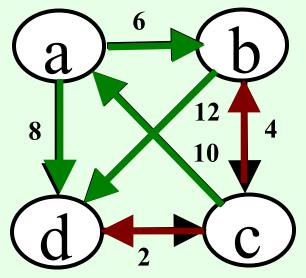
Early research

- Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the second-order Copeland rule. [Bartholdi, Tovey, Trick 1989]
 - Second order Copeland = alternative's score is sum of Copeland scores of alternatives it defeats

- Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the STV rule. [Bartholdi, Orlin 1991]
- Most other rules are easy to manipulate (in P)

Ranked pairs rule [Tideman 1987]

- Order pairwise elections by decreasing strength of victory
- Successively "lock in" results of pairwise elections unless it causes a cycle



Final ranking: c>a>b>d

 Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the ranked pairs rule [Xia et al. IJCAI 2009]

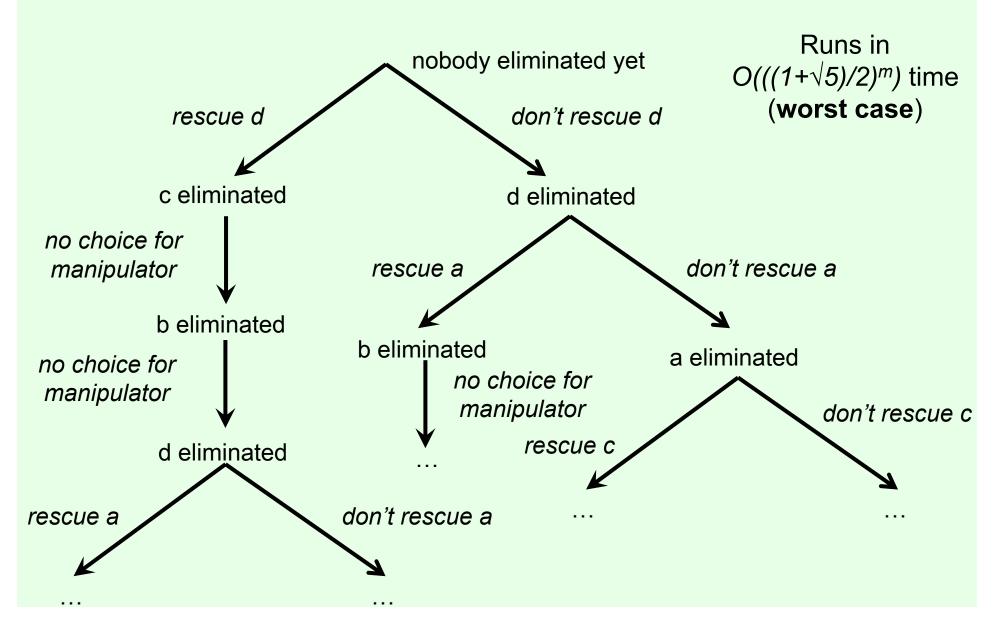
Many manipulation problems...

	unweighted votes,			weighted votes,						
	constructive manipulation			constructive			destructive			
# alternatives			2	3	4	≥ 5	2	3	≥ 4	
# manipulators	1	≥ 2								
plurality	Р	P	Р	Р	Р	Р	Р	Р	Р	
plurality with runoff	P	P	Ρ	NP-c	NP-c	NP-c	P	NP-c	NP-c	
veto	P	P	Ρ	NP-c	NP-c	NP-c	P	P	P	
cup	P	P	Ρ	P	P	P	P	P	P	
Copeland	P	P	Ρ	P	NP-c	NP-c	P	P	P	
Borda	P	NP-c	Ρ	NP-c	NP-c	NP-c	P	P	P	
Nanson	NP-c	NP-c	Ρ	P	NP-c	NP-c	P	P	NP-c	
Baldwin	NP-c	NP-c	Ρ	NP-c	NP-c	NP-c	P	NP-c	NP-c	
Black	P	NP-c	Ρ	NP-c	NP-c	NP-c	P	P	P	
STV	NP-c	NP-c	Ρ	NP-c	NP-c	NP-c	P	NP-c	NP-c	
maximin	P	NP-c	Ρ	P	NP-c	NP-c	P	P	P	
Bucklin	P	P	Ρ	NP-c	NP-c	NP-c	P	P	P	
fallback	P	P	Ρ	P	P	P	P	P	P	
ranked pairs	NP-c	NP-c	Ρ	P	P	NP-c	P	P	?	
Schulze	Р	Р	Р	Р	Р	Р	Р	Р	P	

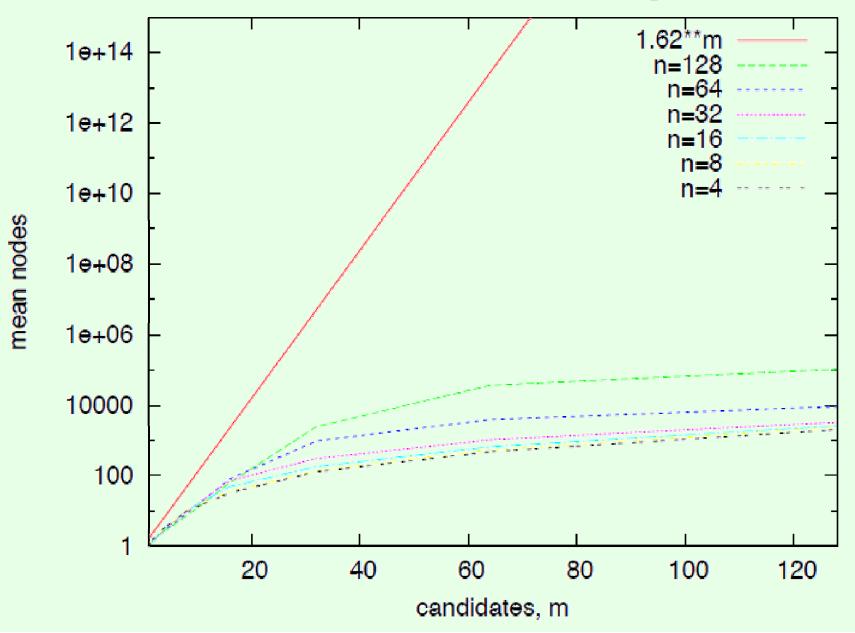
Table from: C. & Walsh, Barriers to Manipulation, Chapter 6 in Handbook of Computational Social Choice

STV manipulation algorithm

[C., Sandholm, Lang JACM 2007]



Runtime on random votes [Walsh 2011]



Fine – how about another rule?

- Heuristic algorithms and/or experimental (simulation) evaluation
 [C. & Sandholm 2006, Procaccia & Rosenschein 2007, Walsh 2011, Davies, Katsirelos, Narodytska, Walsh 2011]
- Quantitative versions of Gibbard-Satterthwaite showing that under certain conditions, for some voter, even a random manipulation on a random instance has significant probability of succeeding [Friedgut, Kalai, Nisan 2008; Xia & C. 2008; Dobzinski & Procaccia 2008; Isaksson, Kindler, Mossel 2010; Mossel & Racz 2013

"for a social choice function f on $k \ge 3$ alternatives and n voters, which is ϵ -far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ϵ^{-1} ."

Simultaneous-move voting games

- *Players:* Voters 1,...,n
- Preferences: Linear orders over alternatives
- Strategies / reports: Linear orders over alternatives
- Rule: r(P'), where P' is the reported profile

Voting: Plurality rule

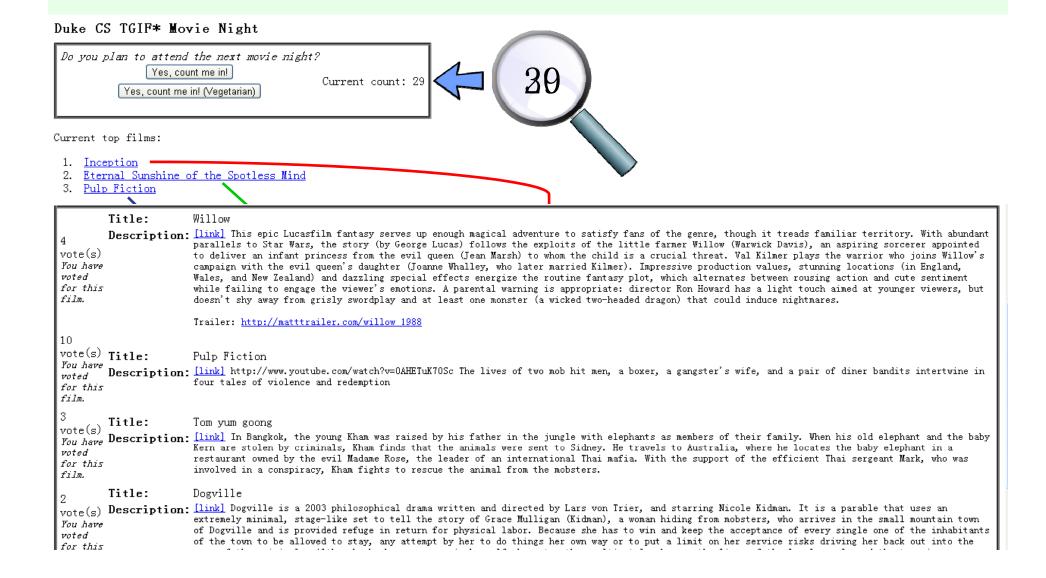
Plurality rule, with ties broken as follows:



Many bad Nash equilibria...

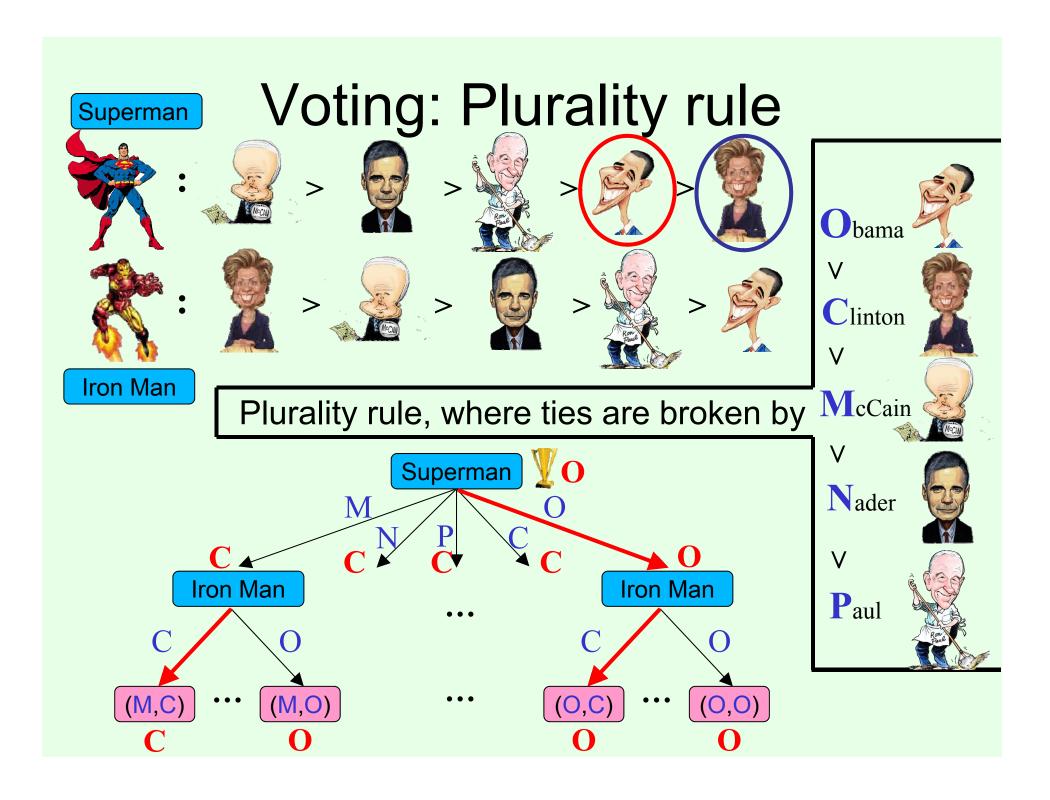
- Majority election between alternatives a and b
 - Even if everyone prefers a to b, everyone voting for b is an equilibrium
 - Though, everyone has a weakly dominant strategy
- Plurality election among alternatives a, b, c
 - In equilibrium everyone might be voting for b or c, even
 though everyone prefers a!
- Equilibrium selection problem
- Various approaches: laziness, truth-bias,
 dynamics... [Desmedt and Elkind 2010, Meir et al. 2010,
 Thompson et al. 2013, Obraztsova et al. 2013, Elkind et al. 2015, ...]

Voters voting sequentially



Our setting

- Voters vote sequentially and strategically
 - voter $1 \rightarrow \text{voter } 2 \rightarrow \text{voter } 3 \rightarrow \dots \text{ etc.}$
 - states in stage i: all possible profiles of voters 1,...,i-1
 - any terminal state is associated with the winner under rule r
- At any stage, the current voter knows
 - the order of voters
 - previous voters' votes
 - true preferences of the later voters (complete information)
 - rule r used in the end to select the winner
- We call this a Stackelberg voting game
 - Unique winner in SPNE (not unique SPNE)
 - the subgame-perfect winner is denoted by $SG_r(P)$, where P consists of the true preferences of the voters



Literature

- Voting games where voters cast votes one after another
 - [Sloth GEB-93, Dekel and Piccione JPE-00, Battaglini GEB-05, Desmedt & Elkind EC-10]

Key questions

- How can we compute the backwardinduction winner efficiently (for general voting rules)?
- How good/bad is the backwardinduction winner?

Computing $SG_r(P)$

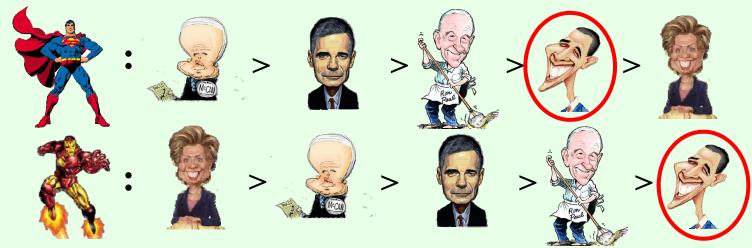
- Backward induction:
 - A state in stage i corresponds to a profile for voters 1, ...,
 i-1
 - For each state (starting from the terminal states), we compute the winner if we reach that point
- Making the computation more efficient:
 - depending on r, some states are equivalent
 - can merge these into a single state
 - drastically speeds up computation

An equivalence relationship between profiles

- The plurality rule
- 160 voters have cast their votes, 20 voters remaining

 This equivalence relationship is captured in a concept called *compilation complexity* [Chevaleyre et al. IJCAI-09, Xia & C. AAAI-10]

Paradoxes



Plurality rule, where ties are broken according to

- The SG_{Plu} winner is
- Paradox: the SG_{Plu} winner is ranked almost in the bottom position in all voters' true preferences

What causes the paradox?

- Q: Is it due to defects in the plurality rule / tiebreaking scheme, or it is because of the strategic behavior?
- A: The strategic behavior!
 - by showing a ubiquitous paradox

Domination index

- For any voting rule r, the **domination index** of r when there are n voters, denoted by $\mathrm{DI}_r(n)$, is:
- the smallest number k such that for any alternative c, any coalition of n/2+k voters can guarantee that c wins.
 - The DI of any majority consistent rule r is 1, including any Condorcet-consistent rule, plurality, plurality with runoff, Bucklin, and STV
 - The DI of any positional scoring rule is no more than n/2-n/m
 - Defined for a voting rule (not for the voting game using the rule)
 - Closely related to the anonymous veto function [Moulin 91]

Main theorem (ubiquity of paradox)

- Theorem: For any voting rule r and any n, there exists an n-profile P such that:
 - (many voters are miserable) $SG_r(P)$ is ranked somewhere in the bottom two positions in the true preferences of $n-2 \cdot \mathrm{DI}_r(n)$ voters
 - (almost Condorcet loser) if $DI_r(n) < n/4$, then $SG_r(P)$ loses to all but one alternative in pairwise elections.

Proof

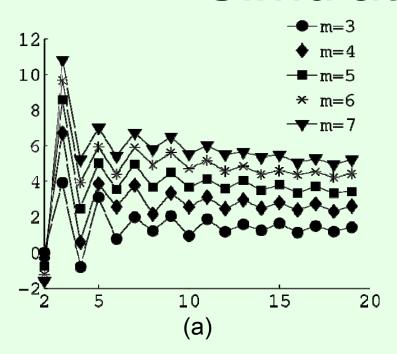
• **Lemma:** Let P be a profile. An alternative d is **not** the winner $SG_r(P)$ if there exists another alternative c and a subprofile $P_k = (V_{i_1}, \ldots, V_{i_k})$ of P that satisfies the following conditions: $(1) k \ge \lfloor n/2 \rfloor + \mathsf{DI}_r(n)$, (2) c > d in each vote in P_k , (3) for any $1 \le x < y \le k$, $\mathsf{Up}(V_{i_x}, c) \supseteq \mathsf{Up}(V_{i_y}, c)$, where $\mathsf{Up}(V_{i_x}, c)$ is the set of alternatives ranked higher than c in V_{i_x}

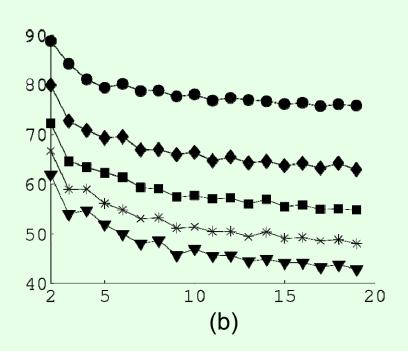
- c_2 is not a winner (letting $c = c_1$ and $d = c_2$ in the lemma)
- For any $i \ge 3$, c_i is not a winner (letting $c = c_2$ and $d = c_i$ in the lemma)

What do these paradoxes mean?

- These paradoxes state that for any rule r that has a low domination index, sometimes the backward-induction outcome of the Stackelberg voting game is undesirable
 - the DI of any majority consistent rule is 1
- Worst-case result
- Surprisingly, on average (by simulation)
 - # { voters who prefer the SG_r winner to the truthful r winner}
 - > # { voters who prefer the truthful r winner to the SG_r winner}

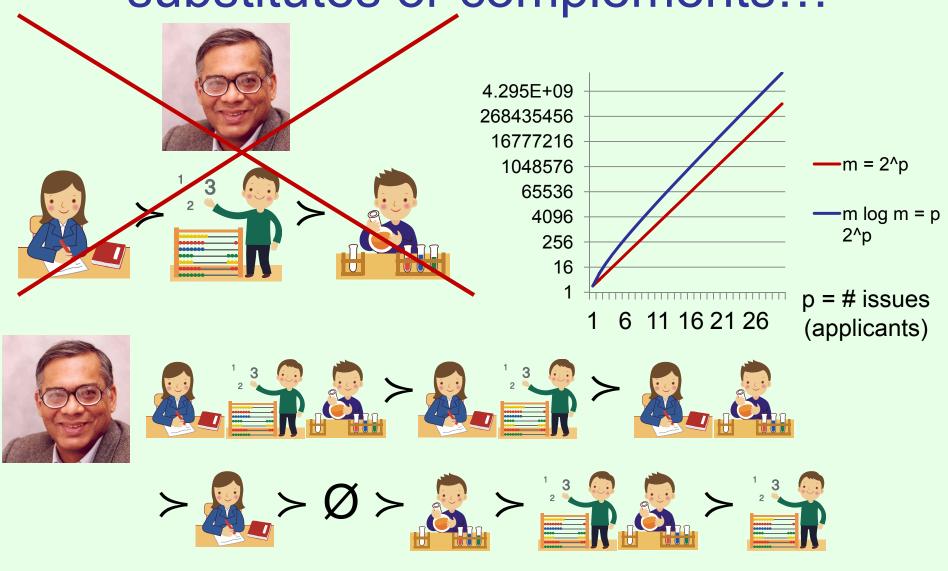
Simulation results





- Simulations for the plurality rule (25000 profiles uniformly at random)
 - x-axis is #voters, y-axis is the percentage of voters
 - (a) percentage of voters where $SG_r(P) > r(P)$ minus percentage of voters where $r(P) > SG_r(P)$
 - (b) percentage of profiles where the $SG_r(P) = r(P)$
- SG_r winner is preferred to the truthful r winner by more voters than vice versa
 - Whether this means that SG_r is "better" is debatable

Ph.D. applicants may be substitutes or complements...



Sequential voting

see Lang & Xia [2009]

- Issues: main dish, wine
- Order: main dish > wine
- Xia, C., Lang [2008, 2010, 2011] study rules that do not require preferences to have this structure

Sequential voting and strategic voting

S

$$V_1: st > ar{s}t > sar{t} > ar{s}ar{t}$$
 $V_2: sar{t} > st > ar{s}t > ar{s}ar{t}$
 $V_3: ar{s}t > ar{s}ar{t} > sar{t} > st$

$$V_2: s\overline{t} > st > \overline{s}t > \overline{s}\overline{t}$$

$$V_{\mathsf{3}}: \overline{s}t > \overline{s}\overline{t} > s\overline{t} > st$$

- In the first stage, the voters vote simultaneously to determine **S**; then, in the second stage, the voters vote simultaneously to determine **T**
- If **S** is built, then in the second step $t > \overline{t}$, $\overline{t} > t$, $\overline{t} > t$ so the winner is $s\overline{t}$
- If **S** is **not** built, then in the 2nd step $t>\overline{t}$, $t>\overline{t}$, $t>\overline{t}$ so the winner is $\overline{s}t$
- In the first step, the voters are effectively comparing $s\overline{t}$ and $\overline{s}t$, so the votes are $\bar{s}>s$, $s>\bar{s}$, $\bar{s}>s$, and the final winner is $\bar{s}t$

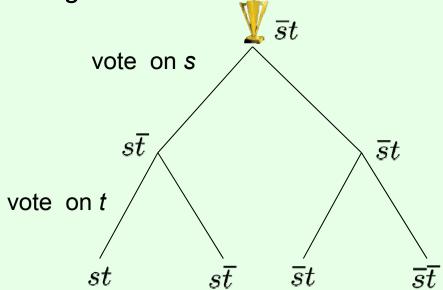
[Xia, C., Lang 2011; see also Farquharson 1969, McKelvey & Niemi 1978, Moulin 1979, Gretlein 1983, Dutta & Sen 1993]

Strategic sequential voting (SSP)

- Binary issues (two possible values each)
- Voters vote simultaneously on issues, one issue after another according to O
- For each issue, the majority rule is used to determine the value of that issue
- Game-theoretic aspects:
 - A complete-information extensive-form game
 - -The winner is unique

Voting tree

 The winner is the same as the (truthful) winner of the following voting tree



- "Within-state-dominant-strategy-backward-induction"
- Similar relationships between backward induction and voting trees have been observed previously [McKelvey&Niemi JET 78], [Moulin Econometrica 79], [Gretlein IJGT 83], [Dutta & Sen SCW 93]

Paradoxes [Xia, C., Lang EC 2011]

- Strong paradoxes for strategic sequential voting (SSP)
- Slightly weaker paradoxes for SSP that hold for any O (the order in which issues are voted on)
- Restricting voters' preferences to escape paradoxes
- Other multiple-election paradoxes:

[Brams, Kilgour & Zwicker SCW 98], [Scarsini SCW 98], [Lacy & Niou JTP 00], [Saari & Sieberg 01 APSR], [Lang & Xia MSS 09]

Multiple-election paradoxes for SSP

- Main theorem (informally). For any $p \ge 2$ and any $n \ge 2p^2$
 - + 1, there exists an *n*-profile such that the SSP winner is
 - Pareto dominated by almost every other candidate
 - ranked almost at the bottom (exponentially low positions) in every vote
 - an almost Condorcet loser

Is there any better choice of the order *O*?

- **Theorem** (informally). For any $p \ge 2$ and $n \ge 2^{p+1}$, there exists an n-profile such that for **any** order O over $\{x_1, \ldots, x_p\}$, the SSP $_O$ winner is ranked somewhere in the bottom p+2 positions.
 - The winner is ranked almost at the bottom in every vote
 - The winner is still an almost Condorcet loser
 - I.e., at least some of the paradoxes cannot be avoided by a better choice of O

Getting rid of the paradoxes

- Theorem(s) (informally)
- Restricting the preferences to be separable or lexicographic gets rid of the paradoxes
- Restricting the preferences to be O-legal does not get rid of the paradoxes

Agenda control

- **Theorem.** For any $p \ge 4$, there exists a profile P such that any alternative can be made to win under this profile by changing the order O over issues
 - The chair has full power over the outcome by agenda control (for this profile)

Crowdsourcing societal tradeoffs

[C., Brill, Freeman AAMAS'15 Blue Sky track; C., Freeman,

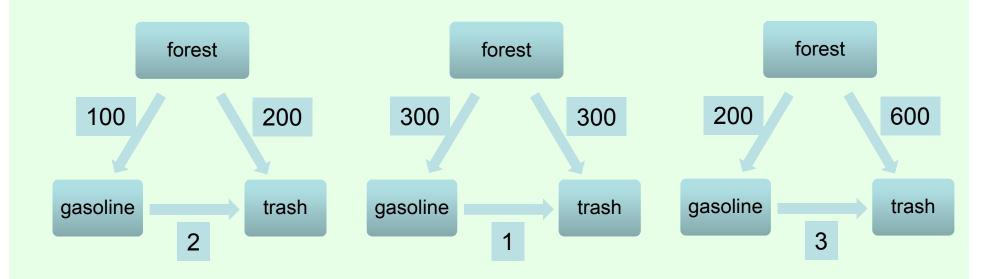
Brill, Li AAAI'16]

1 bag of landfill trash is as bad as

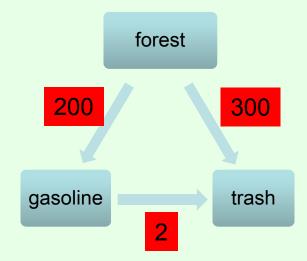
How to determine x?

 Other examples: clearing an acre of forest, fishing a ton of bluefin tuna, causing the average person to sit in front of a screen for another 5 minutes a day, ...

A challenge



Just taking medians pairwise results in inconsistency



Conclusion

- Game-theoretic analysis of voting can appear hopeless
 - Impossibility results, multiplicity of equilibria, highly combinatorial domain
- Some variants still allow clean analysis
- Other variants provide a good challenge for computer scientists
 - Worst case analysis, algorithms, complexity, dynamics / learning, ...

Thank you for your attention!