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ABSTRACT

We introduce a class of voting rules callgéneralized scoring
rules. Under such a rule, each vote generates a vectérsabres,
and the outcome of the voting rule is based only on the sunmeskth
vectors—more specifically, only on the order (in terms ofretof
the sum’s components. This class is extremely general: weto
know of any commonly studied rule that is not a generalizext-sc
ing rule.

We then study the coalitional manipulation problem for gene
alized scoring rules. We prove that under certain natursirag-
tions, if the number of manipulators@(n”) (for anyp < 1), then

the probability that a random profile is manipulableasnp’%),
wheren is the number of voters. We also prove that under another
set of natural assumptions, if the number of manipulatof(is”)

(for anyp > 1) ando(n), then the probability that a random pro-
file is manipulable (to any possible winner under the votingyis

1— 0(e=2"*""")). We also show that common voting rules sat-
isfy these conditions (for the uniform distribution). Tee®sults
generalize earlier results by Procaccia and Rosenscheirlaas
even earlier results on the probability of an election beied.
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In mechanism design, often, various assumptions abouptwes
of possible outcomes and the agents’ preferences are mawe. F
example, it is often assumed that the agents can make pagment
and that their utilities arguasilinear(that is, the contribution of
payment to utility is linear and independent of the outcofmesen).
However, these assumptions are not always reasonablentirast
in a generabkocial choiceor voting setting, every agent (aroter)
can rank the outcomes (@iternative$ in any possible way. A
mechanism (ovoting rulé takes every agent’s reported ranking of
the alternatives as input, and produces one of the alteesats
output.

Unfortunately, considering such an unrestricted settomges at
a price. It turns out that any reasonable voting rule is walbke
to manipulation that is, a voter can sometimes make herself bet-
ter off by declaring her preferences insincerely. A rule thahot
vulnerable to manipulation is calledrategy-proof The Gibbard-
Satterthwaite theorem [13, 18] states that when there aee tr
more alternatives, there is no strategy-proof voting ralgt sat-
isfies non-imposition (for every alternative, there existes that
would make that alternative win) and non-dictatorship (thie
does not simply always choose the most-preferred altemafia
single fixed voter). This is in sharp contrast to settinghwitiasi-
linear preferences, where, for example, VCG mechanismsg20
14] are strategy-proof.

Although a manipulation is guaranteed to exist (for reabtma
rules), in order for the manipulating agent to use it, shetrals®
be able to find it. Recent research has studied whether firaling
manipulation can be made computationally hard, therebgtiege
a computational barrier against manipulation. A numbelestilts
have been obtained that show that finding a successful nmatigu
is NP-hard [3, 2, 7, 11, 9, 15]. Some of these results consider
manipulation by an individual voter, whereas others cagrsttie
more general case of manipulation by a coalition of voters.

However, all of these hardness results wm@rst-caseresults.
That is, they suggest that any algorithm will require expizé
time to solvesomeinstances. However, this does not mean that
there is no efficient algorithm that can find a manipulatiomhost
instances. Several recent results seem to suggest thadinue
various senses, hard instances of the manipulation proéterthe
exception rather than the rule [17, 8, 16, 21].

The results in this paper add to the body of work that suggests
that the manipulation problem is usually easy to solve. Fagrg
large class of voting rules, we show that in most cases, asuime
ber of voters gets large, either the probability that the imaators
can change the outcome is very small, or the probability ttiey
can (easily) make any alternative win is very large. Whictheke
two cases holds depends on the relative size of the coatifiora-
nipulators, and there is a small boundary between these aa@sc



for which we have no result, when the size of the manipulating
coalition is on the order of/n, wheren is the total number of vot-
ers. Hence, for almost all cases, a simple inspection dfivelasize

of the manipulating coalition suffices to decide the mardapah
problem (and finding the actual manipulation is not hard).

More specifically, given the nonmanipulators’ votes, thesome
set of alternatives that can still win. That is, an altensti is a
possible winnemvith respect to a given set of (honmanipulators’)
votes and some set of manipulators if there exist votes fonth-
nipulators that make win. In this paper, we consider a setting
in which the nonmanipulators’ votes are drawn at random,vead
are interested in how large the set of possible winners isath
the probability that the manipulators cannot change theaoné
(there is only one possible winner)? What is the probabitliigt
the manipulators can make any alternative win (all altéveatare
possible winners)? For a very general class of voting ruesyill
show conditions under which the former probability is higimd
conditions under which the latter probability is high. Unttee lat-
ter set of conditions, we also shdwwthe manipulators can make
any alternative win (with a high probability).

These results are very similar to the results by Proacactaa a
Rosenschein [16], but our results are significantly moreeggn
Specifically, Proacaccia and Rosenschein only show theirltre
for positional scoring rules (which we will define shortlyJhey
also mention without proof that they can extend the resaolthé
Copeland and maximin rules, and they conjecture that thdtses
can be extended to other rules as well. Our results serveote pr
this informal conjecture: we introduce a new class of voftinigs
calledgeneralized scoring rulesand we prove the results for this
class of rules. This class is extremely general: we are nateaw
of any commonly studied voting rule that cannot be expresseal
generalized scoring rule.

While we feel that our main contribution is to introduce tless
of generalized scoring rules and prove the results for thdes, we
also characterize the probability of manipulability moregisely
rather than saying it converges to 1 of OThis characterization
constitutes a general version of various results on thegtitity
that an election ends up (roughly) in a tie, that is, a singien
can change the winner; this probability is also called théng
power [4, 12]. Knowing this probability is also interesting from
the perspective of a voter who is determining her incentiveote.
Again, all of the existing results consider only the much lkena
class of positional scoring rules. Specifically, Baharad Biee-
man [1] showed that under some local correlation conditiafien
the number of manipulators is no more than a constant, the pro
ability that manipulation can be done @(%), wheren is the
number of voters, under any positional scoring rule. Slifik]
showed that under a particular condition on the probabiliggri-
bution, under any faithful positional scoring rule (that &l the
scores in the scoring vector are different) the ratio of tinaber of
manipulable profiles to the number of all profileﬂQ%), where
k is the number of manipulators.

The rest of this paper is laid out as follows. After coverioge
preliminaries in Section 2, in Section 3, we introdganeralized
scoring rules in which every vote generates a vectorko$cores,
and the outcome of the voting rule is based only on the sunmeskth
vectors—more specifically, only on the order (in terms ofrego
of the sum’s components. This class is extremely generaldave
not know of any commonly studied rule that is not a generdlize

For the result where the manipulators can probably make kny a
ternative win, Procaccia and Rosenschein do give an exprefes
this probability in their proof (for positional scoring as).

scoring rule. In the subsequent sections, we study thetioell
manipulation problem for generalized scoring rules. Inti®ac4
we prove that under certain natural assumptions, if the murab
manipulators i) (n?) (for anyp < %), then the probability that a

random profile is manipulable '(Q(nP*%), wheren is the number
of voters. In Section 5, we prove that, under another set tf-na
ral assumptions, if the number of manipulator$&:”) (for any
1 < p < 1) ando(n), then the probability that a random profile is
manipulable (to any possible winning alternative undernthe) is

1-— O(e’ﬂ(”zpfl)). Finally, in Section 6, we show how these re-
sults apply to any positional scoring rule, Copeland, ST&&imin,
and ranked pairs, under the uniform distribution over votes

2. PRELIMINARIES

LetC = {ci1, ..., cm} be the set oblternatives(or candidate}

A linear order orC is a transitive, antisymmetric, and total relation
onC. The set of all linear orders ofi is denoted byL(C). An
n-voter profile P on C consists ofn linear orders orC. That is,

P = (V1,...,Vy), where for everyi < n, V; € L(C). The set of
all profiles onC is denoted byP(C). In the remainder of the paper,
m denotes the number of alternatives andenotes the number of
voters.

A voting ruler is a function from the set of all profiles @hto
C, thatis,r : P(C) — C. The following are some common voting
rules.

1. (Positional) scoring rulesGiven ascoring vector
v = (v(1),...,v(m)), for any voteV € L(C) and anyc € C,
let s(V,¢) = v(j), wherej is the rank ofc in V. For any profile

P=(Vi,...,Vp), lets(P,c) = > s(Vi,c). The rule will select
=1

¢ € C so thats(P, ¢) is maximized. Two examples of scoring rules
areBorda, for which the scoring vector ign — 1,m — 2,...,0),
andplurality, for which the scoring vector i€l, 0, . .., 0).

2. Copeland For any two alternatives; andc;, we can simu-
late apairwise electiorbetween them, by seeing how many votes
preferc; to ¢;, and how many prefet; to ¢;. Then, an alternative
receives one point for each win in a pairwise election. Taibyc
an alternative also receives half a point for each pairweseThe
winner is the alternative who has the highest score.

3. STV, The election ha§C| rounds. In each round, the alterna-
tive that gets the minimal plurality score drops out, anctimoved
from all of the votes (so that votes for this alternative sfento an-
other alternative in the next round). The last-remaininigrahtive
is the winner.

4. Maximin Let N(¢;, ¢;) denote the number of votes that rank
c¢; ahead ofc;. The winner is the alternative that maximizes
min{N(c,c') : ' € C,c # c}.

5. Ranked pairs This rule first creates an entire ranking of all
the alternatives.N(c;, c;) is defined as for the maximin rule. In
each step, we will consider a pair of alternativgs:; that we have
not previously considered; specifically, we choose the neimg
pair with the highestV(c;, ¢;). We then fix the ordet; > ¢;, un-
less this contradicts previous orders that we fixed (thétigmlates
transitivity). We continue until we have considered allrpaif al-
ternatives (hence we have a full ranking). The alternativheatop
of the ranking wins.

In this paper, ananipulation instancés defined as follows.

Definition 1 A manipulation instancés a tuple (r, PV | |M]),
consisting of a voting rule, a profile of nonmanipulatorg™ ™,
and a number of manipulatorg/|. A weighted manipulation in-
stanceis a tuple (r, PN, W, War), where W and Wy
are the weights of the nonmanipulators and the manipluaters



spectively.

3. GENERALIZED SCORING RULES

In this section, we define an extremely general class of gotin
rules that we calbgeneralized scoring rulesThis is the class for
which we will prove our results. We do not know of any example
of a commonly studied rule that is not a generalized scorirhg. r
A generalized scoring rule associates a vectok oéal numbers
with every vote, for somé that depends on (but is not necessarily
equal toym. The decision that the rule makes is based only on the
sum of these vectors. Even more specifically, the decisibassed
only on comparisons among the components in this sum. THat is
we know, for everyi,j € {1,...,k}, whether theth component
in the sum is larger than thgh component, thgth is larger than
theith, or they are the same, then we know enough to determine
the winner. Sometimes, the components can be partitiondabso
the decision only depends on comparisons within elementiseof
partition, which will be helpful.

3.1 Unweighted generalized scoring rules

Letk € N, and let = {K\,..., K,} be a partition ofK =
{1,...,k}. Thatis, forany < ¢, K; C K, K = U]_, K;, and for
anyi,j < q,i # j, K;nK; = (. We say that two vectors of length
k are equivalent with respect to a partition if, within eacéneént
of the partition, they agree on which components are larger.

Definition 2 Let.# be a partition ofi. For anya, b € R*, we say
thata andb are equivalent with respect t&¢, denoted by, ~ - b,
if forany! < ¢, anyi,j € K, a; > aj < b; > b; (whereq;
denotes théth component of the vectar etc).

For two partitions?” = {K1, ..., K,}and?"’ = {K1,..., K, },
" is arefinemenof 7 if for any I < ¢, anyl’ < p, K, N K;
is eitherK, or (). Thatis,.#" is obtained from" by partitioning
the sets in7". In this case, we say that” is coarserthan.’7”’, and
" isfinerthanz’.

Proposition 1 For any partitions?’, ¢ such that#”’ is a refine-
ment of.#, and anya, b € R¥, if a ~ s b, thena ~ s b.

We note that{ K'} (the partition that only contain& itself) is the
coarsest partition.

Definition 3 Let.#” be a partition ofK. A functiong : R* — C is
compatible with# if for anya, b € R*, a ~ b = g(a) = g(b).

That is, for any mapping that is compatible with’z", g(a) is de-
termined (only) by comparisons within eaéty, [ < ¢. Namely,
we do not need to compare components across different etemen
of the partition.

Now we are ready to define generalized scoring rules.

Definition 4 Letk € N, f : L(C) — R* andg : R* — C, where
g is compatible with a partition#” of K. f and g determine the
(unweighted) generalized scoring rutéS(f, g) as follows. For
any profile of voted/,...,V,, € L(C), GS(f,g9)(Vi,...,Va) =
g3, f(Vi)). We say thatzS(f, g) is of orderk, andcompati-
ble with 27"

The weighted version of generalized scoring rules is defimég-
pendix 2. Below, unless otherwise specified, generalizedrsg
rules refer to unweighted generalized scoring rules. Froopdsi-
tion 1 we know that for any partitions?’, .#” such that#” is a
refinement of#", GS(f, g) is compatible with’#”, thenGS(f, g)
is also compatible with’z”. Given a profileP of votes, we use
f(P) as shorthand fop .., f(V). We will call f(P) thetotal

generalized score vectoBy definition, any unweighted general-
ized scoring rule satisfiemnonymity(that is, every voter is treated
equally) anchomogeneitythat is, if we add any number of copies
of the profile to the profile, the winner does not change). Aeg-g
eralized scoring rule is compatible with the partitipR' }. Never-
theless, being compatible wifh'} is not vacuous: if we modified
the definition so thay is not required to be compatible with any
partition, then any anonymous voting rule would belong o rid
sulting class of rules. If a generalized scoring rule is catilye
with a partition, this effectively means that, within eadersent
of the partition, the scores are of the same “type,” so thatare
compare them.

We now illustrate how general the class of generalized sgori
rules is by showing how some standard rules belong to the.clas
Many other rules can also be shown to belong to the class.

Proposition 2 All positional scoring rules, Copeland, STV, max-
imin, and ranked pairs are generalized scoring rules.

Proof of Proposition 2: We explicitly givek, f, g, .# for each
of these rules. In the remainder of the proof, the numbertef-al
natives is fixed to ben. LetV € L(C) be a vote, and leP be a
profile of votes. Because it is ambiguous how ties should bledor
for the rules in the proposition, we will also not specify hies are
broken when we describe these rules as generalized scatesy r
e Positional scoring rules: Suppose the scoring vector for the rule
isv = (v(1),...,v(m)). The total generalized score vector will
simply consist of the total scores of the individual alteives. Let
—k{; =m.
—f{;(V) = (S(V7 Cl): R S(V7 Cm))
—95(f5(P)) = argmax; (f3(P))i.
-y ={K}.
e Copeland: For Copeland, the total generalized score vector will
consist of the scores in the pairwise elections. Let
— kcopetana = m(m — 1); the components are indexed by pairs
(i,7) such that, j < m, i # j.

1 ife ci
= (feopetana(V))(i,5) = { 0 otheTwVisé
— gCopeland Selects the winner based ¢aopeiana(P) as follows.
For each pait # j, if (foopetand(P))(i.5) > (feopetana(P)) i)
then add 1 point ta’s Copeland score; if foopetand (P))(j,i) >
(foopetand(P))(s,5), then add 1 point tg’s Copeland score; if tied,
then add 0.5 to botlis and;'s Copeland scores. The winner is the
alternative that gets the highest Copeland score.
— qeopetana = 2= (we recall thatg is the number of ele-
ments in the partition). The elements of the partition adeked
by (i,4), i < j. Foranyl = (i, ), < j, let Ki = {(i, ), (4,i)}.
Let%cOpeland = {Kl = (’L,j)/L < j}
e STV: For STV, we will use a total generalized score vector with
many components. For every proper subSaif alternatives, for
every alternative: outside ofS, there is a component in the vector
that contains the number of times thais ranked first if all of the
alternatives inS are removed. Let
—ksrv = 300 (") (m — i); the components are indexed by
(S,7), whereS is a proper subset @f and; < m,c; ¢ S.
— (fsrv(V)) (s, = 1, if after removingsS from V, ¢; is at the
top; otherwise, let fsrv (V))(s,;) = 0.
— gstv selects the winner based ¢grv (P) as follows. In the
firstround, findj; = arg min; ((fsrv (P))0,;))- LetS1 = {c¢j, }.
Then, for any2 < i < m — 1, defineS; recursively as follows:
S; = 8,1 U {]Z}, Whereji = argminj(fSTV(P)(SFl,j)); fi-
nally, the winner is the unique alternative@n— S,,—1.
—gstv = 2™ — 1. The elements of the partition are indexed by
theS C C. ForanyS C C,letKs = {(S,j) : ¢; &€ S}. Let



Hsry = {KS : SCC}.

3. the votes are drawn independently, and

e Maximin: For maximin, we use the same total generalized score 4. there exists! > 0 such that for each vote’s distribution, the

vector as for Copeland, that is, the vector of all scores inpse
elections. Let
— kmazimin = m(m — 1); the components are indexed by pairs
(i,7) such that, j < m, i # j.
1 ife ci

_(fmawimin(v))(i,j) = { 0 OtheTv‘\;iSé
- g'rnawimin(fmawimin(P)) is the ¢; such that for an)i' < m,
i’ # i, there existg’ < m, j' # i’ such that for any < m, j # i,
we havefmazimin(P)(i,j) > (fmacmmzn(P))(z/,]/)
— Hmavimin = {K}
e Ranked pairs: We use the same total generalized score vector
as for Copeland and maximin, that is, the vector of all scames
pairwise elections. Let
— krp = m(m — 1); the components are indexed by paisj)
such that, j < m, i # j.

o 1 ife v Cj
~ (VD)) = { 0 otherwise
— grp Selects the winner based ¢gn, (P) as follows. In each step,
we consider a pair of alternatives, c; that we have not previ-
ously considered; specifically, we choose the remaining i
the highest(f,,(P)),;). We then fix the order; > c;, unless
this contradicts previous orders that we fixed (that is, dates
transitivity). We continue until we have considered allrpaif al-
ternatives. The alternative at the top of the ranking wins.
—Hrp = {K} o

We showed that STV, also known as instant run-off voting, is a
generalized scoring rule. In Appendix 1, we generalize émd
show thatany multiround run-off process where in each round, al-
ternatives are eliminated according to a generalizedrsgoule (to
be precise, a correspondence) must itself be a generalipethg
rule. (For STV, a version of plurality that just eliminataseoalter-
native is used in every round.)

We stress that the class of generalized scoring rules iscuat e
to the class of anonymous voting rules. To see this, we réuail
any generalized scoring rule satisfies homogeneity. Thé eex
ample shows an anonymous voting rule that does not satisfiypho
geneity.

Example 1 Letr be the voting rule that selects an alternativé
the number of times thatis ranked at the top is higher than that of
any other alternative by at least 2; if no such alternativésxthen
the first (default) alternative; is selected.

r is anonymous. We note thafcz = c1) = ¢1 andr(2(c2 >
c1)) = c2. Hence;r does not satisfy homogeneity.

4. CONDITIONS UNDER WHICH COALI-
TIONAL MANIPULABILITY IS RARE

Let 7 be a probability distribution ovek(C) that is positive ev-
erywhere. Let- , be the distribution over profiles of voters in
which each vote is drawn i.i.d. according#to Given a manipula-
tion instance(r, P | M), if there is only one possible winner,
then we say that this manipulation instancel@sed otherwise we
say this manipulation instanceapen[16].

Definition 5 A manipulation instancér, PN |M|) is closedif
for any profilesP , P for the manipulatorsy (P U PM) =

r(PYM U PM). Aninstance ipenif it is not closed.

Procaccia and Rosenschein [16] have shown that if
1. the rule is a positional scoring rule,
2. the number of manipulatotd/| is o(1/n),

variance of the difference in scores for any pair of altémestis at
leastd,

then whenn — oo, the probability that a weighted manipulation
instance is open is 0. In this section, we generalize thigltrés
generalized scoring rules; in addition, we characterizerétie of
convergence t@. (However, unlike Procaccia and Rosenschein,
we do assume that votes are drawn i.i.d.; this is needed &nobt
the convergence rate. Hence, strictly speaking, our résuibt a
generalization of their result. We can also obtain a stectegaliza-
tion of Procaccia and Rosenschein’s results to generaticedng
rules, but without proving a convergence rate; we will notsdan
this paper.)

Specifically, in this section, we study the probability thaha-
nipulation instance is open when there &én?) (0 < p < %)
manipulators, and the nonmanipulator votes are drawn Hete,

n is the total number of voter§ NM| + |M| (nonmanipulators
and manipulators). We will prove that for any generalizeorisg
rule, this probability i@(%). LetT'(r,m,n,n, |M|) denote this
probability. That is,

T(r,m,n,ﬂ, |M|) = ‘PTPNM~¢>,r \NM\{(T’ PN]M7 |M|) is Oper}

Lemmal Let N € N. LetYi,...,Yny be iid. random vari-

ables withE(Y1) < oo, E((Y1 — E(Y1))?) > 0, and E(|Y: —

E(Y1)]*) < co. LetY = 3| Y¢. For any constant < p < 3

that does not depend aN, and any functionf(N) that isQ(1),
i f(N)

we have thaPr(|Y| < f(N)) is O(W)'

Proof of Lemma 1: Let ®(z) be the cumulative distribution func-
tion of the standard normal distributidvi(0, 1). Leto® = E((Y1—
E(1))?), p= E(|Y1 — E(Y1)|?). Then we have:

Pr(lY] < f(N))

E(YON f(N) _Y-E(Y)N _ BN _ J(N)

=Pr(- < - +
TN e N ST oUN VN ' ovN)
Then by the Berry-Esséen theorem [10],
Pr(lY] < f(N))
EM)N | f(N) EYYN _ f(N) Cp
<P(———F + —=) — P(— - +
CovN Torn) TN T o) T aun
oV N oV N P
= N(0,1 dx +
sy g NODOET
L2 1 Cp
oV N Vor  o3VN
which isO(L\/%)), becaus& is a constant that does not depend on
N andf(N) = Q(1). |

Theorem 1 Letr = GS(f, g) be a generalized scoring rule of
order k. For anym € N, any constand < p < % and any

constanth (where bothm and i do not depend on), there exists
a constantt,, ,,, > 0 (that does not depend om) such that if

|M| < hn?, then

[N

T(Tv m,n,m, |M|) S tm,p,hnp7

Proof of Theorem 1: We recall that each vote is drawn i.i.d. ac-
cording to the probabilistic distribution. For any paifii, is < k,
i1 # j2, and anyt > 0, let

R(ir,iz, t,m, INM|) = Pr{|(f(P"™))i, = (F(P""))i,] < t}



We recall that( f(PY™)), is theith component off (PY*). In
other words,R (i1, i2,t, 7, |[NM|) is the probability of profiles of
nonmanipulators’ vote®N such that the difference between the
i1th component and th&th component off (P™V*) is no more
thant¢, when each vote is drawn i.i.d. accordingitoLet Y;**2, . . .|

Y442 be|NM|i.i.d. random variables, where the distribution for

eachy;!"'2 is the same as the distribution fof(V') )i, — (f (V)i
whereV is drawn according ta. That is, for anyi” € L(C), with
probability = (V'), Y;*** takes value(f(V))i, — (f(V))i,. Let
vt = My

Letvmae = (f(V))i. Thatis,vmas is the maximum

igk{l\}aé)i(C)
component of all score vectors corresponding to a single. wMe
note thatv.... is a constant that does not dependronWe also
note that sincéM| is O(n?) andp < 3, it must be tha{N M|

is Q(n), so thatn is O(|NM]|), vmazhn® is O(|[NM|?). There-
fore, by Lemma 1 (in which we leN = |NM]), we know that
Pr(|Y*"2] < vpmazhnP) is O(D%P) = O(INM[P~2), so it

isO(nP~ z ). Hence, there exists a constant;, such that

Pr([Y™ 2| < vpashn?) < tiy iyn?~ 2

We lettmae = max; j<k,ix; ti,;. If @ manipulation instance is
open, then there exists a profile" for the manipulators such that
GS(f,g)(PM u PNM) £ GS(f,9)(PYM), which means that
F(PM U PNMY £ f(PYM)In this case there must exigty,
i # j, such that(f(PY)); — (f(PY™));] < vmaa| M| <
Umazhn?. Therefore'(GS(f,g), m,n,m, |M|) <
Zl§i<j§m R(i, j, mazhn®, m, [N M]).

We note that
R(i, j, vmazhn? ,m, INM|) = Pr(|Y*| < vmashn®). There-
fore, we have

T(GS(f,g),m,n,ﬂ, |M|) S Z R(7‘7.]7 vmazhnp,w, |NM|)

i#]
S Z ti,jnpié S @tmawnpié
i#]
Let tmpn = 25110, We know that, ,,, is a constant that
does not depend am.
(End of the proof of Theorem 1.) ad

From Proposition 2 and Theorem 1, we obtain the following

corollary.

Corollary 1 Letr be any positional scoring rule, Copeland, STV,
maximin, or ranked pairs. For any» € N, any constand < p <

%, and any constant (wherem, p, and h do not depend om),
there exists a constant,,,,» > 0 (that does not depend ot) such
that if |[M| < hn?, then

=

T(Tv m,n,m, |M|) S tm,p,hnpi

A profile is said to beied if a single additional voter can change
the outcome. By letting = 0 andh = 1 in Theorem 1, we have
that for any generalized scoring rule and any fixedthe number
of tied profiles isO( ).

We note that Theorem 1 does not applyatbanonymous voting
rules. For example, let us consider the voting nutbat selects the
first candidate¢s, if the number of times it is ranked at the top is
even; otherwise, the rule selects the second candidaté&or this
rule, even when there is only one manipulator, any pré#e* for
the non-manipulators is open, because the manipulatoriacays
determine whether the number of times thats ranked at the top

in the complete profile (that is, the profile that includeshbifte
non-manipulators and the manipulator) is odd or even, birzpa
vote that either ranks, at the top or not.

5. CONDITIONS UNDER WHICH COALI-
TIONS OF MANIPULATORS ARE ALL-
POWERFUL

Let us consider a positional scoring rule and a distributieer
nonmanipulator votes. Furthermore, let us consider eagh-al
native’s expected score; |ét,,.. be the set of alternatives with
the highest expected score. Procaccia and Rosenscheihdié]
shown that if

1. the number of manipulators is in batt{/n) ando(n), and

2. votes are drawn i.i.d.,

then, the probability that the manipulators can make argr-alt
native inC),q, Win converges to 1 a8 — oo. Hence, assuming
|Cmaz| > 1, the probability that the instance is open converges to
1 (however, if|Cimaz| = 1, it cOnverges ta).

In this section, we prove a similar result for generalizearisg
rules; in addition, we characterize the rate of convergénée (In
fact, in this case, Procaccia and Rosenschein also charactieis
rate—for positional scoring rules.)

Specifically, in this section, we study the case where the-num
ber of manipulators i€2(n”) (1 < p < 1) ando(n), the votes
are drawn i.i.d. according te, and a generalized scoring rule is
used. We provide a sufficient condition under which the malaip
tors can make any alternative in a particular set of alt@resitwin
with probability 1 — O(e=2"*""")). (We need the(n) assump-
tion for a technical reason, as do Procaccia and Rosensghein

Definition 6 7 is compatible with.z” w.r.t. f, if, for V' ~ =, for
anyl < q,anyi,j € K; (i # j), E((f(V))i) = E((f(V));)-

That is, 7 is compatible withoz” w.r.t. f if within each element of
the partition?’, the expectation of the componentsfd@l) are the
same (wheré/ is drawn according ta).

GivenGS(f, g), it will be useful to have a profilé such that
for some partition’” that GS(f, g) is compatible with, the com-
ponents off (P) within eachK; (I < ¢) are all different. The next
definition makes this precise.

Definition 7 For any GS(f, g) compatible with’7", a profile P is
said to bedistinctivew.r.t. GS(f, g) and .7 if for any ! < g, any

i3 € Ki i # 4, (f(P))i # (f(P));.

The next definition concerns the set of alternatives thatbean
made to win using a distinctive profile.

Definition 8 For anyGS(f, g) compatible with?", let W« (£, g)
be a subset of the alternatives defined as follows.

War (f,9) = {GS(f,g)(P) : Pisdistinctive w.rt7S(f, g) and .z}

For any profileP™ of manipulators and any alternativewe de-
fineT(m,n, w,c, PM) = Pr(GS(f,g)(P* UPNM) = ¢). That
is, given a profile of vote®* of the manipulatorsT'(m,n, 7, ¢, PM)
is the probability that the winner of the profile® U PYM is ¢,
when the number of alternativess, the number of voters is,
and the nonmanipulators’ voté&"¥* are drawn i.i.d. according to
w. Now we are ready to present the theorem.

Theorem 2 LetGS(f, g) be ageneralized scoring rule that is com-
patible with.7". Letr - be a distribution over (C) such thatr »

is compatible withoz” w.rt. f. For anym > 0, there exist con-
stantst,, > 0 andu,, > 0 (neither of which depend om) such



that for any constant > 0 (that does not depend ar) and any al-
ternativec € W (f, g), if the number of manipulators is at least

hnP (5 < p < 1) (as well aso(n)), then there exists a coalitional
manipulationP™ such that

— U, n2p—1

T(m,n,mx,c, PM) >1—tme

Theorem 2 states that when the number of alternatives is held

fixed, if the number of manipulators is large(”) for p > % as
well aso(n)) then for any alternative € W« (f, g), there exists

a manipulationP™ such that when the nonmanipulators’ votes are

drawn i.i.d. according ta ., thenc is the winner with a probabil-
ity of 1 — O(e 2" 1),
Proof of Theorem 2: Let |M| > hn?. If W (f,g) = 0, then
Theorem 2 vacuously holds. So we assume Wat (f,g) # 0.
For eachc € W (f,g), we associate with a distinctive profile
(w.r.t. f andX’), denoted byP;, such that = GS(f, g)(P)). We
recall thatP is distinctive if and only if for any < q, 7,5 € K],
i 3, (P # (F(PD); et )
dmin = _ o (D) = (P
That is, dmm is the minimal difference between any two com-
ponents within the same element.gf of f(P}), taken over all
c € Wx(f,g). Since|Wa(f,g)] < m (WhICh does not de-
pend onn), and P} is distinctive, we know thatl,,.;, > 0 and
does not depend om. Letpy,a., = maxcec |PS]. Thatis, for all
c € Wo (f,g), the number of votes i®. is no more thamaz.
We note thap,... does not depend om.

For anyc € C, define a profile of the manipulator vot&s” as
follows. PM consists of two parts:

IM]| | e
1.L|P:|JPc,and

2. an arbitrary profile for the remaining/ | — L||ZJ\DJ|| || Px ]| votes.

That is, PM consists mostly of || ||J copies of P7; the re-

maining votes (at mogtP;|) are chosen arbitrarily. We note that
| P’ | is a constant that does not dependiso that the second part
becomes negligible whem — oo.

The next claim provides a lower bound on the difference betwe
any two components of(P).

Claim 1 There exists a constadt that does not depend ansuch
that the minimum difference between componentg(#f*) is at
leastd.n?, whenn — oo.

Proof of Claim 1: Since the minimal difference between any two
components of} is at least...., the minimal difference between
|M|

157 dmin. We note
[P
that the number of arbitrarily assigned votes#f{ is no more than

any two components of (PM) is at least|

|P|, and the difference between any two components in a vote is
no more tham,,... Therefore the minimal difference between any

two components of (P™) is at least

| M| . | M|
\_ |Pc*| Jdmzn Umax |Pc | > (pmaac 1
which isQ(n?) becaus@®maz, dmin, andvmaq, are constants that
do not depend on, and|M | is Q(n?). Therefore, there existsd&
that does not depend ansuch that the minimal difference between
any two components of(P) is at leastl.n?, whenn — oo.

(End of the proof of Claim 1.) O

The next lemma is known &hernoff’s inequality5].

)dmzn — UmaxzPmax,

Lemma 2 (Chernoff's inequality) Let N € N. LetYi,...,Yn
beN i.i.d. random variables with variance®. LetY = Zévzl Ye.

Forany0 < k < 2v/No, Pr([Y —E(Y)| > kv/No) < 2 +°/*.

For any profileP™™ for the nonmanipulators, any,i» < F,
i1 # iz, let D(PYM iy i2) = |(f (PNM))n = (F(PYM))i, ).
The next claim states that if each vote®f'™ is drawn i.i.d. ac-
cording tow, then for any different,, i within the same el-
ementK; of the partition.#, the probability that the difference
between the; th and theixth component off (PV') is larger than

den® is O(e =27,

Claim 2 Forany! < g and anyii, iz € K; (i1 # i2), there exists
aconstant.;, ;, > 0 that does not depend onsuch that

2p—1
Pr(D(PYM i1 ,iz) > denP) < 2¢eini2™”

Ll 2

Proof of Claim 2: LetY;""2,..., Y/ be| N M| i.i.d. random

variables such that the distrlbutlon for eaéﬁ "2 jsthe same as the
distribution for(f(V)):, — (f(V)):,, whereV is drawn according
to 7. Thatis, for anyV € L(C), with probability 7(V), Y;1*2
takes valug(f(V))i, — (f(V))i,. Lety'iiz = S2 1My e,
Then, Pr(D(PNM i1,i2) > denP) = Pr(Y%2 > d.nP).
Sincer s is compatible with’z’, for anyl < q, i1,i2 € K;, we
know thatE((f(V))i,) = E((f(V))i,), WhereV is drawn ac-
cording torr. ThereforeE(Y”1 '2) = 0. Leto?, ;, be the variance
of Y2, We note that;, ;, does not depend on. If o7, ,, =
0, then for anyV € L(C), (f(V))is, = (f(V))i, (because for
anyV € L(C), mx (V) > 0), which means thatV..(f,g) =
(. This contradicts the assumption tH&t, (f,g) # 0. Hence
a? ;. > 0. Since|M| = o(n), INM| = Q(n), and for suffi-

21,22
ciently largen we have% < 20i,,i,1/ |NM|. There-
1,22

fore, we can use Lemma 2 (in which we §t= |NM|) to bound
Pr(D(PYM iy, i3) > d.nP) above as follows.

Pr(D(PY™ i1 ,is) > denP)
=Pr(|Y"""| > d.nP)
i1, den?~2 ST
:PT‘(|Y1’2|> ——————= X Oiy,iy |NM|)
Uil i2 \/|NM|
_ dcn ) /4
<2e i1, 12V‘NM Lemma 2
__d2  epa
<2e¢ iriz INM| <n

We note that 40;13 :
Q1,10
Therefore, there exists. i, ;, > 0such thatPr(D(PYM iy, i2) >
denP) < 2 Mein iz et
(End of the proof of Clalm 2) m|

et u. = min Thenu. > 0 and is a con-
1<q,i,J €K ,i#]

stant (that does not depend ). We note that for anyP™™

it f(PYMUPM) Ly f(PM),thenthere exists< ¢,i,j € K,

i # , such thay(F(PY)), = (F(PYM)), > [(F(PM)); —
(f(PM));] > d.nP. Therefore, we can bound the probability of
FPYM U PMY ~ e f(PM) below as follows.

is a constant that does not dependran

Ue,i,j-

Pr(f(P"™ U PM) ~ o f(PM))
=1 Pr(f(P"™ UPM) o F(PMY)



>1— Pr((31 < q)(3i,j € K)D(PYY i, 5) > den®)
>1-> > Pr(D(P"™,i,j) > denP)

I<q 4,j€Ky,i7#]

SRS

1<q i,jEK},i#]

>1— Z Z 267’u07l2p71 >1— m(mz_ 1)

I<q ,j€Ky,i7#]

w. s am2p—1
e Yeying™

x 2e~ e !

Whenn is sufficiently large,f(PM) ~. f(PZ). Therefore, we
know that there exists a constant> 0 (that does not depend ar)
such thatPr(f(PY™ U PM) ~opy f(P2)) > 1 — tee e
Hence
T(m7 n,wox,C, PA{)
ZPT‘(f(PNI\/I U PCIVI) ~ o f(P;)) 2 1— tcefuc’,ﬂpfl

(End of the proof of Theorem 2.) a

6. ALL-POWERFUL MANIPULATORS IN
COMMON RULES

We already showed how Theorem 1, which states a condition

under which manipulability is rare, can be applied to commata
ing rules in Corollary 1. We have not yet done so for Theorem 2;
we will do so in this section. Specifically, we prove that ieth
number of alternatives is fixed, then for any positional szprule,
Copeland, STV, ranked pairs, and maximin, if the number of ma
nipulators isQ(n?) (p > 1) ando(n), and the nonmanipulators’
votes are drawn i.i.d. according to the uniform distribatithen
for any alternativer, there exists a coalitional manipulation that
will make c win with a probability ofl — O(e =" "")),

The next theorem provides a necessary and sufficient conditi
for W« (f, g) to be nonempty.

Theorem 3 LetG(f, g) be compatible with’z". W (f, g) # 0 if
and only if for anyl < ¢, anyi,j € K, i # j, there exists a vote
V € L(C) such that(f(V)); # (f(V));.

Proof of Theorem 3: First we prove the “if” part. Suppose that
foranyl < ¢, anyi,j € K, i # j, there exists a vot& € L(C)
such that(f(V)): # (f(V));. Foranyl < gq, let himee =
maXi,jeKl,VeL(C){Kf(V))i - (f(v))J|}1 himin =
min; e, vere{(f(V))i—(F(V);il  [(f(V)i=(f(V))s] >
0}. That is,h;,max IS the maximum difference between any two
components withid;, for any f(V'); hi,min is the minimumpos-
itive difference between any two components wittii, for any
f(V). Then, for anyl < q, hi,maz > himin > 0. Leth be a
natural number such that for ahy< ¢, h > o 1. Suppose
L(X) ={L1,...,Ly}. Then,letP = 3™ A™~°L,. We now
show thatP is distinctive w.r.t.GS(f, g) and.# .

For anyl < ¢, anyi,j € K, lett be the minimum natural
number such thatf(L:)): # (f(L:));. W.Lo.g. let(f(L:)): >
(f(L+));. Then

l,max

(f(P))i = (f(P)); = Z K™ ((F(Ls))i = (F(Ls))5)

=h™ T (F(Le))i — (F(Le));) + Z h™*((f(Ls))i = (f(Ls))s)

s=t+1

m!

2h77l!7thl,min - Z hM!ishl,maz
s=t+1
_ 11—
:h’m! t(hl min _}7Lmihl,ma:v)
_ 1
>h7n! t(hl,min - mhl,maz) >0

The last inequality holds because> Ziﬂ + 1. Therefore, we

know that for any. < ¢, anyi, j € K;,i # j, (f(P)): # (f(P));-
Hence, P is distinctive w.r.t.GS(f,g) and ¢, completing the
proof of the “if” part.

Now we prove the “only if part. Suppose there exisK ¢,
i, € Kjsuchthatforany € L(C), (f(V)): = (f(V));. Then,
for any profile P, (f(P)); = (f(P));, which means thaP is
not distinctive w.r.tGS(f, g) and.#". ThereforeW  (f,g) = 0,
completing the proof of the “only if” part.

(End of the proof of Theorem 3.) m|

Now we show how the conditions in Theorem 2 are satisfied for
any positional scoring rule, STV, Copeland, maximin, antkeal
pairs, when the nonmanipulator votes are drawn from theotmif
distribution.

Proposition 3 Let 7, be the uniform distribution. For any rule
r that is a positional scoring rule, Copeland, STV, maximin, o
ranked pairs, let:., GS(fr, g-) and %, be defined as in Proposi-
tion 2. Then,r, is compatible with’#., and for anyl < ¢, and
anyi,j < K; (i # j), there exists a vot& € L(C) such that

(£ (V)i # (fr(V);.

Proof of Proposition 3: By simple calculation we have that when
risa

positional scoring rule with scoring vectors: for anyi <
Yty v()
m, By r, ((f5(V))i) = =5—

Copeland, maximin, or ranked pairs: for any: < m, j <
m, i # j, Bver, (fr(V))6g) = 3-

STV: for any (S, ) such thatS C C, |S| = i, ¢; ¢ S,
By en, ((fstv(V)(s.5) = ms-

Now we show, for any two given components (that lie within
the same element of the partition), the vote that makes these
components different. Whenis a

positional scoring rule with scoring vector: for anyi, j <
m, i # j, letV be the vote that ranks at the top ana; at
the bottom; then( f3(V)): = v(1) # v(m) = (fz(V));.

Copeland, maximin, or ranked pairs: for anyii, i2 < m,
Ji,d2 < m, i1 # j1, i2 # j2, and(iq, j1) # (i2, j2), letV
be any vote in whicle;, >~v ¢j, ande;, >v ci,. Because
(i1,71) # (i2,72), such a exists. Then,

(fr(V)) iy = 1# 0= (fr(V))(in.52)

STV:foranyS C C, j1 # j2 suchthat;, ¢ S,c;, ¢ S, let
V be the vote in whicl;, is atthe top. Thelfsrv (V))(s,j,) =
1#£0=(fsrv(V))(s.42)-

(End of the proof of Proposition 3.) a

By combining Proposition 3 and Theorem 3, we know that for
any of the rules in Proposition 3, there exists a distincfixafile;
hence,W _«..(f,g) is nonempty (some alternative will win under
the distinctive profile, without any tie). Also, all of thesales



are neutral (they treat every alternative in the same waygrwh
restricted to profiles that do not cause a tie, sdVif¢, (f,g) is
nonempty, it must be tha¥,.(f,g) = C.

Corollary 2 Letm, be the uniform distribution ovek(C). For any
rule r that is a positional scoring rule, Copeland, STV, maximm, o

ranked pairs, if the number of manipulators(&n?) (% <p<

1) as well aso(n), then for anyc € C, there exists a coalitional
manipulationP?" such that the probability that(P* U PV M) =

cis1—O(e 2™ h)y,

CONCLUSIONS

In this paper, we introduced generalized scoring rules. oAll
the common voting rules we know are generalized scoringsrule
We studied the coalitional manipulation problem under galired
scoring rules, and we proved that when the number of manipula
tors is small Q(n?), p < %), and the votes are drawn i.i.d. from
a distribution that is positive everywhere, then the prdigtof a

manipulable instance i@(n”*%). We also proved that when the
number of manipulators is larg&(n”), p > %, ando(n)), and

the votes are drawn i.i.d. from a distribution satisfyingngonat-
ural assumptions with respect to the rule, then with a pritibab

of 1 — O(e*m”%*l)), the manipulators can make any alternative
win (assuming that it is possible for the alternative to wider the
rule). To show that the assumptions used in the results dte na
ral, we proved that they are satisfied by any positional sgatile,
Copeland, STV, maximin, and ranked pairs under the unifasn d
tribution over votes.

While in this paper, we have focused on the frequency of €oali
tional manipulability, generalized scoring rules offeremgral frame-
work within which to study common voting rules. The idea ofige
eralized scoring can be easily extended to social welfaretions
(for example, the Kemeny and Slater social welfare funsfioie
pointed out that the class of generalized scoring rulestisqual to
the class of anonymous voting rules; we believe that we knmw h
to show that it is not equal to the class of anonymous votitesru
that also satisfy homogeneity. Finding alternative chimrégations
of the class of generalized scoring rules is an excitingctiva for
future research.
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Appendix 1: Run-off rules that use generalized
scoring rules

In a multiround run-off rule (or, more generallycarrespondence
which possibly selects more than one winner), there areiphailt
rounds; in each round, some of the alternatives are remooed f
all of the votes based on a (sub)correspondence, after vihech
next round proceeds with the rankings of the remaining radter
tives. After the last round, some number of alternativepi¢aily
one) is left; these alternatives are the winners. STV is amex
ple of a multiround run-off rule where in each round the “glity
loser” is eliminated.

We prove that for any voting correspondence with finitely ynan
run-off rounds, if in each step the correspondence used &na g
eralized scoring correspondence (it is straightforwardeneral-
ize the definition of generalized scoring rules to corresienices),
then the multiround run-off correspondence is a genercls®r-
ing correspondence. In fact, we only need to show this foneofti
correspondence with two rounds; the result will follow forabi-
trary (fixed) number of rounds by induction.

In the remainder of this appendix, we assume that the camesp
dence that we use in the second round is neutral, that isaitst@all
alternatives equally; it seems unnatural to have a muttidaun-off
correspondence for which this is not the case.



Definition 9 Letry, 72 be two voting correspondences (whesés
neutral), both defined on any set of alternatives. For anyofet-
ternative<C, any profileP, the run-off correspondend@(r, r2) (P)
is defined as follows.

1. LetCy = r1(P). LetP, = P|¢,. Thatis,P; is obtained by
removing the alternatives not ifi; from each vote irP.

2. LetR(r1,r2)(P) = ra2(Pr) = ra(P|(r1(P))).

Theorem 4 If r1 andr, are both generalized scoring correspon-
dences, theR(r1,r2) is also a generalized scoring rule corre-
spondence.

Proof of Theorem 4: Let m be the number of alternatives. For
1 =1,2,letr; = GS(fi, g;) be of orderk; ,,, and compatible with
J;.m. The proof is similar to the one that shows that STV is a gen-
eralized scoring rule. Unlike ST\R(r1,72) consists of only two
rounds, and in each round, multiple alternatives are ehteit (in
contrast, STV eliminates one alternative in each round). Le

® kRr(ryre) = kim + >ivy () ka,i. The vector consists of two
parts: the first parf; is indexed byi, < ki,.,, and the second
part K, is indexed bysS, i whereS C C, S # 0, andiz < ks |g).

(Here,S corresponds to the set of alternatives that survive the first

round.)

e For anyil < kl,mv (fR(rl,rg)(V))il = (fl(v))il' That is,
for any voteV/, the first part of the vectof,, ,)(V) is exactly
f1(V). ForanyS C C, S # 0, let V|s denote theestrictionof V/

to S, that is,V|s is obtained fromV by removing all alternatives
notinS. Let (fR(r-l ,7-2)(V))(S,i2) = (f2 (Vls))Lz

® gr(r, ) S€lects the winner based @p(,, -, (P) as follows. In
the first round, leS1 = g1 ((fr(r, ,ro) (P)) 5, ), Where
(fR(ry,rs)(P))x, is the score vector that consists of all compo-
nents inKy of fr(,, »,)(P). Then, let

IR(r1,r2) (FR(r1,r2) (P)) = 92((fR(r1 r2) (P)) (51,K2))

where( fr(r, ro) (P))(s1,kx5) IS the score vector that consists of all

componentg Sy, iz) (2 < ko |s,|) Of frir, re) (P).

® Gr(ri,m) = 2. ForanyS C C, S # 0, let Ks = {(S,12) :

io < kg"s‘}. Letji/R(ThW) = {K1} @] {KS :SCC,S# @} O
The purpose of our next result is to show that if the condgion

in Theorem 2 hold for the individual correspondences usetién

run-off (for the uniform distribution), then these condits are also

satisfied for the run-off rule as a whole.

Theorem 5 Let 7, ., be the uniform distribution over the set of
linear orders ofm alternatives. Fori = 1,2, letr; = GS(fi, g:)
be of orderk; ., and compatible with’7; ,,,. Then, there exists a
partition #%,., .., that R(r1,r2) is compatible with, such that

1. Iffor all m, i = 1,2, mu,m is compatible with’; .., then for
all m, 7., is compatible with#7,. ...

2. Iffori =1,2, W, (fi, 9:) # 0, then

W (fR(r1,r2)> 9R(r1,r0)) 7 0

R(ry,r2)

Proof of Theorem 5: All of the notation is defined in the same
way as in the proof of Theorem 4. First we show how to construct
H ey gy FOranyS C C, S # 0, there exists a way to partition
K, | g—the set of components in the score vector undewhen
there argS| alternatives—inta’5 |5 such thatr, |5 is compati-
ble with 75 | o) w.r.t. fo. Thatis, 75 | g is the partition thats is
compatible with when the set of alternativess Let 75, .,
be a refinement of7%., ,) such thatk’, is refined according to
1 m, that is, the partition that;, is compatible with, and for any
S CC,S #0, Ks is refined according to75 | 5.

Becauser,, ., is compatible with-71, for anyi;,i; € K1, we
know that B ((fa(ry v (V))ir) = Bv ((frtry.ra)(V))iy). For

anyS C C, S # 0, any(S,iz2), (S,43) in the same element of
Ja.s (here, % s is the partition of the components of the run-off
score vector that, uses when only the alternativésremain; this
partition has the same structure.4$ |5|), we have the following
chain of equalities:

EVN‘"u,m((fR(rl,r2)(V))(S,i2)) = EV\S\NTFu,\s\ ((fQ(‘/\S\))D)
:EV\s\Nﬂu,\s\ ((fQ(V\S\))Lé) = EVNWu,m((fR(r'l,r'z)(V))(S,ié))

Therefore, we know that,, ., is compatible with
H By gy WL R(r1,72), proving the first part of the theorem.
Iffor ¢ = 1,2, W, (fi, g:) # 0, then by Theorem 3, for any
i1,4; in the same element of the partition &f;, there exists a
vote V' € L(C) such that(fi(V)):; # (f1(V))s, which means
that (frer, o) (V)in # (fR(r ) (V))in. Again by Theorem 3,
forany S C C, S # 0, anyis,i5 in the same element of the
partition of K | s/, there exist8’s € L(S) such tha( f2(Vs)):, #
(f2(Vs))y, LetV € L(C) be any vote such that|s = V.

Then, we have thatfR(v'l,r-g)(V))(S,ig) ;é (fR(T'],T'Q)(V))(S,’Lé)'
By Theorem 3 we know that/ (fR(r1,r0)) GR(r1,ra)) 7

R(rq,r

(. This proves the second part of(thezt)heorem.

(End of the proof of Theorem 5.) a

This implies that, if we take some of the correspondences for
which we have shown in Proposition 3 that the conditions afoFh
rem 2 hold, and construct a run-off correspondence for tllkeem
the resulting run-off correspondence also satisfies thditions of
Theorem 2. (In Proposition 3, we referred to voting ruleg, ibu
fact all of these become correspondences if we do not break ti
So, an example would be to run plurality first, then elimirfaden
the votes all the alternatives except those that are tiethéowin,
then run ranked pairs on the remaining alternatives, anehgo o

Corollary 3 For any multiround run-off voting correspondence with
finitely many run-off rounds, if in each round the voting espon-
dence used is one of those in Proposition 3, then TheoremlIzapp
to the multiround run-off voting correspondence.

Appendix 2: Weighted generalized scoring rules

Weighted generalized scoring rulese a slight generalization of
unweighted generalized scoring rules. ket N be the number
of voters, and letw : {1,...,n} — R™ be a function assigning
weights to the voters. We define a weighted generalized regori
rule by GS(w, f,9)(Vi, ..., Va) = g(S1, w(i)f(V;)). When
all the weights are equal (that is, the rule is unweightedpeg-
alized scoring rules are anonymous. However, the converseti
true, that is, a rule can still be anonymous even if the wsighé
not equal. This is illustrated in the following example.

Example 2 Letm = 3, n =3, f(c1 > c2 > ¢3) = f(c1 > c3 >
c2) = (1,0,0), f(e2 = c1 = ¢c3) = f(c2 = e3> 1) = (0,3,0),
fles = c1 = c2) = f(es > c2 > c1) = (0,0,9). For any
profile P, g(f(P)) is thec; such that is the maximum component
of f(P). (Effectively, the rule is a version of plurality that is bed
towardscs and biased against;.) It is easy to check that for any
profile consisting of three votes, the maximum componefit Bj

is higher than any other component by at least 1.

Letw = (1.1, 1, 1), so that the weight of the first voter is slightly
higher than that of the other two voters. The additiobal weight
of the first voter will only affect the difference between amng
components by at mostx 0.1 < 1. Therefore, for anyP =
(Vi, Vo, Va), o0, w(i) f(Vi) ~ 307, f(Vi), sothatGS (w, f,g) =
GS(f,g). HenceGS(w, f, g) is anonymous.



We can also extend the definition of weighted generalized sco
ing rules so that voters are allowed to divide their votes frdic-
tions, that is, submifractional votes In such a setting, each voter
submits a convex combination of linear orders (that is, ameht
of Conv(L(C)). Such a votd/; is given asVi = >y ) A%
wheret;” > 0andy st/ = 1. LetP = (Vi,...,V,) be a
profile of fractional votes. We define

n

fu(P)=>"w(i) > t/f(V)

i=1 VEL(C)

We letGS(w, f,9)(P) = g(fw(P)). Now, in contrast to the pre-
vious result, we show that if voters are allowed to submitticmal
votes, then (under an assumption) a weighted generalizethgc
rule is anonymous if and only if all the weights are the same.

Theorem 6 Suppose there exist two profil&s, P, such that:
1.GS(w, f,9)(P1) # GS(w, f,g)(P2), and

2. the components g¢i,(P;) are all different, and so are the com-
ponents off., (P2),

then GS(w, f, ¢g) is anonymous if and only if for anj < n,
w(i) = w(j).

Proof of Theorem 6: The “if” part is obvious. We now prove the
“only if” part. Suppose there exist,i> < n such thatw(i1) >
w(iz). Let f(L(C)) = {f(V) : V € L(C)}, thatis, f(L(C)) is
the set of all (generalized) score vectors. ket= >""_, w(i),
that is, w, is the sum of all weights. The next claim states that
the set of sums of weighted score vectors that can be obthinad
fractional profile is exactly the convex hull ¢gf{ L(C)) multiplied

by ws.

Claim 3 f.,(Conv(L(C))"™) = wsConv(f(L(C))). Here,
wsConv(f(L(C))) is obtained by multiplying each vector in
Conv(f(L(C))) by a factor ofws.

Proof of Claim 3: First we prove thatf,,(Conv(L(C))") C
wsConv(f(L(C))). ForanyP € Conv(L(C))", let

P=(Vi,....,V,)andV; = > YV such that! > 0 and
VeL(C)
S t¥ = 1. Thenf, (P) can be written as follows.

VeL(C)

Yy

i=1 VeL(C)

S 2wt
Z Z S Y B
eL(c) i=1 VeL(c) Ws
no N,V
ForanyV € L(C), lettV = zi:lw“:(z)ti . Then:
V ZZ 1 w
> = > o Iy Yy w
VEL(C) VEL(C) i=1 VeL(C)
n n
= o w wli) =1
S i=1 VeL(c) Ws i1

Therefore fu,(P) = ws(X e ) t' f(V)) € wsConv(f(L(C))),
which means thaf.,, (Conv(L(C))") C wsConv(f(L(C))).
Next, we prove thatv, Conv(f(L(C))) C fuw(Conv(L(C))").
For any elemengin wsConv(f(L(C))), suppose ;
=1.

P=wsYyeret' f(V), wheret” > 0and}Sy .y )t

Then, letVi = ... = Vo =Y )tV
Jo(Viy oo Va) =Y w(@) f(Vi, ., Vi)
1=1
=ws Z tV (V) = wsp

VeL(C)

Therefore, we know thaf € f.,(Conv(L(C))"), which means
thatw,Conv(f(L(C))) C fw(Conv(L(C))™). Hence
w,Conv(f(L(C))) = fu(Conv(L(C))").

(End of the proof of Claim 3.) m|

Suppose there exigt;, P> such that
GS(w, f,9)(P1) # GS(w, f, g)(P2), and all the components are
different within f.,,(P1), as well as withinf., (P2), respectively.
Let 0p = fu(P1) — fw(P2). Letl(A) = fu(P2) + Atp, 0 <
A < 1. From Claim 3 we know thaf., (Conv(L(C))™) is convex.
Therefore, forany) < A < 1, we havd(\) € f.,(Conv(L(C))") =
wsConv(f(L(C))), which means that there exists a fractional vote
V) such thatw, f(Va) = I(\). For any total preorde® (that is,
a binary relation that is complete, reflexive, and transjtiover
the components, defin&(O) to be a subspace &" such that the
order of the components of any elementS00) is O. That is,
S(0) = {7 € R* : (Vi,5)((¥); > (¥); & i =o j)}. Then
it is easy to check that for an®, S(O) is convex, and for any
U1,02 € S(O), U1 ~ v, which means thag(v,) = g(v2). Let
g(S(0)) = g(th). ForanyO, letI(O) be the intersection & (O)
and the ling()). Since both of them are convek(O) is convex.
Therefore, eithed (O) is an interval (that is/(O) is described by
two ends0 < A1 < A2 < 1, such that for all\; < A < Ao,
I(N) € I(O),and foranyh < A1 orX2 < A\, I(A) € I(O))ora
single point. We note that for an, # Oz, S(O1) NS(0O2) = 0,
hencel (O1) N I(O2) = 0.

For anyO that is a linear ordet (O) is an interval inl(\) (that
is, I(O) has more than one point), because for ang S(O), a
small perturbation would not change the order. Ogt,, Op, be
the linear orders thaf., (P1) and f.,(P) are compatible with, re-
spectively. Sincey(Op,) # g(Op,) and there are only finitely
many total preorders ovek, there must exist two adjacent inter-
valsI(O;) andI(O2), such thay(O1) # g(O2). More precisely,
there exist) < X\ < 1 andd > 0 such that for al0 < ¢ < d,
I\ —¢€) € I(O1) andl(N +¢€) € I(O2). Let0 < d* < d. Then,
let V' be the fractional vote such that, f(V) = [(\' +d*) (the
existence of such &' is guaranteed by Claim 3); I8t~ be the
fractional vote such that, f(V ) = (N —d*); let V° be the frac-
tional vote such thais f(V°) = I()\'). Then, letP; be the profile
whereV;, =V, Vi, = VT (we recall thatw(i1) > w(i2)), and
foranyl < s < mn, s # i1,5 # i2, letVy = V°. Then we have

FulViy... Vi)

=(ws — w(in) = w(i2)) f(V*) +w(i) f(V7) + Fv)

w(iz

)
) =

=ws f(V) + w(i)(F(V7) = F(VO) +w(ia)(f(VT) = F(VT)
=l(\) — wlin)d” Tp + w(iz)d" ip =1\ — w(“); w(l2)d*)

Since0 < 2wl g« < g* < d, it must be thatf,,(P1) €
1(01), which means that’S(f,g)(P1) = g(O1). Let P, be the

profile whereV;, = V*,V;, = V7, and foranyl < s < n,

s # i1, # ig, letV, = VO, Similarly, we have thaf,, (P) €
1(02) and GS(f,9)(P,) = g(0»). Hence,GS(f,)(P1) #

GS(f,g)(P2). However, P; is obtained by exchanging the votes

of voteriy andiz. ThereforeG\S(f, g) does not satisfy anonymity.
(End of the proof of Theorem 6.) a



