
Intellectual development statement

Vincent Conitzer

As required, this intellectual development statement is divided into three main sections: Research, Teach-
ing, and Service. I am happy to provide any additional details on request; comments are also welcome. My
CV can be found at http://www.cs.duke.edu/∼conitzer/cv.pdf.

1 Research
My research focuses on issues in the intersection of computer science (especially artificial intelligence and
multiagent systems) and economics (especially microeconomic theory, game theory, social choice, and mech-
anism design). Each of these two disciplines can contribute significantly to the other. On the one hand, as
computer systems become more interconnected, multiple parties must interact in the same environment and
compete for scarce resources, which necessarily introduces economic phenomena. Here, economic theory
can contribute to computer science—though the specific environments faced by computer scientists often
require new contributions. On the other hand, in the past, deployed economic mechanisms (such as auctions
and exchanges) have been designed to require very limited computing and communication resources, even
though economic theory allows for much more powerful mechanisms in principle. Computer science can
contribute to economics by allowing us to fully operationalize economic theory, resulting in more efficient
as well as entirely novel mechanisms—though this requires the design of new algorithms as well as other
contributions. I am devoted to exploring both of these directions.

Most of my research can be placed in at least one of the following four categories. These categories do
not separate cleanly. More detail on these topics is given later in this statement.

1. Making decisions based on the preferences of multiple agents. This can be done using, for example,
voting or auction mechanisms. I am especially interested in cases where the space of alternatives
is combinatorial in nature, for example, when multiple items must be allocated or multiple issues
require a decision. This leads to questions about how the agents’ preferences should be represented and
communicated, as well as nontrivial optimization problems for finding the best alternative. Application
domains for such techniques include combinatorial auctions (which sell related items at the same time
and are used in a.o. spectrum auctions and sourcing events), sponsored search auctions (which major
search engines use to allocate advertising space), combinatorial voting, kidney exchanges, prediction
markets, expressive markets for donating to charities, and many others.

2. Algorithms and complexity results for game-theoretic solution concepts. Game theorists study how an
agent should act in the presence of other agents who have their own preferences. They have introduced
a variety of solution concepts, including Nash equilibrium but also many others. I work on opera-
tionalizing these concepts, by designing algorithms for computing or learning the solution in specific
games. Application domains for such techniques include playing games of imperfect information such
as poker or Liar’s Dice, but also the strategic allocation of resources in real-world security domains.

3. (Automated) mechanism design for strategic agents. In mechanisms such as the ones discussed under
1, a self-interested (game-theoretic) agent is sometimes better off reporting her preferences insincerely,
in order to obtain an outcome that is better for her. However, we can design these mechanisms in
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such a way that good outcomes result in spite of self-interested behavior. I am especially interested
in automated mechanism design (where we identify good mechanisms by having a computer search
through the space of possible mechanisms in an intelligent way), and the effects of the agents’ compu-
tational limitations on the mechanism design process. We have used our automated mechanism design
techniques to discover new results in economic theory.

4. Mechanism design in highly anonymous environments. Mechanism design has traditionally focused on
the problem of agents misreporting their preferences. However, in highly anonymous environments
such as the Internet, another often-used manipulation is for an agent to pretend to be multiple agents.
This clearly has ramifications for online elections and rating systems, but also for other mechanisms
such as auctions. I am working on extending the theory of mechanism design to address this type of
manipulation.

Below, I summarize my research in each of these categories. In some cases, the decision to place a topic
in one category rather than another was fairly arbitrary.

A quick note. Research statements by their nature tend to be self-centered and, unless the researcher is
strictly devoted to a single topic (which I am not), dispersed over too large a variety of topics. If your interest
is in learning more about some of the topics discussed here rather than in getting a general overview of my
research, I recommend following the references to the original papers, especially the overview articles. While
I have tried to cite very closely related work in this statement, this format does not allow me to give a truly
thorough background.

1.1 Making decisions based on the preferences of multiple agents
(An article with the same title that I wrote for the Communications of the ACM [38] gives a more general
and less self-centered introduction to this topic.) Much, but not all, of my work in this category concerns
computational aspects of voting mechanisms, a topic on which I have worked since 2001. A voting mech-
anism allows a group of multiple agents to make joint decisions. In recent years, this topic has attracted
a large number of researchers, resulting in the formation of the computational social choice research com-
munity, which first held its own separate workshop (COMSOC) in 2006 and has been flourishing since (in
2010, when I was program co-chair, COMSOC counted 92 participants). The computational social choice
community (including me) studies questions such as the following.

1.1.1 How computationally hard is it to run voting rules?

In social choice theory, a voting mechanism (aka. voting rule) takes as input multiple rankings of a fixed
set of alternatives. These rankings usually represent the preferences of multiple agents over the alternatives,
but they can also represent, say, multiple search engines’ rankings of a set of relevant pages. As output, the
voting rule produces the winning alternative, or, more generally, an aggregate ranking of the alternatives.
Many voting rules have been proposed, each characterized by different desirable properties. Some important
rules are NP-hard to run—that is, given the input rankings, the winner or aggregate ranking is NP-hard to
determine. In my opinion, the most important rule for which this is the case is the Kemeny rule, which
has a useful interpretation as computing the maximum likelihood estimate of the “correct” ranking of the
alternatives [156], as well as another nice axiomatization [157]. (The Kemeny rule was shown to be NP-hard
to run in the 1980s by Bartholdi et al. [11]; its exact complexity—complete for parallel access to NP—was
characterized by Hemaspaandra et al. [101].) We1 showed how to use integer programming techniques for
computing Kemeny rankings [39] which, to my knowledge, are still state of the art when used with the

1I will use “we” for any paper with multiple authors, and “I” for the occasional single-author paper. In the interest of space I will not
mention all my very talented co-authors by name in the text; this does not mean that they do not deserve a large amount of the credit for
the work. The students that I advise deserve particular credit; more detail on them can be found in the “mentoring” section.
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right solver. (Incidentally, we have used this formulation in our department to get preliminary rankings of
our Ph.D. applicants based on committee member rankings.) For a close relative of the Kemeny rule, the
Slater rule, my techniques for computing the aggregate ranking [29] are also still state of the art (to my
knowledge). In this paper, I also used these techniques to give a relatively simple direct proof of the NP-
hardness of computing Slater rankings when there are no ties. (This is equivalent to the Minimum Feedback
Arc Set problem on tournament graphs, which was conjectured to be NP-hard as early as 1992 [9]. The
conjecture remained unproven until 2005, when a randomized reduction was given by Ailon et al. [1]. A later
derandomization of this reduction by Alon finally proved the conjecture completely [2], briefly before my
paper. There is also a fourth (2007) paper proving this result [21], which independently produced a similar
proof to Alon’s.)

1.1.2 How much communication is required to run voting rules?

To use a voting rule, the voters need to communicate enough information about their preferences (rankings) to
determine the winner (or aggregate ranking). This is also known as the preference elicitation problem, where
the voters are asked queries about their preferences until enough information is known to determine the
winner. Voting rules that require less preference information to be communicated are preferred for a variety
of reasons. We have characterized the communication complexity of the standard voting rules [58]. I have
also studied how the number of queries can be decreased if preferences are known to lie in the class of single-
peaked preferences [35] (this is related to later research that we performed on voting over intervals—e.g.,
voting over the minimum and maximum sentence for a given offense [82]). We have also studied the effects
of preference elicitation on strategic voting, and characterized the computational complexity of problems
related to preference elicitation [46, 141]. Finally, we have characterized the compilation complexity of
common voting rules [145]. (Compilation complexity, a notion related to communication complexity that
was introduced in the context of voting by Chevaleyre et al. [25], concerns how many bits are required to
summarize the votes of a subelectorate.)

1.1.3 How computationally hard is it to manipulate voting rules?

A voter is said to manipulate an election if she strategically misrepresents her preferences in order to obtain
a better result for herself. Unfortunately, by a result known as the Gibbard-Satterthwaite theorem, every
reasonable voting rule suffers from the problem that a voter can benefit from manipulating in some cases.2

One line of research in the computational social choice community studies whether finding such opportunities
for manipulation can be made computationally hard, so that even though they must exist, in practice voters
will not be able to take advantage of them. Indeed, various voting rules have been shown to be NP-hard to
manipulate under various circumstances, and we have contributed a number of these results [71, 51, 151, 150].
(The earliest results of this type date back to the 1980s, again by Bartholdi et al. [10]. They additionally
considered the use of complexity as a barrier against undesirable behavior by the chair of the election [12],
and we have also contributed such results in the context of combinatorial alternative spaces [43], a context
that I will discuss shortly.)

However, this type of result is still unsatisfactory, because NP-hardness is a worst-case measure of hard-
ness. Hence, even rules that are NP-hard to manipulate may be easy to manipulate most of the time. We have
proved a number of results that indicate that this is indeed the case for existing rules, and moreover that this
may be inevitable in general. For example, we have shown that if the combination of the voting rule and the
distribution over instances satisfies some natural conditions, then a simple manipulation algorithm will find
a manipulation most of the time [64]; that for an extremely general class of voting rules, the manipulators’
ability to succeed is primarily determined by their number [142] (this result builds on related earlier work,

2We have also studied settings where the agents vote in sequence, and shown a general result that strategic behavior in this context
can result in paradoxically bad outcomes, under every rule in a large class of voting rules [146]. (There is related work for the special
case of the plurality rule by Desmedt and Elkind [78].)
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for example by Procaccia and Rosenschein [125], but our results hold for a much more general class of rules,
as illustrated by a later precise axiomatization that we obtained for this class [144]); that a version of the
Gibbard-Satterthwaite impossibility result holds that characterizes how often purely random manipulations
will succeed [143] (the first such result was by Friedgut, Kalai, and Nisan [85]); and finally, that there is an
algorithm that effectively manipulates the class of positional scoring rules in an approximate sense (defined
by Zuckerman et al. [160]) [150]. Taken together, these results cast significant doubt on the agenda of finding
a voting rule that is hard to manipulate most of the time.

A good overview of the state of the art for these types of results is given by Faliszewski and Procaccia [81].

1.1.4 How should we vote when the space of alternatives is combinatorial in nature?

Often, a group of agents needs to make decisions on multiple interrelated issues. In this case, the preferences
of an agent (voter) for one of the issues can depend on the decisions made on the other issues. For example,
whether a voter wants one public resource (say, a tennis court) to be built can depend on whether another pub-
lic resource (say, a swimming pool) is built. It is well known that voting over the issues separately can lead to
terrible results [17, 109], but surprisingly little was known about how this should be addressed; we have been
trying to address this in our work. Conceptually, we can consider every possible joint decision (consisting of
a decision for every issue) to be an alternative, but ranking all these alternatives is not practical because there
are exponentially many. Instead, we are now using languages from the AI literature for concisely representing
preferences, such as CP-nets [14] (which are somewhat similar to Bayes nets). Using such representations
in a voting framework opens up a variety of questions. How do we define a good voting rule for the repre-
sentation? Can such a rule be executed in polynomial time? How much communication does this require?
Can we make the rule robust to manipulation? I believe that such combinatorial alternative spaces represent
the future of computational social choice, and that this is where the field may make its largest contributions
to society: settings where issues are completely independent are exceedingly rare, but still we often decide
on them as if they are. A computational perspective is key for going beyond the limited existing framework.
We have already introduced some techniques for defining voting rules and computing their outcomes based
on CP-nets [148, 149]. (The second paper follows the approach of determining the rule that produces the
maximum likelihood estimate of the “correct” outcome—we have already studied this approach in detail in
the non-combinatorial context [57, 44, 3]). We have also studied to what extent voting rules in combinatorial
domains can be made strategy-proof (so that there is never an opportunity to manipulate) [147].

1.1.5 Other applications: auctions, donations, and externalities

While voting is a general methodology for reaching a decision based on the preferences of multiple agents, for
specific applications, it is often preferable to use a special-purpose mechanism. For example, if the goal is to
determine how to allocate a set of resources to the agents, a common approach is to auction off the resources.
In a combinatorial auction (for an overview, see Cramton et al. [74]), the agents can directly bid on (express
their preferences over) subsets of the resources. As in the context of voting, this leads to questions about
how preferences should be represented (bidding languages [15, 115]) and communicated/elicited [120, 128],
and how computationally hard it is to determine the outcome given the reported preferences (winner deter-
mination [110, 127]). (I recently wrote an article about the similarities between computer science research
on combinatorial auctions and voting [37], as well as a book chapter on auctions [34].) These questions have
received a significant amount of prior attention in the context of combinatorial auctions. Still, we have made
some new contributions: we have introduced several graph-based bidding languages and studied the winner
determination and preference elicitation problems for them [40, 131, 72]. (Essentially the same framework
as in our paper [72] was simultaneously and independently proposed by Chevaleyre et al. [24], though with
different results. An elegant generalization of the techniques in our paper [40] was recently given by Gott-
lob and Greco [89].) During graduate school, I also consulted for CombineNet, Inc., which gave me a nice
perspective on real-world combinatorial (reverse) auctions.
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As an example of a different special-purpose mechanism, we have introduced a methodology for letting
donors make their donations to charities conditional on donations by other donors (who, in turn, can make
their donations conditional) [70]. We have used this mechanism to collect money for Indian Ocean Tsunami
and Hurricane Katrina victims. We have also introduced a more general framework for negotiation when
one agent’s actions have a direct effect (externality) on the other agents’ utilities [69]. Both the charities and
externalities methodologies require the solution of NP-hard optimization problems in general, but there are
some natural tractable cases as well as effective MIP formulations. Recently, Ghosh and Mahdian [86] at
Yahoo! Research extended our charities work, and based on this a web-based system for charitable donations
was built at Yahoo!

1.2 Algorithms and complexity results for game-theoretic solution concepts
Computer scientists are increasingly confronted with settings where multiple self-interested agents interact
in the same environment. In such settings, what is optimal for one agent to do in general depends on what
the other agents do, leading to a tricky circularity. Game theory considers how agents should act under
such conditions. It defines various solution concepts that correspond to various definitions of “rational”
behavior. Algorithms for computing these solutions have various applications. They can be useful in artificial
intelligence when an agent acts in a strategic domain with other agents/humans. For example, game theory
has recently been very successful in computer (heads-up) poker, and I have used it to create an optimal
program for a class of Liar’s Dice games. More recently, such algorithms have started to be used in various
real-world security and law enforcement applications. Since these applications are closely related to some of
my research I will discuss them in more detail shortly.

Positive results in this area (efficient algorithms for finding solutions) are complemented by negative
results: hardness results from complexity theory. These hardness results provide important guidance for the
design of algorithms: for example, there is (presumably) little sense in trying to find a linear program for a
problem that has been shown to be NP-hard.

1.2.1 Computing game-theoretic solutions in noncooperative normal-form and Bayesian games

Some of my work concerns the complexity of solving games according to standard concepts in noncooper-
ative game theory (the more popular branch of game theory), specifically in normal-form games (the most
basic representation of a game). We have characterized the computational complexity of a variety of problems
related to finding Nash equilibria; in particular, we have shown that there is no efficient algorithm for finding
approximately optimal equilibria (for various definitions of “optimal”) unless P=NP [68]. This paper is stan-
dard reading in many algorithmic game theory courses; it significantly improves on earlier results by Gilboa
and Zemel from the 1980s [88].3 In addition, we have studied mixed integer programming techniques [130]
as well as powerful preprocessing techniques [65] for computing Nash equilibria. We have also characterized
the computational complexity of versions of (iterated) dominance [59], which correspond to even more basic
notions of rationality in game theory. This paper significantly improves on earlier work by Gilboa, Kalai, and
Zemel [87] in the early 1990s.

3These optimization problems are technically quite different from the problem of computing any single Nash equilibrium; a re-
cent sequence of papers has resulted in the breakthrough result that computing a Nash equilibrium of a two-player game is PPAD-
complete [75, 22, 23]. (I have shown that a classic algorithm in game theory, fictitious play [18], computes an approximate equilibrium;
a result by Feder et al. [84] implies that this approximation guarantee approaches the best possible for a large class of algorithms—
though other algorithms in this class are known that obtain the optimal guarantee exactly [76].) For three or more players, the problem
of computing an exact Nash equilibrium (or an approximate one in a stronger sense) is FIXP-complete [80].
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1.2.2 Commitment and security

In 2006, we published a paper that gave efficient algorithms as well as hardness results for computing Stack-
elberg strategies in various basic settings [62]. (One of these algorithms was also discovered by von Stengel
and Zamir [136].) Stackelberg strategies are optimal when one of the players can commit to a strategy before
the other player can make a decision. While our paper was theoretical in nature, it has been credited by
Milind Tambe (at the University of Southern California) as a launching point for his group’s work on com-
puting Stackelberg strategies in real-world deployed security applications, including the optimal placement
of checkpoints and canine units at Los Angeles International airport [121, 123] (the Transportation Secu-
rity Administration (TSA) is now testing and evaluating the system for potential national deployment, which
would be at over 400 airports), the assignment of Federal Air Marshals to flights [106, 134], the determina-
tion of patrolling strategies for the US Coast Guard, and potentially many other applications. For instances as
large as the Federal Air Marshals application, it is difficult to scale general-purpose algorithms for comput-
ing Stackelberg strategies, so special-purpose algorithms are required. We have taken the general model of
security games introduced by the USC group [106] and characterized the complexity of computing optimal
Stackelberg strategies in variants of these games [107]. Also, together with the USC group, we have studied
game-theoretic properties of these security games, including the relationship between Stackelberg and Nash
strategies and the interchangeability of Nash equilibria [152]. In other work, we have proposed and evaluated
algorithms for solving a game in which a seeker with flexible cameras searches for a fugitive hider that tries
to avoid detection [98], as well as (together with the USC group) for solving a game where a defender places
defensive resources on a graph to prevent an attacker from reaching targets of varying values (corresponding
to the problem the Mumbai police face after the 2008 terrorist attacks) [104]. We are continuing our work on
this type of topic as well as our collaboration with the USC group.

In addition, we are continuing our work on computing Stackelberg strategies in general games (not nec-
essarily security games). We have characterized to what extent Stackelberg strategies can be approximated
in polynomial time in Bayesian games [113]. We have also studied the complexity of computing Stackelberg
strategies in extensive-form games [111]. Finally, we have designed and evaluated an iterative algorithm for
computing equilibrium strategies in a model where there is uncertainty about whether the follower can ob-
serve the leader’s mixed strategy before acting [108]; the extreme cases of this model correspond to the basic
Stackelberg and Nash models.

1.2.3 Learning in games

If a game is played more than once, it is possible to learn something about the game or the opponent. For
example, the payoff structure of the game may need to be learned; alternatively, we can learn to exploit the
weaknesses of a suboptimal opponent. The topic of learning in games is complex and the work done in it
is heterogeneous, but some of it is closely related to reinforcement learning in artificial intelligence. We
have given the first learning algorithm that converges to a best response against a stationary opponent, but
converges to Nash equilibrium in self-play, in arbitrary games [66]. (Before this algorithm, the algorithm
that came closest—by Bowling and Veloso [16], in turn an improvement over an algorithm by Singh, Kearns,
and Mansour [133]—only works for two-player, two-action games, and additionally needs to assume that
the mixed strategies are directly observable.) We have also introduced a framework for learning to play
zero-sum games with a bounded total loss (relative to optimal play) [49]. Additionally, we have shown how
communication complexity can be used to provide lower bounds on the required time for learning [53] (a
nice follow-up paper was later written by Hart and Mansour [100]). Finally, we have studied how to learn
Stackelberg strategies when the follower’s utility function is (initially) unknown [113].
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1.2.4 Defining new game-theoretic solution concepts (and computing their solutions)

In the course of working on computing game-theoretic solutions, we have also introduced some new solution
concepts. One of these is a parameterized solution concept that spans a spectrum between the two traditional
solution concepts of dominance and Nash equilibrium (which correspond to the two extreme settings of the
parameter) [60]. The parameter reflects the computational complexity of the concept: when its value is close
to the extreme corresponding to dominance, the concept is computationally easy, but the problem becomes
harder as the parameter increases towards the extreme corresponding to Nash equilibrium. At a minimum,
this concept can be used as a preprocessing step for computing Nash equilibria, but I think it is interesting in
it own right.

More recently, we have been working on a solution concept corresponding to “ethical” behavior [112].
The motivation here is that the self-interested behavior prescribed by game theory can, at times, be argued to
violate basic ethical principles, such as taking advantage of trusting players. We defined a concept for two-
player perfect-information games that is rooted in standard game-theoretic thinking but seems to correspond
to a more ethical type of behavior. We also gave an efficient algorithm for computing solutions according to
this concept. Generalizing the concept to wider classes of games is a challenging direction for future research.

1.2.5 Computing game-theoretic solutions in cooperative games

The other branch of game theory is cooperative game theory, in which coalitions of players can form binding
contracts. While there is a continuing effort to unify noncooperative and cooperative game theory (the “Nash
programme”), for now, cooperative game theory has its own separate solution concepts. We have introduced
concise representation schemes for cooperative games, and given algorithms and proved complexity results
for standard solution concepts, including the core and the Shapley value [61, 55]. (The representation in our
paper [55] was later nicely generalized by Ieong and Shoham [102].) Cooperative game theory also involves
some natural optimization problems, including the coalition structure generation problem—how to partition
the agents into coalitions (teams) to maximize total utility. We have studied how to find the optimal coalition
structure under several natural representations of the problem [116] (in contrast to existing work that treats
the relevant function as a black box).

1.3 (Automated) mechanism design for strategic agents
In the context of voting, I already briefly mentioned the problem of an agent misreporting her preferences
in order to obtain a better result for herself. The same problem occurs in other types of mechanism—for
example, underbidding or overbidding in auctions. Other agents will anticipate this and change their own
actions accordingly, etc., resulting in very strategic behavior. In effect, the choice of mechanism defines a
game, which we can then analyze using game-theoretic methods. However, we get to design the mechanism
(e.g., the voting or auction rules), and thereby the game. Ideally, we design it in such a way that desirable
outcomes emerge in spite of the agents’ strategic behavior. The standard approach, justified by a result known
as the revelation principle, is to make it optimal for every agent to reveal her true preferences. A mechanism
with this property is variously called incentive compatible, truthful, or strategy-proof.

1.3.1 Automated mechanism design

The traditional approach to mechanism design is to consider a general mechanism design problem—say,
maximizing the expected revenue of an auction—and to obtain a mathematical characterization of the op-
timal mechanism that is as general as possible. When successful, this approach results in beautiful and
powerful mechanisms. Unfortunately, some important problems resist attempts at a clean general solution—
for example, the problem of designing revenue-maximizing combinatorial auctions. Moreover, in practice,
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often a mechanism is required for a particular idiosyncratic instance with a particular idiosyncratic objective.
It does not seem that creating a whole general theory for each such instance is worthwhile.

With these motivations in mind, we have been advocating a somewhat different approach to mechanism
design, automated mechanism design, where an optimal mechanism is designed specifically for a particular
instance, by having a computer search through the space of possible mechanisms in an intelligent manner.
We have proposed and implemented algorithms for a number of basic variants of the automated mechanism
design problem, and supplemented these with computational complexity results [45, 48, 47, 56, 52, 129, 27,
28].4 Automated mechanism design has featured very prominently in the Ph.D. research of at least three
recently graduated students outside my group: Nathanael Hyafil (Toronto), Radu Jurca (EPFL; received the
Victor Lesser Dissertation Award) [105], and Eugene Vorobeychik (Michigan; runner-up for the Victor Lesser
Dissertation Award) [137].

Automated mechanism design should not be seen as an approach that competes with traditional mecha-
nism design, but rather as a complementary way of thinking. Partial characterization results from traditional
mechanism design can be very helpful in automated mechanism design. Conversely, one can put automated
mechanism design in the service of traditional mechanism design, by using it to solve many specific in-
stances so that a general solution can be conjectured and then proven. This is a way in which techniques from
computer science can contribute to the discovery of new results in economic theory. I next discuss several
successful examples of this (see also our AAAI NECTAR paper on this [93]).

1.3.2 Redistribution mechanisms

In many domains, we need to allocate one or more resources (aka. objects, items) among multiple agents. An
auction is a natural mechanism for doing so. If there is a seller, then this seller receives the revenue of the
auction. However, in many settings, there is no seller: for example, the objects may be a shared resource.
For instance, the agents may be trying to allocate the use of their shared computing resources (over a given
period of time) among themselves. If we use an auction in such a setting, it makes sense to redistribute any
revenue that results from the auction among the agents. Unfortunately, doing so can significantly affect the
incentives that the agents face in the auction: if the auction is strategy-proof without redistribution, it may
lose its strategy-proofness when redistribution is added. In fact, it turns out that it is impossible to redistribute
all the revenue of the well-known generalized Vickrey (VCG) auction without breaking strategy-proofness:
to maintain strategy-proofness, some money needs to leave the system of the agents—that is, it needs to be
thrown away! Still, we would like to throw away as little money as possible. Hence, the goal becomes to
design a strategy-proof redistribution scheme that maximizes the amount of revenue redistributed.

We have characterized a redistribution scheme that maximizes the fraction of revenue redistributed in the
worst case while maintaining strategy-proofness [92]. Perhaps surprisingly, for sufficiently large auctions
this scheme also has better performance on average than a previous scheme (versions of which had been
proposed on at least three different occasions [8, 124, 20]). The amount of money thrown away drops off
exponentially fast in the number of agents. (Hervé Moulin independently discovered the same mechanism in
a slightly less general setting as the solution to a slightly different problem [114].) We have also analyzed
how to maximize expected redistribution with respect to a prior (while maintaining strategy-proofness in the
strongest sense) [95]. Additionally, we have defined a notion of when one redstribution scheme dominates
another, and given general approaches for finding a scheme that dominates a given scheme, which experi-
mentally leads to large improvements in redistribution [91]. We have also shown that, in a slightly restricted
setting, the undominated schemes coincide exactly with the schemes that are optimal in expectation for some
distribution [4]. Finally, we have analyzed how by allocating the objects inefficiently (i.e., in a way that does
not maximize the value of the allocation), it is sometimes possible to redistribute much more of the revenue,

4Some work on automatically choosing the mechanism to use that preceded our work was done by [26], [19], and [122]. These works
focused on setting a parameter of the mechanism (rather than searching through the space of all possible mechanisms), and evaluated
the resulting mechanism based on agents that they evolved with the mechanism (rather than requiring truthfulness).
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so that the net effect is a significant increase in welfare [90], though many open questions remain here. (See
also follow-up work by de Clippel et al. [77].)

What is (to me) perhaps even more interesting than the redistribution mechanisms themselves is the way
in which we obtained them: our approach (described more precisely in the papers) has generally been to solve
small instances by computer using search/optimization techniques, then discover the pattern in the solution
and prove that this pattern gives the general solution. This is, to my knowledge, the most successful example
so far of using automated mechanism design to prove general theorems in mechanism design, which has
caught the attention of some economists.

1.3.3 Mechanism design without money

While the redistribution mechanisms described above try to minimize the amount of money that must leave
the system of the agents, they nevertheless rely quite heavily on the ability of the agents to make payments,
including to each other. However, in some domains, the agents do not have the ability to make payments at
all. For example, in some domains this is illegal (e.g., kidney exchanges); in others, it may simply be the case
that no currency has been established yet (e.g., peer-to-peer networks). What can be done in such domains?

In many of our early papers on the basic variants of automated mechanism design (listed above), we
studied how hard it is to find optimal mechanisms in settings without payments. More recently, we have also
studied the question of finding approximately optimal mechanisms that do not use money in more specific
contexts where items need to be allocated. (For a nice general presentation of the agenda of designing
approximately optimal mechanisms that do not use money, see Procaccia and Rosenschein [126].) We have
studied this in the context where the same item needs to be allocated to the same agents in every period (e.g.,
who gets to hold the remote / use the supercomputer today), and shown that in this context, in spite of agents’
strategic behavior, it is possible to come quite close to efficient allocation: the intuition is that agents can
effectively “pay” to receive the item today by giving up the item in the future [97]. We have also studied a
single-period model where multiple items must be allocated: here, too, we can sometimes come reasonably
close to efficiency—the intuition is that agents can pay for one item by giving up their claim to another
item [96]. These two papers are additional examples where the automated mechanism design approach has
been successful. We have also proposed a generalization of the Vickrey auction that can base the outcome on
any characteristics of the bids, not necessarily their monetary amounts [99].

1.3.4 Mechanism design for bounded agents

The theory of mechanism design assumes that agents behave strategically optimally—that is, according to
solution concepts defined in game theory. This assumption facilitates theoretical work: specifically, it allows
one to prove the revelation principle, which states that only considering incentive compatible mechanisms
is without loss of generality. This is arguably the fundamental building block of the theory of mechanism
design. However, the assumption of game-theoretically perfect behavior on the agents’ part is not always
reasonable, for example because it would in some cases require the agents to solve computationally hard
problems. We have already discussed the computational hardness of strategic voting, as well as of computing
solutions of games in general, above. If agents are not able to behave in a game-theoretically optimal way,
the revelation principle collapses. Specifically, we have shown that in some settings, there is a mechanism
that is not incentive compatible that will perform as well as the optimal incentive compatible mechanism if
agents behave in a game-theoretically optimal way, and strictly better if they do not [54]. This opens up the
possibility of a generalized theory of mechanism design that can deal with computational limitations on the
part of the agents. There has recently been some nice follow-up work on this [119].

These observations also led us to propose a new approach to designing mechanisms that we called in-
cremental mechanism design [67]. Here, the idea is to start with a naı̈ve mechanism that would work well
if agents did not misreport their preferences. Then, we incrementally modify the mechanism to make it
“more” incentive compatible, removing some of the opportunities for manipulation. This corresponds to the
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real-world process in which mechanisms are often patched to address particularly obvious opportunities for
manipulation (but not necessarily other kinds of manipulation that are difficult to discover by the agents).
We have shown that this approach can be used to rederive well-known incentive compatible mechanisms, but
also well-known mechanisms that are not completely incentive compatible but that do address particularly
obvious kinds of manipulation. For example, the methodology can be used to transform a naı̈ve voting rule
into one that uses a runoff round between the final two alternatives.

1.4 Mechanism design in highly anonymous environments
The current theory of mechanism design is primarily concerned with the possibility that agents lie about their
preferences; a mechanism is strategy-proof if lying is never beneficial to the agent. However, in open, anony-
mous environments such as the Internet, other types of manipulation are possible. Specifically, a single agent
can participate in the mechanism multiple times under multiple identifiers (e.g., e-mail addresses). (Compare
the notion of a Sybil attack [79].) One way to address this is to design false-name-proof mechanisms, a con-
cept proposed by Yokoo et al. [154, 155], under which using more than one identifier is never beneficial to the
agent. Many of the standard strategy-proof mechanisms are not false-name-proof. (There is some flexibility
in the precise definition of false-name-proofness: we have pointed out that the standard definition may still
leave room for manipulation if the manipulator can abandon identifiers, and a stronger definition can be given
that rules this out [94].)

I recently gave a complete characterization of false-name-proof voting rules (that also satisfy some other
minimal conditions, namely, they treat all alternatives symmetrically and it never hurts a voter to partici-
pate) [31]. Unfortunately, this is mostly a negative result, because the rules satisfying these properties end up
choosing the winner almost completely at random. However, this result assumes that casting additional votes
is completely costless. In another paper [138], we show that if we, more realistically, assume that casting
an additional vote comes at a small cost (for example, representing the voter’s effort in opening a new e-
mail account), then the optimal false-name-proof voting rule changes into one that has much more desirable
properties (such as choosing the majority winner in the limit as more votes are added).

In many settings, there are no good false-name-proof mechanisms. Besides the result for voting men-
tioned above, we have recently proven a tight bound on the worst-case efficiency of false-name-proof com-
binatorial auctions, and the corresponding efficiency is low enough that this must be viewed as a negative
result [103]. Hence, it becomes important to investigate alternative models that may lead to more positive
results (such as the model of costly identifiers mentioned above). An extreme solution is to give up on
anonymity altogether, by verifying everyone’s real-world identity. I have shown [30] that it is not neces-
sary to go quite that far: based on the outcome of the mechanism (e.g., auction or election), it is possible
to selectively verify the identities of only some of the participating agents, in such a way that no agent has
an incentive to use multiple identifiers. The paper gives a precise characterization of how much verification
needs to be done, and algorithms for deciding which agents to verify. Another direction that we have pursued
is to make use of social network structure [42]. The idea is that, while it is easy to create false nodes in a
social network, it is not easy to get other nodes to link to these false nodes, and so we have some chance of
detecting / preventing this type of manipulation. This high-level idea has been pursued before in the systems
literature, notably by Yu et al. [159, 158], in the related context of preventing Sybil attacks. We show how to
leverage this idea in a strict mechanism design context, as well as how to integrate it with the idea of limited
verification discussed above.

I have also tried to create a methodology for preventing multiple account sign-ups by a single person
altogether, by creating a way to randomly generate a memory test, which the user needs to pass to obtain an
account, in such a way that it is easy to pass one of these tests, but difficult to pass a second one because
the user becomes confused with the first test that she took [33]. Unfortunately, as the experimental results on
human subjects in that paper show, those tests do not yet work well enough to be practical.

Anonymity issues also come up in cooperative game theory, where multiple agents working in a team
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each bring some resources to the table; this results in some value (profit) that is generated by the team and
needs to be distributed among the agents. The standard game-theoretic schemes for distributing the value are
vulnerable to false-name manipulations: for example, an agent with two resources can sometimes pretend to
be two agents with one resource each, in a way that results in a higher total value distribution to these two
fictitious agents. With Makoto Yokoo and his group (who pioneered the study of false-name-proofness), we
have proposed various schemes for distributing the value that are not vulnerable to such manipulations, that
is, they are anonymity-proof [153, 118, 117]. More recent work on false-name manipulation in weighted
voting games by Bachrach and Elkind [7] and Aziz and Paterson [6] also fits in this general framework.

For more background on false-name-proofness, please see our general overview article [73].

1.5 Various other research
I have recently become interested in prediction markets [140]. A prediction market is a market organized
around securities that pay off if a particular event happens; usually, the purpose of the prediction market is
to assess the probability that the event happens, based on the market prices of the securities. (For example,
something can be inferred about the probability of an event from betting odds.) We have created a hybrid
of a prediction market and a Turing test [135], where the users can buy securities (place bets) on whether
they are talking to a human or a bot, resulting in a quantitative assessment of how human-like a particular
bot is [83]. (The game can be played online at http://turingtrade.org/.) I have also introduced a model of
prediction markets, based on proper scoring rules, that fits more naturally into the framework of mechanism
design [36]. This paper also introduces natural prediction market mechanisms in this framework, draws
connections to cooperative game theory, and discusses how practical prediction markets can be designed
based on these mechanisms. Finally, we have studied the problem that prediction markets can in principle give
incentives to participants to perform undesirable actions in the real world—for example, a market attempting
to predict terrorist attacks can in principle incentivize terrorism—and analyzed market mechanisms that do
not introduce such incentives [132].

While a popular heuristic in games with chance is to maximize expected winnings, in reality sometimes
the goal is just to have greater winnings than one’s opponent(s) in the end. We recently completed a game-
theoretic study of how to act optimally in such environments [139].

The VCG mechanism is a standard, general-purpose mechanism. It is well-known to be vulnerable to
collusion by multiple agents, and have bizarre revenue properties [5]. We investigated the extent of these
problems and their complexity in combinatorial auctions and their variants [63].

Learning is important not only in game theory, but also in mechanism design. For example, if the distri-
bution of agents’ preferences is unknown, the designer can try to learn this distribution (or at least enough
to determine the optimal mechanism) by repeatedly changing the mechanism. We experimentally compared
various learning approaches in settings with a single agent per period [41].

We have also shown that an auction known as the adaptive clinching auction satisfies the property that
a bidder cannot gain from underreporting her budget, which allows us to make it incentive compatible with
respect to the budget as well as to derive other properties [13].

As an example of work that does not involve game theory, mechanism design, social choice, multiagent
systems, and the like, we characterized the computational complexity of various basic metareasoning prob-
lems (reasoning about how to reason optimally) [50]. I recently presented a discussion of this work and its
implications [32].

2 Teaching
I consider teaching to be an essential and highly rewarding part of my career. My primary teaching mission
is to teach courses in the intersection of computer science and (micro)economics that prepare students to do
research in this interdisciplinary area, as well as to apply these methods in industry. I am also happy to teach
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other courses, such as artificial intelligence or linear/integer programming, as the needs of the department
require.

As for teaching philosophy, I try to make lectures as interactive as possible by encouraging questions and
frequently testing students’ understanding by asking them to solve small example problems. This is partially
driven by selfish motives, as I am more comfortable teaching with some feedback. However, I also believe
that this approach helps the students stay engaged. In any case, without such interaction one could argue that
I would not be adding much value relative to a video posted online (or a well-written book).

I make all my course materials, including slides and lecture notes, publicly available on the Web. Based
on anecdotal evidence, it appears that students, researchers, and faculty both inside and outside of Duke have
benefited from this. Below I describe some of my courses (I have taught versions of some of these courses
under different names earlier).

In my graduate course Computational Microeconomics: Game Theory, Social Choice, and Mechanism
Design, I first introduce students to key concepts in microeconomic theory, including basic game theory,
social choice, mechanism design, and auctions. Along the way, we study computational aspects of these
concepts. The second part of the course focuses on individual topics in this interdisciplinary area. A student
who has successfully completed this course should have a good basic understanding of the area and be ready
to delve into a specific topic to start doing research. (The last time I taught this course it placed me among
the top 5% of instructors at Duke by evaluations.) I have also previously taught a Topics course that goes into
more detail on some selected individual topics.

My undergraduate course CPS 173: Computational Microeconomics covers similar topics, but from a
somewhat more applied perspective. A student who has successfully completed this course should have a
basic background in the design of new, computationally oriented marketplaces, and should have acquired
some tools to put these ideas into practice. A challenging aspect of this course is that I require no pre-
vious programming background; instead, the programming assignments only require the use of a standard
linear/integer programming package and its modeling language. This allows students without a computer
science background (for instance, economics students) to take the course and be exposed to basic ideas from
computer science. While the computer science students undoubtedly have an advantage on the programming
assignments, the advantage is not that great because most of the computer science students tend to be unfa-
miliar with linear programming. (Of course, the economics students have an advantage in other parts of the
course.) I believe that this course represents an unusual but effective way of introducing certain students to
computer science; I have given several invited talks on this, including at the 2008 AAAI Spring Symposium
on Using AI to Motivate Greater Participation in Computer Science and a 2010 ARTSI faculty workshop.

Motivated by the increasing usage of linear and integer programming in various areas of computer science,
combined with the observation that many computer scientists are not very familiar with these techniques, I
have also been teaching a graduate course specifically on these techniques. I enjoy teaching this course;
unlike my other courses, I teach it entirely on the board. I have been very impressed with the great variety of
topics to which the students have applied these techniques in their projects.

I have also taught artificial intelligence, both at the graduate level (the qual course) and at the undergrad-
uate level. In both cases, the course gave an introduction to a variety of artificial intelligence techniques,
ranging from the classical to the modern. A student who has successfully completed these courses should
have a basic understanding of AI and be ready to take more advanced courses, or to engage in research with
significant guidance. I enjoy teaching these courses because it helps to keep me connected to the broader
spectrum of techniques in AI, which remains a core interest of mine.

Taken over all my course evaluations during my first five years at Duke, the average “quality of course”
score was 4.60/5.00, and the average “quality of instructor” score was 4.70/5.00.
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3 Mentoring
I greatly enjoy working on research with students, and helping them develop into mature researchers. I am
extremely fortunate to work (and have worked) with very talented graduate as well as undergraduate students.
Two people have graduated from my group with a Ph.D. degree:

• Mingyu Guo received his Ph.D. in Computer Science in 2010 after working with me on automated
mechanism design, redistribution mechanisms, mechanism design without payments, and false-name-
proof mechanisms. His dissertation title was Computationally Feasible Approaches to Automated
Mechanism Design and he received the department’s Outstanding Ph.D. Dissertation Award for 2010
(as well as the department’s nomination for the ACM Dissertation Award). He will start as a Lecturer
(in the UK sense) in the University of Liverpool’s Economics and Computation Group.

• Liad (Leo) Wagman (co-advised with Curtis Taylor in Economics) received his Ph.D. in Economics
in 2009 after working with me on false-name-proofness when there is a cost to using additional iden-
tifiers, paying for anonymity in the context of price discrimination, and playing to end up with more
money than one’s opponent, His dissertation title was Essays on Privacy, Information, and Anonymous
Transactions. He now holds a tenure-track position in the business school of the Illinois Institute of
Technology.

I currently supervise three computer science Ph.D. students:

• Dmytro (Dima) Korzhyk is working with me on applying algorithms for computing game-theoretic
solutions to security domains.

• Joshua (Josh) Letchford is working with me on computing, learning, and analyzing optimal mixed
strategies to commit to, and has also worked with me on ethical solution concepts in game theory and
using social networks to prevent false-name manipulation.

• Lirong Xia is working with me on a large number of topics in computational social choice and voting,
particularly on voting in combinatorial domains, and the analysis and complexity of strategic manipu-
lation by the voters.

I have also supervised two Master’s students, Peter Franklin (title: Internet-based Fault Recovery for
Home Wireless LANs, winner of the department’s Outstanding Master’s Award for 2010), and Joseph Farfel
(title: Getting agents to agree on numbers: Aggregating value ranges and Turing Trade). I have also worked
with a number of undergraduates, including Peng Shi (who worked with me on prediction markets and related
topics; he was a CRA Outstanding Undergraduate Research Award Finalist and is starting his Ph.D. studies
at MIT), Matthew Rognlie (who worked with me on interpreting voting rules as maximum likelihood es-
timators and repeated games in which players can restart the game; he was a Duke Faculty Scholar and is
also starting his Ph.D. studies at MIT), Maggie Bashford (who worked with me on how computationally
hard it typically is to control elections), and Everett Wetchler (who did a senior-year independent study on
computer poker with me).

I do not believe in having a one-size-fits-all strategy for mentoring students, as each student comes in
with particular strengths and weaknesses. My goal is to make myself as available as possible to them and
help them where I can in preparing them for their future careers.

4 Service
This final section gives a brief overview of some of my other professional activities.
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4.1 Secondary appointment in economics
I hold a secondary appointment in the economics department. There, I interact closely with the microeco-
nomic theory faculty: my students and I regularly attend, and sometimes present in, their seminars. We also
interact with faculty at Fuqua (Duke’s business school) and attend their seminars. I coordinate interest in the
intersection of computer science and economics at Duke, among other things by maintaining the mailing list
cs-econ@duke.edu and sending announcements about relevant talks.

Our group also tries to maintain visibility in economics and operations research more generally. We
have published two papers in Games and Economic Behavior (the top game theory journal), and attend
conferences such as the World Congress of the Game Theory Society, the Stony Brook Game Theory Festival,
and the INFORMS Annual Meeting. I am occasionally invited to give a talk in an economics department or
conference (recently, at Caltech, Rice, and Guanajuato).

4.2 Service to the computer science department
So far, I have served on the computer science department’s graduate admissions, faculty search, graduate
program, and undergraduate curriculum committees. For the graduate admissions committee, Jun Yang and
I put together some software for ranking the candidates based on committee member scores, which is still in
use. Ron Parr, Carlo Tomasi, and I coordinate the DRIV (AI) seminar; Kamesh Munagala and I (and graduate
student Sayan Bhattacharya) coordinate the Computational Microeconomics Reading Group. I have served
on the committees of a number of students, and I served as the site judge at Duke for the ACM Collegiate
Programming Contest, MidAtlantic region, in 2006.

4.3 Selected service to the research community
I spent several years as the editor-in-chief of SIGecom Exchanges, the newsletter for the ACM Special Interest
Group on Electronic Commerce. (This special interest group consists primarily of computer scientists with
a strong interest in economics.) My goal was to change the focus of the newsletter from full-length articles
to shorter letters that give a brief summary of recent results. I believe that this has been successful: the most
prominent researchers in the area are now publishing short letters (and the occasional full-length article) in
the Exchanges. I also created a puzzle for each issue, and these puzzles were quite popular and the tradition
is being continued. The author(s) of the nicest solution get(s) to publish it in the subsequent issue. We are
now trying to start a new journal on Economics and Computation (currently under review by ACM) for which
Preston McAfee and I are the proposed editors-in-chief.

Besides this, I also serve as an Associate Editor of the Journal of Artificial Intelligence Research and the
Journal of Autonomous Agents and Multi Agent Systems, and on the editorial board of the Artificial Intel-
ligence journal. I will be program co-chair of AAMAS 2012 and served as program co-chair of COMSOC
2010. I serve on the IFAAMAS board and on the steering committee of AMMA; I have served as an Area
Chair for IJCAI and AAAI, on the Senior Program Committee of AAMAS, EC, AISTATS, and UAI, and in
various other organizing / program committee roles. More details on my editorial and program committee
service can be found on my CV.

I maintain the main mailing list for the computational social choice community, comsoc@duke.edu.
We have given several tutorials at conferences, including on computational social choice, automated mech-
anism design, and computing game-theoretic solutions. I served on the Ph.D. committee of Troels Bjerre
Sørensen (University of Aarhus), and as an M.S. thesis evaluator for Reshef Meir and Michael Zuckerman
(Hebrew University).
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