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The efficient and fair allocation of limited resources is a classical problem in economics 
and computer science. In kidney exchanges, a central market maker allocates living kidney 
donors to patients in need of an organ. Patients and donors in kidney exchanges are 
prioritized using ad-hoc weights decided on by committee and then fed into an allocation 
algorithm that determines who gets what—and who does not. In this paper, we provide 
an end-to-end methodology for estimating weights of individual participant profiles in 
a kidney exchange. We first elicit from human subjects a list of patient attributes they 
consider acceptable for the purpose of prioritizing patients (e.g., medical characteristics, 
lifestyle choices, and so on). Then, we ask subjects comparison queries between patient 
profiles and estimate weights in a principled way from their responses. We show how 
to use these weights in kidney exchange market clearing algorithms. We then evaluate 
the impact of the weights in simulations and find that the precise numerical values of 
the weights we computed matter little, other than the ordering of profiles that they 
imply. However, compared to not prioritizing patients at all, there is a significant effect, 
with certain classes of patients being (de)prioritized based on the human-elicited value 
judgments.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

As AI is deployed increasingly broadly, AI researchers are confronted with the moral implications of their work. The 
pursuit of simple objectives, such as minimizing error rates, maximizing resource efficiency, or decreasing response times, 
often results in systems that have unintended consequences when they confront the real world, such as discriminating 
against certain groups of people [34]. It would be helpful for AI researchers and practitioners to have a general set of 
principles with which to approach these problems [45,41,24,16,33].
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One may ask why any moral decisions should be left to computers at all. There are multiple possible reasons. One is 
that the decision needs to be made so quickly that calling in a human for the decision is not feasible, as would be the 
case for a self-driving car having to make a split-second decision about whom to hit [13]. Another reason could be that 
each individual decision by itself is too insignificant to bother a human, even though all the decisions combined may be 
highly significant morally—for example, if we were to consider the moral impact of each advertisement shown online. A 
third reason is that the moral decision is hard to decouple from a computational problem that apparently exceeds human 
capabilities. This is the case in many machine learning applications (e.g., should this person be released on bail? [27]), but 
also in other optimization problems.

We are interested in one such problem: the clearing house problem in kidney exchanges. In a kidney exchange, patients 
who need a kidney transplant and have a willing but incompatible live donor may attempt to trade their donors’ kid-
neys [40]. Once these people appear at an exchange, we face a highly complex problem of deciding who matches with 
whom. In some exchanges, this matching problem is solved using algorithms developed in the AI community: the United 
States [19], the United Kingdom [30], the Netherlands [23], and so on [9].

In this paper, we investigate the following issue. Suppose, in principle, that we prioritize certain patients over others—
for example, younger patients over older patients. To do so would clearly be a morally laden decision. How should this 
affect the role of the AI researcher developing these systems? From a purely algorithmic perspective, it may seem that 
there is little more to this than to change some weights in the objective function accordingly. But we argue that our job, 
as AI researchers, does not end with this simple observation. Rather, we should be closely involved with the process for 
determining these weights, both because we can contribute technical insights that are useful for this process itself, and 
because it is our responsibility to understand the consequences to which these weights will lead. The methodology that we 
develop integrates this prioritization into our development work.

1.1. Our contributions

In this paper, we provide an end-to-end methodology for estimating weights of individual patient profiles in a kidney 
exchange, where these weights are used only for tiebreaking purposes (i.e., when multiple solutions give the maximal 
number of transplants).

Executing our methodology in such a way that we would advocate directly adopting the results in practice would re-
quire substantially more effort and participation from other parties. For example, we would need to consult domain experts 
to determine which patient characteristics should be used to determine edge weights. We would also need to involve 
stakeholders such as policy-makers, doctors, and kidney exchange participants in the process for determining weights. For 
this reason, we execute this methodology in a limited fashion as a proof-of-concept, and evaluate the results in simula-
tions.

We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing 
patients in kidney exchanges (e.g., most subjects did not find race an acceptable attribute for prioritization). Then, we 
ask subjects comparison queries between patient profiles that differ only on acceptable attributes, and estimate weights 
from their responses. We show how to use these weights in kidney exchange market clearing algorithms, to break ties 
among multiple maximum-sized solutions. We then evaluate the impact of the weights in simulations. We find that the 
precise numerical values of the weights we computed matter little, other than the ordering of profiles that they imply. 
However, compared to not prioritizing patients at all, there is a significant effect. Specifically, the difference is experienced 
by donor-patient pairs that have an “underdemanded” [6,42] combination of blood types; for them, their chances rise or 
drop significantly depending on their tiebreaking weights.

2. Kidney exchange model

We briefly review the standard mathematical model for kidney exchange and techniques from the AI community used 
to clear real kidney exchanges, and then give illustrative examples where tiebreaking would or would not play a role.

2.1. Graph formulation

In this work, as is standard [40,38,39], we encode an instance of a kidney exchange as a directed compatibility graph
G = (V , E). We first construct one vertex for each patient-donor pair in the pool. Then, we construct an edge e from vertex 
vi to vertex v j if the patient in v j wants and is compatible with the donor kidney of vi . A paired donor is willing to give 
her kidney if and only if the patient in her vertex vi receives a kidney.

Most fielded exchanges also assign a weight we to an edge e. The function determining the weight for an edge is often 
opaque and set in an ad-hoc fashion by a committee. For example, a recent report [44] proposes revising the policy for 
setting edge weights to incorporate the patient’s “calculated reactive panel antibody” (which influences their likelihood of 
finding a match) and whether the pair has previously been a part of a “failed exchange” (in which the donor donates a 
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Fig. 1. A compatibility graph with three patient-donor pairs and two possible 2-cycles. Donor and patient blood types are given in parentheses.

kidney, but their corresponding patient does not receive one). The policy already includes a multitude of other factors, 
including which hospital registered the pair and whether the patient has previously donated an organ.2

The weight we of the edge e from vertex vi to vertex v j roughly represents the utility to v j of obtaining vi ’s donor 
kidney, but can also be used to (de)prioritize specific classes of patient or donor, as we discuss later. A cycle c represents 
a possible sequence of transplants, with each vertex in c obtaining the kidney of the previous vertex. We use the term 
k-cycle to refer to a cycle with exactly k pairs. For example, the compatibility graph in Fig. 1 includes two possible 2-
cycles: a 2-cycle between vertex v1 and v2, and a different 2-cycle between vertex v2 and v3. In kidney exchange, cycles 
of length at most some small constant L (typically, L ∈ {2, 3, 4}) are allowed—all transplants in a cycle must be performed 
simultaneously so that no donor backs out after his patient has received a kidney but before he has donated his kidney.

Many fielded kidney exchanges gain great utility through the use of chains [32,37,4,5]. Chains start with an altruist donor 
donating her kidney to a patient, whose paired donor donates his kidney to another patient, and so on. In the standard 
model, altruistic donors are represented in the same way as patient-donor pairs, but with so-called “dummy” patients who 
are compatible with every patient-donor pair, yet do not require a kidney. In this way, altruists and patient-donor pairs—as 
well as cycles and chains—can be treated similarly in optimization models.

A matching M is a set of disjoint cycles and chains in the compatibility graph G . There can be length limits on these 
cycles and chains, as discussed above, resulting in a smaller set of legal matchings. The cycles and chains must be disjoint 
because no donor can give more than one of her kidneys (some recent work explores multi-donor donation [21,22] but we 
do not consider this here). Given the set of all legal matchings M, the clearing house problem is to find a matching M∗ that 
maximizes utility function u : M→R. Formally:

M∗ ∈ arg max
M∈M

u(M)

Kidney exchanges typically use a utilitarian utility function that finds the maximum weighted cycle cover (i.e., u(M) =∑
c∈M

∑
e∈c we). This can favor certain classes of patient-donor pairs while marginalizing others, a behavior we investigate 

later in this paper in the context of setting specific edge weights. Alternate utility functions can be used to enforce incentive 
properties via mechanism design [6,28,25,12,31].

2.2. Clearing kidney exchanges

We briefly discuss optimization methods for clearing kidney exchanges; later, we show how to augment these methods 
to incorporate the ideas in this paper. The standard clearing house problem for finite cycle cap L > 2 (even without chains) 
is NP-hard [1,11], and is also hard to approximate [10,29,26]. Thus, fielded kidney exchanges use integer program (IP) 
formulations to solve this difficult combinatorial optimization problem.

The first approach to clearing large kidney exchanges, due to Abraham et al. [1], built a custom branch and price [7]
integer program solver; generalizations of, and improvements on, their basic model have addressed scalability issues [23,4,
17,18]. We build a similar model in this work.

Formally, denote the set of all chains of length at most K and cycles of length no greater than L by C(L, K ). Create a 
binary variable xc ∈ {0, 1} for every c ∈ C(L, K ), and let wc = ∑

e∈c we; then, solve the following integer program:

max
∑

c∈C(L,K )

wc xc s.t.
∑

c:v∈c

xc ≤ 1 ∀v ∈ V .

The final matching is the set of chains and cycles c such that xc = 1. In this paper, we compare to a baseline where 
all edge weights are 1, so that a maximum-cardinality solution is sought. We then break ties in these solutions based on 
prioritization weights determined according to the procedure outlined in this paper.

2.3. Tiebreaking and prioritization: examples

Consider again the compatibility graph given in Fig. 1. Here, there is one pair with a patient of blood type A and a donor 
of blood type B, and two pairs with a patient of blood type B and a donor of blood type A. One of the latter two pairs will 
have to remain unmatched; either way, we obtain a solution of maximum cardinality (two vertices matched). The standard 

2 For a more detailed look into the inner workings of this process that sets edge weights, we direct the reader to a recent report by the UNOS US-wide 
kidney exchange [44].
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Fig. 2. A compatibility graph with four patient-donor pairs and two maximal solutions. Donor and patient blood types are given in parentheses.

Table 1
Patient-donor blood-type compatibility. 
A checkmark denotes compatibility be-
tween the patient blood type in the 
column heading and the donor blood 
type in the row heading. For example, 
patients with blood type AB are com-
patible with all donor blood types, and 
donors with blood type O are compati-
ble with all patient blood types.

Patient
A B AB O

Donor

A � �
B � �
AB �
O � � � �

algorithm may choose either solution; which one is chosen depends on details of the solver. We may wish to break the tie 
based on other attributes of the two patients with blood type B, such as their age. We will explore this in this paper.

Now, consider the graph in Fig. 2. This graph has two maximal solutions. (A solution is maximal if it is not possible to 
include any other vertices without dropping others from the solution.) One consists of the 3-cycle with vertices AB-O, O-A, 
and A-AB (patient listed first in each case). The other consists of the 2-cycle with vertices AB-O and O-AB. (For a complete 
description of which patient and donor blood types are compatible, see Table 1.) The standard algorithm must choose the 
3-cycle, because it matches more vertices. While in principle one might consider choosing the 2-cycle, arguing that (due to 
other attributes) it is more important to save the patient from the O-AB vertex than it is to save both the patient from the 
O-A vertex and the patient from the A-AB vertex, in this paper we will not do so; we will always choose the 3-cycle, no 
matter what the values of the additional attributes are.

3. Determining and using prioritization weights

In this section, we describe our procedure for computing prioritization weights and integrating them into the algorithm 
for clearing kidney exchanges. Because this procedure was intended as a proof-of-concept, we gathered preference data 
from participants recruited through the online platform Amazon Mechanical Turk (“MTurk”).3 However, if this procedure 
were used in a real-life kidney exchange, medical experts and other stakeholders would need to be involved in the process 
of determining weights.4

3.1. Selecting attributes

First, we determined which patient attributes to include in our model by assessing which attributes a pool of human 
participants found acceptable to use for this purpose. The attributes were generated by the participants in an open-ended 
survey to minimize experimenter bias. Specifically, participants (N = 100) were asked to read a brief description of the 
kidney transplant waiting list process, and then asked to imagine that a country is developing a new policy for allocating 
kidneys to patients on the waiting list. Each participant was asked to report four potential patient attributes that they 
thought the kidney allocation policy “morally ought to take into account,” and four attributes that they thought the policy 
“morally ought NOT to take into account.” Each participant received $0.85 as compensation for their participation.

Participants’ responses were independently sorted into attribute categories, including those listed in Table 2, by two 
different researchers. Attributes that the UNOS algorithm already takes into account, such as patient-donor medical com-
patibility, were discarded. The number of participants who mentioned each of the remaining attributes is noted in Table 2. 

3 All experiments were conducted between fall 2016 and summer 2017.
4 That being said, it is not immediately clear what the optimal mix of stakeholders would be. For example, it does not seem that medical training is 

especially helpful for evaluating how important it is whether a patient has dependents, such as small children.
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Table 2
Categorized responses to the Attribute Collection 
Survey. The “Ought” column counts the number of 
responses in each category that participants thought 
should be used to prioritize patients. The “Ought 
NOT” column counts those that participants thought 
should not be used to prioritize patients. Categories 
are listed in order of popularity.

Category Ought Ought NOT

Age 80 10
Health - Behavioral 53 5
Health - General 44 9
Dependents 18 5
Criminal Record 9 4
Expected Future 8 1
Societal Contribution 7 3
Attitude 6 0

Because we are interested in improving the kidney allocation process, we only included those categories that more survey 
participants thought ought to be taken into account than participants thought ought not to be taken into account.

Because participants were asked to propose these attributes themselves, these results reflect which attributes occurred 
to them during the survey. This may skew the results in favor of attributes that seem more directly relevant to the medical 
context. For example, it’s possible that 30 of the survey participants would have answered “yes” if directly asked whether 
criminal record should be taken into account, but because this aspect of personal life is not clearly related to health, 
only a few of those thought of it when prompted to consider public health policy during the survey. Additionally, we 
explicitly listed age as an example of the sort of attribute the policy might consider, which likely biased participants toward 
including it in their responses. We chose to prime with age in order to direct responses toward the sort of specific, individual 
attributes that the revised policy might take into account. We chose age specifically because it is a common response to 
informal iterations of this survey, and in fact is already included in current kidney allocation policy to a certain extent, so 
we hoped that the skewing effects of the priming would be minimal.

The three attribute categories that the most participants thought should be used to prioritize patients were “Age”, 
“Health — Behavioral” (aspects of health that are generally perceived to be controllable, such as diet and drug use), and 
“Health — General” (aspects of health that are generally perceived to be involuntary and are unrelated to kidney disease, 
such as cancer prognosis). There was a sharp drop-off in popularity between the third most popular category, “Health – Gen-
eral” (reported 44 times) and the fourth most popular one, “Dependents” (whether the patient had dependents, reported 
18 times), so only the first three attribute categories were selected for inclusion in the next stage of the study. The least-
commonly reported categories were “Criminal Record”, “Expected Future”, which included responses about patients’ future 
life expectancy and expected quality of life post-surgery, “Societal Contribution”, and “Attitude”, which included responses 
about patients’ psychological state and mental preparation for the surgery and recovery process.

3.1.1. Participant demographics
The survey participants were very diverse, ranging in age from 22 to 64 (with an average age of 40), ranging in self-

reported political views from “extremely liberal” to “extremely conservative”, and ranging in educational achievement from 
“some high school, no diploma” to “doctorate degree”. Participants took between 2 and 26 minutes to complete this survey, 
with an average completion time of 9 minutes.

3.2. Evaluating pairwise comparisons

We next gathered data on how people use the three top participant-generated attributes to prioritize patients. We 
administered a “Kidney Allocation Survey” to a new cohort of participants recruited through MTurk. In this survey, we 
turned each of the three chosen attributes into a binary one, as described in Table 3 below. The Age alternatives represent 
an adult nearer to the beginning of their adult life (but still of legal drinking age, 30 years old) or nearer to the end (70 
years old). For a health-behavioral attribute, we chose alcohol consumption as a (potentially) controllable behavior that can 
contribute to kidney disease. The indicated amount of alcohol consumption is specified to occur “prior to diagnosis,” because 
drinking afterward disqualifies patients from the waiting list. Skin cancer was chosen as the “unhealthy” alternative for the 
Health-General characteristic because it is a specific, well-known disease that may or may not be fatal and is unrelated to 
kidney disease.

Because there are three binary attributes, there are eight possible patient profiles. These eight unique patient profiles 
were enumerated and assigned ID numbers. For expositional ease, in this paper, we refer to profiles in text as a combination 
of {Y, O}, {R, F}, and {C, H}, representing {Young, Old}, {Rare, Frequent} alcohol consumption, and {Cancer, Healthy} status. For 
example, profile YRH reads:
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Table 3
The two alternatives selected for each attribute. The alternative in each pair that we expected to be preferable 
was labeled “0”, and the other was labeled “1”.

Attribute Alternative 0 Alternative 1

Age 30 years old (Young) 70 years old (Old)
Health - Behavioral 1 alcoholic drink per month (Rare) 5 alcoholic drinks per day (Frequent)
Health - General no other major health problems (Healthy) skin cancer in remission (Cancer)

Table 4
Profile ranking according to Kidney Allocation Survey responses. 
The “Preferred” column describes the percentage of time the in-
dicated profile was chosen among all the times it appeared in a 
comparison.

Profile Age Drinking Cancer Preferred

1 (YRH) 30 rare healthy 94.0%
3 (YRC) 30 rare cancer 76.8%
2 (YFH) 30 frequently healthy 63.2%
5 (ORH) 70 rare healthy 56.1%
4 (YFC) 30 frequently cancer 43.5%
7 (ORC) 70 rare cancer 36.3%
6 (OFH) 70 frequently healthy 23.6%
8 (OFC) 70 frequently cancer 6.4%

Patient W.A. is 30 years old, had 1 alcoholic drink per month (prior to diagnosis), and has no other major health prob-
lems.

In the survey, participants were asked to choose between pairs of these profiles. Participants (N = 289) were again 
recruited through MTurk. They read a short description of how kidney waiting lists work, and were asked to imagine that 
they were responsible for allocating a single kidney to one of two fictional patients. Each participant was then presented 
with all 

(8
2

) = 28 possible pairs of profiles, in random order, and asked in each case to select the patient that they believed 
should receive the kidney. For half of the participants, the profile with the smaller ID number appeared on the screen above 
the profile with the larger ID number for each question (“original order”), and for the other half of the participants this 
order was reversed (“reversed order”), to counteract possible ordering or screen location effects. Each participant received 
$1.00 compensation for participating in this part of the study.

3.2.1. Summary of responses
Aggregate responses to the Kidney Allocation Survey are summarized in Table 4. The “Preferred” column reports the 

percentage of times that each profile was chosen in all the comparisons in which it appeared.
As expected, there was a clear preference for profile 1 (30 years old, 1 alcoholic drink per month, no other major health 

problems), and a clear preference against profile 8 (70 years old, 5 alcoholic drinks per day, skin cancer in remission). The 
preference for profile 3 (skin cancer in remission but minimal drinking) over profile 2 (healthy other than heavy drinking), 
and similarly 7 over 6, suggests that participants put greater weight on the health-behavioral attribute than on the health-
general one. This aligns with responses to our first survey, in which more participants gave responses in the “Health -
Behavioral” category than gave responses in the “Health - General” category (see Table 2). (Of course, this observation may 
not generalize to other health-behavioral and health-general attributes, such as drinking soda and skin cancer that’s not in 
remission.)

3.2.2. Participant demographics
Again, the survey participants were very diverse. They ranged in age from 19 to 70 (with an average age of 37), and again 

ranged in self-reported political views from “extremely liberal” to “extremely conservative”, and in educational achievement 
from “some high school, no diploma” to “doctorate degree”. Participants took between 1.5 minutes and 38.5 minutes to 
complete this survey, with an average completion time of 7 minutes.

3.3. Estimating profile scores

We performed statistical modeling of participants’ pairwise comparisons between patient profiles in order to obtain 
weights for each profile. We used the Bradley-Terry model, which treats each pairwise comparison as a contest between a 
pair of players [14]. Under this model, each player i has a score pi , representing its skill or value. Given two players i and 
j with respective scores pi and p j , the probability that player i will win the contest is:

P (i > j) = pi

p + p
i j
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To illustrate this model, imagine that individuals a, b, and c are patients waiting for kidney transplants. For each pair of 
patients, imagine that we have asked 100 survey participants to pick one to receive a kidney. Assume that patient a was 
picked over patient b 63 times and picked over patient c 72 times, and that patient b was picked over patient c 58 times. 
There were no ties. We can use the Bradley-Terry model to estimate a score representing the value that survey participants 
place on giving a kidney to each patient.

Judging from this sample of 300 comparisons, the probability of patient a being chosen over patient b is 63/100 = 0.63, 
the probability of patient a being chosen over patient c is 72/100 = 0.72, and the probability of patient b being chosen over 
patient c is 58/100 = 0.58. Therefore, we have:

P (a > b) = 0.63 = pa

pa + pb

P (a > c) = 0.72 = pa

pa + pc

P (b > c) = 0.58 = pb

pb + pc

When we fit the model to these results and assign score 1.00 to pa , pb is estimated as 0.57, and pc is estimated as 
0.40. It is important to note that these scores are only meaningful relative to each other. In particular, scaling all the scores 
pi by the same factor would not affect the predictions. Based on these scores, the preference probabilities are estimated as 
follows:

P (a > b) = pa

pa + pb
= 1.00

1.00 + 0.57
≈ 0.64

P (a > c) = pa

pa + pc
= 1.00

1.00 + 0.40
≈ 0.71

P (b > c) = pb

pb + pc
= 0.57

0.57 + 0.40
≈ 0.59

Note that these scores do not exactly line up with the empirical fractions with which each patient is chosen (0.63, 0.72, 
and 0.58, respectively); this is because we only have 2 degrees of freedom. Specifically, if we decrease pa then the estimate 
gets closer to the first empirical fraction but further away from the second; if we decrease pb the estimate gets closer to 
the third but further away from the first; and if we decrease pc the estimate gets closer to the second but further away 
from the third.

The BT scores (that we estimate based on our data) constitute one measure of the value that the survey participants 
collectively place on “saving” each profile. The higher this value, the more likely a randomly selected participant is to select 
that profile over another. We can then use these scores as weights. (One may wonder whether perhaps it would be better 
to somehow transform—e.g., take the square root of—the weights first; one of our experiments below suggests this would 
make almost no difference.) This estimation procedure constitutes a specific way to aggregate the human subjects’ moral 
judgments into a single weight for each profile; the strategy of using social choice theory to aggregate moral preferences 
for decision making has already been proposed by several groups [24,16,33], and our specific approach fits well in the 
literature on interpreting voting as a method for statistically estimating an underlying truth (for an overview, see Elkind and 
Slinko [20]).

We estimate BT scores in two different ways. One is to estimate scores directly for all profiles, so one profile’s score is 
not constrained by the scores of other profiles. The second is to consider the importance of the individual attributes and let 
the score of profile i be a linear function of these:

p∑
r=1

βr xir + Ui

where xir is profile i’s value for attribute r, and we estimate the βr (importance of attribute r). The Ui are individual error 
terms where Ui ∼ N(0, σ 2), resulting in correlation between comparisons that share a common profile.

We used the BTm() function in the BradleyTerry2 package in R to estimate profile scores p1, . . . , p8 based on the 8092 
pairwise comparisons, both directly and as a function of the estimated scores of their three attribute values. The most-
preferred profile, profile 1 in both cases, was assigned a score of 1. The results are in Table 5 below.

3.4. Adapting the algorithm

The final step was to incorporate the obtained weights into the kidney exchange market clearing algorithm. Because our 
human subject data and analysis do not involve comparisons between differing quantities of patient profiles (e.g., choosing 
two patients with profile 1 over three patients with profile 2), we feel it is inappropriate to use the weights for such 
decisions. We only use the weights to break ties between solutions of maximum cardinality.
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Table 5
The patient profile scores estimated using the Bradley-
Terry Model. The “Direct” scores correspond to allow-
ing a separate parameter for each profile (we use these 
in our simulations below), and the “Attribute-based” 
scores are based on the attributes via the linear model.

Profile Direct Attribute-based

1 (YRH) 1.000000000 1.00000000
3 (YRC) 0.236280167 0.13183083
2 (YFH) 0.103243396 0.29106507
5 (ORH) 0.070045054 0.03837135
4 (YFC) 0.035722844 0.08900390
7 (ORC) 0.024072427 0.01173346
6 (OFH) 0.011349772 0.02590593
8 (OFC) 0.002769801 0.00341520

To find a matching, our adapted (prioritized) algorithm first runs the basic IP-based algorithm due to Abraham et al. [1]
with unit edge weights (i.e., we = 1 ∀e ∈ E). Given a pool of patient-donor pairs, this algorithm returns a set of kidney 
exchange cycles that maximizes the number of patients who receive a kidney without regard to their personal characteristics 
(other than medical compatibility). Our algorithm records the number of patients who receive a kidney in this solution as 
Q , and adds a new constraint to the IP requiring that the solution includes at least Q vertices. We then re-solve the IP with 
a new objective, using the weights corresponding to the patient profile scores derived from the survey responses. Formally, 
with |c| denoting the number of vertices in cycle c, type : V → {1, . . . , 8} mapping a vertex to its patient’s profile, and wθ

denoting the score of profile θ , we solve:

max
∑

c∈C(L,K )

[∑
(u,v)∈c wtype(v)

]
xc

s.t.
∑

c:v∈c xc ≤ 1 ∀v ∈ V∑
c∈C(L,K ) |c|xc ≥ Q

xc ∈ {0,1} ∀c ∈ C(L, K )

This results in a set of kidney exchange cycles that includes the maximum possible number of patients, but prioritizes 
patient profiles that the surveyed population preferred.

4. Experiments

Having described how we obtained weights and how we integrated these weights into the IP-based algorithm, we now 
describe our experiments testing the effects of our prioritizing algorithm in simulations.

4.1. Experimental setup

Based on previously developed tools [19], we built a simulator to mimic daily matching in a real-world kidney exchange 
pool.5 In the simulation, each day, some incompatible patient-donor pairs enter the simulated pool and some depart. Then, 
a matching algorithm is run to match a subset of compatible patient-donor pairs. The remaining incompatible pairs stay 
in the pool for consideration on the next day (and possibly beyond). Finally, the matches formed the previous day are 
executed with a certain success probability, and the matched pairs are removed from the pool. Not all of the matched pairs 
are executed, because in real-life situations many algorithmic matches fail to go to transplant due to last-minute medical 
incompatibilities, surgeons rejecting a donor organ, or other logistical difficulties [4,18] We model this by executing matches 
with a probability of 0.5 instead of 1. The demographics of our simulated pool were designed to reflect the UNOS kidney 
exchange pool where possible, and otherwise the general US population.

4.2. Experiment 1: matchings with pair scores

4.2.1. Experiment
In the first experiment, we compared the patient-donor pairs (vertices) matched by the original algorithm, which treats 

all profiles equally and breaks ties arbitrarily, to the pairs matched by the “prioritized” algorithm, which breaks ties towards 
pairs with higher (patient) profile scores. We ran 20 simulations of daily matching over the course of 5 simulated years 
using both algorithms.

5 All code for this paper can be found in the Ethics package of github .com /JohnDickerson /KidneyExchange.

https://github.com/JohnDickerson/KidneyExchange
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Fig. 3. The proportions of pairs matched over the course of the simulation, by profile type and algorithm type. N = 20 runs were used for each box. The 
numbers are the scores assigned (for tiebreaking) to each profile by each algorithm type. Because the STANDARD algorithm treats all profiles equally, it 
assigns each profile a score of 1. In this figure and later figures, each box represents the interquartile range (middle 50%), with the inner line denoting the 
median. The whiskers extend to the furthest data points within 1.5 × the interquartile range of the median, and the small circles denote outliers beyond 
this range.

4.2.2. Hypothesis
We hypothesized that the original algorithm would match pairs in approximately the same proportion for every profile, 

but that the prioritizing algorithm would match pairs with higher profile scores more often than pairs with lower scores. 
Moreover, we hypothesized that the pairs with the highest profile scores (profiles 1, 3, and 2) would be matched more often 
by the prioritizing algorithm than by the original algorithm, and that the pairs with the lowest profile scores (profiles 7, 6, 
and 8) would be matched more often by the original algorithm than the prioritizing algorithm.

4.2.3. Results
The proportions of pairs of each profile type matched by the original and prioritizing algorithms are plotted in Fig. 3

above. “Proportion Matched” is the proportion of pairs that entered the pool that were subsequently matched. Both al-
gorithms matched approximately 61.7% of pairs overall. (This result does not follow immediately from the fact that both 
algorithms match the maximum number of pairs in each round, because which specific profiles are matched in a round will 
affect which profiles appear in future rounds, and consequently may affect how many can be matched in future rounds.)

The results support both of our hypotheses. First, the original algorithm, called “STANDARD” in Fig. 3, matched pairs 
approximately 62% of the time, regardless of their profile, while the prioritizing algorithm, called “PRIORITIZED” in Fig. 3, 
matched the pairs with profile 1, who had the highest profile scores, nearly twice as often as it matched pairs with profile 
8, who had the lowest profile scores. Secondly, pairs with profiles 1, 3, and 2 were indeed matched substantially more often 
by the prioritizing algorithm than by the original algorithm, while pairs with profiles 7, 6, and 8 were indeed matched sub-
stantially less often by the prioritizing algorithm than by the original algorithm. Thus, the scores assigned by the prioritizing 
algorithm do have a substantial effect on which profiles get matched.

4.3. Experiment 2: matchings evaluated by blood type

4.3.1. Experiment
Blood type is a major factor in determining patient-donor biological compatibility (see Table 1 for a summary of blood 

type compatibility). Patients with difficult-to-match blood types are more likely to struggle to find a compatible donor, and 
consequently can be disproportionately represented in kidney exchange pools. To explore how the modified algorithm treats 
patients with these blood types, we again ran 20 simulations of 5 simulated years of daily matching, this time recording 
the patient and donor blood types of each pair in addition to their profiles. We partitioned pairs into four established blood 
type classes motivated by large market analysis [6,42]. Underdemanded pairs were those that contain a patient with blood 
type O, a donor with blood type AB, or both, making them the most difficult to match. Overdemanded pairs contain a patient 
with blood type AB, a donor with blood type O, or both; self-demanded pairs contain a patient and donor with the same 
blood type; and reciprocally demanded pairs contain one person with blood type A, and one person with blood type B. These 
three classes are substantially easier to match.

4.3.2. Hypothesis
We hypothesized that the prioritizing algorithm primarily impacts underdemanded pairs, prioritizing underdemanded 

pairs with higher profile scores at the expense of underdemanded pairs with lower profile scores, while matching pairs that 
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Fig. 4. The proportions of underdemanded pairs matched over the course of the simulation, by profile type and algorithm type. N = 20 runs were used for 
each box.

Fig. 5. The proportions of overdemanded, self-demanded, and reciprocally demanded pairs grouped together matched over the course of the simulation, by 
profile type and algorithm type. N = 60 runs were used for each box.

belong to the three other blood type classes at roughly the same high rates that the original algorithm does. The reasoning 
was that, intuitively, there is generally a scarcity of matching opportunities for the underdemanded pairs, but this is not so 
for the other types of pairs.

4.3.3. Results
The results confirm our hypothesis. The proportions of underdemanded pairs matched are plotted in Fig. 4. We found 

the proportions of overdemanded, self-demanded, and reciprocally demanded profiles matched to be fairly similar, so we 
grouped them together in Fig. 5. The prioritizing algorithm matched underdemanded pairs with high profile scores sub-
stantially more often and underdemanded pairs with low scores substantially less often than the original algorithm did, but 
both algorithms matched pairs of other classes at roughly equal rates. This suggests that the primary difference between 
the algorithms lies in how they treat underdemanded pairs.

4.4. Experiment 3: transforming Bradley-Terry scores

4.4.1. Experiment
One may well wonder whether using the Bradley-Terry scores as weights is well motivated, especially because the 

difference in scores between the top two profiles is so large. This difference reflects that it is very unlikely that the top 
profile would not be preferred by a subject, but this does not imply that saving someone of profile 1 is more than four times 
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Fig. 6. The proportions of underdemanded pairs matched over the course of the simulation, by profile and algorithm. The “PRIORITIZED” algorithm matches 
using the original profile weights, while the “LINEAR PRIORITIZED” algorithm matches using the alternative weights given above.

as important as saving someone of profile 3. Presumably, the ideal weights used in the algorithm would be monotonically 
increasing in the BT scores, but it is not clear that they should be proportional. To explore the impact of the sizes of the 
gaps between the weights on the matchings produced by the PRIORITIZED algorithm, we tried alternative weights, given 
below (Table 6).

Table 6
Two weight vectors. The first represents the original BT scores as used 
in PRIORITIZED; the second agrees with the BT scores on the ordering, 
but the weights are linear in the rank of the profile, as used in LINEAR 
PRIORITIZED.

Profile
1 2 3 4 5 6 7 8

ORIGINAL 1 .103 .236 .036 .070 .011 .024 .003
LINEAR 1 .998 .999 .996 .997 .994 .995 .993

The alternative weights result in the profiles being ranked in the same order as the BT scores, but make the difference 
between sequential weights small and identical. We again ran 20 simulations of 5 simulated years of daily matching, this 
time comparing the prioritized algorithm using the original BT scores as weights to the prioritized algorithm using the 
alternative weights.

4.4.2. Hypothesis
We hypothesized that the profile ranking was primarily responsible for the differences in matching and that beyond this, 

the magnitude of the BT scores would not have a great impact. Hence, since both of these vectors of weights rank profiles 
the same, we expected them to match profiles in very similar proportions.

4.4.3. Results
The proportions of pairs matched using each weight vector are plotted in Fig. 6. The matching using the original weights 

is again called “PRIORITIZED”, while the matching using the new weight vector is called “LINEAR PRIORITIZED”. The results 
confirm our hypothesis. There was very little difference in the matchings produced by the PRIORITIZED and LINEAR PRIOR-
ITIZED algorithms, and what difference there was could be easily explained by the fact that a slightly different set of pairs 
enter the pool for each algorithm type. We also tried other weight vectors that assigned different weights to each profile, 
but that agreed with the initial prioritizing algorithm on the order of the profiles, and found similarly little difference. These 
results suggest that the profile ranking induced by the weights is primarily responsible for the impact of the prioritizing 
algorithm, while beyond that varying the weights makes little difference.

5. Discussion

In this section, we discuss the potential for applying these results to real-world kidney exchanges, some of the ethical 
context of our work, and directions for future research.
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5.1. Application in real kidney exchanges

Our study serves as a proof-of-concept for the proposed method of soliciting and using prioritization weights, but we 
do not advocate directly applying the weights obtained in our limited study to a real kidney exchange. For one, a real 
kidney exchange would require each of the attributes considered to be able to take more possible values than we tested 
in our mere pairwise comparisons (e.g., there should be more than two values for “age”). Whoever eventually makes the 
judgments about who should be prioritized (in our study this was left to MTurkers, who may not be representative of 
the general population) should also have a chance to obtain expert advice—for example, about what the prognosis is for 
someone with skin cancer in remission. Generally, deploying these techniques in a real kidney exchange should be done 
with input from representatives of all the stakeholders in such a system—patients, donors, surgeons, other hospital staff, etc. 
How to best structure the process as a whole is an important topic for future research.

That being said, our work demonstrates that there are no fundamental technical obstacles to building such a system. 
We have shown one way in which moral judgments can be elicited from human subjects, how those judgments can be 
statistically modeled, and how the results can be incorporated into the algorithm. We have also shown, through simulations, 
what the likely effects of deploying such a prioritization system would be, namely that underdemanded pairs would be 
significantly impacted but little would change for others. We do not make any judgment about whether this conclusion 
speaks in favor of or against such prioritization, but expect the conclusion to be robust to changes in the prioritization 
such as those that would result from a more thorough process, as described in the previous paragraph. We also expect the 
conclusion to hold if the method is applied to real rather than simulated data: while the distribution of donor and patient 
data in real kidney exchanges is surely different from the simulated one, there are no obvious reasons to suspect that this 
would change our qualitative conclusion.

5.2. Artificial morality

Our work is also a concrete proof-of-concept of a hybrid approach to artificial morality. This hybrid combines and con-
trasts with both top-down approaches and bottom-up approaches [2,46].

Top-down approaches provide a computer with a general ethical theory along with facts that are morally relevant ac-
cording to the theory. The machine then infers moral judgments or makes moral decisions by applying the theory to the 
facts. This top-down approach must begin by choosing a moral theory to program into computers. The problem is that 
ethicists support a wide variety of moral theories, and it is hard to see how to justify insisting on one theory instead of 
another. The second problem for the top-down approach is that such theories are too vague to implement, they conflict in 
real-life decisions, and they can yield disasters [2,46,3,35,15]. It might seem innocuous for a computer to follow a rule like 
“Minimize harm,” but what if a computer decides that killing all humans will minimize harm in the long run?

Bottom-up approaches try to avoid assuming any moral theory by using machine learning trained on human descriptions 
of concrete moral problems to predict human moral judgments. This system mirrors one way in which children learn 
morality, so it resembles Alan Turing’s original proposal for developing artificial intelligence. Over 50 years ago, when faced 
with the problem of developing an artificial agent capable of making decisions like an adult human, Turing presciently 
suggested, “Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one 
which simulates the child’s? If this were then subjected to an appropriate course of education, one would obtain the adult 
brain.” [43] It is not completely clear how children learn morality, but one element involves encounters with concrete moral 
problems. Accordingly, a purely bottom-up approach might try to build AI systems that can learn solely by exposing them 
to moral examples.

In order to learn in this way, an artificial moral judge or agent must be able to safely extrapolate what it learned 
in some cases to novel environments that it may face in the future. This ambitious purpose requires a data set that is 
large and varied enough to teach genuine underlying moral principles that are projectible into these new environments as 
opposed to narrowly applicable surface features that predict human moral judgments only in the training set. Moreover, we 
want to know not only that an act is wrong but also why it is wrong—what makes it wrong. Otherwise, we cannot give 
comprehensible justifications for controversial decisions, and we have no way to check on whether or when the system is 
working properly. These goals are difficult or impossible to achieve within uninterpretable ML systems [8]. Moreover, today’s 
AI systems lack a broad/commonsense understanding of our (human) world, and it seems that such an understanding would 
be a necessary component of a system that could make moral judgments across a broad range of settings. This task could 
be aided by computational models of case-based and value-based reasoning and argumentation. For a variety of approaches, 
see Rahwan and Simari [36].

While top-down and bottom-up approaches both contain promising elements for developing moral artificial intelligence, 
each approach also faces serious challenges [8]. Their flaws suggest that we might be able to do better by combining the 
two approaches into unified systems that achieve the benefits without the problems of each [16]. Top-down supervision 
and organization can enable artificial agents to justify their decisions in terms of moral principles that are comprehensible 
to humans, while bottom-up learning has the potential to deal with complex facts in particular cases.

Our particular hybrid attempts to reduce the arbitrariness of top-down approaches by crowd-sourcing a list of features 
that humans see as morally relevant. Humans do not include some characteristics, such as shirt color, as relevant to kidney 
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exchanges, and they are responsible for determining which patient characteristics are important. These features of alterna-
tives can then be used both to constrain the data and also to provide an interpretable basis for the algorithm’s predictions. 
In this way, our hybrid introduces some minimal theory in the form of morally relevant features in order to solve the main 
problems of competing top-down and bottom-up approaches.

This hybrid method is particularly well-suited to developing ethical machine reasoning in constrained domains where it 
is clear which features of acts are morally relevant. In such a domain, it is possible to create models of multiple individuals’ 
moral decisions, and then to have these models vote over what the right decision is overall [16]. Noothigattu et al. [33]
recently applied a version of this approach to ethical decision-making for autonomous vehicles. They aggregated human 
moral judgments about autonomous vehicles colliding with, for example, a pedestrian (likely killing them) or a wall (likely 
killing the driver). Their method assumes that causing death along with a few other features are morally relevant.

We applied a similar approach to kidney allocation in this paper. Our hybrid approach is not without its own challenges, 
however. One is that human moral judgments are inconsistent within and across individuals, so a machine learning system 
can at best predict a subset (though perhaps a majority) of human moral judgments. We will need to decide how to make 
social decisions in light of such disagreements.

Moreover, humans often exhibit biases, such as racial and gender discrimination, that they themselves reject as improper 
and would want an artificial moral agent to avoid. This problem can be reduced (though not fully solved) by designing the 
artificial intelligence system to include only features that most humans deem to be morally relevant. If we had included 
the characteristic “race” in our patient descriptions, the algorithm might have learned to take race into account. Leaving out 
that characteristic avoids this undesirable result, though it still leaves open the possibility of more subtle and hidden forms 
of bias. These problems for our hybrid approach will be the topic of future work.

5.3. Future research

Besides being applicable to kidney (and perhaps other organ) exchanges, our study also suggests a roadmap for auto-
mated moral decision making in other domains. For example, the idea of obtaining human subjects’ judgments to guide 
AI systems in moral decision making is also being explored for self-driving cars [13,33]. Some aspects of that domain are 
different. In particular, in that case the need for automated decision-making is driven by the fact that decisions need to 
be made too fast to be made by a human, whereas in kidney exchanges the need for AI is driven by the fact that the 
nature of the search space of all possible matchings makes the problem intractable for a human. Nevertheless, the domains 
clearly have much in common, and it seems likely that we will be confronted with similar problems in many others. Fur-
ther research should eventually lead us to a good understanding of best practices for automated moral decision making by 
generalizing from human judgments.
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