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Abstract

We analyze the computational and communication complex-
ity of combinatorial auctions from a new perspective: the de-
gree of interdependency between the items for sale in the bid-
ders’ preferences. Denoting I the class of valuations
displaying up tok-wise dependencies, we consider the hier-
archyGy C G2 C -+ C G, Wherem is the number

of items for sale. We show that the minimum non-trivial de-
gree of interdependency (2-wise dependency) is sufficient to
render NP-hard the problem of computing the optimal allo-
cation (but we also exhibit a restricted class of such valua-
tions for which computing the optimal allocation is easy). On
the other hand, bidders’ preferences can be communicated
efficiently (i.e., exchanging a polynomial amount of infor-
mation) as long as the interdependencies between items are
limited to sets of cardinality up té, wherek is an arbitrary
constant. The amount of communication required to trans-
mit the bidders’ preferences becomes super-polynomial (un-
der the assumption that only value queries are allowed) when
interdependencies occur between sets of cardinality),
whereg(m) is an arbitrary function such thg{m) — oo
asm — oo. We also consideapproximateelicitation, in
which the auctioneer learns, asking polynomially many value
queries, an approximation of the bidders’ actual preferences.
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der’s value for that package, is called trauation function
or simplyvaluation

The implementation of CAs poses several challenges, in-
cluding computing the optimal allocation of the items given
the valuation functions of the agents (aka. Wiener deter-
minationproblem), and eliciting enough information about
the bidders’ valuation functions to determine a good alloca-
tion (aka. thepreference elicitatioproblem).

Of these two problems, the interests of computer scientists
were first focused on the winner determination problem. Itis
NP-hard (Rothkopf, Peke & Harstad 1998) and even find-
ing an approximation is NP-hard (Sandholm 2002). How-
ever, modern search algorithms can often solve the struc-
tured winner determination problems that arise in typical
practical domains to optimality, even in the large (Sandholm
2006).

Therefore, the preference elicitation problem is in fact
the bigger bottleneck in obtaining the economic efficiency
that CAs can offer in principle. It is not feasible to have
every bidder submit a valuation for every one of the ex-
ponentially many packages. Requiring all of this informa-
tion is undesirable for several reasons. First, determining
one’s valuation for any specific bundle can be computa-
tionally demanding (Sandholm 1993; 2000; Parkes 1999b;
Larson & Sandholm 2001)—thus requiring this computation
for exponentially many packages is impractical. Second,

Combinatorial auctions (CAs) have emerged as an impor- communicating exponentially many bids can be prohibitive
tant mechanism for resource and task allocation in multia- (e.g., wrt. network traffic). Finally, agents may prefer not
gent systems. CAs have been used to trade transportationto reveal their valuation information for reasons of privacy
services, pollution permits, land lots, spectrum licenses, and or long-term competitiveness (Rothkopf, Teisberg, & Kahn
so on. In a CA, bidders can expressmplementaritie§.e., 1990).

the value of a package of items being worth more than the  Early approaches to addressing the preference elicita-
sum of the values of the individual items in the package), and tion problem (although it was not called that then) involved
substitutabilities(i.e., the value of a package of items being  designing different ascending combinatorial auctions (e.g.,
worth less than the sum of the values of the individual items  (parkes 1999a; Wurman & Wellman 2000; Ausubel & Mil-
in the package). (Complementarities are also referred to grom 2002; de Vries, Schummer, & Vohra 2003)). More re-
assuper-additivity and substitutabilities asub-additivity) ~  cently, the general preference elicitation framework for CAs
The function that, given a package of items, returns the bid- was introduced, where the auctioneer is enhanced by elicitor
software that incrementally elicits the bidders’ preferences
using queries until enough information has been elicited to
determine the right allocation of items to bidders (Conen
& Sandholm 2001}. Several elicitation algorithms, based

*This material is based upon work supported by the Na-
tional Science Foundation under ITR grants 11S-0121678 and 1IS-
0427858, and a Sloan Fellowship. This work was done while the
third author was visiting CMU.
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on different classes of queries (e.g., value, rank, and order for sale), we have fully general valuations, and both winner
queries), have been proposed (Conen & Sandholm 2001; determination and preference elicitation are hard.
2002; Hudson & Sandholm 2004). Ascending auctions are a  In this paper, we study the case where the degree of inter-
special case of the framework, where the queries are demanddependency between items is somewhere between inand
gueries, and the prices are restricted to being increasing.  (of course, some of the items in the CA may exhibit lower
Unfortunately, a recent result (Nisan & Segal 2005) shows degree of interdependency). We believe that this type of val-
that elicitation algorithms have no hope of considerably re- uation is likely to arise in many economic scenarios. For
ducing the communication complexity in the worst case. In instance, when the items for sale are related to a geomet-
fact, obtaining a better approximation than that generated by ric or geographic property (e.g., spectrum frequencies, rail-
auctioning off all objects as a bundle requires the exchange road tracks, land slots,...), it is reasonable to assume that
of an exponential amount of information. Thus, the com- only items that are geometrically/geographically close dis-
munication burden produced kany combinatorial auction play some form of interdependency. Another consideration
design that aims at producing a non-trivial approximation of that motivates our interest frwise dependent valuations is
the optimal allocation is overwhelming, unless the bidders’ that, due to cognitive limitations, it might be difficult for a
valuation functions display some structure. Of course, in bidder to understand the inter-relationships between a large
practice, such structure is very likely to be present, because group of items.
otherwise bidders’ cognitive limitations would presumably Another paper that independently introduces essentially
prevent them from producing a separate value for each of the same model appeared in October 2004 in a DIMACS
the exponentially many bundles. workshop (Chevaleyret al. 2004)—a few weeks after we
Given the winner determination and preference elicitation had presented the work in this paper at another DIMACS
hardness results, several authors have presented restrictedvorkshop (the DIMACS Workshop on Computational Is-
CA settings, in which solving either the winner determi- sues in Auction Design, Rutgers University, New Jersey).
nation problem, or the preference elicitation problem, or In any case, the results do not overlap, except for the NP-
both, are easy even in the worst case (LaMura 1999; Zinke- completeness result that we give later, which is stronger than
vich, Blum, & Sandholm 2003; Blunet al. 2004; Lahaie one presented in the other paper (Chevaletral. 2004)
& Parkes 2004; Santi, Conitzer, & Sandholm 2004; Chang, since we prove hardness in a more restricted setting.

Li, & Smith 2003; Rothkopf, Peke & Harstad 1998; When considering communication complexity, we will
Lehmann, O’Callaghan, & Shoham 2002; Nisan 2000; focus our attention on a restricted case of preference elici-
Tennenholtz 2000; Sandholm 2002; Sandhelnal. 2002; tation, in which the elicitor can ask onlsalue queriegwhat

Sandholm & Suri 2003; Conitzer, Derryberry, & Sandholm is the value of a particular bundle?) to the bidders. Our inter-
2004). The challenge is to identify classes of valuations estin value queries is due to the fact that, from the bidders’
that are sufficiently general (in the sense that they allow the point of view, these queries are very intuitive and easy to un-
bidders to express super-, or subadditivity, or both, among derstand. They are also, together with demand queries, the

items) and realistic, yet easy to solve. most commonly studied query class in the CA literature.
In this paper, we analyze the complexity of winner deter-
mination and preference elicitation in CAs from a new per- 2-wise dependent valuations

spective: the degree of mutual interdependency between the
items. In general, a set of items displays some form of in-
terdependency when their value as a bundle is different from
the sum of their values as single items, resulting in comple-
mentarity or substitutability between the objects. It can be
argued that this is the distinguishing feature of CAs.

The degree of mutual interdependency between objects is
clearly related to the computational and communication ef-
ficiency of CAs. When there is no interdependency, then the
bidders’ preferences are linear (i.e., the valuation of a bundle
is the sum of the values of the items it contains); in this sit-
uation, computing the optimal allocation is straightforward, ) .
and communication complexity is not an issue. However, — if v(ab) = v(a) + v(b) thena andb areindependent
this case does not require a CA, since the items could be auc-— if v(ab) > v(a) + v(b) thena andb aresuper-additive
tioned sequentially with the same economic efficiency. On if v(ab B th db b-additi
the other hand, when the degree of mutual interdependency ™ ' v(ab) < v(a) +v(b) thena andb aresub-additive
is maximal (i.e., up tan-wise dependencies are exhibited Given the dependencies between any pair of itends ligt
in the bidders’ valuations, where is the number of items  the2-wise dependency gragd, be constructed as follows:

location, and what the optimal allocation would have been with — letthere be a node for every itemin
each bidder’s bids removed in turn, then answering the elicitor's _ |gbel node: with v(a);?
queries truthfully can be made an ex post equilibrium strategyus- —

ing the Vickrey-Clarke-Groves mechanism, as proposed in (Conen 23lightly abusing the notation, we usdo denote both the item
& Sandholm 2001). and the corresponding node in the graph.

Let I denote the set of items for sale (also calleddhend

bundlg, with |I| = m. A valuation functionon I (valua-

tion for short) is a functior : 27 — R™ that assigns to any

bundleS C I its valuation. To make the notation less cum-

bersome, in this paper we will use notatier, ... to de-

note singletonsgd, be, . .. to denote two-item bundles, and
oon.

In the following, we will focus on the valuation function
of an arbitrary bidderd. Let us consider an arbitrary pair
a,bofitemsinl.

We have:



— if a andb are super- or sub-additive, put an (undirected)
edge(a, b) in the graph, and label the edge witfud) —
(v(a) +v(b)).

Under the assumption that there exist only 2-wise item
dependencies in the valuation function of biddgrthe G,
graph can be used to calculate the valuation of any possible
subsetS of I as follows: consider the subgragh® of G5
induced by node sef; sum up all the node and edge labels
in G°. Formally, the class o2-wise dependent valuations
is exactly the class of valuations for which this computation
produces the correct valuation of any subSgte. the class
of valuations that can be accurately represented by their
graphs.

A: rust sweater
B: olive green sweater
C: dark green trousers

D: dark brown shoes

Figure 1: 2-wise dependency graph representing the bidder’s
valuation in the auction of fashion clothing.

An example of a 2-wise dependent valuation could be the
following. Consider an auction of fashion clothing. In this

and W queries for the two item bundles). The price
that must be paid for this is that not all possible preferences
can be expressed usiggy graphs.

An interesting comparison can be made between the ex-
pressive power of 2-wise dependent valuations and that
of other classes of valuations, such as those presented
in (Zinkevich, Blum, & Sandholm 2003), which can also be
elicited asking a polynomial number of value queries. We
omit this comparison due to space constraint.

Remark. Costly disposatan be easily expressed using 2-
wise dependencies graphs. Costly disposal models those sit-
uations in which the bidder incurs a cost for disposing of
undesired items. Thus, the monotonicity assumption typi-
cal of thefree disposaketting, i.e. thav(S’) > v(S) for

any S’ O S, need not hold. For instance, the fact that the
bidder values: at 2 andb at 5, wants at most one of the
items, and incurs a cost of 1 for disposing of an extra item,
can be represented using thig graph which assigns weight

2 to nodea, 5 to nodeb, and weight -3 to the edge, b).

To the best of our knowledge, 2-wise dependent valuations
are the only known class of valuation functions that can ex-
press costly disposal and can be elicited asking a polynomial
number of queries. In fact, the classes of easy to elicit val-
uations defined in (Blunet al. 2004; Nisan & Segal 2005;
Zinkevich, Blum, & Sandholm 2003), as well as the pref-
erence elicitation techniques proposed in (Hudson & Sand-
holm 2004) and referred therein, are based on the free dis-
posal assumption.

Learning almost2-wise dependent valuations
Let G, denote the class of valuation functions that can

scenario, it seems reasonable to assume that items displaybe expressed using @, graph. In this section, we con-

super- of sub-additivity depending on how good they look
together. In Figure 1, there are four items for sale: a rust

sider the case in which the valuation functiordoes not
belong to Gz, but it can be well approximated by some

sweater, an olive green sweater, dark green trousers, and &y < G,. (Care must be taken in using these approxi-

pair of dark brown shoes. The items have values as single-
tons (e.g., the rust sweater is worth $80 to the bidder), and

mations of valuations: for example, using approximations
of the bidders’ preferences may break the incentive com-

show 2-wise dependencies when bundled together. For in- patibility of the VCG (Vickrey 1961; Clarke 1971; Groves
stance, the bundle composed of the olive green sweater, dark1973) mechanism. Of course, most real-world combinato-
green trousers and dark brown shoes has a super-additiverial auctions do not actually use the VCG mechanism due to

valuation ($223 instead of $200), because these items to-
gether form a nice outfit. Conversely, the rust sweater and

problems from which it suffers (Ausubel & Milgrom 2006;
Conitzer & Sandholm 2004). Moreover, if the costs of as-

the dark green trousers clash, so their value as a bundle issessing one’s valuations are taken into account, a recent re-

sub-additive ($125 instead of $140).

Note that the setting at hand (2-wise dependent valua-
tions) is not equivalent to allowing only bids on bundles
composed of at most two items: what we are bounding here
is the degree of interdependency between item valuations
when several items are bundled together, and not the cardi-
nality of the bundle. Indeed, the class of 2-wise dependent
valuations is significantly different from those correspond-
ing to existing bidding languages. For example, even the

sult shows thaho mechanism (not even VCG) is incentive
compatible (Larson & Sandholm 2005).)

Bidder preferences can be represented usinghiper-
cube representatigrwhich is defined as follows. Given the
set/ of items for sale, we build the undirected grafih in-
troducing a node for any subset bf(including the empty
set), and an edge between any two noflgsS: such that
S1 C Sy and|Sy] = |S2| — 1. It is immediate thatH;
is a binary hypercube of dimension. Nodes inH; can

simple example given above cannot be expressed using ORspe partitioned into levels according to the cardinality of the

and XORs over bundles of two items.

The class of 2-wise dependent valuations is efficient from
the communication complexity point of view. In fact, it is
easy to see that any valuation in this class can be elicited by

asking only™>*1) value queriess single item queries,

corresponding subset: level 0 contains the empty set, level 1
them singletons, and so on.

The valuation function) can be represented usitfy by
assigning a weight to each nodeféf as follows. We assign

weight 0 to the empty set, and weighliz) to any singleton



a. Let us now consider a node at level 2, say noblé The
weight of the node ig(ab) — (v(a) + v(b)). At the gen-
eral step;, we assign to nod#,, with |S;| = 7, the weight
v(S1) — X gcs, w(S), wherew(S) denotes the weight of
the node corresponding to subsgt The hypercube repre-
sentation of valuatiom on item set/ is denotedH(v). Itis
easy to see that any valuation functioadmits a hypercube
representation, and this representation is unique.

Given the hypercube representatifia(v) of v, the val-
uation of any bundl& can be obtained by summing up the
weights of all the nodes’ in H;(f) such thatS’” C S.
These are the only weights contained in the sub-hypercube
OfSHz(v) “rooted” at.S. We denote this sub-hypercube with
Hf (v).

{Ne will use the concept of the distance of a valuation
function from a class, defined as follows.

Definition 1 Letwv be an arbitrary valuation function, and
C be an arbitrary class of valuation functions. Given a func-
tion v € C, we say that' is a §-approximation ofv if
|v(S)—v'(S)| < 6 for every bundles. The distance between
v and C, denotedd(v, C), is defined asnin{4|3v’ € C
such that'’ is a §-approximation ofv}.

If the valuation functionv to be elicited is ad-
approximation of a 2-wise dependency functidnthen the
following theorem shows that @(m?2§)-approximation of

v can be learned askin@% value queries.

Theorem 1 Assume that the valuation functianis a ¢-
approximation ofv’, for somev’ € Go. Then, a function

g € Gq can be learned asking th@(’g—“) value queries on
bundles of sizé and2, such that for any bundle of itents

[(S) — g(8)] < 6 (1+ |5|<|5|—1)) |

2
Proof: Due to space limitations, we omit the proofs of most
of the results in this paper. =

Theorem 2 The bound stated in Theorem 1 is tight for the
elicitation technique used in the proof. (For any valuergf
there exist valuation functions v/, withv’ € G4 such that
v’ is a §-approximation ofv, and the functiory learned in

polynomial time is & (1 + W)—approximation ofv.)

Next, let us consider valuations such that all the weights
in the correspondind?; graph are non-negative. We call
these valuationstrongly super-modulavaluations? It is
not hard to see that strongly super-modular valuations are
hard to elicit with value queries, because they require ex-
ponentially many values to specify. The following theorem

3slightly abusing the notation, we denote withboth the bun-
dle composed by the two iterasandb, and the corresponding node
in Hy.

“The reason for this name is the following. If a valuation has
the property that all the weights in the correspondifhggraph are
non-negative, then it is super-modular. On the other hand, there
exist super-modular valuations such that some of the weights in
the corresponding hypercube are strictly negative. (Super-modular
valuations are valuations with increasing marginal utility.)

gives an upper bound on the distance between any strongly
super-modular valuation and tl@, class, which contains
easy to elicit valuations.

Theorem 3 Let v be an arbitrary strongly super-modular
valuation, and let, be the unique valuation function &
that coincides withy on the singletons and two-item bundles.
Letc;(v) = maxg |gj—i{v(S) — v2(5)}, and letM (v) =

m . Then, there exists a functio € Gy

M (v S|(]S|+1
such thatv(S) — ()| < # . H('% for any bundle

S. Thus, we havé(v, Go) < M) . mmtl),

The following theorem shows that the bound stated in
Theorem 3 is tight.

Theorem 4 There exist strongly super-modular valuations

v such thatd(v, Gg) = M) . mimtl),

The results stated in theorems 1 and 3 can be combined
into the following theorem, which gives an upper bound
on the error that we have when an arbitrary strongly super-
modular valuation is approximated using a function (&,
using polynomially many queries.

Theorem 5 Let v be an arbitrary strongly super-modular
valuation. Then, a function € G can be learned asking

mim ) value queries such thae(S) — ¢(S)| is at most:

M(v) (I5|(|5+1)> (1+ SI(SI—1)>

2 2 2
for any bundleS, whereM (v) is defined as in the statement
of Theorem 3.

Although the bound on the approximation error stated in
Theorem 5 is considerable, it is interesting that ihas a
certain property (which is not sufficient to make it easy to

elicit), then the approximation error that we have if we ask
only W out of the2™ — 1 possible value queries can
be bounded in a non-trivial way.

The approximation bound of Theorem 5 is composed of

two factors: the first factoﬁ@ 1810481+

S ) is due to the
fact thatv in general is this far away froia, valuations; the

second factor(l + W) derives from the fact that

the elicitor does not know the functiari € Go that best
approximates. While the first factor in the approximation
error in general cannot be improved, since it derives from the
fact thatv ¢ Go, a natural question is whether the elicitor
might do better than the functign We leave this as an open
problem.

Allocation with G valuations

In this section, we investigate the computational complex-
ity of the winner determination problem when all the bid-
ders participating in the auction have valuation functions in
G,. We focus on computing theptimal allocation (as is
required, for example, for executing the VCG mechanism).

Theorem 6 Computing the optimal allocation in a CA
where all the bidders have 2-wise dependent valuation func-
tions is NP-complete, even when each bidder places only



values of 0 on individual items, and places nonzero values On the other hand, the following result shows that if the

on only two (adjacent) edges (in fact, a valuelafn each graph obtained by merging tlie, graphs of the bidders dis-

of these edges). plays certain structure, then the auction can be cleared in
polynomial time. (Similar results have appeared for other

Proof: Itis easy to see that (the decision variant of) the prob- graphical models of the bids (LaMura 1999; Sandholm &

lem is in NP: for any assignment of items to bidders, we can Suri 2003; Conitzer, Derryberry, & Sandholm 2004).)

compute the value of that assignment to each bidder in poly-

nomial time, and sum these values to get the assignment’s Theorem 7 Consider the graph of all vertices (items), and

total value. all edges between items such that at least one bidder places

To show that the problem is NP-hard, we reduce an arbitrary a nonzero value on the edge. Suppose this graph has no

instance of the NP-complete EXACT-COVER-BY-3-SETS cycles (it is a forest). Then the optimal allocation can be

problem to an instance of the winner determination problem computed irO(nm) time, wheren is the number of bidders.

as follows. Recall that in an EXACT-COVER-BY-3-SETS

problem instance, we are given a sewith |.S| = m, and Proof: The algorithm solves each tree in the forest sepa-
subsetssy, Sy, ..., Sy, with [S;| = 3forall j,and areasked  ately. Fix a rootr of the tree. For any vertex in the
whether-2 of the subsets cove$. Then, in our clearing  tree "lett(4, b) be the highest value that can be obtained in
problem instance, let there be an itemfor every s € S, the auction from item and its descendants alone (that is,
and, for everyS; = {s},s3,s7} (wheres;, s7,s% is an ar- if we throw away all other items), under the constraint that
bitrary ordering of the elements of the subset), a hid the bidder corresponding to bidgets itemi. Let A(i, b)
which places a value df on edgegi,:,i.2) and(iy, iz), be the set of all allocations of the descendants that achieve

and places a value of 0 on everythinJg else (including all ver- this value. Then, for any clearing that assigrts the bid-
tices). We are asked whether it is possible to obtain a value der corresponding tb, without any loss we can change the
of % in this auction. We show the instances are equivalent. allocation of the items in the subtree to be consistent with
First suppose there exists an exact cover by 3-sets. Then,any element ofA(i,b) (assigning the descendants ioin

for eachsS; in the cover, give the bidder corresponding to the exact same manner); this will achieve at least as large
bs, the itemsi# ,i.2,1.3. This is a valid allocation because total value from edges and vertices within the subtree; the

in the cover overlap). Moreover, because each such bidder’s joint from the subtree is clearly unaffected; and the only
value in this allocation i€, and there aré such bidders, other edges that have one of the vertices of the subtree as

the total value of the allocation 4. So there exists an 2" endpoint have as that endpoint—and becausts still
allocation that achieves the target value. assigned to the bidder correspondingtdhey remain un-

N ) . . affected. Letcy,... ¢, be the children of. Then, we
ow suppose there is an allocation that achieves the tar- i m

get value. Letn(b) be the number of items allocated to  can conclude that(i,b) = vp(i) + >, max{vy(i,c) +
the bidder corresponding to bid and letv(b) be the value ) k=1 )
of the allocation to that bidder. Then the following must  t(Ck, ), maxy ., t(ck, b')}. This allows us to set up a sim-
hold: if this bidder receives at least one item, we must have Ple dynamic program that will compute th@, b) from the

:’LEZ;; < 2. Moreover, the inequality is strict unless the bid- leaves upwards, and thus will eventually comptiieb) for

q . tlv the three items that are endpoints of his all b, and the highest suct{r,b) is the optimal allocation

ng;\;eec;‘gl\é%s ee;(aﬁ'ge reason is the following)) cael be at value. We observe that for every bidder, for every edgg),

most2 andgwill. be less unless the bidder receives at least the valueub(?',j) Is read exactly once; also, for abya_ndz’,

the three i . , the expressiomax; . t(,0’) takes only constant time to
items that are endpoints of his nonzero edges, s0¢, 1 te hecause there are only tis for which we ever

this is certainly true fomn(b) > 3. If n(b) = 2, thenv(lz)) (for anyb)’ need to look at(i, b'): one that maximize&(, )

.(;an lk))e Etlm?hSl an(g th_e (f)rathlon can t?]e a lmo§tf< 3’ | (call it b;1), and another onef;) which maximizes (i, b’)

if n(b) = 1, en“(vzb)_ - because the value ot any al-  qyer || the remaining’ (which gives the second highest

location is > n(b); 7 (WhereW is the set of bids that  ¢(; 1'))—for the case wherg = b;;. It follows that the run-
beW ot : - :

. ; ; ning time of the algorithm i€ (mn). The straightforward
win at _Ieast one item), I fOH.O ws that the target Vall.]e can  oxtension of the program to compute a best partial allocation
be acgl)eved if and only if all items are allocated to bidders, a(i,b) (with the restriction that is allocated to the bidder

v 2 . . ) . . N .
and 77y = 3 forallb € W. But because this equality  corresponding td) will allow for also computing an opti-
holds only if everybs, € W receives items,, iz, i3, it mal allocation. =
follows that theS; corresponding to winning bids in an al-
location achieving the target value constitute an exact cover
by 3-sets. =

Note that Theorem 7 defines a non-trivial class of costly
disposal valuation functions which can be elicited using
a polynomial number of value queries, and for which the

This contrasts, for example, with the case where bids are winner determination problem can be solved in polynomial
on bundles of at most size 2 (and any number of a bidder's time. To the best of our knowledgthis is the first class of
bids can be accepted), which can be solved in polynomial computational and communication efficient costly disposal
time (Rothkopf, Peki& & Harstad 1998). valuations in the literature



Generalization: k-wise dependency

c;(v)

Yok () Then, there

and let M (v) = maxj—k+41,...m

The 2-wise dependency model can be easily extended to theexists a function’ € Gy such that|v(S) — v/(S)| <

case ofk-wise dependency, for sonie < m, by adding

to the graphj-multiedges between subsets of the items of
cardinality j, for anyj = 3,...,k. These multiedges ac-
count for up tok-wise dependencies between items. Given
the k-wise dependency graghy, the valuation of a bundle

S is obtained by considering the subgrapfi induced by
nodes inS, and summing up the weights of the nodes and
of the edges (including multiedges)@”. An example of a

G, graph, along with the corresponding valuation function,
is shown in Figure 2. The class of valuations that can be
expressed using & graph is denotedsyx. (We note that
these are exactly the valuation functions whose hypercube
representation has nonzero weights only on leveélsough

I.={a,b,c,d}
v(a)=3
v(b) =1
v(c)=0
v(d)=2
v(ab) =17
v(ac)=3
v(ad) =3
v(bc)=1
v(bd) =3
vied)=3
v(abc) =1
v(abd) =9
v(bed) =4
v(acd) =4
v(abed) =9

Figure 2: Example of 4-wise dependence graph, and the cor-
responding valuation functiom Multiedges are represented
as dashed lines.

The following proposition shows that if a valuation func-
tion is included inGj, for some constarit < m, then it can
be elicited in polynomial time.

Proposition 1 Let & be an arbitrary constant, and assume
that there exist only up t&-wise dependencies between
items in the valuation function. Then,v can be elicited
askingO(m*) value queries.

The following theorems generalize some of the results
presented in the previous sections to the casewfse de-
pendent valuations.

Theorem 8 Assume that the valuation functianis a ¢-
approximation o', for somev’ € Gy, with k£ an arbitrary
positive constant. Then, a functigne Gy can be learned

askingO(m*) value queries, such that S) = ¢(S) for any
bundleS with |.S| < k, and

[v(S) —g(S)| < ¢ (1 + ( ))
for any bundleS with |S| > k.
Theorem 9 Let v be an arbitrary strongly super modu-
lar valuation, and letv, be the unique valuation function

in Gg that coincides withv on the bundles of cardinal-
ity at mostk. Let ¢;(v) maxg |g/=i{v(S) — vr(S)},

Bl
k

M(v) 5]

e (

5 ) for any bundleS. Thus, we have
J
M (v) .

d(v,Gg) < =5 Zj:l...k (T)

It may appear that the bound stated in Theorem 9 is looser
than the one reported in Theorem 3, which would be coun-
terintuitive. However, we have to consider that, denoting
with M, (v) and My (v) the value ofM as in the statement of
theorems 3 and 9, respectively, typicallfy(v) > My (v).

In any case, denoting h¥, ds, . . ., di, the distance between
v and theG,, Gg, ..., G classes, respectively, we have
de > d3 > ...d because the classes subsume each other.

The Gy hierarchy

Let G, denote the class éfwise dependent valuations. Itis
clear that these classes define a hierarchy, were G,

and every inclusion is strict. The bottom class of the hierar-
chy is theG; class, which corresponds to the class of linear
valuations (i.e., the valuation of any bundle is simply the
sum of the values of the singletons). These valuations are
easy to elicit and to allocate, but are of no interest in the
CA setting. Let us consider the second element of the hi-
erarchy,Gs. Theorem 6 shows that valuations in this class
are hard to allocate. This means that even the most lim-
ited form of interdependency between items (2-wise depen-
dency) is sufficient to render the problem of finding the op-
timal allocation hard. On the other hand, valuations that dis-
play up tok-wise item dependency (whekeis an arbitrary
constant) remain easy to elicit. The following proposition
shows that when the interdependencies are between sets of
g(m) objects, wherg/(m) is an arbitrary function such that
g(m) — oo asm — oo, preference elicitation with value
gueries becomes hard.

Proposition 2 Let v be an arbitrary valuation inGg(m),
whereg(m) is an arbitrary function such thag(m) — oo
asm — oo. Thenv is hard to elicit with value queries.

Finally, it is easy to see that the class at the top of this
hierarchy,G,,, is fully expressive, i.e., it can express any
valuation function. Thus, we can end with the following
theorem.

Theorem 10 Let valuations which display up to-wise de-
pendencies belong to th@y class. Then we have the fol-
lowing hierarchy:

G1CG2C"'CGm,

where every inclusion is strict. Valuations (R, are easy

to elicit and allocate. Valuations iy, wherek > 2 is an
arbitrary constant, are easy to elicit and hard to allocate.
Valuations inGg (), whereg(m) is an arbitrary function
such thatg(m) — oo asm — oo, are hard to elicit with
value queries and hard to allocate. The class at the top of
the hierarchyG,,, contains all possible valuations.

Conclusions

We introduced the degree of interdependency between items
as a key notion in combinatorial auctions, and showed that



when this degree is bounded by a constant, polynomial elic-
itation is sufficient. Additionally, we showed how the auc-
tioneer can approximate bidders’ preferences by preferences
with a bounded degree of interdependency, using only poly-
nomially many queries. We showed that the winner determi-
nation problem is already NP-complete for preferences with
degree of interdependency 2 (this worst-case hardness may
not be a problem for winner determination algorithms in
practice), and we also demonstrated a special case in which
the winner determination problem can be solved in polyno-
mial time.

One path for future research is to experimentally study
the hardness of the communication and winner determina-
tion problems when bidders’ valuations are drawn according
to a model of bounded interdependency. Another path is to
find and study extensions of this model that allow for richer
valuation functions but nevertheless maintain (at least some
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