
Learning and Approximating
the Optimal Strategy to Commit To∗

Joshua Letchford, Vincent Conitzer, and Kamesh Munagala

Department of Computer Science, Duke University, Durham, NC, USA
{jcl,conitzer,kamesh}@cs.duke.edu

Abstract. Computing optimal Stackelberg strategies in general two-player Bayesian
games (not to be confused with Stackelberg strategies in routing games) is a topic
that has recently been gaining attention, due to their application in various se-
curity and law enforcement scenarios. Earlier results consider the computation
of optimal Stackelberg strategies, given that all the payoffs and the prior dis-
tribution over types are known. We extend these results in two different ways.
First, we considerlearning optimal Stackelberg strategies. Our results here are
mostly positive. Second, we consider computingapproximatelyoptimal Stackel-
berg strategies. Our results here are mostly negative.

1 Introduction

Game theory defines solution concepts for strategic situations, in which multiple self-
interested agents interact in the same environment. Perhaps the best-known solution
concept is that ofNash equilibrium[11]. A Nash equilibrium prescribes a strategy for
every player, in such a way that no individual player has an incentive to change her
strategy. If strategies are allowed to be mixed—a mixed strategy is a probability distri-
bution over pure strategies—then it is known that every finite game has at least one Nash
equilibrium. Some games have more than one equilibrium, leading to theequilibrium
selection problem.

Perhaps the most basic representation of a game is thenormal form. In the normal-
form representation, every player’s pure strategies are explicitly listed, and for every
combination of pure strategies, every player’s utility is explicitly listed.

The problem ofcomputingNash equilibria of a normal-form game has received
a large amount of attention in recent years. Finding a Nash equilibrium is PPAD-
complete [6, 1]. Finding an optimal equilibrium (for just about any reasonable definition
of “optimal”—for instance, maximizing the sum of the players’ utilities) is NP-hard [7,
3]; moreover, it is not even possible to find an equilibrium that is approximately optimal
in polynomial time, unless P=NP [3]. This holds even for two-player games.

However, Nash equilibrium is not always the right solution concept. In some set-
tings, one player can credibly commit to a strategy, and communicate this to the other
player, before the other player can make a decision. To see how this can affect the
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outcome of a game, consider the following simple normal-form game (which has pre-
viously been used as an example for this,e.g., [2]):

L R

U (2,1)(4,0)
D (1,0)(3,1)

Fig. 1. A sample game and its extensive form representation

For the case where the players move simultaneously (no ability to commit), the
unique Nash equilibrium is(U, L): U strictly dominatesD, so that the game is solvable
by iterated strict dominance. So, player 1 (the row player) receives utility2. However,
now suppose that player 1 has the ability to commit. Then, sheis better off committing
to playD, which will incentivize player 2 to playR, resulting in a utility of3 for player
1. The situation gets even better for player 1 if she can commit to a mixed strategy: in
this case, she can commit to the mixed strategy(.5 − ε, .5 + ε), which still incentivizes
player 2 to playR, but now player 1 receives an expected utility of3.5 − ε. To ensure
the existence of optimal strategies, we assume (as is commonly done [2, 12]) that player
2 breaks ties in player 1’s favor, so that the optimal strategy for player 1 to commit to
is (.5, .5), resulting in a utility of3.5. (Note that there is never a reason for player 2
to randomize, since he effectively faces a single-agent decision problem.) An optimal
strategy to commit to is usually called aStackelbergstrategy, after von Stackelberg, who
showed that in Cournot’s duopoly model [4], a firm that can commit to a production
quantity has a strategic advantage [15]. Throughout this paper, a Stackelberg strategy is
an optimalmixedstrategy to commit to; we will only consider two-player games. In this
context, the Stackelberg leader’s expected utility is always at least the expected utility
that she would receive in any Nash (or even correlated) equilibrium of the simultaneous-
move game [16]. In contrast, committing to a pure strategy isnot always beneficial; for
example, consider matching pennies.

One may argue that the normal form is not the correct representation for this game.
In game theory, the time structure of games is usually represented by theextensive form.
Indeed, the above game can be represented as the extensive-form game in Figure 1.
While this is a conceptually useful representation, from a computational perspective it is
not helpful: player 1 has an infinite number of strategies, hence (the naı̈ve representation
of) the tree has infinite size. It should be emphasized that committing to a mixed strategy
is not the same as randomizing over which pure strategy to commit to; in fact, there is
no reason to randomize over which strategy to commit to. Thus, from a computational
viewpoint, it makes more sense to operate directly on the normal form.

The problem of computing Stackelberg strategies in generalnormal-form (or, more
generally, Bayesian) games has only recently started to receive attention. A 2006 EC pa-
per by Conitzer and Sandholm [2] layed out the basic complexity results for this setting:
Stackelberg strategies can be computed in polynomial time for two-player general-sum



normal-form games using linear programming (in contrast tothe problem of finding
a Nash equilibrium), but computing Stackelberg strategiesis NP-hard for two-player
Bayesian games or three-player normal-form games. Undeterred by the NP-hardness
result, Paruchuriet al. [12] developed a mixed-integer program for finding an (optimal)
Stackelberg strategy in the two-player Bayesian case (the setting that we study in this
paper). They show that using this formulation is much fasterthan converting the game
to normal form (leading to an exponential increase in size) and then using the linear
programming approach. Moreover, this algorithm forms the basis for their deployed
ARMOR system, which is used at the Los Angeles InternationalAirport to randomly
place checkpoints on roads entering the airport, as well as to decide on canine patrol
routes [9, 13]. The use of commitment in similar games dates back much further, in-
cluding, for example, applications to inspection games [10]. The formal properties of
various types of commitment are also studied in [8].

It should be noted that Stackelberg strategies are a generalization of minimax strate-
gies in two-player zero-sum games. Because computing minimax strategies is equiva-
lent to linear programming [5], this also implies that a linear programming solution
for computing Stackelberg strategies is the best that we canhope for. Of course, Nash
equilibrium is an alternative generalization of minimax strategies. Stackelberg strate-
gies have the significant advantage that they avoid the equilibrium selection problem:
there is an optimal value of the game for the leader (player 1), which in general cor-
responds to a single optimal strategy (though not in degenerate cases). The notion of
“Stackelberg strategies” has appeared in other contexts inthe algorithmic game theory
literature, specifically, in the context of routing games, where a single benevolent party
controls part of the flow, and commits to routing this flow in a manner that minimizes
total latency [14]. While interesting, that paper does not seem that closely related to our
work, because in our context, the leader is a selfish player inan arbitrary game.

The rest of this paper is layed out as follows. In Section 2, weformally review the
necessary concepts, introduce our notation, and discuss existing results that are relevant.
In Section 3—the first half of our contribution—we prove several results aboutlearning
Stackelberg strategies, in contexts where the follower payoffs and/or the distribution
over types is not known initially. In Section 4—the second half of our contribution—
we consider purely computational problems and give (in)approximability results.

2 Preliminaries

In this section, we review notation and existing results.

2.1 Notation and definitions

We will refer to player 1 as theleaderand to player 2 as thefollower. Let Al be the
set of leader actions in the game (|Al| = d), and letAf be the set of follower actions
(|Af | = k). The leader’s utility is given by a functionul : Al × Af → R. When we
are studying approximability, we (wlog) require all the leader utilities to be nonnegative
(to make multiplicative approximation meaningful). In a Bayesian game, the follower
has a set oftypesΘ (|Θ| = τ ), which, together with the actions taken, determine his
utility, according to a functionuf : Θ × Al × Af → R. For simplicity, we will not



consider situations where the leader’s utility also depends on the follower’s type; this
restriction strengthens our hardness results. We will refer to these asBayesiangames; a
normal-formgame is the special case where there is only a single type.

σ denotes a mixed strategy for the leader, andσ(al) the probability thatσ places on
actional. Let BR(θ, σ) ∈ Af denote the action that the follower plays (that is, his best
response, with ties broken in favor of the leader) when his type isθ and the leader has
committed to playingσ. We note that

BR(θ, σ) ∈ arg max
af∈Af

∑

al∈Al

σ(al)uf(θ, al, af )

The BR function also captures the fact that the follower breaks ties in the leader’s favor.
Given the follower typeθ, the leader’s expected utility is

∑

al∈Al

σ(al)ul(al, BR(θ, σ))

Given a prior probability distributionP : Θ → [0, 1] over follower types, the leader’s
expected utility for committing toσ is

∑

θ∈Θ

P (θ)
∑

al∈Al

σ(al)ul(al, BR(θ, σ))

When we take a worst-case perspective, we will be interestedin a setting with types but
without a prior distribution over them (also known as apre-Bayesiangame).

2.2 Known results and techniques

In this subsection we review the most relevant prior work. For a normal-form game,
the optimal mixed leader strategy can be computed in polynomial time, as follows:1 for
every follower actionaf , the following linear program (whose variables are theσ(al))
can be used to determine the best leader strategy that makes the follower playaf :

maximize
∑

al
σ(al)ul(al, af )

subject to
(∀a′

f )
∑

al
σ(al)uf (al, af) ≥

∑
al

σ(al)uf (al, a
′

f)∑
al

σ(al) = 1
(∀al) σ(al) ≥ 0

Some of these linear programs may be infeasible (it is impossible to make a follower
play a strictly dominated strategy), but some will be feasible; the solution of the one
with the highest objective value gives the optimal mixed strategy for the leader.

For Bayesian games (with a prior), the problem of computing the optimal mixed
leader strategy is known to be NP-hard [2]. However, this strategy can be found using a
mixed integer program [12].

1This algorithm was presented in [2]. Some of the analysis in [16] is based on similar insights.



2.3 Visualization

In this subsection, we show how the problems we discussed above can be visualized. Let
us consider the normal-form case. The space of possible strategies for the leader defines
a unit simplex ind − 1 dimensions, whered is the number of leader actions. For each
strategy of the leader, the follower has a best response. Thespace of leader strategies
for which the follower’s best response isaf defines a (possibly empty) polyhedron.
Therefore, thed-simplex splits into at mostk (number of follower actions) polyhedral
regions, based on the follower utility function. Each of these regions corresponds to the
feasible region of one of the linear programs, and the objective of that linear program
can be represented as an arrow in the region.

Let us consider the following small example and its visualization.

L C R

U (0,1)(1,0)(0,0)
M (4,0)(0,1)(0,0)
D (0,0)(1,0)(1,1)

Fig. 2. A small game and its visualization

Each dot in Figure 2 represents the optimal point (leader mixed strategy) within
each region (which lie onseparating hyperplanesor on the boundary); the largest dot
(.5,.5,0) shows the optimal point overall.

The Bayesian case can be visualized in (at least) two different ways. A simple way
is to have a separate unit simplex for every type; this does not require a prior distribution
over types (that is, it works for pre-Bayesian games). If there is a prior distribution over
types, another way is to have a region for each element of the set of all pure strategies
for the follower, so that(aθ1

f , . . . , aθτ

f ) corresponds to the region where typeθ1’s best

response isaθ1

f , typeθ2’s best response isaθ2

f , etc.The arrows in this region represent
the objective, which depends on the prior. This representation does not work for pre-
Bayesian games where we take a worst-case perspective, because the optimal point may
be in the interior of a region.

3 Learning Stackelberg strategies

If a game is repeated over time, this opens up the possibilityfor the leader to learn
something about the follower’s utilities or the distribution over types. To avoid the pos-
sibility that the follower tries to mislead the leader over time, we imagine that a new
follower agent is drawn in every round. Alternatively, the follower can be assumed to
behave myopically. In a round, the leader commits to a mixed strategy, and subsequently
observes the follower’s response. The leader’s goal is to learn enough to determine the
optimal Stackelberg strategy, in as few rounds (samples) as possible.

Due to space constraint, we focus on the case with a single type: that is, in each
round, the follower has the same payoff matrix, given byuf (al, af), initially unknown
to the leader. In each round, the leader commits to a mixed strategyσ and learns the



follower’s response. We say that the leaderqueriesor samplesthe pointσ on the prob-
ability simplex. The goal is to minimize the number of samples necessary to find the
optimal (Stackelberg) mixed strategy for the leader. In thefull version of this paper
(Appendices B,C) we consider two other cases with more than one type, one where
the leader needs to learn the follower payoff function, and one where this function is
known, but the leader must discover the distribution over types. We make the following
assumptions:

– The follower utilities are non-degenerate; no separating hyperplanes coincide.
– We will only consider regions whose volume is at least some fractionε > 0 of the

total volume, and try to find the optimal solution among points in these regions. (It
can be argued that solutions in smaller regions are too unstable. Alternatively, we
can simply assume that every nonempty region has at least this volume.)

– We assume that the optimal solution can be specified exactly using a limited amount
of precision quantified byL. This allows us to bound the number of iterations of
binary search needed to calculate these hyperplanes exactly, to a linear multiple of
L.

Our approach will be to learn all the regions (whose volume isat leastε of the
total)—that is, find all hyperplanes separating these regions. Once we know these, the
optimal strategy can be computed using the linear programming approach above.

A high-level outline of our algorithm SU is as follows. For each follower action
af ∈ Af , the algorithm maintains an overestimatePaf

of the region whereaf is a best
response. It then refines these overestimates via sampling,until they are disjoint.
SU

1. For eachaf ∈ Af , find a point (leader strategy)qaf
in thed-simplex to whichaf

is a best response (provided the corresponding region is sufficiently large).
2. Initially, eachPaf

is the entired-simplex.
3. Repeat the following until allPaf

are disjoint:
(a) Find a pointp∗ in the intersection of somePa′

f
andPa′′

f
.

(b) Sample to obtain the optimal follower strategy atp∗; call it a∗

f .
(c) Draw a line segment betweenp∗ and someqaf

for af 6= a∗

f , af ∈ {a′

f , a′′

f};
perform binary search on this line to find a single point on a hyperplane that
we have not yet discovered.

(d) Find a set ofd linearly independent points on the hyperplane, and hence re-
construct it.

(e) Update thePaf
to take this new hyperplane into account.

We now describe the steps of SU in detail.
Step (1).Finding a point in each region (with at leastε of the volume) can be achieved
via random sampling, via the following lemma.

Lemma 1. It takesO(Fk log k) samples to w.h.p. (with high probability) find a single
point in each sufficiently large region, whereF = 1/ε.

Proof. The probability that a randomly chosen point corresponds tofollower actionaf

is at leastε. Therefore, for any constant integerc ≥ 1, after((c + 1)F log k) samples,



the probability that follower actionaf is not hit is at most( 1

k
)c+1. By a union bound,

the probability that at least one action is not hit is at most( 1

k
)c.

Fig. 3. Finding a hyperplane.

Step (3 a–c).Consider two overestimatesPa′

f
andPa′′

f
that have nonzero overlap vol-

ume. By Step (1), we may assume that we have sampled a pointqa′

f
that led to a re-

sponse ofa′

f (that is,qa′

f
is in the region corresponding toa′

f ), and a pointqa′′

f
that led

to a response ofa′′

f . Both of these overestimates are characterized by setsH ′ andH ′′

of hyperplanes that we have previously discovered. We need to discover a new hyper-
plane. It will not suffice to do binary search on the line segment between the two starting
points, as illustrated by Figure 3, which illustrates a situation where we have discovered
two of the hyperplanes of Figure 2. If we do binary search on the line segment between
the two indicated points, we cannot discover the missing hyperplane, because the top
region “gets in the way” (another action, namelyC, will start being the best response).
However, if we sample from the shaded setPL ∩ PR, the result will be different from
one of the two points; then, by performing binary search on the line segment between
this point and the new point, we will find a point on a new hyperplane. The follow-
ing algorithm formalizes this idea. In it, we do not assume that the two overestimates
overlap.
FIND POINT

1. Solve a linear program to find an interior pointp∗ of Pa′

f
∩ Pa′′

f
given the con-

straintsH ′ ∪ H ′′. (If this is not feasible, return failure.)
2. Sample this point and let the follower strategy returned bea∗

f .
(a) If a∗

f = a′

f , search the line segment betweenp∗ and qa′′

f
for a point on a

hyperplane that has the region corresponding toa′′

f adjacent on one side, via
binary search.

(b) Otherwise, search the line segment betweenp∗ andqa′

f
for a point on a hyper-

plane that has the region corresponding toa′

f adjacent on one side, via binary
search.

Lemma 2. Given overestimatesPa′

f
andPa′′

f
on the regions corresponding toa′

f and
a′′

f , and pointsqa′

f
andqa′′

f
in these respective regions,FIND POINT will either give a



point on a new hyperplane for one of the regionsPa′

f
or Pa′′

f
, or will return that Pa′

f

andPa′′

f
already have zero intersection volume. This requiresO(L) samples.

The detailed proof is in Appendix A of the full paper.
Step (3d).In this step, the input is a pointp on the hyperplane that we need to recon-
struct, and the two follower actionsa′

f anda′′

f that correspond to the regions separated
by this hyperplane. The following DETERMINE HYPERPLANEfinds the hyperplane.

DETERMINE HYPERPLANE

1. Sample the vertices of a regulard-simplex with sides of lengthε′ � ε, centered at
p. (Draw this simplex uniformly at random among such simplices.)

2. Organize the vertices of this simplex into two sets,V ′ andV ′′ according to the
region they fall in. (Both of these sets will be nonempty.)

3. Choosed distinct pairs of points where one of the points is inV ′ and the other is
in V ′′

4. Binary-search thed line segments formed by these pairs, to find the points where
these line segments intersect the hyperplane.

Lemma 3. DETERMINE HYPERPLANE will give d linearly independent points on the
hyperplane usingO(dL) samples.

Proof. First, consider thed + 1 vertices of thed-simplex centered atp. Sinceε′ is
sufficiently small, all of the points fall into one of the two regions (and since the simplex
is chosen at random, there is zero probability of one of the vertices being exactly on the
hyperplane). Since the hyperplane goes throughp, at least one of the vertices of the
simplex will fall into each region. As a result, there are at leastd line segments between
vertices of the simplex where the two vertices of the segmentproduce different follower
actions. Finally, the points where the hyperplane intersects with these line segments
must be linearly independent; otherwise, the simplex wouldnot be full-dimensional.
Furthermore, the number of samples needed to find the hyperplane-intersecting point
on a line segment via binary search is linear inL. This completes the proof.

With these tools, we can give our main result for this problem:

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions, SU requires
O(Fk log k + dk2L)) samples, whereF = 1/ε, ε is the smallest volume of regions
that we consider,L is the precision, andk = |Af |. Computationally, this requires the
solution ofO(k2) linear programs.

Details of the proof are in Appendix A of the full paper. Once we have generated
all the hyperplanes that separate regions, we can use the known linear programming
approach described in Subsection 2.2 to find the optimal mixed strategy to commit to.

4 Computing Stackelberg strategies
In this section, we consider how different modeling assumptions affect the computa-
tional tractability and approximability of the Stackelberg problem with multiple fol-
lower types. Unlike the previous section, this section doesnot consider learning prob-
lems at all: it focuses strictly on the computational aspects of the optimization. Because
of this, we only consider a single-round setting in this section.



The following aspects of the model will remain the same throughout this section.

– We consider two-player, general-sum games that have more than one follower type.
– The leader’s utility does not dependdirectly on the follower’s type (but it does

depend on the follower’s action, which can be affected by thefollower’s type).
– The follower’s utility functionuf (θ, al, af ) is common knowledge.

We consider two modeling decisions. The first decision concerns whether the type
space is discrete or continuous. For the discrete case, we assume that we have a finite
number of types, which are explicitly listed. For the continuous case, we assume that
the space of possible types is defined by a lower bound and an upper bound for the
follower’s utility for each action profile(al, af ); every follower payoff matrix that is
consistent with these bounds corresponds to some type.

The second modeling decision is whether the follower type ischosen according to a
Bayesian model or an adversarial (worst-case) model. Note that the “adversary” isnot
one of the players of the game, in particular, the adversary and the follower are different.

4.1 Computing Bayesian optimal strategies with finitely many types
In this subsection we study how to compute the optimal mixed strategy when the fol-
lower’s type is drawn from a known distribution over finitelymany types. We refer to
this problem asBayesian optimization for finite types (BOFT). BOFT is defined as:

– We have a setΘ of possible follower types,|Θ| = τ .
– The follower’s utility functionuf (θ, al, af ) is common knowledge.
– Both the follower’s utility functionuf (θ, al, af ) and the leader’s utility function

uf (θ, al, af) are normalized to lie in [0,1] for all inputs.
– The prior over follower typesP (θ) is common knowledge.
– An optimal leader strategy is one that maximizes the leader’s expected utility.

This problem was first studied in [2], where it was shown to be NP-hard. It also
forms the basis for much of the applied work on computing Stackelberg strategies [9].
However, to the best of our knowledge, the approximability of this problem has not yet
been studied. We settle the approximability precisely in this subsection.

Theorem 2. For all constantε > 0, no polynomial-time factor-τ1−ε approximation
exists for BOFT unless NP= P, even if there are only two follower actions.

This hardness of approximation can be shown by a reduction from MAX-INDEPENDENT-
SET. In this reduction, vertices correspond to types, and the leader cannot incentivize
two adjacent types to both play a desirable action. The full reduction appears in Ap-
pendix D of the full paper.

Theorem 3. There is a polynomial-time factor-τ approximation algorithm for BOFT.

A simple algorithm that achieves this is the following: choose a type uniformly at
random, and solve for the optimal mixed strategy to commit tofor this specific type
(using the linear programming approach). With probability1/τ , we choose the type
that is actually realized, in which case we perform at least as well as the optimal overall
strategy. Hence, this guarantees at least aτ approximation. Details and derandomization
appear in Appendix D of the full paper.



4.2 Computing worst-case optimal strategies with finitely many types

A prior distribution over follower types is not always readily available. In that case, we
may wish to optimize for the worst-case type (equivalently,the worst-case distribution
over types). We note that the worst-case type depends on the mixed strategy that we
choose, so that this is not the same problem as optimizing against a single type. We
refer to this problem asworst-case optimization for finite types (WOFT):

– We have a setΘ of possible follower types,|Θ| = τ .
– The follower’s utility functionuf (θ, al, af ) is common knowledge.
– An optimal leader strategy is one that maximizes the worst-case expected utility

for the leader, where the worst case is taken over follower types (but we are taking
the expectation over the mixed strategy). That is, an adversary (not equal to the
follower) chooses the follower type after the leader mixed strategy is chosen, but
before the pure-strategy realization.

It turns out that WOFT is even less approximable than BOFT.

Theorem 4. WOFT is completely inapproximable in polynomial time, unless P=NP
(that is, it is hard to distinguish between instances where the leader can get at least1 in
the worst case, and instances where the leader can only get0)—even if there are only
four follower actions.

This can be shown by a reduction from 3-SAT. In the resulting game, the leader can
obtain an expected utility of1 against every type if the 3-SAT instance is satisfiable,
and otherwise will obtain utility0 against some type. The full reduction appears in
Appendix D of the full paper.

4.3 Optimizing for the worst type with ranges

So far, we have assumed that the space of possible types is represented by explicitly
listing the (finitely many) types and the corresponding utilities. However, this repre-
sentation of the uncertainty that the leader has over the follower’s preferences is not
always convenient. For example, the leader may have a rough idea of every follower
payoff, which could be represented by a range in which that payoff must lie. This cor-
responds to a continuous type space for the follower: every setting of all the follower
payoffs within the ranges corresponds to a type.

In this subsection, we study the problem of maximizing the leader’s worst-case
utility over all types (instantiations of the follower payoffs within the ranges). Later in
the subsection, we also consider a generalization where thefollower payoffs in different
entries can be linked to each other.

For example, consider the following game with ranges:

L R
U 0, [1,2] 1, 0
D 1,0 0, [1,2]

The leader is unsure about the follower’s utility for(U, L) and(D, R), each of which is
known to lie somewhere in the range[1, 2] (they can vary independently). The follower
knows his utilities. If the leader places less than1/3 probability onU , then the follower
is guaranteed to playR; this results in a utility of at most1/3 for the leader. If the leader



places more than2/3 probability onU , then the follower is guaranteed to playL; this
results in a utility of at most1/3 for the leader. If the leader places probability between
1/3 and2/3 on U , then the follower may end up playing eitherL or R; by placing
probability1/2 onU , the leader obtains an expected utility of1/2, which is optimal.

We refer to this problem asworst-case optimization for range types (WORT):

– For every(al, af ), the leader has a range in which the follower utility might lie,
uf (al, af ) ∈ [ul

f (al, af ), uh
f (al, af )]. The leader knows her own utilitiesul(al, af ).

– An optimal leader strategy is one that maximizes the worst-case expected utility for
the leader, where the worst-case values of

Theorem 5. WORT is NP-hard.

This follows from a reduction from 3-COVER, which is presented in Appendix D of
the full paper. It is an open question whether WORT can be efficiently approximated.
In Appendix E of the full paper, we define a generalization of WORT, which we prove
is inapproximable unlessP = NP . This generalization allows the follower’s payoffs
to be linked across entries.

5 Conclusion

Computing optimal Stackelberg strategies in general two-player Bayesian games is a
topic that has been gaining attention in recent years, due totheir application in both se-
curity and law enforcement. Earlier results consider the computation of optimal Stack-
elberg strategies, given that all the payoffs and the prior distribution over types are
known. We extended these results in two ways.

First, we consideredlearningoptimal Stackelberg strategies. We first considered the
normal-form case where the follower payoffs are not known and showed how we can
efficiently learn enough about the payoffs to determine the optimal strategy. We then
extended this to Bayesian games. We also considered the casewhere the payoffs are
known, but the distribution over types is not. We showed how we can efficiently learn
enough about the distribution to determine the optimal strategy. It must be admitted that
it is debatable whether this framework for learning is practical for current real-world se-
curity applications, since the costs incurred during the learning phase may be too high;
however, these costs may be more manageable in electronic commerce applications.

Second, we considered computingapproximatelyoptimal Stackelberg strategies.
Our results here were mostly negative: we showed that the best possible approximation
ratio that can be obtained in polynomial time for the standard Bayesian problem isτ ,
the number of types, unless NP = P. Optimizing for the worst type is completely inap-
proximable in polynomial time, in the sense that we cannot distinguish instances where
we can guarantee utility1 from instances where it is impossible to guarantee positive
utility, unless P=NP. We also studied a different representation of uncertainty about the
follower’s payoffs that relies on ranges, and showed that optimizing for the worst case
is NP-hard in the basic setting, and completely inapproximable in a generalized setting
where the payoffs are linked. These negative results provide some justification for the
use of worst-case exponential-time algorithms in this context, such as those that use
mixed integer programming.



Two immediate directions for future research are: (1) investigating the approx-
imability of the basic ranges problem, and (2) considering the ranges problem in the
Bayesian case (rather than the worst case). There are many other directions for future
research, for example, studying the number of samples required to learnapproximately
optimal strategies, investigating the case where there aremore than two players, and/or
computing optimal Stackelberg strategies when the normal form has exponential size,
but the game is concisely represented.
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