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Abstract. Computing optimal Stackelberg strategies in general tlaggy Bayesian
games (not to be confused with Stackelberg strategies tmgpgames) is a topic
that has recently been gaining attention, due to their eaftin in various se-
curity and law enforcement scenarios. Earlier results idenghe computation

of optimal Stackelberg strategies, given that all the payahd the prior dis-
tribution over types are known. We extend these results mdifferent ways.
First, we considetearning optimal Stackelberg strategies. Our results here are
mostly positive. Second, we consider computipgroximatelyoptimal Stackel-
berg strategies. Our results here are mostly negative.

1 Introduction

Game theory defines solution concepts for strategic sitngtiin which multiple self-
interested agents interact in the same environment. Petthapbest-known solution
concept is that oNash equilibrium{11]. A Nash equilibrium prescribes a strategy for
every player, in such a way that no individual player has aentive to change her
strategy. If strategies are allowed to be mixed—a mixedexisais a probability distri-
bution over pure strategies—then it is known that everydigéme has at least one Nash
equilibrium. Some games have more than one equilibriundimegto theequilibrium
selection problem

Perhaps the most basic representation of a game isotmeal form In the normal-
form representation, every player’s pure strategies apdioitky listed, and for every
combination of pure strategies, every player’s utility xplcitly listed.

The problem ofcomputingNash equilibria of a normal-form game has received
a large amount of attention in recent years. Finding a Nasglililequm is PPAD-
complete [6, 1]. Finding an optimal equilibrium (for justali any reasonable definition
of “optimal’—for instance, maximizing the sum of the plageutilities) is NP-hard [7,
3]; moreover, it is not even possible to find an equilibriumttis approximately optimal
in polynomial time, unless P=NP [3]. This holds even for tplayer games.

However, Nash equilibrium is not always the right solutimmcept. In some set-
tings, one player can credibly commit to a strategy, and canioate this to the other
player, before the other player can make a decision. To seetlis can affect the
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outcome of a game, consider the following simple normatafgame (which has pre-
viously been used as an example for tleigy, [2]):

(1,0) (0.1)
I R (U)

U\|(2,1)(4,0)

D|(1,0)(3,1)

2,1 4,0 15,5 35, 5 1,0 3,1

Fig. 1. A sample game and its extensive form representation

For the case where the players move simultaneously (nayablicommit), the
unique Nash equilibrium i€, L): U strictly dominated, so that the game is solvable
by iterated strict dominance. So, player 1 (the row playecgives utility2. However,
now suppose that player 1 has the ability to commit. Thenjsshetter off committing
to play D, which will incentivize player 2 to play, resulting in a utility of3 for player
1. The situation gets even better for player 1 if she can cdnond mixed strategy: in
this case, she can commit to the mixed stratedy- ¢, .5 + ¢), which still incentivizes
player 2 to playR, but now player 1 receives an expected utility3df — e. To ensure
the existence of optimal strategies, we assume (as is colgmione [2, 12]) that player
2 breaks ties in player 1's favor, so that the optimal styafeg player 1 to commit to
is (.5,.5), resulting in a utility of3.5. (Note that there is never a reason for player 2
to randomize, since he effectively faces a single-agerisigcproblem.) An optimal
strategy to commit to is usually calledsdackelbergtrategy, after von Stackelberg, who
showed that in Cournot’s duopoly model [4], a firm that can nuotrto a production
quantity has a strategic advantage [15]. Throughout ttpepa Stackelberg strategy is
an optimalmixedstrategy to commit to; we will only consider two-player gamia this
context, the Stackelberg leader’s expected utility is gibvat least the expected utility
that she would receive in any Nash (or even correlated) ibgiuim of the simultaneous-
move game [16]. In contrast, committing to a pure strategyisalways beneficial; for
example, consider matching pennies.

One may argue that the normal form is not the correct reptaen for this game.
In game theory, the time structure of games is usually reptes by thextensive form
Indeed, the above game can be represented as the extemsivgdme in Figure 1.
While this is a conceptually useful representation, frornmputational perspective itis
not helpful: player 1 has an infinite number of strategieacledthe naive representation
of) the tree has infinite size. It should be emphasized thatwaitting to a mixed strategy
is notthe same as randomizing over which pure strategy to commiit fact, there is
no reason to randomize over which strategy to commit to. ;Tias a computational
viewpoint, it makes more sense to operate directly on thenabform.

The problem of computing Stackelberg strategies in gemenahal-form (or, more
generally, Bayesian) games has only recently started &veattention. A 2006 EC pa-
per by Conitzer and Sandholm [2] layed out the basic comiyleasults for this setting:
Stackelberg strategies can be computed in polynomial ttmevo-player general-sum



normal-form games using linear programming (in contragh problem of finding
a Nash equilibrium), but computing Stackelberg strategi@$P-hard for two-player
Bayesian games or three-player normal-form games. Urréetéry the NP-hardness
result, Paruchust al.[12] developed a mixed-integer program for finding an (optim
Stackelberg strategy in the two-player Bayesian case étimg that we study in this
paper). They show that using this formulation is much fastan converting the game
to normal form (leading to an exponential increase in size) then using the linear
programming approach. Moreover, this algorithm forms thasid for their deployed
ARMOR system, which is used at the Los Angeles Internatidglort to randomly
place checkpoints on roads entering the airport, as wel aetide on canine patrol
routes [9, 13]. The use of commitment in similar games dasek lnuch further, in-
cluding, for example, applications to inspection gameg.[Ife formal properties of
various types of commitment are also studied in [8].

It should be noted that Stackelberg strategies are a géraiah of minimax strate-
gies in two-player zero-sum games. Because computing raikstrategies is equiva-
lent to linear programming [5], this also implies that a Angorogramming solution
for computing Stackelberg strategies is the best that weéhoge for. Of course, Nash
equilibrium is an alternative generalization of minimasagtgies. Stackelberg strate-
gies have the significant advantage that they avoid theibguih selection problem:
there is an optimal value of the game for the leader (playewhjch in general cor-
responds to a single optimal strategy (though not in degeé@eases). The notion of
“Stackelberg strategies” has appeared in other contexkeialgorithmic game theory
literature, specifically, in the context of routing gamebgre a single benevolent party
controls part of the flow, and commits to routing this flow in armer that minimizes
total latency [14]. While interesting, that paper does r@irs that closely related to our
work, because in our context, the leader is a selfish playan arbitrary game.

The rest of this paper is layed out as follows. In Section 2favmally review the
necessary concepts, introduce our notation, and discisiBigxesults that are relevant.
In Section 3—the first half of our contribution—we prove saleesults aboutarning
Stackelberg strategies, in contexts where the followenfiayand/or the distribution
over types is not known initially. In Section 4—the secontf b&our contribution—
we consider purely computational problems and give (injaximability results.

2 Preliminaries

In this section, we review notation and existing results.

2.1 Notation and definitions

We will refer to player 1 as thkeaderand to player 2 as thillower. Let A; be the
set of leader actions in the ganjel{| = d), and let4; be the set of follower actions
(JA¢| = k). The leader’s utility is given by a functiom, : A; x Ay — R. When we
are studying approximability, we (wlog) require all thedeautilities to be nonnegative
(to make multiplicative approximation meaningful). In ayBaian game, the follower
has a set ofypes®© (|©| = 1), which, together with the actions taken, determine his
utility, according to a function,y : © x A; x Ay — R. For simplicity, we will not



consider situations where the leader’s utility also degemdthe follower’s type; this
restriction strengthens our hardness results. We will tefthese aBayesiargames; a
normal-formgame is the special case where there is only a single type.

o denotes a mixed strategy for the leader, atg}) the probability that places on
actiong;. Let BR(§,0) € Ay denote the action that the follower plays (that is, his best
response, with ties broken in favor of the leader) when hpg ig6 and the leader has
committed to playingr. We note that

BR(6,0) € arg max o(a)us(f,ai,ar)

The BR function also captures the fact that the follower ksd#es in the leader’s favor.
Given the follower typd, the leader’s expected utility is

Z o(a)ui(a;, BR(6,0))

al€A;

Given a prior probability distributiod® : © — [0, 1] over follower types, the leader’s
expected utility for committing te is

> PO) > ola)w(a,BR(O,0))

0cO a €A

When we take a worst-case perspective, we will be interéstedetting with types but
without a prior distribution over them (also known apra-Bayesiargame).

2.2 Known results and techniques

In this subsection we review the most relevant prior work. &mormal-form game,
the optimal mixed leader strategy can be computed in polyaldime, as follows* for
every follower actioruy, the following linear program (whose variables are dtte; ))
can be used to determine the best leader strategy that niekeslower playa ;.

maximize ", o(ai)wi(ar, ay)

subject to
(V%) >, olaug(a,ap) =2 32, ola)us(ar, a’)
Y ola) =1

(Vay) o(a;) >0

Some of these linear programs may be infeasible (it is iniplesto make a follower
play a strictly dominated strategy), but some will be feksikhe solution of the one
with the highest objective value gives the optimal mixedtstgy for the leader.

For Bayesian games (with a prior), the problem of computimgdptimal mixed
leader strategy is known to be NP-hard [2]. However, th&tety can be found using a
mixed integer program [12].

IThis algorithm was presented in [2]. Some of the analysiéhis based on similar insights.



2.3 Visualization

In this subsection, we show how the problems we discussectatam be visualized. Let
us consider the normal-form case. The space of possibtegiea for the leader defines
a unit simplex ind — 1 dimensions, wheré is the number of leader actions. For each
strategy of the leader, the follower has a best responsesfdee of leader strategies
for which the follower’s best response ag defines a (possibly empty) polyhedron.
Therefore, thel-simplex splits into at most (number of follower actions) polyhedral
regions, based on the follower utility function. Each ofg¢beegions corresponds to the
feasible region of one of the linear programs, and the obgdf that linear program
can be represented as an arrow in the region.

Let us consider the following small example and its visialan.

(0,1,0)

L|C|R

(0,1)(1,0)(0,0
(4,0)(0,1)(0,0
(0,0)(T,0)(1,1

OIE S

(1,0,0) (0,0,1)

Fig. 2. A small game and its visualization

Each dot in Figure 2 represents the optimal point (leadeethistrategy) within
each region (which lie oseparating hyperplanesr on the boundary); the largest dot
(.5,.5,0) shows the optimal point overall.

The Bayesian case can be visualized in (at least) two diffavays. A simple way
is to have a separate unit simplex for every type; this doesegire a prior distribution
over types (that is, it works for pre-Bayesian games). If¢he a prior distribution over
types, another way is to have a region for each element ofethefsll pure strategies
for the follower, so tha(aff, ...,a%") corresponds to the region where tyjJés best

response iaff, typed?'s best response 'tsjf, etc. The arrows in this region represent
the objective, which depends on the prior. This represemtatoes not work for pre-
Bayesian games where we take a worst-case perspectivededba optimal point may
be in the interior of a region.

3 Learning Stackelberg strategies

If a game is repeated over time, this opens up the possilfdityhe leader to learn
something about the follower’s utilities or the distritlartiover types. To avoid the pos-
sibility that the follower tries to mislead the leader ovien¢, we imagine that a new
follower agent is drawn in every round. Alternatively, tlalédwer can be assumed to
behave myopically. In around, the leader commits to a mikedegyy, and subsequently
observes the follower’s response. The leader’s goal isaimlenough to determine the
optimal Stackelberg strategy, in as few rounslsniple}as possible.

Due to space constraint, we focus on the case with a singk that is, in each
round, the follower has the same payoff matrix, givendya;, a ), initially unknown
to the leader. In each round, the leader commits to a mixategtyoc and learns the



follower’s response. We say that the leadeeriesor sampleghe pointo on the prob-

ability simplex. The goal is to minimize the number of sangphecessary to find the
optimal (Stackelberg) mixed strategy for the leader. Inftiieversion of this paper

(Appendices B,C) we consider two other cases with more thmntgpe, one where
the leader needs to learn the follower payoff function, and where this function is
known, but the leader must discover the distribution ovpesy We make the following
assumptions:

— The follower utilities are non-degenerate; no separatyyehplanes coincide.

— We will only consider regions whose volume is at least soraetione > 0 of the
total volume, and try to find the optimal solution among pgintthese regions. (It
can be argued that solutions in smaller regions are too hiestalternatively, we
can simply assume that every nonempty region has at leastghime.)

— We assume that the optimal solution can be specified exagitiga limited amount
of precision quantified by.. This allows us to bound the number of iterations of
binary search needed to calculate these hyperplanesyxadillinear multiple of
L.

Our approach will be to learn all the regions (whose volumatigeaste of the
total)—that is, find all hyperplanes separating these regi®nce we know these, the
optimal strategy can be computed using the linear programegpproach above.

A high-level outline of our algorithm SU is as follows. Forogafollower action
ay € Ay, the algorithm maintains an overestimaig of the region where is a best
response. It then refines these overestimates via samplitithey are disjoint.

SuU

1. Foreachi;y € Ay, find a point (leader strategy),, in the d-simplex to whicha
is a best response (provided the corresponding regionfisisatly large).

2. Initially, eachP,, is the entirel-simplex.

3. Repeat the following until alP, , are disjoint:

(a) Find a poinp* in the intersection of somg,, andP,.

(b) Sample to obtain the optimal follower strategyatcall it a}.

(c) Draw a line segment between and somey,, for ay # a},ay € {a’,a’f};
perform binary search on this line to find a single point on pdrplane that
we have not yet discovered.

(d) Find a set off linearly independent points on the hyperplane, and hence re
construct it.

(e) Update the’, , to take this new hyperplane into account.

We now describe the steps of SU in detail.
Step (1).Finding a point in each region (with at leastf the volume) can be achieved
via random sampling, via the following lemma.

Lemma 1. It takesO(F'k log k) samples to w.h.p. (with high probability) find a single
pointin each sufficiently large region, whefe= 1/e¢.

Proof. The probability that a randomly chosen point correspondsliower actiona
is at leask. Therefore, for any constant integee> 1, after((c + 1) F log k) samples,



the probability that follower action is not hit is at mos( )e+1. By a union bound,
the probability that at least one action is not hitis at n(c%s)f

no

Fig. 3. Finding a hyperplane.

Step (3 a—c) Consider two overestlmate& andP, % that have nonzero overlap vol-
ume. By Step (1), we may assume that we have sampled a@ouﬂnat led to a re-
sponse ofz’ (thatis da, is in the region corresponding tx}) and a pomt;a// that led
to a response af. Both of these overestimates are characterized byfieandH "

of hyperplanes that we have previously discovered. We neéistover a new hyper-
plane. It will not suffice to do binary search on the line segtibetween the two starting
points, as illustrated by Figure 3, which illustrates aatiton where we have discovered
two of the hyperplanes of Figure 2. If we do binary search enlitie segment between
the two indicated points, we cannot discover the missingehylane, because the top
region “gets in the way” (another action, namélywill start being the best response).
However, if we sample from the shaded $gtN Pg, the result will be different from
one of the two points; then, by performing binary search anlitre segment between
this point and the new point, we will find a point on a new hygene. The follow-
ing algorithm formalizes this idea. In it, we do not assumeg the two overestimates
overlap.

FIND POINT

1. Solve a linear program to find an interior pojit of Pa/f N Pa;; given the con
straintsH’ U H”. (If this is not feasible, return failure.)
2. Sample this point and let the follower strategy returned’jp
(@ If ay = af, search the line segment betweghand Gaty for a point on 3
hyperplane that has the region correspondm@f’t@djacent on one side, via
binary search.
(b) Otherwise, search the line segment bet\/\weandqa} for a point on a hypet
plane that has the region correspondingf;mdjacent on one side, via bingry
search.

Lemma 2. Given overestimateB and P, 7 on the regions corresponding tq( and
af, and pOIntSq,, andq(,n in these respectlve regionSIND POINT will either give a



point on a new hyperplane for one of the regidhls;_ or Pa/f{, or will return that Pa/f
and P, already have zero intersection volume. This requidé) samples. '

The detailed proof is in Appendix A of the full paper.

Step (3d).In this step, the input is a poipton the hyperplane that we need to recon-
struct, and the two follower actiora§ anda}’ that correspond to the regions separated
by this hyperplane. The following BrerMINE HYPERPLANEfinds the hyperplane.

DETERMINE HYPERPLANE

1. Sample the vertices of a regutasimplex with sides of lengtl < ¢, centered at
p. (Draw this simplex uniformly at random among such simige

2. Organize the vertices of this simplex into two séf§,and V" according to the
region they fall in. (Both of these sets will be nonempty.)

3. Choosel distinct pairs of points where one of the points idihand the other i
inv”

4. Binary-search thé line segments formed by these pairs, to find the points where
these line segments intersect the hyperplane.

"2

Lemma 3. DETERMINE HYPERPLANE WiIll give d linearly independent points on the
hyperplane using(dL) samples.

Proof. First, consider thel + 1 vertices of thed-simplex centered agb. Sincec’ is
sufficiently small, all of the points fall into one of the twegions (and since the simplex
is chosen at random, there is zero probability of one of titoes being exactly on the
hyperplane). Since the hyperplane goes thropgat least one of the vertices of the
simplex will fall into each region. As a result, there areestdid line segments between
vertices of the simplex where the two vertices of the segptuce different follower
actions. Finally, the points where the hyperplane intassedth these line segments
must be linearly independent; otherwise, the simplex wawtibe full-dimensional.
Furthermore, the number of samples needed to find the hyperphtersecting point
on a line segment via binary search is lineaLinrhis completes the proof.

With these tools, we can give our main result for this problem

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions,r&juires
O(Fklogk + dk®L)) samples, wherd” = 1/e, ¢ is the smallest volume of regions
that we considetl is the precision, and& = |A;|. Computationally, this requires the
solution ofO(k?) linear programs.

Details of the proof are in Appendix A of the full paper. Once have generated
all the hyperplanes that separate regions, we can use thenkiteear programming
approach described in Subsection 2.2 to find the optimal drsx@ategy to commit to.

4 Computing Stackelberg strategies

In this section, we consider how different modeling assuomgt affect the computa-
tional tractability and approximability of the Stackelggsroblem with multiple fol-
lower types. Unlike the previous section, this section domsconsider learning prob-
lems at all: it focuses strictly on the computational aspe€the optimization. Because
of this, we only consider a single-round setting in this isect



The following aspects of the model will remain the same tigiaut this section.

— We consider two-player, general-sum games that have maneotte follower type.

— The leader’s utility does not depemtirectly on the follower’s type (but it does
depend on the follower’s action, which can be affected byfdHewer’s type).

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

We consider two modeling decisions. The first decision corewhether the type
space is discrete or continuous. For the discrete case, suenasthat we have a finite
number of types, which are explicitly listed. For the contins case, we assume that
the space of possible types is defined by a lower bound and per ippund for the
follower’s utility for each action profilda;, as); every follower payoff matrix that is
consistent with these bounds corresponds to some type.

The second modeling decision is whether the follower tympdsen according to a
Bayesian model or an adversarial (worst-case) model. Matiethe “adversary” isot
one of the players of the game, in particular, the adverszhytze follower are different.

4.1 Computing Bayesian optimal strategies with finitely mag types

In this subsection we study how to compute the optimal mixestegy when the fol-
lower’s type is drawn from a known distribution over finitetyany types. We refer to
this problem a8ayesian optimization for finite types (BOEFBOFT is defined as:

— We have a seP of possible follower typegpP| = .

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

— Both the follower’s utility functionu (6, a;, ay) and the leader’s utility function
uy(0,ar,ar) are normalized to lie in [0,1] for all inputs.

— The prior over follower type$’(9) is common knowledge.

— An optimal leader strategy is one that maximizes the leadapected utility.

This problem was first studied in [2], where it was shown to B&ard. It also
forms the basis for much of the applied work on computing I&ilierg strategies [9].
However, to the best of our knowledge, the approximabilitihts problem has not yet
been studied. We settle the approximability precisely is $hibsection.

Theorem 2. For all constante > 0, no polynomial-time factor!—¢ approximation
exists for BOFT unless NR P, even if there are only two follower actions.

This hardness of approximation can be shown by a reduction fMAX-INDEPENDENT-
SET. In this reduction, vertices correspond to types, aeddhder cannot incentivize
two adjacent types to both play a desirable action. The &dlction appears in Ap-
pendix D of the full paper.

Theorem 3. There is a polynomial-time factar-approximation algorithm for BOFT.

A simple algorithm that achieves this is the following: ceBea type uniformly at
random, and solve for the optimal mixed strategy to commibtacthis specific type
(using the linear programming approach). With probabilify-, we choose the type
that is actually realized, in which case we perform at leastell as the optimal overall
strategy. Hence, this guarantees at leashpproximation. Details and derandomization
appear in Appendix D of the full paper.



4.2 Computing worst-case optimal strategies with finitely rany types

A prior distribution over follower types is not always relyhvailable. In that case, we
may wish to optimize for the worst-case type (equivalenltig, worst-case distribution
over types). We note that the worst-case type depends on ittesl retrategy that we
choose, so that this is not the same problem as optimizinmstga single type. We
refer to this problem aworst-case optimization for finite types (WOFT)

— We have a seb of possible follower typegP| = .

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

— An optimal leader strategy is one that maximizes the woaseexpected utility
for the leader, where the worst case is taken over followgedybut we are taking
the expectation over the mixed strategy). That is, an adwer®ot equal to the
follower) chooses the follower type after the leader mixedtegy is chosen, but
before the pure-strategy realization.

It turns out that WOFT is even less approximable than BOFT.

Theorem 4. WOFT is completely inapproximable in polynomial time, sal®=NP
(thatis, it is hard to distinguish between instances whied¢ader can get at leastin
the worst case, and instances where the leader can onl§)geéven if there are only
four follower actions.

This can be shown by a reduction from 3-SAT. In the resultiaghg, the leader can
obtain an expected utility of against every type if the 3-SAT instance is satisfiable,
and otherwise will obtain utility) against some type. The full reduction appears in
Appendix D of the full paper.

4.3 Optimizing for the worst type with ranges

So far, we have assumed that the space of possible typesréesesped by explicitly
listing the (finitely many) types and the correspondingitigs. However, this repre-
sentation of the uncertainty that the leader has over thewel's preferences is not
always convenient. For example, the leader may have a raleghdf every follower

payoff, which could be represented by a range in which thgdfhanust lie. This cor-

responds to a continuous type space for the follower: evelting of all the follower

payoffs within the ranges corresponds to a type.

In this subsection, we study the problem of maximizing thedkr’s worst-case
utility over all types (instantiations of the follower pa§®within the ranges). Later in
the subsection, we also consider a generalization whefeltbeer payoffs in different
entries can be linked to each other.

For example, consider the following game with ranges:

L R
Ulo,[L,2] 1,0
D[ 1,0 |0, [1,2]

The leader is unsure about the follower’s utility {éf, L) and(D, R), each of which is
known to lie somewhere in the ranfje 2] (they can vary independently). The follower
knows his utilities. If the leader places less tHd8 probability onU, then the follower
is guaranteed to plai; this results in a utility of at most/3 for the leader. If the leader



places more thad/3 probability onU, then the follower is guaranteed to play this
results in a utility of at most /3 for the leader. If the leader places probability between
1/3 and2/3 on U, then the follower may end up playing eitheror R; by placing
probabilityl/2 on U, the leader obtains an expected utilitylg®, which is optimal.

We refer to this problem asorst-case optimization for range types (WORT)

— For every(a;,ay), the leader has a range in which the follower utility miglet, li
ug(ar, ay) € [ul(ar, ar),uf}(ar, ay)]. The leader knows her own utilitieg(a;, ).

— An optimal leader strategy is one that maximizes the waase@xpected utility for
the leader, where the worst-case values of

Theorem 5. WORT is NP-hard.

This follows from a reduction from 3-COVER, which is presashin Appendix D of
the full paper. It is an open question whether WORT can beieffity approximated.
In Appendix E of the full paper, we define a generalization (DRI, which we prove
is inapproximable unlesB® = N P. This generalization allows the follower’s payoffs
to be linked across entries.

5 Conclusion

Computing optimal Stackelberg strategies in general tlayqy Bayesian games is a
topic that has been gaining attention in recent years, dtiestoapplication in both se-
curity and law enforcement. Earlier results consider thamatation of optimal Stack-
elberg strategies, given that all the payoffs and the pristridution over types are
known. We extended these results in two ways.

First, we considerel@arningoptimal Stackelberg strategies. We first considered the
normal-form case where the follower payoffs are not knowth simowed how we can
efficiently learn enough about the payoffs to determine thiintal strategy. We then
extended this to Bayesian games. We also considered themtese the payoffs are
known, but the distribution over types is not. We showed havoan efficiently learn
enough about the distribution to determine the optimatestpa It must be admitted that
it is debatable whether this framework for learning is padtfor current real-world se-
curity applications, since the costs incurred during tlaerieng phase may be too high;
however, these costs may be more manageable in electranimerce applications.

Second, we considered computiagproximatelyoptimal Stackelberg strategies.
Our results here were mostly negative: we showed that thepbesible approximation
ratio that can be obtained in polynomial time for the stadd?ayesian problem is,
the number of types, unless NP = P. Optimizing for the wonsétis completely inap-
proximable in polynomial time, in the sense that we cannstirtjuish instances where
we can guarantee utility from instances where it is impossible to guarantee positive
utility, unless P=NP. We also studied a different represtom of uncertainty about the
follower’s payoffs that relies on ranges, and showed thétroping for the worst case
is NP-hard in the basic setting, and completely inapprokima a generalized setting
where the payoffs are linked. These negative results pessiaine justification for the
use of worst-case exponential-time algorithms in this esttsuch as those that use
mixed integer programming.



Two immediate directions for future research are: (1) itigasing the approx-
imability of the basic ranges problem, and (2) considerlgyianges problem in the
Bayesian case (rather than the worst case). There are miagryditections for future
research, for example, studying the number of samplesnesdjto learrapproximately
optimal strategies, investigating the case where thermare than two players, and/or
computing optimal Stackelberg strategies when the nororah has exponential size,
but the game is concisely represented.
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