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Abstract

Is it possible to introduce a small number of agents into an environment, in such a way that an
equilibrium results in which almost everyone (including the original agents) cooperates almost all the
time? This is a compelling question for those interested in the design of beneficial game-theoretic AI, and
it may also provide insights into how to get human societies to function better. We investigate this broad
question in the specific context of finitely repeated games, and obtain a mostly positive answer. Our
main novel technical tool is the use of limited altruism (LA) types, which behave altruistically towards
other LA agents but not towards selfish agents. The uncertainty about which type of agent one is facing
turns out to be essential in establishing cooperation. We provide characterizations in several families of
games of which LA types are effective for our purposes.

1 Introduction

One of the main messages of game theory is that self-interested behavior can result in Pareto-dominated out-
comes. There are various standard ways to attempt to address this problem, such as prohibiting undesired
behavior or taxing behavior according to the externalities it imposes. Still, these approaches are often diffi-
cult to implement effectively in practice. This is especially the case when we consider open and distributed
systems without a single entity that can exercise control. The problem is exacerbated when such systems are
populated by artificially intelligent agents that cannot necessarily be traced back to, or be stopped by, any
entity in the “real” world. Is there still something that we can do to avoid undesirable outcomes?

In many environments, we have the ability to design a small (but only a small) fraction of the agents.
These agents may act in an environment in which other entities are developing their own AI agents, or in an
environment with human actors. Can we use this very limited influence, i.e., our ability to design a small
fraction of the agents, to create a system-wide equilibrium that is significantly more desirable? In particular,
can we design natural preferences for these agents in such a way that good equilibrium behavior results?

As a concrete example, consider the finitely repeated prisoner’s dilemma (one round of which is as
in Figure 1). If both agents are selfish types that attempt to maximize only their own payoffs, the only
equilibrium is for both players to defect in all rounds. (By backward induction, in the last round defection
is a dominant strategy; therefore, actions in the previous rounds have no influence on what happens in the
last round. Thus, the argument carries on for previous rounds.)

Player 2
Cooperate Defect

Player 1
Cooperate 1, 1 −2, 3

Defect 3,−2 0, 0

Figure 1: Prisoner’s dilemma.

What if we introduce some agents of an altruis-
tic type—for example, agents that act to maximize
the average utility across agents? Such an agent
will, in the last round, always want to cooperate,
because (it can be checked that) this improves the
average utility by 1/2 regardless of what the other
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agent does. If all other agents are selfish (and there-
fore will defect in the last round), then it follows
that behavior in the last round is fully determined regardless of what happened before it. We can then take
the same analysis to the second-to-last round, etc., to conclude that the only equilibrium is for selfish types
to always defect and altruistic types to always cooperate. While this may be an improvement, it is only a
small one, given that by assumption we can add only a small fraction of agents of a different type.

Can we do better by adding a few agents of another type? Specifically, can we use such agents to get
the selfish agents to (sometimes) cooperate? It turns out that we can, by adding what we call agents of a
limited altruism (LA) type. Such agents will behave altruistically towards other agents of that same type (for
example, caring about the average of their utilities when facing such a type), but selfishly towards selfish
agents (caring only about their own utility in that case). A key aspect is that agents should not know what
type of agent they are playing against.

To make this concrete, suppose both agents have probability 0.8 to be of the LA type (that cares about
the average utility when facing another LA type), in the sense of a Bayesian game. (This, of course, is a
large fraction of the agents, not a small one, but it will help in conveying the intuition.) If there is only a
single round, then by a simple calculation, we can show that a selfish type will defect but an LA type will
be willing to cooperate: an LA type gets 0.8 · 1 + 0.2 · (−2) = 0.4 for cooperating, whereas deviating to
defecting would still only give 0.8 · 0.5 + 0.2 · 0 = 0.4. Let us extend this to a two-period version without
discounting. In this case, we can get a selfish type to cooperate in the first round, too. This is because
playing defect in the first round would reveal the player to be a selfish type, resulting in the opponent not
cooperating in the last round even if it is an LA type (because its altruism is directed only at other LA
types). Thus, a selfish type obtains 1.0 ·1 + 0.8 ·3 + 0.2 ·0 = 3.4 for cooperating in the first round (and then
defecting in the second), whereas deviating to defecting immediately would give only 1.0 ·3+1.0 ·0 = 3. It
follows that for a T -period version without discounting, we can obtain cooperation, i.e., both players always
playing Cooperate no matter which types they are of, for the first (T − 1) periods.

Can we still achieve cooperation when agents only have probability 2/3 to be of the LA type? If there
is only a single round, the LA type has incentive to deviate now: he only gets 2/3 · 1 + 1/3 · (−2) = 0 by
playing Cooperate, whereas deviating gives him 2/3 · 0.5 + 1/3 · 0 = 1/3. What if there are two periods?
Note that if the belief that the other player is of the LA type remains unchanged across both periods, then
each player will always play Defect, no matter which type he is of, by backward induction. But what if we
select strategies so that the belief changes?

Consider a strategy profile such that a player of the LA type never plays Defect first, and once a player
has played Defect, the other player believes that that player is selfish and punishes him by playing Defect.
In particular, suppose that in the first round, a selfish player plays each action with probability 1/2. Then, if
a player of the LA type observes that the other player played Cooperate in the first round, then he believes
that the other player has probability (2/3)/(2/3 + 1/2 · 1/3) = 0.8 to be of the LA type. By the analysis
from before, this LA player is willing to play Cooperate given this belief. Now let us consider the resulting
incentives for the selfish type in the first round. Under our construction, in the first round, the other player
has probability 1/6 to be of the selfish type and play Defect, probability 1/6 to be of the selfish type and play
Cooperate, and probability 2/3 to be of the LA type and play Cooperate. Therefore, playing Cooperate in
the first round (and Defect in the second) gives a selfish type 1/6·(−2+0)+1/6·(1+0)+2/3·(1+3) = 5/2,
while playing Defect gives him 1/6 · (0 + 0) + 1/6 · (3 + 0) + 2/3 · (3 + 0) = 5/2. Therefore, a selfish
player is indifferent between playing Cooperate and playing Defect. As a result, the selfish player is indeed
willing to mix between the actions in the first round.

Building further on this, if there are three periods, in the first period, a selfish player is willing to play
Cooperate with probability 1: he obtains 1 + 5/2 = 7/2 by playing Cooperate in the first round, compared
to only 3 by playing Defect. Finally, it can be verified that the players of the LA type are also best off
cooperating, and that everyone is best off defecting once someone has deviated.
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Intuitively, our approach is as follows. We make the selfish types indifferent between cooperating and
defecting in certain rounds, so that in equilibrium, a selfish type defects with some probability in those
rounds. As a result, selfish players reveal their type with some probability in each round by defecting;
hence, conditional on nobody having defected, the belief that the other player is of the LA type increases
over time. This way, we can attain cooperation even if the initial probability of LA types is low.

How far can we push this? Is it possible to attain cooperation with an arbitrarily small fraction of LA
types? In any game? We show that under certain conditions, the answer is “yes”—but for this we need LA
types whose preferences are somewhat different from the one described above, which we call LAavg. For
example, we show that LAavg does not work (in terms of attaining a “yes” answer to the above questions) for
all parameterizations of the prisoner’s dilemma, but LAmin—a type that cares about the minimum of the two
players’ payoffs when facing another such type—does. We show that LAmin (as well a variant of the LAavg
type) also works in independent-effect games, where the effect of one player’s chosen action on both players’
payoffs is independent of the other player’s action. Finally, we show that for general games (satisfying the
relevant conditions), no definition of an LA type that only cares about a function of the payoffs obtained
can work; but, if we allow the LA type also to care about whether the two players played the same action,
then there are several definitions of the LA type that work. In all cases, we also provide general results on
precisely what definitions of the LA type can work.

1.1 Two Interpretations of Our Results

There are (at least) two natural ways to interpret our results. One is from the perspective of actually designing
agent types—for example, these types may be artificially intelligent software agents that we design precisely
for the purpose of introducing them in small numbers into an existing game, in order to steer equilibrium
behavior towards a socially optimal outcome. Under this interpretation, we believe our results are very
satisfactory, as we exhibit quite natural agent types that do the job.

Another interpretation of our results is as potentially describing, at a very abstract level, a phenomenon
that we observe in our human world. Some of our LA types might be considered a reasonable reflection
of how some people approach strategic decisions; they want to be kind to others who would be similarly
kind to them. For example, most people would feel at least a little bad about their choice to defect when
it emerges that the other player cooperated, while they would not feel bad if the other player defected.
And we observe that even such limited kindness, even when practiced by relatively few people, can have a
strong positive effect on the final outcome under some circumstances. Indeed, experimentally, we do find
that people cooperate in finitely repeated games Andreoni and Miller (1993); Cooper et al. (1996); Axelrod
et al. (1987) (though other explanations of this could also be given) Under this interpretation, we believe
our results are somewhat satisfactory: they can be said to give a reasonable, if quite abstract and limited,
account of this phenomenon. However, from this perspective, we find that the types that we show to be
universally successful (for example, LAmin in prisoner’s dilemma games, and LAcoordinate, which we will
introduce later, in general), while at least somewhat natural, are not quite as natural to us as some other types
(such as LAavg) that in fact turn out not to be universally successful.

1.2 Related Works

In the economics and computation literature, a closely related topic is that of Stackelberg routing (Rough-
garden, 2004). In routing games, it is well known that selfish routing can result in equilibria that are socially
suboptimal, i.e., there is a nontrivial price of anarchy (Roughgarden and Tardos, 2002). The Stackelberg
routing model allows a central player to directly control the behavior of a fraction of the traffic before any-
one else moves. It has been shown that this can significantly reduce the price of anarchy (Roughgarden,
2004). While there are significant conceptual similarities between this work and ours, there are also quite a
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few significant differences, including the following. We do not assume any distinguished (e.g., Stackelberg
leadership) role for the player types that we introduce; we specify a simple utility function for these types
and let them play optimally accordingly, rather than specifying their behavior directly; we aim to get arbi-
trarily close to social optimality rather than to just obtain a constant price of anarchy; and finally, of course,
we are in a very different setting, namely finitely repeated games, rather than network routing games (which
is what allows us to aim to get arbitrarily close to optimality, by increasing the number of rounds). Also
closely related, Chen et al. (2014) analyze the price of anarchy of traffic routing under the assumption that
users are partially altruistic. They show that if the average level of altruism in the population is large, then
the price of anarchy is small.

Technically more closely related to our work is older work in the literature on finitely repeated prisoner’s
dilemma games Kreps et al. (1982). They point out that in two-person finitely repeated prisoner’s dilemma
games, if both players are uncertain about the other player’s utility function—specifically allowing that with
a small probability, a player is happy to play Cooperate if the other player does so as well—then there exists
a sequential equilibrium where both players play Cooperate until the last few stages of the game (though
they do not work out the equilibrium in full in their paper, just noting that “the details of this equilibrium
are quite complex”). There are several differences between our work and theirs. First, we focus primarily
on types that care about the payoffs of both players, rather than directly about whether both players play a
given action. We find such types more natural; in particular, if we consider the deployment of agents in rich
and open-ended settings where it may initially not even be clear which courses of action are most desirable,
it seems easier to specify utilities as a function of the payoffs. We succeed at this aim in prisoner’s dilemma
games as well as in independent-effect games, though in the fully general case, we also use types that care
whether the players chose the same action—and we show that in general such a move is in fact necessary,
in the sense that here we cannot (always) succeed with types that only care about payoffs. (Kreps et al.
(1982) do not study independent-effect games or general games.) Additionally, in their model, a player’s
utility solely depends on his own type and the actions played, while in our case an LA type has a uLA payoff
function only if the other player is also an LA type. This is the key trick that allows us to construct effective
types that care only about the payoffs, and such conditional altruism seems quite natural. Moreover, we
obtain concise characterizations of desired sequential equilibrium in which both players play Cooperate for
most rounds, which allows us to identify natural types that are universally successful and extends our results
to more general games than prisoner’s dilemma.

Our work is also related to work by Maskin and Fudenberg (1986), which already shows that cooperation
can be obtained in finitely repeated games using a small fraction of “behavioral” types. A key difference
between that work and ours is that that work requires a very direct specification of how the behavioral types
act (rather than having those types act strategically with respect to a natural utility function), whereas we
set out to find general and natural utility functions for our “limited altruism” types—in the sense of how
these types value outcomes when playing with another LA type—that work universally across games, when
the LA types pursue this utility strategically. In our opinion, again, when we consider deploying agents
to rich, complex environments, it is more useful to be able to just specify a natural utility function rather
than having to specify behavior directly. The downside of this approach is that we need significantly more
technical machinery to make this work. In addition, we prove desirable convergence rates (in the sense of
how many rounds of play are needed for desirable play) as a function of the fraction ε of LA types; our rate
is O(log 1/ε) whereas the result by Maskin and Fudenberg (1986) gives O(1/ε).

2 Preliminaries

A finitely repeated game G(T ) = 〈G1, · · · , GT 〉 is a T -fold repetition of a base game G, where Gt = G
for all 1 ≤ t ≤ T . Throughout, we restrict our attention to the case where G is a two-player, symmetric,
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normal-form game. A symmetric normal-form game is defined by G = 〈X,uS1 , uS2 〉, where X is the set
of pure strategies (for both players 1 and 2) and their utility functions are given as uSi : X ×X → R. As
usual, we use −i to denote the player other than player i. Here, uSi (xi, x−i) denotes player i’s utility when
player i plays pure strategy xi ∈ X and player −i plays pure strategy x−i ∈ X . In a symmetric game,
uS1 (x1, x2) = uS2 (x′1, x

′
2) if x1 = x′2 and x2 = x′1.

2.1 Limited Altruism Type

We now generalize to a Bayesian repeated game where each player has one of two possible types. Specifi-
cally, the set of types is Θ = {S,LA}, where S is the selfish type and LA is the limited-altruism type. Given
a repeated game as defined above, the payoff that i receives in a round of the game when i is of type S is
simply uSi (xi, x−i) (as before). However, payoffs are changed for the LA type, but only if the other player
is also of the LA type; if the other player is of the S type, then the payoffs for the former (LA) player are
again simply uSi (xi, x−i). On the other hand, if both players are of the LA type, then the utility functions
change to uLA1 , uLA2 : X ×X → R for player 1 and 2, respectively. More specifically, we are interested in
LA types whose utilities in this case are defined by a function of the selfish payoffs, where this function can
be applied to any game G.

Definition 2.1 (Universal LA type). An LA type LAφ is universal if there exists a function fφ such that for
every possible uS1 and uS2 , and all x1, x2 ∈ X , uLAi (x1, x2) = fφ(uSi (x1, x2), uS−i(x1, x2))

One example would be LAavg, for which favg(uSi (x1, x2), uS−i(x1, x2)) =
uSi (x1,x2)+uS−i(x1,x2)

2 . This
type cares about the average of the two players’ selfish payoffs if the other player is also of the LAavg type,
and just about her own payoff otherwise. Another example isLAmin, for which fmin(uSi (x1, x2), uS−i(x1, x2)) =
min{uSi (x1, x2), uS−i(x1, x2)}. This type cares about the minimum of the two players’ selfish payoffs if the
other player is also of the LAmin type, and just about her own payoff otherwise. Note that we will not
consider any cases where, for example, an LAavg type plays against an LAmin type. All our LA types are
always the same, but we are interested in which function φ gives us desirable properties. That is, if we get to
design the LA type and insert a small fraction of agents of that type into a population of selfish types, what
function φ should we use for the LA type?

We make three assumptions on fφ, all of which are satisfied by both LAavg and LAmin. The first can be
achieved by normalization.

Assumption 1. fφ(0, 0) = 0.

The second assumption says that fφ is scale invariant.

Assumption 2. fφ(α · v, α · w) = α · fφ(v, w) for α > 0.

This second assumption rules out, for example, an LA type that, when facing another LA type, very
much wants the other player to get utility at least 1, but after that becomes completely selfish. Such a type
would start acting differently if we (say) doubled all payoffs.

Assumption 3. fφ(v, v) ≥ v.

This third assumption rules out, for example, an LA type that has generally lower payoffs when playing
against another LA type than when playing against an S type (and therefore would focus relatively more on
the case where it faces an S type).

We assume that the type of each player, θi for player i, is private and only known to the player himself,
which is identically and independently drawn once, before any rounds are played, according to Pr[S] =
1 − εinit and Pr[LA] = εinit . θi remains the same throughout game play. At the end of each round, each
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player observes both players’ actions, and hence knows what the selfish payoffs are, but does not observe
her actual payoffs. Otherwise, a (say) LAavg type might observe that an outcome was realized with selfish
payoffs 1 and 2, and her own actual payoff was 1.5, and therefore the other player must be an LA type as
well. Instead, in our model, an LA player is generally unsure about her actual accrued payoffs (which we
can think of as being revealed after the last round of the game). An S player, on the other hand, always
knows her accrued payoffs since they do not depend on the other player’s type.

2.2 Histories, Strategies and Utilities

Denote the history for the first t rounds by ht so that h0 = (). Since player i has no direct information about
player −i’s type, his action for the t-th round depends on θi and ht−1 only. Thus, (θi, h

t−1) corresponds
to an information set. A strategy σi for player i is a function that takes as input an information set, i.e., the
player’s type and a history of play, and selects a strategy in ∆(X), where ∆(X) is the set of distributions
over X . At the t-th round, σi(xi | θi, ht−1) defines the probability of player i choosing action xi ∈ X given
his type θi and the history ht−1. A realized action ati ∈ X is drawn from the distribution σti(· | θi, ht−1). Let
at = (at1, a

t
2) be the resulting action profile in the t-th round. We then update the history to ht = (ht−1, at).

Player i’s utility is determined by the final game history hT , his own type θi, and his opponent’s type
θ−i:

ui(h
T , θi, θ−i) =

T∑
t=1

uCi (ati, a
t
−i)

where C = LA if θ1 = θ2 = LA; otherwise, C = S.

2.3 Beliefs and Equilibria

How should the players play? One candidate solution concept is Bayes-Nash equilibrium, in which each
player plays a best response (in terms of expected utility over all rounds combined) given his own type and
his prior belief about the other player’s type. However, this fails to ensure that players play optimally off
the equilibrium path of play, and thus may involve threats that are not credible. Moreover, even subgame
perfection is not sufficient: in general, there will not be cleanly separated subgames in the extensive form
(where the current node is common knowledge) because players have uncertainty about each other’s type.
Hence, we need a more sophisticated equilibrium refinement notion.

For such refinements, we need to specify player i’s belief assessment µ(θ−i | θi, ht−1) about player−i’s
type, given his own type θi and the history ht. In line with the literature Fudenberg and Tirole (1991), we
require that there is a single joint distribution over (θi, θ−i) given ht−1, satisfying

µi(θ−i | θi, ht−1) · µ(θi | ht−1) = µ(θi, θ−i | ht−1)

where µ is the marginal probability of θi, θ−i given ht−1. This allows us to obtain private beliefs (with the
subscript i) from the joint distribution (without the subscript). It also allows us to simplify the notation by
setting µi(θ−i | ·, ·) = µ(θ−i | ·, ·). We are now ready to introduce a refined equilibrium notion.

2.4 Perfect Bayesian Equilibrium (PBE)

Definition 2.2. Fudenberg and Tirole (1991) A pair (µ, σ) of a belief assessment µ and a strategy profile σ
is consistent if for all histories ht−1:
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• Bayes’ rule is used to update beliefs whenever possible: for each player i and for each a′i ∈ X , if
there exists a θ′i with µ(θ′i | ht−1) > 0 and σi(a′i | θ′i, ht−1) > 0, then

µ(θi | ht−1, at) =
µ(θi | ht−1) · σi(ati | θi, ht−1)∑
θ̂i∈Θ µ(θ̂i | ht−1) · σi(ati | θ̂i, ht−1)

• The posterior beliefs are independent:

µ(θi, θ−i | ht) = µ(θi | ht) · µ(θ−i | ht) for all θi, θ−i, and ht

• The beliefs about player i at the beginning of the t + 1-st round only depend on ht−1 and player i’s
action at the t-th round:

µ(θi | ht−1, at) = µ(θi | ht−1, ât) for all θi, and all ati = âti.

Definition 2.3. Fudenberg and Tirole (1991) A pair of a strategy profile σ and a belief assessment µ is
a perfect Bayesian equilibrium (PBE) if (1) (µ, σ) is consistent; (2) σ is a best response in the subgame
starting from ht−1 to the belief µ(· | θi, ht−1) under the assumption that the other player will follow σ from
this point.

Fudenberg and Tirole (1991) point out that if each player has only two possible types, both types have
nonzero prior probability, and types are independent, then the sets of perfect Bayesian equilibria and se-
quential equilibria Kreps and Wilson (1982) coincide. Therefore, in our setting, the sets of perfect Bayesian
equilibria equals to the set of sequential equilibria.

For convenience, let ui(θi, ht−1) be player i’s expected utility in the subgame starting from history ht−1

if he is of type θi and ui(ati, θi, h
t−1) is the expected utility if in addition he plays ati at the t-th round. Note

that both of these depend on (µ, σ), but this is suppressed in the notation.

2.5 Desired LA Type

Which LA types “work”? Specifically, we are interested in LA types such that even with only a small
fraction of such types in the population, we will obtain cooperative play (by all players, not only the LA
types) in the vast majority of rounds, provided that there are enough rounds. We now make this formal.

We restrict attention to games with a dominant strategy (for selfish types in a single round of the game),
i.e., we assume that there exists a dominant strategy xD in game G such that for all x′, y ∈ X , uSi (xD, y) ≥
uSi (x′, y). We assume uSi (xD, xD) = 0 (without loss of generality, due to normalization). Define the
cooperative strategy to be xC = arg maxx∈X u

S
i (x, x); we assume that (xC , xC) uniquely maximizes the

social welfare among all entries of the game. Let us define a measurement of the quality of an equilibrium.

Definition 2.4 (k-desired PBE). Given G, T , uLA (i.e., our choice of φ), and εinit , we say that a pair (µ, σ)
of a belief assessment and a strategy profile of G(T ) is a k-desired PBE if it is a PBE and the expected
number of rounds in which both players choose xC is at least k.

Based on this, we can define a notion of which LA types do the job that we would like them to do.
Specifically, we would like to see that an arbitrarily small (but positive) fraction of LA types enable an
equilibrium in which we have cooperation in almost all rounds, provided that the number of rounds is
sufficiently large.

Definition 2.5 (Desired Universal LA type). An universal LA type defined by uLA (i.e., a choice of φ) is de-
sired, if for any game G and for any δ > 0, there exists 0 < εinit < δ and a sequence (k(1), · · · , k(T ), · · · )
such that limT→∞ k(T )/T = 1 and there exists a k(T )-desired PBE for all T .
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3 Warm-up: Prisoner’s Dilemma

Most of our ideas are well illustrated by the prisoner’s dilemma (see Table 1), on which we focus in this
section. We will generalize beyond the prisoner’s dilemma in Section 4 and 5.

In the prisoner’s dilemma, the dominant strategy xD is Defect while the cooperative strategy xC is
Cooperate. The general form of uLA is as follows (see Table 1b), where e, y and z depend on the specific LA
type. (E.g., yLAavg = u

LAavg
i (Cooperate,Defect) = (b − c)/2, and yLAmin = uLAmin

i (Cooperate,Defect) =
−c.)

Cooperate Defect
Cooperate a, a −c, b

Defect b, −c 0,0

(a) uS : b > a > 0 and c > 0

Cooperate Defect
Cooperate e, e y, z

Defect z, y 0,0

(b) uLA: e > z and e ≥ a

Table 1: Utility function in the prisoner’s dilemma

3.1 Framework

Suppose µ(θ1 = S | ht−1) = µ(θ2 = S | ht−1) = 1− εinit (where εinit is small) for all 1 ≤ t ≤ T . Then,
in the last round, the dominant strategy for both players is to play Defect, no matter which types they have.
By backward induction, both players would play Defect in every round.

Therefore, to construct a k-desired Bayesian equilibrium of G(T ) with k close to T , the belief about
the probability that the other player is of type LA should be large for some histories. This can be achieved
as follows. If a player is of type S, he should play a mixed action that reveals him to be of type S with
some probability. For example, consider a strategy profile in which both players choose to play Cooperate
for the first (t − 1) rounds, no matter which type they have. At the t-th round, a player of type LA keeps
playing Cooperate while a player of type S chooses to play either action with probability 1/2. Then, at the
beginning of the (t+ 1)-th round, for a player who witnessed the other player playing Cooperate in the t-th
round, his belief that the other player is of type LA becomes 2εinit/(εinit + 1) > εinit. Of course, we can
only achieve this in equilibrium if it is in the interest of a player of type S to play a mixed action. That is,
the expected utility for playing either action must be the same.

We restrict our attention to symmetric strategy profiles and belief assessments that satisfy the following
assumption, which says that LA types will never defect first, and if someone has defected then everyone
believes that that player has type S and plays Defect afterwards.

Assumption 4. We say that the (symmetric) profile (µ, σ) satisfies Assumption 4 if for every possible history
ht−1, Bayes’ rule is used to update beliefs whenever possible and

• if there does not exist at
′
j 6= xC in ht−1 for any j ∈ {1, 2}, then σi(xC | LA, ht−1) = 1 for both

i ∈ {1, 2};

• if there exists at
′
j 6= xC in ht−1 for some j ∈ {1, 2}: if atmin

i 6= xC , then µ(θi = S | ht−1) = 1, where
tmin = min{t′ | at′j 6= xC for some j ∈ {1, 2}}; in other words, a player that defected first is believed
to be selfish with probability 1;

• if there exists at
′
j 6= xC in ht−1 for some j ∈ {1, 2}, σi(xD | ·, ht−1) = 1 for both i ∈ {1, 2}.
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3.2 Construction

Assumption 4 requires that once a player has played Defect, then both players will keep playing Defect until
the end. This leaves only the actions after histories in which no players have played Defect unspecified. Let
htC denote the unique such history with t rounds. We can now construct a perfect Bayesian equilibrium by a
backward induction on htC . Along the way, this will require assumptions on the specific LA type (i.e., how
the values of e, y and z in Table 1b are derived from a, b, and c in Table 1a); these assumptions then in the
end combine to give us a sufficient condition for an LA type to be desired.

Since the profile is symmetric, let εt = µ(θ1 = LA | ·, ht−1
C ) = µ(θ2 = LA | ·, ht−1

C ).

3.2.1 The Last Round: hT−1
C

Since, with a single round remaining, Defect is a dominant strategy for a player of type S, σi(Defect | S, hT−1
C ) =

1. As for a player of type LA, Assumption 4 requires that σi(Cooperate | LA, hT−1
C ) = 1. In order for an

LA player to in fact be willing to cooperate in this case require Cooperate to be a best response when S
types play Defect and LA types play Cooperate:

εT · uLAi (Cooperate,Cooperate) + (1− εT ) · uSi (Cooperate,Defect)

≥ εT · uLAi (Defect,Cooperate) + (1− εT ) · uSi (Defect,Defect).

which is

εT · e+ (1− εT ) · (−c) ≥ εT · z + (1− εT ) · 0⇔ εT ≥
c

e+ c− z
(1)

Given that LA types play Cooperate in the last round, ui(S, hT−1
C ) = εT · b.

3.2.2 Constructing the Strategy for S by Induction

By Assumption 4, εt is non-decreasing as t increases. Consider t such that εt ≤ εt+1 < 1, i.e., a player of
type S may play a mixed action in the t-th round. Let ptS,C = σi(Cooperate | S, ht−1

C ). By Assumption 4
and Bayes’ rule, we have

εt+1 =
εt

ptS,C · (1− εt) + εt
⇔ ptS,C =

εt · (1− εt+1)

εt+1 · (1− εt)

Denote by ptC the probability that a player plays Cooperate in the t-th round (conditioning on ht−1
C ):

ptC = Pr[ati = Cooperate | ht−1
C ] = (1− εt) · ptS,C + εt =

εt
εt+1

Note that pTC = εT . The following definition specifies which sequences of cooperation probabilities are
feasible based on the strategic constraints for players of type S.

Definition 3.1. We say a sequence of pC(T ) = (p1
C , · · · , pTC) is feasible if the following conditions hold for

t < T :

• If ptC < 1, then a player of type S is willing to play a mixed action in the t-th round:

ui(S, h
t−1
C ) = ui(Cooperate, S, ht−1

C ) = ui(Defect, S, ht−1
C );

• If ptC = 1, then a player of type S weakly prefers to play Cooperate in the t-th round:

ui(S, h
t−1
C ) = ui(Cooperate, S, ht−1

C ) ≥ ui(Defect, S, ht−1
C ).

9



By Assumption 4 that both players keep playing Defect once a player plays Defect (and given that we
have normalized the payoff of both players defecting to 0), we have that for all t:

ui(Defect, S, ht−1
C )

= ptC · uSi (Defect,Cooperate) + (1− ptC) · uSi (Defect,Defect) + (T − t) · uSi (Defect,Defect)

= ptC · uSi (Defect,Cooperate) = ptC · b

Lemma 3.1. When ptC = 1 and pt+1
C < 1, pC(T ) is ui(Cooperate, S, ht−1

C ) ≥ ui(Defect, S, ht−1
C ) if and

only if pt+1
C ≥ 1− a

b .

Proof. Note that ptC = 1 and pt+1
C < 1 indicate that ui(S, ht−1

C ) = ui(Cooperate, S, ht−1
C ) ≥ ui(Defect, S, ht−1

C )
and ui(S, htC) = ui(Defect, S, htC). We have

ui(Cooperate, S, ht−1
C ) = uSi (Cooperate,Cooperate) + ui(S, h

t
C)

= uSi (Cooperate,Cooperate) + ui(Defect, S, htC)

= a+ pt+1
C · b

Thus, in order to ensure ui(Cooperate, S, ht−1
C ) ≥ ui(Defect, S, ht−1

C ), we must have a+pt+1
C ·b ≥ ptC ·b = b,

which is equivalent to, pt+1
C ≥ 1− a

b .

Corollary 3.1. When pt+kC < 1, and for all t ≤ t′ < t+k, pt
′
C = 1, ui(Cooperate, S, ht−1

C ) ≥ ui(Defect, S, ht−1
C )

if pt+kC ≥ 1− a
b .

Proof. When a player of type S plays Cooperate in round t, his utility is

ui(Cooperate, S, ht−1
C ) = k · uSi (Cooperate,Cooperate) + ui(S, h

t+k−1
C )

= k · uSi (Cooperate,Cooperate) + ui(Defect, S, ht+k−1
C )

= k · a+ pt+kC · b ≥ a+ pt+kC · b ≥ b
= ui(Defect, S, ht−1

C )

Lemma 3.2. When ptC < 1, pt+kC < 1, and for all t < t′ < t + k, pt
′
C = 1, ui(Cooperate, S, ht−1

C ) =
ui(Defect, S, ht−1

C ) if and only if

ptC =
c

k · a− (1− pt+kC ) · b+ c
. (2)

Proof. ptC < 1 and pt+kC < 1 imply that a player of type S weakly prefers to defect at (t + k), and is
indifferent between defecting and cooperating at t (a player of type S must cooperate with positive prob-
ability in round t, because otherwise we must have pt+kC = 1). Therefore, we must have ui(S, htC) =

ui(Defect, S, ht−1
C ) = ui(Cooperate, S, ht−1

C ) and ui(S, ht+k−1
C ) = ui(Defect, S, ht+k−1

C ). By Assump-
tion 4 that players of type LA do not defect first, we have:

ui(Cooperate, S, ht−1
C ) = ptC ·

(
k · uSi (Cooperate,Cooperate) + ui(S, h

t+k−1
C )

)
+ (1− ptC) ·

(
uSi (Cooperate,Defect) + (T − t) · uSi (Defect,Defect)

)
= ptC ·

(
k · uSi (Cooperate,Cooperate) + ui(Defect, S, ht+k−1

C )
)

+ (1− ptC) ·
(
uSi (Cooperate,Defect) + (T − t) · uSi (Defect,Defect)

)
= ptC · (k · a+ pt+kC · b) + (1− ptC) · (−c)
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By the fact that ui(Cooperate, S, ht−1
C ) = ui(Defect, S, ht−1

C ), we have

ptC · (k · a+ pt+kC · b) + (1− ptC) · (−c) = ptC · b⇔ ptC =
c

k · a− (1− pt+kC ) · b+ c

Corollary 3.2. pC(T ) is feasible only if for all 1 ≤ t ≤ T , ptC ≥ 1− a
b .

Proof. For the sake of contradiction, assume that there exists a t such that ptC < 1− a
b . By Lemma 3.1, pt−1

C

must be less than 1. Moreover, by Lemma 3.2 (with k = 1), we have pt−1
C = c

a−(1−ptC)·b+c > 1 producing
the sought contradiction.

Combining Lemma 3.1, 3.2 and Corollary 3.1, we can conclude:

Theorem 3.1. Under Assumption 4, a sequence pC(T ) is feasible if and only if

• When ptC = 1 and pt+1
C < 1, we have pt+1

C ≥ 1− a
b ;

• When ptC < 1, pt+kC < 1, and for all t < t′ < t+ k, pt
′
C = 1, we have ptC = c

k·a−(1−pt+kC )·b+c
.

Now, we are ready to construct a sequence pC(T ) that is feasible. We consider two different kinds of
sequence pC(T ), one in Lemma 3.3 and one in Lemma 3.4. In both cases, we also show that the belief that
a player is of the LA type can be lower than δ even only O(log 1

δ ) rounds before the end. That is, we do not
need many rounds in order to accommodate a low initial fraction of LA types.

The first of the two lemmas requires that the effect of an action on payoffs is independent of which
action the other player chooses.

Lemma 3.3. Suppose c = b−a. Then, let pC(T ) = (1, · · · , 1, pt∗C , · · · , pTC) be such that for all t∗ ≤ t < T ,
ptC = c

a−(1−pt+1
C )·b+c and pTC ≥ 1− a

b . Then, pC(T ) is feasible. Moreover, for any δ > 0, εT−O(log 1
δ

) ≤ δ.

Proof. By Theorem 3.1, since ptC = c
a−(1−pt+1

C )·b+c for all t∗ ≤ t < T , all that remains to show is that

pt
∗
C ≥ 1 − a

b . By induction, assume 1 − a
b ≤ ptC ≤ 1 for t ≥ t (where the base case t = T is satisfied by

assumption). For t = t− 1, we have ptC = c
a−(1−pt+1

C )·b+c ≥
c

a+c = 1− a
b where the last inequality is due

to the assumption that c = b− a.
As for the convergence rate, rearranging (2) when k = 1, we have b ·ptC ·p

t+1
C = (b−a− c) ·ptc+ c = c.

Therefore, ptC · p
t+1
C = εt

εt+2
≤ c

b . Thus, for any δ > 0, we have εT−2·logb/c
1
δ

= εT−2·logc/b δ ≤ δ.

Definition 3.2 (γ∗(G)). Given a game G such that a = uSi (xC , xC), b = uSi (xD, xC), −c = uSi (xC , xD)
and 0 = uSi (xD, xD). Let γ∗(G) be the positive root of the quadratic equation f(γ) = b · γ2 + (a− b+ c) ·
γ − c = 0.

Proposition 3.1. Given a game G, γ∗(G) ≥ max(1− b
a ,

c
a+c).

The proof is in Appendix. When G is clear in the context, we write γ∗ for convenience.

Lemma 3.4. Let pC(T ) = (1, · · · , 1, pt∗C , · · · , pTC) be such that for all t∗ ≤ t < T , ptC = c
a−(1−pt+1

C )·b+c
and pTC = γ∗. Then, pC(T ) is feasible. Moreover, for any δ > 0, εT−O(log 1

δ
) ≤ δ.

Proof. Note that if pTC = γ∗, then for all t∗ ≤ t < T , ptC = γ∗, due to the following proof by induction. We
have f(γ) = b · γ2 + (a − b + c) · γ − c = 0, which is equivalent to c

a−(1−γ)·b+c = γ. Hence, given that

pt+1
C = γ∗, we have ptC = c

a−(1−γ∗)·b+c = γ∗. Hence, we know that pt
∗
C = γ∗. All that remains to show is

that pt
∗
C = γ∗ ≥ 1− a

b . By Propostion 3.1, we have 1− a
b < γ∗.

As for the convergence rate, note that ptC = εt
εt+1

= γ∗. Therefore, for any δ > 0, we have εT−log1/γ∗
1
δ

=

εT−logγ∗ δ ≤ δ.
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3.2.3 Verifying Incentives for LA by Induction

We have discussed how to construct the sequence of cooperation probabilities in such a way as to ensure
that the selfish types do not deviate. However, we also need to ensure that the limited-altruism types do
not deviate. This is what the following lemma achieves. It states that, if the sequence is feasible (from the
perspective of getting the selfish types not to deviate) and is such that an LA type is willing to cooperate
in the last round (assuming no defections have taken place), then an LA type is willing to cooperate in all
rounds (assuming no defections have taken place).

Lemma 3.5. If pC(T ) is feasible and pTC ≥
c

e+c−z , then for all 1 ≤ t ≤ T , ui(LA, ht−1
C ) = ui(Cooperate, LA, ht−1

C ) ≥
ui(Defect, LA, ht−1

C ).

Proof. We prove by induction. Suppose ui(LA, ht
′−1
C ) = ui(Cooperate, LA, ht

′−1
C ) ≥ ui(Defect, LA, ht

′−1
C )

for t′ > t; we will show it is also true for t′ = t. The base case t = T is true since by the assumption in the
lemma, pTC = εT ≥ c

e+c−z , which satisfies (1). As for the t-th round, first note that if a player of type LA
plays Defect, his utility is

ui(Defect, LA, ht−1
C ) = εt · uLAi (Defect,Cooperate) + (ptC − εt) · uSi (Defect,Cooperate)

+ (1− ptC) · uSi (Defect,Defect) + (T − t) · uSi (Defect,Defect)

= εt · z + (ptC − εt) · b

(Note that this makes use of the fact that players will always defect after a defection has taken place; we will
return to discussing whether this is indeed optimal for the players in Section 3.2.4.)

All that remains to show is that ui(Cooperate, LA, ht−1
C ) is always at least as large as this expression.

We do this by considering two cases.
Case (1): If ptC = 1, then we have εt = εt+1 and:

ui(Cooperate, LA, ht−1
C ) = εt · uLAi (Cooperate,Cooperate) + (1− εt) · uSi (Cooperate,Cooperate) + ui(LA, h

t
C)

≥ a+ ui(LA, h
t
C) ≥ a+ ui(Defect, LA, htC)

= a+ εt+1 · z + (pt+1
C − εt+1) · b = a+ εt · z + (pt+1

C − εt) · b
≥ εt · z + (1− εt) · b = ui(Defect, LA, ht−1

C )

where the last inequality is due to the fact that for all t′, pt
′
C ≥ 1− a

b by Corollary 3.2.
Case (2): If ptC < 1, let k > 0 be such that pt+kC < 1 and pt

′
C = 1 for all t < t′ < t+ k. (Such a k must

exist because pTC < 1 and t < T .) We have ptC · εt+k = εt and:

ui(Cooperate, LA, ht−1
C ) = εt · k · uLAi (Cooperate,Cooperate) + (ptC − εt) · k · uSi (Cooperate,Cooperate)

+ ptC · ui(LA, ht+k−1
C ) + (1− ptC) · uSi (Cooperate,Defect)

+ (1− ptC) · (T − t) · uSi (Defect,Defect)

≥ ptC · (k · a+ ui(LA, h
t+k−1
C )) + (1− ptC) · (−c)

≥ ptC · (k · a+ ui(Defect, LA, ht+k−1
C )) + (1− ptC) · (−c)

= ptC · (k · a+ εt+k · z + (pt+kC − εt+k) · b) + (1− ptC) · (−c)
= ptC · k · a+ εt · z + (ptC · pt+kC − εt) · b+ (1− ptC) · (−c)

By Theorem 3.1, we have

ptC =
c

k · a− (1− pt+kC ) · b+ c
⇔ ptC · k · a+ (ptC · pt+kC − ptC) · b+ (1− ptC) · (−c) = 0
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Therefore,

ui(Cooperate, LA, ht−1
C ) ≥ ptC · k · a+ εt · z + (ptC · pt+kC − εt) · b+ (1− ptC) · (−c)

=
(
ptC · k · a+ (ptC · pt+kC − ptC) · b+ (1− ptC) · (−c)

)
+
(
εt · z + (ptC − εt) · b

)
= ui(Defect, LA, ht−1

C )

3.2.4 Verifying other Histories

Finally, we verify that, if a deviation has taken place, players indeed wish to defect forever. Given h 6∈
{h0

C , · · · , h
t−1
C }, by Assumption 4, µ(θj = S | h) = 1 for some j ∈ {1, 2}. That means that a player

that did not deviate will believe (with probability 1) that the other player is of type S. Defection is clearly
a best response for this player that did not deviate, no matter which type she is of, since she believes that
she is facing utility function uS with probability 1 (and that the other player will defect forever regardless).
Similarly, if the deviating player is of type S, it is always a best response for him to keep playing Defect.
Therefore, all that remains to check is that if a player of type LA deviated, it is also a best response for that
player to keep playing Defect for the remaining of the game. This is less straightforward, because such a
player may still believe there is some probability ε that the other player is of type LA as well; and, in fact,
it is not unconditionally true. The next lemma precisely identifies when it is true.

Lemma 3.6. Given a feasible sequence pC(T ), the following two statements are equivalent:

• For any possible history h 6∈ {h0
C , · · · , h

t−1
C } in which i has deviated, ui(Defect, LA, h) ≥ ui(Cooperate, LA, h).

• (xD, xD) forms a Nash equilibrium in uLA (when it is common knowledge that both players are of
type LA) or pTC ≤

c
c+y .

Proof. Given a history h in which i has deviated, let ε = µ(θ−i = LA | h). We need to make sure that
for any such ε the following holds (noting that the other player’s play in future rounds will be unaffected
anyway, so we can just focus on play in a single round):

ε · uLAi (Defect,Defect) + (1− ε) · uSi (Defect,Defect)

≥ ε · uLAi (Cooperate,Defect) + (1− ε) · uSi (Cooperate,Defect)

That is, we need to make sure that ε · y + (1 − ε) · (−c) ≤ 0. If (xD, xD) forms a Nash equilibrium
in uLA, (i.e., y ≤ 0), the inequality holds for any ε. On the other hand, if y > 0, since εT ≥ εt for all
t ≤ T , we have εT · y + (1 − εT ) · (−c) ≥ εt · y + (1 − εt) · (−c). Note that εT is the belief that would
result from the LA player deviating in the round right before the last one, so this is one of the values of ε
for which we need to ensure the inequality which represents that it is better to continue defecting. By the
previous inequality, this also suffices to guarantee it for other values of ε (assuming y > 0). But in fact,
εT · y + (1− εT ) · (−c) ≤ 0⇔ pTC ≤

c
c+y .

3.2.5 Characterization

We now have the tools to characterize the conditions under which our construction will indeed induce a PBE.
Recall that our construction focuses on establishing an equilibrium in which LA types never deviate first
and both players will defect forever after deviation (by Assumption 4); therefore, a candidate equilibrium
is described by the sequence pC(T ). Specifically, combining Theorem 3.1 and Lemma 3.5, 3.6, we can
conclude that

Theorem 3.2. Under Assumption 4, a sequence pC(T ) induces a PBE if and only if
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• If ptC = 1 and pt+1
C < 1, then pt+1

C ≥ 1− a
b .

• If ptC < 1, pt+kC < 1, and for all t < t′ < t+ k, pt
′
C = 1, then ptC = c

k·e−(1−pt+kC )·b+c
.

• pTC ≥
c

e+c−z .

• (xD, xD) forms a Nash equilibrium or pTC ≤
c
c+y .

3.3 Desired LA Types for Prisoner’s Dilemma

Theorem 3.2 allows us to assess which LA types are desired for the class of prisoner’s dilemma games.
LAavg works for some values of a, b, and c in the prisoner’s dilemma, but not all, as the next example
illustrates.

Example 1. Consider the prisoner’s dilemma game in Table 2, where b = 3a+ δ and c = a+ 3δ, for small
δ > 0.

Cooperate Defect
Cooperate a, a −a− 3δ, 3a+ δ

Defect 3a+ δ, −a− 3δ 0,0

Table 2: An example of a prisoner’s dilemma where LAavg fails to induce cooperation.

For LAavg, by Theorem 3.2, we require pTC ≥
c

e+c−z = a+3δ
a+4δ . Therefore, as δ → 0, we need pTC → 1.

Let k > 0 be the minimum integer such that εT−k < 1. By Lemma 3.2, we have pT−kC = c
k·a−(1−pTC)·b+c ,

which, as δ → 0, approaches a value no greater than c
a+c , which is strictly less than 1 − a

b (because by
construction we have c < b − a). By Corollary 3.2, it follows that for sufficiently small δ, there exists no
feasible pC(T ).

In contrast, it turns out that LAmin is in fact desired for all prisoner’s dilemma games. To prove this, we
combine Theorem 3.2 with the construction of feasible sequences from Lemma 3.4.

Theorem 3.3. LAmin is desired for prisoner’s dilemma games.

Proof. Consider pC(T ) = (1, · · · , 1, pt∗C , · · · , pTC) in which for all t∗ ≤ t < T , ptC = c
a−(1−pt+1

C )·b+c and

pTC = γ∗. By Theorem 3.2 and Lemma 3.4, all that remains to show is that (1) pTC ≥
c

e+c−z and (2) y ≤ 0

or pTC ≤
c
c+y . (2) follows from the fact that for LAmin, we have e = a and y = z = −c < 0. As for (1),

using Proposition 3.1 and (again) the fact that z = −c, we have c
e+c−z = c

a+2c ≤
c

a+c ≤ γ
∗ = pTC .

4 Independent-Effect Games

We now consider another class of games that is incomparable to the class of prisoner’s dilemma games,
namely the class of independent-effect games. The idea here is that the effect of one player’s actions on the
utilities of all players is independent of what any other player plays.

Definition 4.1 (Independent-Effect Games). A symmetric two-player gameG is an independent-effect game
if there exist functions g, h : X → R such that uSi (xi, x−i) = g(xi) + h(x−i).
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In such a game, a player’s utility is the sum of the utility generated by his own action and the utility
generated by his opponent’s action. This immediately implies that there exists a dominant strategy for each
player xD = maxx g(x) (when the game is played only once).

The example prisoner’s dilemma game in the introduction is an independent-effect game (but not all
prisoner’s dilemma games are). The tragedy of the commons Hardin (2009) models a shared-resource system
where, if each player plays solely according to his own self-interest, the result is contrary to the common
good of all users, because they overuse the resource with respect to the socially optimal use of it. One
possible formulation of the utility function in the tragedy of the commons is ui(xi, x−i) = U(xi)−(xi+x−i)
where xi is the quantity of resource that player i uses. In this game, the dominant strategy for each player
is xD = arg maxx U(x)− x. However, if they were to play cooperatively to maximize social welfare, they
would play a strategy in arg maxx U(x)− 2x.

In general independent-effect games, the cooperative strategy that maximizes social welfare is xC ∈
arg maxx g(x) + h(x). Since xD is dominant, the optimal action to deviate to for a player of type S is
always xD, no matter what the current belief is.1 Therefore, from the perspective of the selfish player, the
only actions in the game that are relevant are {xC , xD}, resulting in a prisoner’s dilemma game. Thus, The-
orem 3.1 holds in independent-effect games if we let a = uSi (xC , xC), b = uSi (xD, xC), −c = uSi (xC , xD)
and assume without loss of generality that uSi (xD, xD) = 0. We next show that the LA types have no
incentive to deviate from cooperation—i.e., they are best off playing xC as long as the other player has done
so.

Consider 0 ≤ ε′ ≤ ε′′ ≤ 1, where ε′ represents the belief that the LA player has that the other player is
also an LA type (and will therefore cooperate), and ε′′− ε′ is the belief that the LA player has that the other
player is an S type but will nevertheless cooperate in this round—so that ε′′ is the total probability that the
other player will cooperate in this round. Then, let

xLA(ε′, ε′′) ∈ arg max
x

ε′ · uLAi (x, xC) + (ε′′ − ε′)uSi (x, xC) + (1− ε′′)uSi (x, xD)

That is, xLA(ε′, ε′′) is an action that maximizes an LA type’s one-round utility.
In the last round, a player of type S will definitely play xD. As for a player of type LA, we require he

weakly prefers to play xC . More precisely

pTC · uLAi (xC , xC) + (1− pTC)uSi (xC , xD)

= pTC · uLAi (xLA(pTC , p
T
C), xC) + (1− pTC)uSi (xLA(pTC , p

T
C), xD) (3)

Lemma 4.1. If pC(T ) is feasible and pTC satisfies (3), then for all 1 ≤ t ≤ T and x′ 6= xC , ui(LA, ht−1
C ) =

ui(xC , LA, h
t−1
C ) ≥ ui(x′, LA, ht−1

C ).

The proof is in Appendix. In independent-effect games, we have c = b − a and by Lemma 3.3, we
can generate a feasible sequence pC(T ) satisfying the requirement that pTC ≥ 1 − a

b . By Lemma 4.1,
given a feasible pC(T ), LA types are willing to play xC as long as the other player has not deviated if pTC
satisfies (3). We also have that, if (xC , xC) forms a strict Nash equilibrium of uLA (i.e., in the case where
it is common knowledge that both players have type LA), and moreover the game is finite, then there exists
a sufficiently large pTC < 1 such that (3) is satisfied. Moreover, by Lemma 3.6, if (xD, xD) forms a Nash
equilibrium of uLA, then both players will have incentive to keep playing xD once any player has deviated.
Combining these observations, we obtain:

Theorem 4.1. An LA type is desired for finite independent-effect games if we have that (xC , xC) and
(xD, xD) form Nash equilibria of uLA (and the former is a strict equilibrium).

1In repeated games, this is assuming that deviation results in the same subsequent play, no matter what a player deviated to.
This will indeed be the case in our setup due to Assumption 4, which we will still maintain here.
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We identify two universal LA types that are desired for independent-effect games. The first one is
LAmin. Since (xC , xC) uniquely maximizes the social welfare, we have

∀xi 6= xC , 2 ·min(uSi (xi, xC), uS−i(xi, xC)) ≤ uSi (xi, xC) + uS−i(xi, xC) < 2 · uSi (xC , xC)

Moreover, since xD is a dominant strategy, we have

∀xi 6= xD,min(uSi (xi, xD), uS−i(xi, xD)) ≤ uSi (xi, xD) ≤ uSi (xD, xD)

Therefore, for LAmin, strategy profile (xC , xC) and (xD, xD) form Nash equilibria of uLA, and the former
is strict.

The second type that we identify is LAavg, positive. LAavg, positive is a type that cares about the average of
two players’ utilities, but only if his own utility is larger than 0: favg, positive(a, b) = a for all a ≤ 0, b ∈ R and
favg, positive(a, b) = (a+ b)/2 for all a > 0, b ∈ R. Similar to LAmin, it can be verified that for LAavg, positive,
strategy profile (xC , xC) and (xD, xD) form Nash equilibria in uLA.

Corollary 4.1. LAmin and LAavg, positive are desired for finite independent-effect games.

5 General Games

We now proceed to general symmetric two-player games (that still satisfy the assumptions from Section 2.5,
i.e., the game has a dominant strategy which produces utility 0 when both players use it, and a unique
social-welfare maximizing outcome where both players play the same). Unfortunately, with the restriction
to universalLA types—i.e.,LA types that only consider the payoffs to both players to determine the utility—
we run into an impossibility.

Theorem 5.1. Under Assumption 4, no universal LA type is desired.

Proof. Consider the modified prisoner’s dilemma game in Table 3, with sufficiently small δ > 0.

C M D
C a, a a− δ/m, a− δ/m −c, b
M a− δ/m, a− δ/m −∞,−∞ −c+ δ, −c+ δ
D b, −c −c+ δ, −c+ δ 0, 0

Table 3: An example of a game where any universal LA type fails to induce cooperation.

Assume there exists a desired LAφ. By Assumption 2 and 3, we can assume uLAφi (v, v) = α · v for all
v > 0, for some α ≥ 1. In the last round, in order to ensure a player of type LAφ plays C rather than M ,
we need εT · u

LAφ
i (C,C) + (1− εT ) · uSi (C,D) ≥ εT · u

LAφ
i (M,C) + (1− εT ) · uSi (M,D) That is

εT · α · a+ (1− εT ) · (−c) ≥ εT · α · (a− δ/m) + (1− εT ) · (−c+ δ)⇔ εT
1− εT

≥ m

α

As m→∞, we have pTC = εT → 1. Consider the case when c < b− a. Let k > 0 be the minimum integer
such that εT−k < 1. By Lemma 3.2, we have pT−kC = c

k·a−(1−pTC)·b+c which, as δ → 0, approaches a value
no greater than c

a+c , which is strictly less than 1− a
b by the fact that c < b− a. By Corollary 3.2, it follows

that for sufficiently small δ, there exists no feasible pC(T ).
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Is there a way around this negative result? In the proof of Theorem 5.1, we create a game (Table 3)
such that for any universal LA type, to incentivize that type to play xC = C in the last round, εT must be
arbitrarily close to 1. To circumvent this problem, we consider a slight expansion of the set of universal LA
types: we allow the function fφ to also take as input whether both players play the same action. Call such
types universal+. As it turns out, there is in fact a universal+ type that is desired for finite general games.
The intuition is that we can design such a type in a way that we do not get εT → 1 when m→∞.

Definition 5.1 (Universal+ LA type). For x1, x2 ∈ X , let eq(x1, x2) = 1 if x1 = x2 and eq(x1, x2) = 0
otherwise. An LA type LAφ is universal+ if there exists a function fφ such that for every possible uS1 and
uS2 , and all x1, x2 ∈ X , uLAi (x1, x2) = fφ(uSi (x1, x2), uS−i(x1, x2), eq(x1, x2)).

We need to slightly update Assumptions 1, 2, and 3 because these refer to a function fφ with two
arguments, whereas now we have one with three arguments. We require Assumptions 1 and 2 hold for any
fixed value of the third argument, and Assumption 3 to hold when the third argument takes value 1.

For the selfish type, the situation is similar as in the case of independent-effect games: only xC and
xD are relevant to the selfish type. Thus, Theorem 3.1 holds in general games if we let a = uSi (xC , xC),
b = uSi (xD, xC), −c = uSi (xC , xD) and assume without loss of generality that uSi (xD, xD) = 0.

The analysis for the LA type, however, needs to be generalized. In the last round of the game, we require
LA types to play xC , so we need:

∀x′ 6= xC , p
T
C · uLAi (xC , xC) + (1− pTC) · uSi (xC , xD) ≥ pTC · uLAi (x′, xC) + (1− pTC) · uSi (x′, xD) (4)

Recall that by Lemma 3.4, if εT = γ∗, where γ∗ is the positive root of the quadratic equation f(γ) =
b · γ2 + (a− b+ c) · γ− c = 0, then we can construct a feasible sequence pC(T ) = (1, · · · , 1, pt∗C , · · · , pTC)
with pt

′
C = γ∗ for all t∗ ≤ t′ ≤ T . The lemma below establishes that with such a sequence pC(T ), LA types

are best off playing xC as long as nobody has deviated, if pTC = γ∗ satisfies (4) and cooperation is a strict
equilibrium when it is common knowledge that both agents are of the LA type.

Lemma 5.1. If pC(T ) = (1, · · · , 1, pt∗C , · · · , pTC) with pt
′
C = γ∗ for all t∗ ≤ t′ ≤ T , γ∗ satisfies (4) and

(xC , xC) forms a strict Nash equilibrium of uLA, then for all 1 ≤ t ≤ T and x′ 6= xC , ui(LA, ht−1
C ) =

ui(xC , LA, h
t−1
C ) ≥ ui(x′, LA, ht−1

C ).

The proof is in Appendix. By Lemma 3.6, if (xD, xD) forms a Nash equilibrium, it is a best response
for both players to keep playing xD once any player has deviated. This allows us to conclude:

Theorem 5.2. An LA type is desired for finite general games if we have that γ∗(G) satisfies (4) and both
(xC , xC) and (xD, xD) form Nash equilibria in uLA (and the former is a strict equilibrium).

We identify three universal+ LA types that are desired: LAcoordinate,LAmin,coordinate, andLAavg,positive,coordinate.
LAcoordinate is a type that only cares about whether two players play the same: fcoordinate(v, v, 1) = v for
all v ∈ R and fcoordinate(v, w, 0) = 0 for all v, w ∈ R. LAmin,coordinate is a type that is exactly like LAmin
if players do not play the same (fmin,coordinate(v, w, 0) = min(v, w)) but otherwise gets double the utility
(fmin,coordinate(v, v, 1) = 2v). Similarly, LAavg, positive, coordinate is a type that is exactly like LAavg, positive if
players do not play the same, but otherwise gets double the utility.

For LAcoordinate, both (xC , xC) and (xD, xD) form Nash equilibria (where the former is strict) in uLA

since for all x′ 6= xC , uLAi (x′, xC) = 0 < uLAi (xC , xC) and for all x′ 6= xD, uLAi (x′, xD) = 0 =
uLAi (xD, xD). To satisfy (4), we need pTC · a+ (1− pTC) · (−c) ≥ pTC · 0 + (1− pTC) · 0, which is equivalent
to, pTC ≥

c
a+c . In fact, by Proposition 3.1, we have pTC = γ∗ ≥ c

a+c .
For LAmin,coordinate, it can be verified that (xD, xD) forms a Nash equilibrium in uLA. To ensure that

γ∗ = pTC satisfies (4), note that pTC · uLAi (xC , xC) + (1 − pTC) · uSi (xC , xD) = pTC · 2a + (1 − pTC) · (−c).

17



Moreover, for all x′i 6= xC , since (xC , xC) maximizes social welfare, we have

uLAi (x′i, xC) = min(uSi (x′i, xC), uS−i(x
′
i, xC)) ≤ 1

2

(
uSi (x′i, xC) + uS−i(x

′
i, xC)

)
≤ uSi (xC , xC)

Henceforth,

max
x′ 6=xC

pTC · uLAi (x′, xC) + (1− pTC) · uSi (x′, xD) ≤ pTC · a+ (1− pTC) · uSi (xD, xD) ≤ pTC · a

Therefore, we only need pTC · 2a+ (1− pTC) · (−c) ≥ pTC · a, which is equivalent to, pTC = γ∗ ≥ c
a+c . Again,

by Proposition 3.1, we have pTC = γ∗ ≥ c
a+c . The case of LAavg,positive,coordinate is entirely similar to that of

LAmin,coordinate. We conclude:

Corollary 5.1. LAcoordinate, LAmin,coordinate, and LAavg, positive, coordinate are desired for general games.

6 Discussion

We have shown that under certain conditions, LA types such as LAmin that care directly about the other
player’s payoff, if that player is also an LA type, can be very successful in establishing cooperation in
finitely repeated games. We have provided characterizations of the LA types that can achieve this in various
classes of games. We believe that this provides useful guidance for the design of agents that are to be
introduced into a population in small numbers, for the purpose of establishing an equilibrium where all
players almost always cooperate. Unfortunately, we have also shown that in sufficiently general games,
such types do not suffice, although allowing them to care about whether both players play the same action
circumvents this problem.

All of our results aim to establish that there exists a desirable equilibrium, but the bad equilibrium,
in which both players play the dominant strategy xD in every round, still exists in each case. This is a
concern if we are not confident that we can establish the desirable equilibrium. Kreps et al. (1982) and
Maskin and Fudenberg (1986) demonstrate that by introducing a small fraction of “behavioral” types, the
bad equilibrium can be eliminated. It would be valuable to investigate whether we can eliminate the bad
equilibrium even with a small fraction of “strategic” types.

More broadly, we may ask whether we can obtain similar results in other classes of games. Stochastic
games with a finite number of rounds would constitute a natural next step. We may also ask whether we can
somehow unify these insights with results in the routing games literature that sound similar at a high level
(though they appear technically quite different). In the limit, we would like to obtain very general insights
about how to design agent preferences. Can we do so in a way that even when they are introduced into
complex, messy, ambiguous environments, they will establish a more desirable equilibrium? This seems to
us a compelling challenge problem for those interested in the design of beneficial game-theoretic AI, and it
may yet provide some insights about human societies as well.
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Appendix

A Omitted Proofs

A.1 Proof of Proposition 3.1

Proof. Note that f(·) is a quadratic function with a positive quadratic coefficient and we have f(0) = −c <
0 and f(γ∗) = 0. Therefore, for 0 < v < 1, v ≤ γ∗ if and only if f(v) < 0. By calculation, we have

f(1− a

b
) = b · (b− a

b
)2 − (a− b+ c) · b− a

b
− c = −ac

b
< 0

and

f(
c

a+ c
) =

bc2

(a+ c)2
+ (a− b+ c)

c

a+ c
− c =

bc

a+ c
· ( c

a+ c
− 1) ≤ 0

A.2 Proof of Lemma 4.1

Proof. We prove this by induction. Suppose

ui(LA, h
t′−1
C ) = ui(xC , LA, h

t′−1
C ) ≥ max

x′ 6=xC
ui(x

′, LA, ht
′−1
C )

for t′ > t. The base case is true since pTC satisfies (3). As for the t-th round, first note that if a player of type
LA plays x′ 6= xC , his utility is

ui(x
′, LA, ht−1

C ) = εt · uLAi (x′, xC) + (ptC − εt) · uSi (x′, xC)

+ (1− ptC) · uSi (x′, xD) + (T − t) · uSi (xD, xD)

= εt · uLAi (x′, xC) + (ptC − εt) · uSi (x′, xC) + (1− ptC) · uSi (x′, xD)

= εt · uLAi (x′, xC) + (1− εt) · g(x′) + (ptC − εt) · h(xC) + (1− ptC) · h(xD)

The last equality is because the game is an independent-effect game. In such a game, we have uSi (xD, xD) =
g(xD) + h(xD) = 0, a = uSi (xC , xC) = g(xC) + h(xC) and b = uSi (xD, xC) = g(xD) + h(xC) =
h(xC)− h(xD). By Corollary 3.2, we have that for all t,

ptC ≥ 1− a

b
⇔ ptC ≥

g(xD)− g(xC)

g(xD) + h(xC)
=
g(xD)− g(xC)

h(xC)− h(xD)

For the remainder of the proof, we consider two cases.
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Case (1): If ptC = 1, then we have εt = εt+1 and

ui(xC , LA, h
t−1
C ) = εt · uLAi (xC , xC) + (1− εt) · uSi (xC , xC) + ui(LA, h

t
C)

≥ a+ ui(LA, h
t
C)

≥ a+ ui(x
LA(εt+1, p

t+1
C ), LA, htC)

≥ a+ ui(x
LA(εt, p

t
C), LA, htC)

≥ a+ εt+1 · uLAi (xLA(εt, p
t
C), xC) + (pt+1

C − εt+1) · uSi (xLA(εt, p
t
C), xC)

+ (1− pt+1
C ) · uSi (xLA(εt, p

t
C), xD)

≥ a+ εt · uLAi (xLA(εt, p
t
C), xC) + (pt+1

C − εt) · uSi (xLA(εt, p
t
C), xC)

+ (1− pt+1
C ) · uSi (xLA(εt, p

t
C), xD)

= a+ εt · uLAi (xLA(εt, p
t
C), xC) + (1− εt) · g(xLA(εt, p

t
C))

+ (pt+1
C − εt) · h(xC) + (1− pt+1

C ) · h(xD)

Therefore, we have

ui(xC , LA, h
t−1
C )− ui(x′, LA, ht−1

C ) ≥ ui(xC , LA, ht−1
C )− ui(xLA(εt, p

t
C), LA, ht−1

C )

≥ a+ h(xD)− h(xC) + pt+1
C · (h(xC)− h(xD))

≥ a+ h(xD)− h(xC) + g(xD)− g(xC)

= 0

Case (2): If ptC < 1, let k be such that pt+kC < 1 and pt
′
C = 1 for all t < t′ < t + k. Similarly to the

above, we have

ui(xC , LA, h
t−1
C ) = εt · k · uLAi (xC , xC) + (ptC − εt) · k · uSi (xC , xC) + ptC · ui(LA, ht+k−1

C )

+ (1− ptC) · (uSi (xC , xD) + (T − t) · uSi (xD, xD))

≥ ptC · (k · a+ ui(LA, h
t+k−1
C )) + (1− ptC) · ((−c) + uSi (xD, xD))

≥ ptC · (k · a+ ui(x
LA(εt+k, p

t+k
C ), LA, ht+k−1

C )) + (1− ptC) · ((−c) + uSi (xD, xD))

≥ ptC · (k · a+ ui(x
LA(εt, p

t
C), LA, ht+k−1

C )) + (1− ptC) · ((−c) + uSi (xD, xD))

≥ ptC · k · a+ ptC · εt+k · uLAi (xLA(εt, p
t
C), xC) + ptC · (pt+kC − εt+k) · uSi (xLA(εt, p

t
C), xC)

+ ptC · (1− pt+kC ) · uSi (xLA(εt, p
t
C), xD) + (1− ptC) · ((−c) + uSi (xD, xD))

= ptC · k · a+ εt · uLAi (xLA(εt, p
t
C), xC) + (ptC · pt+kC − εt) · uSi (xLA(εt, p

t
C), xC)

+ ptC · (1− pt+kC ) · uSi (xLA(εt, p
t
C), xD) + (1− ptC) · ((−c) + uSi (xD, xD))

= εt · uLAi (xLA(εt, p
t
C), xC) + (ptC · pt+kC − εt) · uSi (xLA(εt, p

t
C), xC)

+ ptC · (1− pt+kC ) · (uSi (xLA(εt, p
t
C), xD) + uSi (xD, xC)) + (1− ptC) · uSi (xD, xD)

To obtain the inequalities above, we make use of the definition of xLA and Theorem 3.1:

ptC =
c

k · a− (1− pt+kC ) · b+ c
⇔ ptC · k · a+ (ptC · pt+kC − ptC) · b+ (1− ptC) · (−c) = 0

Moreover, by uSi (xD, xD) ≥ uSi (xLA(εt, p
t
C), xD) and the fact that we have an independent-effect game,
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we have

ui(xC , LA, h
t−1
C ) ≥ εt · uLAi (xLA(εt, p

t
C), xC) + (ptC · pt+kC − εt) · uSi (xLA(εt, p

t
C), xC)

+ ptC · (1− pt+kC ) · (uSi (xLA(εt, p
t
C), xD) + uSi (xD, xC))

+ (1− ptC) · uSi (xLA(εt, p
t
C), xD)

= εt · uLAi (xLA(εt, p
t
C), xC) + (1− εt) · g(xLA(εt, p

t
C))

+ (ptC − εt) · h(xC) + (1− ptC) · h(xD)

= ui(x
LA(εt, p

t
C), LA, ht−1

C )

Therefore, we have

ui(xC , LA, h
t−1
C )− ui(x′, LA, ht−1

C ) ≥ ui(xC , LA, ht−1
C )− ui(xLA(εt, p

t
C), LA, ht−1

C ) ≥ 0

A.3 Proof of Lemma 5.1

Proof. We prove this by induction. Suppose

ui(LA, h
t′−1
C ) = ui(xC , LA, h

t′−1
C ) ≥ max

x′ 6=xC
ui(x

′, LA, ht
′−1
C )

for t′ > t. The base case is true since pTC = γ∗ satisfies (4). As for the t-th round, first note that if a player
of type LA plays x′ 6= xC , his utility is

ui(x
′, LA, ht−1

C ) = εt · uLAi (x′, xC) + (ptC − εt) · uSi (x′, xC)

+ (1− ptC) · uSi (x′, xD) + (T − t) · uSi (xD, xD)

= εt · uLAi (x′, xC) + (ptC − εt) · uSi (x′, xC) + (1− ptC) · uSi (x′, xD)

Case (1): If ptC = pt+1
C = γ∗,

ui(xC , LA, h
t−1
C ) = εt · uLAi (xC , xC) + (ptC − εt) · uSi (xC , xC) + ptC · ui(LA, htC)

+ (1− ptC) · (uSi (xC , xD) + (T − t) · uSi (xD, xD))

≥ ptC · (a+ ui(LA, h
t
C)) + (1− ptC) · (−c)

≥ ptC · (a+ ui(x
LA(εt+1, p

t+1
C ), LA, htC)) + (1− ptC) · (−c)

≥ ptC · (a+ ui(x
LA(εt, p

t
C), LA, htC)) + (1− ptC) · (−c)

≥ ptC · a+ ptC · εt+1 · uLAi (xLA(εt, p
t
C), xC) + ptC · (pt+1

C − εt+1) · uSi (xLA(εt, p
t
C), xC)

+ ptC · (1− pt+1
C ) · uSi (xLA(εt, p

t
C), xD) + (1− ptC) · (−c)

= ptC · a+ εt · uLAi (xLA(εt, p
t
C), xC) + (ptC · pt+1

C − εt) · uSi (xLA(εt, p
t
C), xC)

+ ptC · (1− pt+1
C ) · uSi (xLA(εt, p

t
C), xD) + (1− ptC) · (−c)

= εt · uLAi (xLA(εt, p
t
C), xC) + (ptC · pt+1

C − εt) · uSi (xLA(εt, p
t
C), xC)

+ ptC · (1− pt+1
C ) · (uSi (xLA(εt, p

t
C), xD) + uSi (xD, xC))

To obtain the inequalities above, we make use of the definition of xLA and Theorem 3.1:

ptC =
c

k · a− (1− pt+kC ) · b+ c
⇔ ptC · k · a+ (ptC · pt+kC − ptC) · b+ (1− ptC) · (−c) = 0
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Therefore,

ui(xC , LA, h
t−1
C )− ui(x′, LA, ht−1

C )

≥ ui(xC , LA, h
t−1
C )− ui(xLA(εt, p

t
C), LA, ht−1

C )

≥ ptC · (1− pt+1
C ) · (uSi (xD, xC)− uSi (xLA(εt, p

t
C), xC))− (1− 2ptC + ptC · pt+1

C ) · uSi (xLA(εt, p
t
C), xD)

≥ − (1− γ∗)2 · uSi (xLA(εt, p
t
C), xD)

≥ 0

Case (2): If ptC = 1 and pt+1
C = 1.

ui(xC , LA, h
t−1
C ) = εt · uLAi (xC , xC) + (1− εt) · uSi (xC , xC) + ui(LA, h

t
C)

≥ a+ ui(LA, h
t
C)

≥ a+ εt+1 · uLAi (xLA(εt+1, p
t+1
C ), xC) + (1− εt+1) · uSi (xLA(εt+1, p

t+1
C ), xC)

≥ a+ εt · uLAi (xLA(εt, p
t
C), xC) + (1− εt) · uSi (xLA(εt, p

t
C), xC)

Therefore,

ui(xC , LA, h
t−1
C )− ui(x′, LA, ht−1

C ) ≥ ui(xC , LA, ht−1
C )− ui(xLA(εt, p

t
C), LA, ht−1

C )

≥ a > 0

Case (3): If ptC = 1 and pt+1
C = γ∗, notice that we have εt = (γ∗)T−t. Moreover, since (xC , xC) forms

a Nash equilibrium in uLA, we have uLAi (x′, xC) ≤ uLAi (xC , xC) for all x′ 6= xC .

ui(x
′, LA, ht−1

C ) = εt · uLAi (x′, xC) + (1− εt) · uSi (x′, xC)

= (γ∗)T−t · uLAi (x′, xC) + (1− (γ∗)T−t) · uSi (x′, xC)

≤ (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · uSi (xD, xC)

= (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · b

Moreover, we have

ui(xC , LA, h
t−1
C ) = εt · uLAi (xC , xC) + (1− εt) · uSi (xC , xC) + ui(LA, h

t
C)

= (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · a+ ui(LA, h
t
C)

Note that for all t′ > t, we have pt
′
C = γ∗. We use induction we show that

ui(LA, h
t′
C) ≥

T−t′∑
i=0

(γ∗)i · (γ∗ · a+ (1− γ∗)(−c)) =
1− (γ∗)T−t

′+1

1− γ∗
· (γ∗ · a+ (1− γ∗)(−c))

for all t′ > t. The base case t′ = T is true since εT = γ∗ and we have

ui(LA, h
T−1
C ) = γ∗ · uLAi (xC , xC) + (1− γ∗) · uSi (xC , xD) ≥ γ∗ · a+ (1− γ∗)(−c)

Assume it is true for t′ = t′′, then for t′ = t′′ − 1, we have

ui(LA, h
t′−1
C ) = εt′ · uLAi (xC , xC) + (γ∗ − εt′) · uSi (xC , xC) + (1− γ∗) · uSi (xC , xD) + γ∗ · ui(LA, ht

′
C)

≥ γ∗ · a+ (1− γ∗)(−c) + γ∗ · ui(LA, ht
′
C)

≥
T−t′∑
i=0

(γ∗)i · (γ∗ · a+ (1− γ∗)(−c))
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Therefore, we have

ui(xC , LA, h
t−1
C ) ≥ (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · a+ ui(LA, h

t
C)

≥ (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · a+
1− (γ∗)T−t

1− γ∗
· (γ∗ · a+ (1− γ∗)(−c))

Recall that b2 ·(γ∗)2 +(a−b+c) ·γ∗−c = 0. Henceforth, we have γ∗ ·a+(1−γ∗) ·(−c) = b ·γ∗ ·(1−γ∗).
Therefore,

ui(xC , LA, h
t−1
C ) ≥ (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · a+

1− (γ∗)T−t

1− γ∗
· (γ∗ · a+ (1− γ∗)(−c))

= (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · a+
1− (γ∗)T−t

1− γ∗
· b · γ∗ · (1− γ∗)

= (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · (a+ b · γ∗)
≥ (γ∗)T−t · uLAi (xC , xC) + (1− (γ∗)T−t) · b
≥ max

x′ 6=xC
ui(x

′, LA, ht−1
C )

The last but one inequality is by the fact that γ∗ ≥ 1− a
b according to Proposition 3.1.
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