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Choosing Fair Lotteries to Defeat the Competition

Liad Wagman · Vincent Conitzer

Abstract We study the following game: each agent i chooses a lottery over nonnegative numbers

whose expectation is equal to his budget bi. The agent with the highest realized outcome wins

(and agents only care about winning). This game is motivated by various real-world settings

where agents each choose a gamble and the primary goal is to come out ahead. Such settings

include patent races, stock market competitions, and R&D tournaments. We show that there is a

unique symmetric equilibrium when budgets are equal. We proceed to study and solve extensions,

including settings where agents choose their budgets (at a cost) and where budgets are private

information.
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1 Introduction

The most basic version of the game that we study can be described as follows. Two agents, Alice

and Bob, each have a budget of chips for gambling. They each (simultaneously) place a single

bet in (say) a casino. We assume that the outcomes of the bets are independent. Whoever ends

up with more chips is named the winner, and chips are worthless afterwards—the only goal is to

win. What bets should Alice and Bob place?

To answer this question, we need to know what bets the casino is willing to accept. Let us

assume that, driven by competition, the casino is willing to accept any fair bet.1 That is, an agent

Early versions of this work were presented at the Victor Rothschild Memorial Symposium on Economic Aspects

of Communication and Information (2007), the Conference on Autonomous Agents and Multi Agent Systems

(2008), the World Congress of the Game Theory Society (2008), and the Duke Microeconomics lunch seminar;

we thank the participants and reviewers for many useful comments. Wagman is supported by the Program for

Advanced Research in the Social Sciences Fellowship and by an IIT Stuart School of Business Summer Research

Grant; Conitzer is supported by an Alfred P. Sloan Fellowship and by NSF under award numbers IIS-0812113 and

CAREER-0953756.

Liad Wagman

Illinois Institute of Technology, Stuart School of Business, 565 W Adams St, Suite 452, Chicago, IL 60661, USA.

Tel: (919) 323-6647, Fax: (312) 906-6500, E-mail: lwagman@stuart.iit.edu

Vincent Conitzer

Duke University, Departments of Computer Science and Economics, Levine Science Research Center, Box 90129,

Durham, NC 27708, USA. Tel: (919) 660-6503, Fax: (919) 660-6519, E-mail: conitzer@cs.duke.edu

1 Real-world casinos typically have payback rates of at least 90%.



2

can buy any lottery over nonnegative real numbers whose expectation is equal to the agent’s

budget.2

As an example, suppose Alice and Bob each have a budget of 10 chips. If Alice were to

choose the degenerate lottery that always results in 10 chips, Bob can win most of the time by

choosing the lottery that gives 11 chips with probability 10/11, and 0 chips with probability 1/11.

In this case, Bob wins with probability 10/11. A better response for Alice, in turn, would be to

choose the lottery that gives 12 chips with probability 9/11, and 1 chip with probability 2/11.

Alice would then win with probability 9/11+2/11 ·1/11. As we will see, the unique equilibrium

of this game is for both Alice and Bob to choose the uniform lottery over [0,20].

In this paper, we study the equilibria of (the n-agent version of) this game, as well as variants

in which agents have to first buy chips; in which budgets are private information; and in which

agents must end up with at least a certain number of chips in order to win.3

The classic Tullock [1980] rent-seeking game (where each agent chooses an investment level,

and an agent’s winning probability is determined by the ratio of his individual investment to the

total investment across all agents) has been used extensively to model innovation, sport tour-

naments, and patent-race games, as in, for instance, Rosen [1991], Baye and Hoppe [2003], and

Brown [2010]. (See Skaperdas [1996] for an axiomatization of the Tullock probability-of-success

function.) Another common approach to model such games is the all-pay auction (or more gener-

ally, an all-pay contest [Siegel, 2009]). An all-pay auction is an auction in which each agent must

pay his bid, even if he did not win (for an overview of all-pay auctions, see Baye et al. [1996]).

In an all-pay auction, in contrast to the Tullock probability-of-success function, the agent who

made the largest investment wins with certainty. Our game combines aspects of these two ap-

proaches: In our game, as in an all-pay auction, the agent who ends up with the highest realized

amount (after randomization) wins with certainty. However, if we consider the agents’ budgets

(before randomization), we see that the agent with the highest budget does not necessarily win,

even though this agent’s chances of winning are better—as in the Tullock model.

In spite of their simplicity, games such as the above can model real-world scenarios. Previous

research has considered the strategic choice of lotteries as a means to characterize incentives for

risk-taking in R&D environments. Here, a choice of technology leads to a distribution over the

final quality (or improvement in quality) of the product, which determines which firm will dom-

inate the market. Examples include Anderson and Cabral [2007]; Bagwell and Staiger [1990];

Bhattacharya and Mookherjee [1986]; Cabral [1994, 2002, 2003]; Judd [2003]; Klette and de

Meza [1986]; Rosen [1991] and Vickers [1985]. All of these earlier papers study a constrained

2 Incidentally, if an agent were able to place a sequence of bets, where the choice of later bets is allowed to

depend on the outcomes of the agent’s own earlier bets (but not on the outcomes of the other agent’s bets), this

would make no difference to the game, for the following reason. Any finite plan (strategy) for betting will result in

a (single) probability distribution over nonnegative numbers with expectation equal to the agent’s budget, and thus

the agent can simply choose this lottery as a single bet.
3 This last variant is given in the appendix.
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environment in the sense that the set of possible lotteries is limited. Rosen [1991] shows that in

an equilibrium of an R&D contest with a larger and a smaller firm, the large firm invests more

than a smaller firm but, by choosing safer R&D projects, makes fewer major innovations. In our

Example 2, we show that the probability of success in equilibrium does not have the Tullock

form, and in contrast to Rosen [1991], we find that while the firm that invests more does choose

a safer R&D project, it still has a higher chance of making a major innovation than the firm that

invests less.

Most of the other previous work studies decisions that take place over time. In particu-

lar, Cabral [1994, 2002, 2003] consider an environment with two agents and two possible lot-

teries, a safe lottery (no variance) and a risky one (positive variance). In each period of a repeated

game, agents select between those two lotteries. Cabral shows that increasing dominance, a situ-

ation in which the leader advances more and more rapidly in comparison to a laggard, can be the

result of the laggard choosing a riskier strategy. Judd [2003] extends this environment to contin-

uous time. Anderson and Cabral [2007] analyze the more general choice of lottery variance in a

continuous time setting that follows an Ito process. Both papers focus on the dynamics and wel-

fare implications resulting from a continuous-time game with two agents. In contrast, our work

focuses on the strategic choices made by agents in a static environment, where an agent’s strategy

choice set is larger.

Bhattacharya and Mookherjee [1986] and Klette and de Meza [1986] consider patent race

models where agents select their variance. Their models consider winner-takes-all settings with

two agents, where the winning agent’s utility is a function of the lottery outcome and varies across

agents. They show that in equilibrium, firms may take too much risk from a social-welfare point

of view due to competition. In contrast, we find that in spite of competition, firms may take too

little risk when compared to a risk-neutral social planner.

An important difference between our work and all of the above work is that we allow agents

to select any fair lottery. In addition, our work abstracts from specific environments such as patent

or R&D races, leading to a simpler model. We do illustrate throughout the paper how our model

can apply in those settings. There are certainly aspects of R&D competition and patent races

that our model does not capture (and many of these aspects are explored in other literature). A

benefit of our model is that it is simple and can be embedded in multiple frameworks, as we

show throughout the paper. Incorporating aspects that are not common to all of these applica-

tions into the model is likely to make it less generally applicable. For example, we do not study

repeated interaction, because how this should be done presumably depends on the specific appli-

cation. (In R&D, phenomena such as increasing dominance and persistence of monopoly are of

interest [Cabral, 2002]; whereas in patent races, the value of an innovation over time is affected

by patent regulation, raising the question of how to regulate to encourage innovation [Denicolò,

1996].) Specializing the model to particular applications (while adding other features) is an im-

portant direction for future research. Additionally, it may be possible to add features to our model
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that do not significantly restrict its applicability. We will discuss future research directions in more

detail at the end of this paper.

Methodically, our analysis is most related to a working paper by Dulleck et al. [2006] who

(independently) propose what is effectively the same game as the basic setting that we initially

study in this paper, in a different context. They study all-pay auctions in which each bidder is bud-

get constrained, has no opportunity cost for his budget, and has access to a fair insurance market

(i.e., agents can place any fair bet). Dulleck et al. are motivated in part by a result by Laffont and

Robert [1996], who study the optimal (revenue maximizing) auction when bidders face (common

knowledge) financial constraints. Laffont and Robert show that the optimal auction in this case

takes the form of an all-pay auction. Because of the equivalence to the Dulleck et al. game, all of

our results also apply to this particular type of all-pay auctions. It must be admitted that this is not

a very common model of an all-pay auction (especially because bidders do not care about how

much money they have left in the end), and our results do not seem to have direct applications to

more common all-pay auction models. Dulleck et al. consider different questions from the ones

in this paper, and consequently their results are complementary to ours. They give an equilibrium

for the case of two agents whose budgets are not necessarily equal (our Example 2) and prove that

this equilibrium is unique. They also show that with n agents, an equilibrium exists. In addition,

they extend their results to allow for multiple prizes (which is reminiscent of the Colonel Blotto

game as in Roberson [2006])—a setting that we will not study in this paper.

The remainder of our paper is organized as follows. In Section 2, we present the basic game

and solve three examples. In Section 3, we show that when agents have equal budgets, there is

a unique symmetric equilibrium (which we provide explicitly). We exhibit some properties of

this equilibrium, and we also show that under certain restrictions on the lotteries, the symmetric

equilibrium is the unique equilibrium of the equal-budget game. In Section 4, we study an ex-

tension of the basic game in which agents must first select their budgets (which come at a cost).

In Section 5, we study an incomplete-information variant in which agents do not know the other

agents’ budgets. Section A in the appendix also studies a variant of the model where agents must

surpass a minimum necessary outcome in order to win.

2 The basic game

Let there be n agents, and let agent i ∈ {1, ...,n} be endowed with budget bi, which is com-

mon knowledge. (In Section 5, we extend the model to allow private budgets.) The basic game

consists of two periods. In the first period, each agent (simultaneously) selects any fair lottery

over nonnegative real numbers.4 We describe a lottery by its cumulative distribution function

(CDF) F(x) : R≥0 → [0,1]. That is, F(x) is the probability that the realized lottery outcome is

4 If negative lottery outcomes are allowed, then an agent can place an infinitesimal mass on an extremely negative

outcome, and distribute the rest of his mass on large positive outcomes. As a result, no equilibrium would exist.
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less than or equal to x, for any x. Agent i’s lottery Fi is fair if its expectation is equal to bi, that

is,
∫ ∞

0 xdFi(x) = bi. Thus, a pure strategy for an agent in this game is any fair lottery over non-

negative numbers. Any mixed strategy (consisting of a distribution over lotteries—a compound

lottery in the Anscombe and Aumann [1963] framework) can be reduced to a pure strategy by

considering its reduced lottery, the (simple) lottery that generates the same ultimate distribution

over outcomes. Hence, we do not need to consider mixed strategies. (To eliminate any chance

of confusion, it is helpful to make the following observation: because a lottery over outcomes

is a pure strategy, there is no requirement that a best-responding agent is indifferent among the

outcomes in his lottery’s support—in fact, naturally, the agent will prefer the higher outcomes.

In this sense, the lotteries over outcomes are unlike mixed strategies. Nevertheless, the two are

not completely unrelated: one can say something about the properties of outcomes that receive

positive probability in a best-response lottery, based on a constrained-optimization perspective.

This point is not essential to understanding our results, so we return to it in Subsection 3.4.)

In the second period, each lottery’s outcome is randomly selected according to its correspond-

ing probability distribution. The agent whose outcome is the highest wins. For now, we assume

that agents only care about winning. Thus, without loss of generality, we assume that an agent

gets utility 1 for winning and 0 for not winning, so that the game is zero-sum. (In Section 4, we

extend the model to allow costly budgets.) Ties are broken (uniformly) at random. This gives rise

to the following expected utility for agent i before the realization of agents’ chosen lotteries:5

Ui(Fi,F−i) =
∫ ∞

0
∏
j 6=i

Fj(x)dFi(x).

We will be interested in the Nash equilibria F∗ = (F∗1 ,F∗2 , ...,F∗n ) of the simultaneous move game.

Example 1. Consider the game between two agents, 1 and 2, with identical budgets b. Agent

1’s expected utility from playing F1 given that agent 2 selects F2 is
∫ ∞

0 F2(x)dF1(x). Suppose that

F2 is uniform over [0,2b], so that F2(x) = x/2b for x ∈ [0,2b] and F2(x) = 1 for x > 2b. Then,

there is no reason for agent 1 to select a lottery that places positive probability on outcomes

strictly larger than 2b. This is because any probability placed above 2b can be shifted down

to 2b without lowering agent 1’s probability of winning. Then, to make the lottery fair again,

mass elsewhere can be shifted up, which can only improve agent i’s expected utility. It follows

that agent 1’s problem is to select a distribution F1 so as to maximize 1
2b

∫ 2b
0 xdF1(x) subject to

the fairness condition (henceforth budget constraint)
∫ 2b

0 xdF1(x) = b. We note that the integral

in the objective must equal b for any F1 that satisfies the budget constraint. Hence, any such

F1 constitutes a best-response to agent 2’s strategy. Thus, it is an equilibrium for each agent to

5 Technically, the expression is only well-defined if the distributions are continuous, that is, they have no mass

points. In a slight abuse of notation, we use the same expression for distributions with mass points (as is common

in the literature). It should be noted that (for example) in the two-agent case, if agent 2 has a mass point at x, so that

F2(x) > limε→0 F2(x− ε), then the probability for 1 of winning given that he obtains outcome x is not F2(x), but

rather limε→0 F2(x− ε)+(F2(x)− limε→0 F2(x− ε))/2. This is only relevant if agent 1 also has a mass point at x.
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select the uniform lottery U [0,2b]. Moreover, because this is a two-agent zero-sum game, lottery

U [0,2b] is also a minimax strategy; it guarantees the agent an expected utility of at least 1/2.

This is in contrast to the trivial strategy of just holding on to one’s budget b, which can lead to

an arbitrarily low expected utility: for any ε ∈ (0,1), the opponent can put probability ε on 0 and

probability 1− ε on b/(1− ε), so that the opponent wins with probability 1− ε .

Example 2. Now, consider two agents with different budgets, b1 and b2, and without loss of

generality suppose that b1 < b2. Suppose that agent 2’s strategy F2 is the uniform lottery U [0,2b2].

First, we note that similarly to Example 1, there is no reason for agent 1 to select a lottery that

places probability on outcomes strictly larger than 2b2. Thus, agent 1’s problem is to select F1

to maximize
∫ 2b2

0
x

2b2
dF1(x) subject to

∫ 2b2
0 xdF1(x) = b1. As before, any F1 that satisfies the

constraint constitutes a best-response for agent 1. Consider the following compound lottery F1:

1. Choose the lottery that with probability b1/b2 generates outcome b2, and with probability

1−b1/b2 generates outcome 0.

2. If outcome b2 was generated, then subsequently choose the lottery U [0,2b2].

Formally, F1(x) = 1−b1/b2 +(b1/b2)(x/2b2) over [0,2b2]. That is, agent 1’s lottery has a prob-

ability mass at 0. (p is a mass point of a cumulative distribution function F if limε→0 F(p+ ε)−
F(p− ε) > 0.) Lottery F1 satisfies the constraint, and is thus a best response to F2. Now, con-

sider agent 2’s problem given that agent 1 uses F1. With probability 1−b1/b2, agent 1 gets 0 (and

given this, agent 2 wins with probability 1, as long as agent 2 does not have a mass point at 0), and

with probability b1/b2, agent 2 faces the lottery U [0,2b2]. Since we have already determined that

U [0,2b2] is a best response against U [0,2b2], it follows that U [0,2b2] is a best response against

F1. Thus, we have found an equilibrium. Again, because this is a two-agent zero-sum game, the

agents’ strategies are also minimax strategies. Figure 1 shows the equilibrium strategies graphi-

cally.

2

F1

1

Outcome

Cumulative Density

2F

2b

Fig. 1: Equilibrium strategies in Example 2
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Since agent 1 has a chance of winning only if he won his initial gamble, after which he

has the same budget as agent 2, his probability of winning is b1
2b2

.6 We also note that agent 2’s

equilibrium strategy does not depend on b1 (as long as b1 ≤ b2). In contrast, agent 1’s equilibrium

strategy does depend on b2, because it places an initial, all-or-nothing gamble to “even the odds”

and reach b2. Dulleck et al. [2006] also study Examples 1 and 2, and show that the equilibrium

described here is the unique equilibrium in each case.

Example 3. Now, suppose there are three agents with identical budgets b, and consider the lottery

F such that F(x) = (3b)−
1
2 x

1
2 over [0,3b]. Given that agents 2 and 3 employ strategy F , there

is no reason for agent 1 to allocate mass to outcomes larger than 3b. Thus, agent 1’s problem

is to select F1 to maximize
∫ 3b

0 F2(x)dF1(x) = 1
3b

∫ 3b
0 xdF1(x) subject to

∫ 3b
0 xdF1(x) = b. As in

Example 1, any lottery that satisfies the constraint is a best response. In particular, playing F is

a best response for agent 1. Hence, (F,F,F) is a symmetric equilibrium. In Section 3.2 we will

illustrate how symmetric equilibrium strategies change as the number of agents increases.

One way to elucidate the equilibria of the above three examples is to relate them to the com-

mon explanation given for a mixed-strategy equilibrium: agents are choosing lotteries to make

other agents indifferent about their lottery choice. However, in contrast to a mixed-strategy equi-

librium, agents here are not indifferent among the outcomes of the lotteries—in fact, generally,

higher outcomes are preferred, but agents must “settle” for lower outcomes due to the budget

constraint. See also the discussion in Subsection 3.4.

3 Characterizing equilibria of the equal-budget game

In this section, we will study the case where all n agents have the same budget b > 0. We refer

to this setting as the equal-budget game. We will show that this game has a unique symmetric

equilibrium. We also show that under certain conditions on the set of strategies, there are no other

equilibria.

3.1 Properties of best responses

In this subsection, we prove that any best response in our setting (even in games with unequal

budgets) must have certain properties. These properties will be useful in the remainder of this

section, where we analyze the equilibria of the equal-budget game.

Consider agent i. Let F−i(x) be the probability that all agents other than i obtain an outcome

below x: F−i(x) = ∏ j 6=i Fj(x). The first three lemmas show that if i is best-responding, then F−i

must be linear in the support of Fi. (If this is not the case, then i is better off changing his dis-

tribution, as we will show.) For given x1 < x2 < x3, Lemma 1 considers what happens if agent i

6 It is interesting to note that this equilibrium winning probability deviates from the often imposed Tullock

functional form of b1
b1+b2

.
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shifts probability from (around) x2 to x1 and x3, in an expectation-preserving way. If agent i is

best-responding, this cannot leave him better off, and this imposes some constraints on F−i.

Lemma 1 Consider x1,x2,x3 ∈R≥0 such that x1 ≤ x2 ≤ x3. Suppose that F−i is continuous at x2,

and let Fi be a best response for i to F−i. If x2 is in the support7 of Fi, then the following inequality

holds:
(x2− x1)F−i(x3)+(x3− x2)F−i(x1)≤ (x3− x1)F−i(x2)

The proofs of Lemmas 1 and 2 are in the appendix. Nevertheless, to get some intuition for why

Lemma 1 is true, suppose that Fi has mass points at x1,x2,x3. Suppose we modify Fi by shifting

ε mass from x2 to x1 and x3. To preserve the expected value of the distribution, it must be that the

mass shifted to x1 is ε(x3−x2)/(x3−x1), and the mass shifted to x3 is ε(x2−x1)/(x3−x1). Since

we assumed Fi is a best response, this modification cannot have increased the probability that i

wins. Hence, it must be that F−i(x2)ε ≥ F−i(x1)ε(x3− x2)/(x3− x1)+ F−i(x3)ε(x2− x1)/(x3−
x1), which is equivalent to the expression in the lemma. (The formal proof addresses the general

case where Fi does not necessarily have mass points by gathering probability mass from outcomes

around x2 and similarly shifting it to x1 and x3 in an expectation-preserving way.)

Whereas Lemma 1 considers shifting probability mass from outcome x2 to x1 and x3, Lemma 2

considers the opposite. Intuitively, if outcomes x1 and x3 are in the support of Fi, then agent i

should not find it profitable to redistribute mass from (around) x1 and x3 to x2 in an expectation-

preserving way.

Lemma 2 Consider x1,x2,x3 ∈R≥0 such that x1 ≤ x2 ≤ x3. Suppose that F−i is continuous at x1

and x3, and let Fi be a best response for i to F−i. If x1 and x3 are in the support of Fi, then the

following inequality holds:

(x2− x1)F−i(x3)+(x3− x2)F−i(x1)≥ (x3− x1)F−i(x2)

Lemma 3 follows immediately from Lemmas 1 and 2, establishing that F−i must be linear in the

support of Fi if i is best-responding.

Lemma 3 Consider x1,x2,x3 ∈ R≥0 such that x1 ≤ x2 ≤ x3. Suppose that F−i is continuous at

these outcomes and let Fi be a best response for i to F−i. If x1, x2, and x3 are in the support of Fi,

then the following equality holds:

(x2− x1)F−i(x3)+(x3− x2)F−i(x1) = (x3− x1)F−i(x2)

Finally, we prove that the support of any best-response strategy has an upper bound (unless the

agent can win with probability 1).

Lemma 4 Given F−i, suppose that there is no strategy for i such that i wins with probability 1.

Then the support of any best response strategy Fi for i has an upper bound.

7 In our use of the word “support”, the support is a closed set, that is, we include all the limit points in the

support.
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Proof Consider a best response Fi. Because agent i does not win with probability 1, there must

exist some x in the support of Fi, some ε > 0, and some δ , such that F−i(x + δ )−F−i(x) > ε

(and F−i does not have a mass point at x + δ ). Now suppose that Fi has no upper bound. Then,

there must exist some y in the support of Fi such that F−i(y−δ ) > 1−ε/4. For sufficiently small

m, there exists some m′ > m/2 such that we can change Fi an expectation-preserving way, as

follows:

– Move mass m from around y to y−δ ,

– Move mass m′ from around x to x+δ .

For sufficiently small m, this results in an increase in the probability of winning for i of at least

m(F−i(y−δ )−F−i(y))+(m/2)(F−i(x+δ )−F−i(x)) >−m(ε/4)+(m/2)ε = mε/4 > 0, which

contradicts the original Fi being a best response.

The intuition behind Lemma 4 is the following. Shifting probability mass that is placed on

sufficiently large outcomes downwards slightly will not decrease the probability of winning sig-

nificantly. Doing so will allow the agent to shift mass on lower outcomes upwards, where this is

more fruitful.

3.2 Symmetric equilibria with equal budgets

In the remainder of this section, we restrict attention to the equal-budget game. First, in this

subsection, we characterize the symmetric equilibria of this game. The results we obtained in

Subsection 3.1 assume that F−i is continuous (at certain points). The following lemma and corol-

lary establish that in a symmetric equilibrium, this assumption is trivially satisfied.

Lemma 5 Consider the equal-budget case. Suppose that the strategy profile in which all agents

play lottery F constitutes a (symmetric) equilibrium. Then F has no mass points.

Proof Suppose on the contrary that F places some positive mass m on outcome k. Then there is

a positive probability of a tie at k. Consider agent i. Agent i’s budget constraint implies that i has

some mass on outcomes equal to or larger than b. Let ε > 0 satisfy

mε <

∫ ∞

b
xdF(x)

Agent i can shift the mass at k up to outcome k+ε . This will create an upward pressure of mε on

i’s budget constraint. In order to mitigate this pressure, mass can be shifted from outcomes equal

to or larger than b down to 0. As ε approaches 0, the mass that needs to be shifted down becomes

infinitesimally small, so that the cost of shifting down the mass becomes infinitesimally small

as well. However, due to a positive probability of a tie at k, agent i’s gain from redistributing

as prescribed is bounded away from 0. Hence, agent i possesses a profitable deviation, which is

contrary to the equilibrium assumption.
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Intuitively, if F had a mass point, then an agent would find it beneficial to deviate by shifting

this mass up infinitesimally (to avoid a tie) and shifting mass down elsewhere. Since F is a

cumulative distribution function, where the distribution has no mass points, F is continuous.

Furthermore, since F−i is the product of continuous functions, it is continuous as well. We thus

have the following corollary:

Corollary 1 In the equal-budget game, suppose that the strategy profile in which all agents play

F constitutes a symmetric equilibrium. Then F is continuous. Furthermore, F−i is continuous for

all i.

We now show 0 is in the support of any symmetric-equilibrium strategy.

Lemma 6 Consider the equal-budget game. Suppose that the strategy profile in which all agents

play F constitutes a symmetric equilibrium, and that the greatest lower bound of the support of

F is l. Then l = 0.

The proof of Lemma 6 is in the appendix. To give some intuition, consider the following.

If all agents playing F constitutes a symmetric equilibrium and l > 0, then an agent’s expected

utility given that he obtained an outcome in a close neighborhood of l is near 0. Hence, it is

beneficial to reallocate mass in a neighborhood of l to 0 and to some higher outcomes, contrary

to the equilibrium assumption. We are now ready to derive the main result of this section.

Theorem 1 The equal-budget game has a unique symmetric equilibrium. It is for all agents to

select the following lottery:
F(x) = (nb)−

1
n−1 x

1
n−1 (1)

over support [0,nb].

Proof First, note that lottery F is a viable strategy:
∫ nb

0
(nb)−

1
n−1 x

1
n−1 dx = b

Given that all agents other than i employ strategy F , agent i will not allocate mass to outcomes

larger than nb. Thus, agent i’s problem is to select Fi to maximize

nb∫

0

∏
j 6=i

Fj(x)dFi(x) =
1

nb

nb∫

0

xdFi(x) (2)

subject to
nb∫

0

xdFi(x) = b (3)

Note that because of the constraint, the integral in (2) must equal b for any Fi that satisfies (3).

Hence, playing F is a best-response to F−i for agent i, and so all agents playing F constitutes a

symmetric equilibrium.

To show that this is the only symmetric equilibrium, we proceed as follows. Consider lottery G.

Using Lemma 4, let h be the least upper bound of G (since we assume supports to be closed, h is
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in the support), and suppose that G constitutes a symmetric equilibrium. Note that by definition,

G(h) = 1. By Lemmas 5 and 6, 0 is in the support of G, and G(0) = 0. Consider agent i. By

Lemma 3 and Corollary 1, we know that for x1, x2, and x3 in the support of G, such that x1 ≤
x2 ≤ x3, we have

(x2− x1)G−i(x3)+(x3− x2)G−i(x1)

= (x3− x1)G−i(x2) (4)

Let x3 = h and x1 = 0. Substituting in (4), we obtain that for any x2 in the support of G

G−i(x2) =
x2

h

By symmetry, we also have

G(x) = (
x2

h
)

1
n−1 (5)

To show that G has no gaps, suppose the contrary. Then, there exist l′ and h′, 0 < l′ < h′ < h,

such that l′ and h′ are in the support of G but the interval (l′,h′) is not. Since (l′,h′) is not in

the support, and by continuity of G, G(l′) = G(h′). However, since l′ < h′, this contradicts (5).

Hence, G has no gaps. Since G has no gaps and G must satisfy the budget constraint, we have

that
h∫

0

xdG(x) = b (6)

From equalities (5) and (6) we can derive h = nb. Substituting for h in (5), we obtain that F = G.

In Section C of the appendix, we provide an alternative method to derive Theorem 1 using

results from the common-value all-pay auction literature and some of the lemmas here. If all

agents use the lottery described in (1), then for every agent i, F−i is the uniform distribution over

[0,nb]. Hence, any lottery over outcomes in [0,nb] is a best response. Figure 2 shows how the

symmetric equilibrium strategy changes with the number of agents.

A random variable that is of particular interest is the maximum outcome. This variable is es-

pecially interesting when we interpret the game as a model for competitive R&D, where lotteries

correspond to technologies that can be used and outcomes correspond to qualities of products. In

this setting, the maximum outcome corresponds to the quality of the best product—the one that

will dominate the market. The cumulative distribution of the maximum outcome in equilibrium

is (F(x))n, and its expectation is:

E[xmax] =
∫ nb

0
xd(F(x))n =

n2b
2n−1

>
nb
2

This expectation is quite high, in the following sense. Suppose that we did not impose any strate-

gic constraints on Fi. Then, E[xmax] ≤ E[∑i xi] = ∑i E[xi] = nb. That is, the expected value of

the maximum outcome in equilibrium is within a factor 2 of the highest expectation that can be

obtained without any equilibrium constraint (Incidentally, without the equilibrium constraint one

can in fact come arbitrarily close to achieving nb, as follows. Let Fi be the distribution that places
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b

1

2b 3b 4b

Cumulative Density

2 F 3 F 4F

Outcome

5b

F 5

Fig. 2: Cumulative distribution of symmetric equilibrium strategy for different values of n, given

equal budgets b = 5.

1− ε mass on 0, and ε mass on b/ε . The probability that at least one agent will receive b/ε is

1− (1− ε)n, hence the expected quality of the product is (b/ε)(1− (1− ε)n), which as ε → 0

converges to nb.) Moreover, even if one can shift budgets among agents (in addition to prescrib-

ing their strategies), it still holds that E[xmax]≤ nb. By contrast, if each agent uses the degenerate

strategy that places all the probability mass on b, we would have E[xmax] = b.

3.3 Uniqueness of the symmetric equilibrium

Is the symmetric equilibrium unique, or do asymmetric equilibria exist? In this subsection, we

show that under mild restrictions on the strategy space, the former is the case. (We currently do

not know whether these restrictions are necessary for this to be true.) Specifically, we consider the

following restrictions: (A1) Supports have no gaps, (A2) Fi has no mass points for all i∈{1, ...,n}.

The next lemma shows that if (A1) holds, then all agents have 0 in their support.

Lemma 7 Suppose that F∗ = (F∗1 ,F∗2 , ...,F∗n ) is an equilibrium strategy profile of the equal-

budget game and that (A1) is satisfied. Then 0 is in the support of F∗i for all i ∈ {1,2, ...,n}.

Proof First, (A1) implies that all supports must have the same greatest lower bound (henceforth

GLB). To see this, note that if agent i has a higher GLB than j, then agent j is guaranteed to

lose the game given an outcome in the interval between his GLB and agent i’s GLB. Hence, j

would prefer to shift some of this mass down to 0, and the remainder to outcomes that give him

a chance of winning, resulting in a strategy with a gap. Thus, all agents’ supports must have the

same GLB. If this GLB were greater than 0, then any agent would prefer to shift mass from a

neighborhood of that GLB down to 0 in order to reallocate other mass to higher outcomes (the

formal argument here is similar to that made in Lemma 6).
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We are now ready to present the main result of this subsection.

Theorem 2 Given (A1) and (A2), the unique equilibrium of the equal-budget game is the sym-

metric equilibrium described in Theorem 1.

Proof Suppose, for the sake of contradiction, that an equilibrium that is not symmetric exists.

In this equilibrium, consider any two agents with different strategies and denote their chosen

lotteries by F and G. Denote the distribution of the maximum outcome of all other agents by

H. Let hF and hG denote the least upper bounds of the supports of F and G, respectively. (By

Lemma 4, equilibrium strategies must always have an upper bound.) Assume without loss of

generality that hF ≤ hG. Because of (A1) and Lemma 7, we know that every agent i’s support

has the form [0,hi]. Also, Fi is continuous because Fi is a nondecreasing function and (A2) rules

out mass points. Since F−i is the product of continuous functions, F−i is continuous as well (note

that here F−i for the agent playing lottery F is the product of G and H). Finally, (A2) implies that

F−i(0) = 0. Hence, for the agent playing lottery F , we can apply Lemma 3 to obtain

(x−0)G(hF)H(hF)+(hF − x)G(0)H(0) = (hF −0)G(x)H(x)

Using the fact that G(0)H(0) = 0, we obtain:

G(x)H(x) = c1x

for some positive c1. Similarly,

F(x)H(x) = c2x

for some positive c2. Combining these conditions, we obtain that for x in [0,hF ],

F(x) =
c2

c1
G(x) (7)

Now suppose that hF < hG. Because supports have no gaps by (A1), it must be that G(hF) < 1.

Hence, in order for F(hF) = 1 to hold, we need

c2

c1
> 1

It follows that G first-order stochastically dominates F on [0,hG]. This entails that G has a higher

expectation, which contradicts our premise that all agents have equal budgets. Therefore, hG =

hF . It follows that all agents’ lotteries must have identical supports [0,h]. However, by (7),

F(h) =
c2

c1
G(h)

Since F(h) = G(h) = 1, it must be that c1 = c2. This means that F equals G, contrary to the

initial assumption that they were unequal. It follows that any equilibrium must be symmetric. But

Theorem 1 tells us that there is only a single symmetric equilibrium.
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3.4 Technical perspective

Earlier in the paper, we insisted that distributions over outcomes are to be thought of as pure,

not mixed, strategies. In particular, there is no requirement that a player should be indifferent

between two outcomes on which he puts positive probability—in fact, usually, the player would

strictly prefer to end up with the larger one. However, a different perspective, one that treats a

player’s choice of distribution more similarly to how the choice of a mixed strategy is typically

treated in game theory, is the following. It is only because of the budget constraint that a player

would put positive probability on two different outcomes that result in different winning proba-

bilities. Without this constraint, naturally, the player would only place probability on outcomes

that maximize his winning probability. Thus, whereas usually in game theory, a player’s choice

of mixed strategy (in response to an opponent’s strategy) is an optimization problem without con-

straints (other than the probability constraint), here the player faces an additional constraint. We

will show how to model the best-response problem as a linear program, and from this we can

conclude that the outcomes that can get positive probability in a best response are the ones that

correspond to a tight dual constraint.

For simplicity, let us discretize the outcome space into a finite set X ⊆ R≥0. Letting fi(x)

denote the probability that i places on x, and letting F−i(x) denote the probability that i wins if i

obtains outcome x, we can formulate the best-response problem for player i (solving for fi based

on F−i) as the following linear program:

maximize ∑x∈X F−i(x) fi(x)

subject to

∑x∈X fi(x)≤ 1

∑x∈X x fi(x)≤ bi

The dual of this linear program is as follows:

minimize α +biβ

subject to

(∀x ∈ X)α + xβ ≥ F−i(x)

Which of the two primal constraints are binding depends on F−i(x). For example, suppose

that the other players have lower budgets than i and do not gamble, so that F−i(x) = 1 for x > b/2

(and F−i(x) < 1 for x ≤ b/2). If this is the case, then the first primal constraint (the probability

constraint) is binding; an optimal dual solution with value 1 is obtained by setting α = 1,β = 0,

and optimal primal solutions place all of their mass on outcomes above b/2. By complementary

slackness, the only values x for which fi(x) can be set to nonzero values in an optimal solution

are the ones for which the corresponding dual constraint is tight, that is, F−i(x) = α + xβ = 1.

This corresponds to the standard game-theoretic idea of only putting probability mass on best

responses, that is, outcomes x that maximize F−i(x).
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In contrast, suppose that F−i(x) = ax (for x≤ 1/a) for some a, as has been the case earlier in

this paper. In this case, the second primal constraint (the budget constraint) is binding; an optimal

dual solution with value abi is obtained by setting α = 0,β = a, and optimal primal solutions

place all of their mass on outcomes at or below 1/a. Again, by complementary slackness, the

only x for which fi(x) can be set to nonzero values in an optimal solution are the ones for which

the corresponding dual constraint is tight, that is, F−i(x) = α +xβ = ax. In this case, this includes

all x up to 1/a.

In general, both primal constraints can be binding. For example, suppose that F−i(b/2) = 1/2

and F−i(2b) = 1 (and that other choices are either impossible or clearly suboptimal, for example

by making F−i as low as possible elsewhere). Then, the unique optimal primal solution is to

put probability 2/3 on b/2 and 1/3 on 2b, resulting in a total probability of winning of 2/3. The

unique optimal dual solution is to set α = 1/3, β = 1/(3bi). Again, by complementary slackness,

the only x for which fi(x) can be set to nonzero values in an optimal solution are the ones for

which the corresponding dual constraint is tight, that is, F−i(x) = α + xβ = 1/3+ x/(3bi).

Often, in game theory, when solving for an equilibrium, we try to make one player indifferent

among multiple pure strategies by setting the other players’ mixed strategies appropriately. We

can think of the results in this paper in a similar way: we try to make the dual constraints for

multiple outcomes x tight by setting the other players’ distributions appropriately. As we have

already seen in the second example above, we can make the dual constraints tight for all outcomes

(up to 1/a) by ensuring F−i(x) = ax.

4 Costly budgets

In this section, we study a variant in which agents can choose their budgets at the beginning of the

game, and each budget comes at a cost. After the budgets have been chosen, the game proceeds

as before. This variant is especially natural in many real-world applications, where agents must

make some initial investment. For instance, a game can model an R&D competition between two

risk-neutral firms: to improve their product, each firm can choose to pursue various technologies,

each of which bears a different cost. The chosen technology stochastically determines the final

product quality, and the firm with the highest realized product quality wins the entire market.

Specifically, the game proceeds as follows. In the first period, agents choose their budgets bi; in

the second period, they choose their lotteries Fi (whose expectation must equal bi); and in the

third period, outcomes are drawn from the lotteries and the winner is determined. An agent’s

utility is −bi if he does not win, and D− bi if he does win, where D is a constant (e.g. , the

benefit from winning the market). Agents maximize their expected utilities. We only consider the

2-agent case.

To solve this game, we apply backward induction. Suppose agent i has chosen budget bi in

the first period. To solve the subgame starting at the second period, we make use of the equi-
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librium derived in Example 2 (which, by the work of Dulleck et al. [2006], is unique). Assume

without loss of generality that b1 ≤ b2. (Even though the game is symmetric at the beginning, the

agents may choose different budgets in the first period.) From Example 2, we know that it is an

equilibrium for agent 1 to select lottery F1(x) = 1− b1/b2 +(b1/b2)(x/2b2) and for agent 2 to

select lottery F2(x) = x/2b2, both with supports [0,2b2]. (In fact, these are minimax strategies.)

Given this, we can analyze the first period. Since the game is symmetric between agents at this

point, it will suffice to focus on agent 1. Given that agent 2 has decided on budget b2 > 0, agent

1’s expected utility as a function of b1 is given by

E[u1(b1,b2)] =





b1
2b2

D−b1 if b1 ≤ b2

(1− b2
2b1

)D−b1 if b1 > b2

When b1 ≤ b2, agent 1’s expected utility is linear in b1. Hence, he will choose to set b1 ≥ b2

whenever D > 2b2. Furthermore, by differentiating the expected utility function when b1 > b2,

it can be shown that b1 =
√

b2D/2 maximizes expected utility, given that D > 2b2. (We note

that in this case, indeed, b1 =
√

b2D/2 > b2.) Moreover, he will choose to set b1 = 0 whenever

D < 2b2, because in this case, any other budget will give him a negative expected utility. Finally,

when D = 2b2, any b1 ∈ [0,D/2] is optimal. To summarize, agent 1’s (set-valued) best-response

function is

b1(b2) =





{0} if b2 > D
2

[0, D
2 ] if b2 = D

2

{
√

b2D
2 } if 0 < b2 < D

2
We note that if b2 = 0, agent 1 would want to choose an infinitesimally small budget in order

to win, so the best response is not well-defined in this case. Figure 3 shows the agents’ best-

response curves. (To eliminate any chance of confusion, we note that the variables on the axes

b1
D/2

D/2

b2(b1)

b1(b2)

b2

Fig. 3: Best-response curves in budget selection stage

of this graph are budgets, not probabilities; this graph is not intended to show mixed-strategy

equilibria.) The best-response curves intersect at (D/2,D/2). The unique subgame perfect pure-

strategy equilibrium of this game is thus for both agents to choose a budget of D/2 in the first
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period, and select the uniform lottery over [0,D] in the second. Each agent’s expected utility is

0 in equilibrium. This is reminiscent of the equilibrium of a common-value sealed-bid all-pay

auction, where both agents choose their bids uniformly at random from [0,D] (where D is the

common value), leading to an expected utility of 0 for each agent. We emphasize that while the

equilibria are similar, the games are quite different.8

5 Private budgets

In this section, we consider an incomplete-information setting, where agents do not know the

other agents’ budgets. We consider the n-agent case, but do not consider the possibility of costly

budgets. Suppose that for every j∈{1, ...,n}, agent j’s (nonnegative) budget is selected by Nature

according to some commonly known prior, described by the CDF Wj(b). Thus, this is a Bayesian

game, and we will use Bayes-Nash equilibrium as our solution concept. Suppose that agent j 6= i

chooses lottery G j
b when endowed with budget b, and consider agent i’s problem. Given bi, agent

i selects lottery F to maximize
∫ ∞

0
...

∫ ∞

0
∏
j 6=i

G j
b j

(x)dF(x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)

subject to
∫ ∞

0 xdF(x) = bi. Since agent i’s expected utility is bounded by 1, Fubini’s Theorem

allows us to change the order of integration above, which is thus equivalent to
∫ ∞

0

[∫ ∞

0
...

∫ ∞

0
∏
j 6=i

G j
b j

(x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)
]
dF(x)

(8)

Here, the bracketed expression in (8) gives the cumulative distribution over the maximum out-

come of all agents other than i, evaluated at x. Hence, the bracketed term has a role that is analo-

gous to the role of F−i(x) earlier in the paper: whereas before the uncertainty derived only from

the other agents’ strategies, now it derives both from the other agents’ strategies and from Na-

ture’s choice of their budgets. In order to use our previous techniques for deriving equilibria,

we would need this expression to be proportional to x. This is illustrated by the following two

examples of prior distributions and corresponding strategies that constitute symmetric equilibria:

1. Consider the two-agent game with identical prior W = U [0,h] for some h > 0. One equi-

librium is for both agents to acquire the degenerate lottery at b when endowed with a budget b.

(This is because given these strategies, the distribution over the other agent’s outcome is uniform

over [0,h], hence any strategy that uses only outcomes in [0,h] is a best response.)

2. For some b > 0, let bL = 1
2 b and bH = 3

2 b. In a two-agent game with an identical prior

P(bi = bL) = 1
2 and P(bi = bH) = 1

2 , i ∈ {1,2}, the strategy that chooses U [0,b] when bi = bL

8 In fact, our game guarantees a total investment of D across agents, whereas an all-pay auction does not.
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and U [b,2b] when bi = bH , constitutes a symmetric equilibrium. (This is because given these

strategies, the distribution over the other agent’s outcome is uniform over [0,2b], hence any strat-

egy that uses only outcomes in [0,2b] is a best response.)

More generally, a strategy profile G∗ = (G∗1, ...,G∗n), for which for every i ∈ {1, ...,n} the

bracketed term in (8) is proportional to x for all x that are used in i’s supports, constitutes an

equilibrium. This is because, as in the complete-information case, the objective function reduces

to the constraint for every agent. Hence, any strategy that satisfies the constraint is a best response,

including that suggested by G∗. For example, if the prior over all agents’ budgets is W , with

expectation k, then a strategy G that satisfies
∫ nk

0
Gb(x)dW (b) = (nk)−

1
n−1 x

1
n−1 (9)

for all x ∈ [0,nk], constitutes a symmetric equilibrium. In order to obtain such a strategy, we need

to be able to transform the prior distribution W into another distribution. Specifically, we need

strategy G to map budgets in the support of the prior W to fair lotteries, so that the ensuing (ex-

pected) distribution over outcomes is as in (9). Let us say that prior CDF W is transformable into

another CDF J if there exists a strategy G such that the ensuing distribution is J. The following

theorem provides necessary conditions for a prior W to be transformable into a CDF J.

Theorem 3 Consider a CDF W and a CDF J, with supports contained in R≥0. Suppose that W

is transformable into J. Then for any b in the support of W, the following two inequalities must

hold:9 ∫ b
0 xdW (x)≥ ∫ J−1(W (b))

0 xdJ(x), and
∫ ∞

b xdW (x)≤ ∫ ∞
J−1(W (b)) xdJ(x).

Specifically, consider the case where the prior over each agent’s budget is W , with expectation

k. In order for there to exist a strategy G that satisfies
∫ nk

0 Gb(x)dW (b) = (nk)−
1

n−1 x
1

n−1 for all

x∈ [0,nk] (and hence constitutes a symmetric equilibrium), Theorem 3 tells us that for any budget

b in the support of W , it is necessary that EW [x|0 ≤ x ≤ b] ≥ k(W (b))n−1 and EW [x|x > b] ≤
k ∑n−1

j=0(W (b)) j. It is an open question whether these conditions are also sufficient for the strategy

to be transformable in the desired way. However, the following theorem does provide a (more

limited) sufficient condition:

Theorem 4 Consider a 2-agent private-budget game in which both agents’ budgets are dis-

tributed according to a commonly known CDF W with expectation k. If the support of W is a

subset of [k/2,3k/2], then W is transformable into U [0,2k] (and hence a symmetric equilibrium

exists).

The proofs of Theorems 3 and 4 are in the appendix. Intuitively, if the support of W is a

subset of [k/2,3k/2], then given any budget, an agent can choose a fair lottery over outcomes

9 If J has mass points, then J−1(W (b)) is not necessarily defined. In this case,
∫ J−1(W (b))

0 xdJ(x) should be

interpreted to integrate x only over the lowest W (b) mass of J. Letting y be the point such that J(y) > W (b) and

J(y− ε) < W (b) for all ε > 0, a more precise expression would be
∫ y

0 xdJ(x)− (J(y)−W (b))y. The interpretation

of
∫ ∞

J−1(W (b)) xdJ(x) is similar.
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k/2 and 3k/2. Since W has expectation k, choosing such lotteries results in a mass of 1/2 at

each of these outcomes. The agent can subsequently select lottery U [0,k] given outcome k/2, and

U [k,2k] given outcome 3k/2. The resulting distribution over outcomes is U [0,2k].

6 Conclusions

We studied the following game: each agent i chooses a lottery over nonnegative numbers whose

expectation is equal to his budget bi. The agent with the highest realized outcome wins (and

agents only care about winning). We began by solving a few examples. Then, we studied the case

where each agent has the same budget. We showed that there is a unique symmetric equilibrium,

in which each agent chooses a lottery that randomizes over a continuum of monetary outcomes.

The expectation of the highest realized outcome in this equilibrium is within a factor 2 of what a

social planner could obtain if the goal were to maximize the expectation of the highest realized

outcome. We also showed that under some restrictions on the lotteries, the symmetric equilibrium

is the unique equilibrium of the equal-budget game.

We proceeded to study variants of the basic game. First, we studied a game in which agents

first choose their budgets, which come at a cost. We found the unique pure-strategy subgame

perfect equilibrium of this game, which gives the agents an expected utility of 0. Then, we intro-

duced an incomplete-information model in which agents do not know the other agents’ budgets.

We showed that our complete-information techniques can be applied to this setting if it is possible

to transform the prior over budgets into the appropriate distribution over outcomes. We gave a

necessary condition as well as a (more restrictive) sufficient condition for this to be possible.

Future research can take a number of specific technical directions. The most obvious di-

rections are to extend our results to the setting of unequal budgets, as well as to investigate

whether the symmetric equilibrium is the unique equilibrium of the equal-budget game (without

any restrictions on the lotteries). Another important direction is to consider lottery spaces that

are restricted (for example, allowing only lotteries over a discretized space), or extended with

unfair lotteries. Even more generally, we can allow agents to choose lotteries that are correlated

with each other. Yet another direction is to consider versions of these games in which agents

may observe other agents’ budgets over time. We can also consider different utility functions: for

example, the agent may derive some utility from coming in second place. Finally, in the private-

budgets setting, we left as an open question whether our necessary condition is also sufficient.

There are many more open-ended modeling questions for future research. Specifically, it would

be desirable to model other important aspects of applications such as R&D and patent races.

(Section A in the appendix studies a variant of the model where agents must surpass a minimum

necessary outcome in order to win. This variant can be used to model innovation games where

there is an existing patent.) Specific examples include increasing dominance, barriers to entry,

optimal patent regulation, and mergers of R&D departments or joint research.
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APPENDIX

A Adding a minimum outcome requirement

In this section, we add one feature to the basic equal-budget game from Section 3: in order to win,

agents must end up with an outcome that is at least as high as some threshold. In other words,

the winning agent must obtain the highest outcome among all agents, as well as reach or exceed

some minimum outcome. If no agent reaches this threshold, then no agent receives anything. (We

note that the game is no longer zero-sum.) Let us denote this threshold by r, where r > 0. For

example, in a stock trading competition, there may be a specification that if a contestant does

not outperform a risk-free asset, then the contestant cannot win. Under the R&D interpretation, r

represents the existing product quality in the market (a ”reserve” quality), a quality that research

departments must improve upon to generate any business value. In an innovation tournament or

in a patent race, r represents the breadth of the current patent on some product.10 To be able to

register a new patent, innovators must reach a level of innovation that surpasses the breadth of the

current patent. (For technical simplicity, we assume that an innovation of quality exactly r can be

registered.)

We wish to solve for the symmetric equilibrium of this modified equal-budget game. We will

make use of the following observations. First, it is never in agents’ interest to select lotteries that

place mass on outcomes in (0,r). This is because outcomes in this interval can never lead to

winning, so an agent would always be better off reallocating mass from this interval to 0 and to

outcomes larger than r. Second, Lemmas 3, 4, and 6 still hold in this context. Moreover, Lemma

3 can be extended to hold at 0 even when F−i is discontinuous there, because outcomes close to

0 can never lead to winning when r > 0. Third, Lemma 5 also holds, but only over outcomes that

are at or above r. Agents may have a mass point at 0.

A.1 The two-agent equal-budget game with a minimum necessary outcome

Let us begin by solving for the symmetric equilibrium of the two-agent equal-budget game. By

the above discussion, for some h ≥ r, the support of the symmetric strategy will be contained in

{0}∪ [r,h]. (Let h be the smallest number for which this holds.) The next lemma shows that r

must be in the support.

Lemma 8 Consider the equal-budget game with a minimum necessary outcome of r. Suppose

that the strategy profile in which all agents play F constitutes a symmetric equilibrium. Let S

denote the support of F, and let l be the greatest lower bound of S−{0}. Then l = r.

10 Gilbert and Shapiro [1990], Gallini [1992], van Dijk [1996], Denicolò [1996], and Denicolò [2000] study the

optimal selection of patent breadth (among other properties) given that firms compete in quality improvement. A

more general discussion of incentive properties of mechanisms for intellectual property is given by Gallini and

Scotchmer [2001].
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The proof of Lemma 8 is in Section B of the appendix. Intuitively, the reason for this result is

as follows. Suppose l > r. Then, outcomes in a close neighborhood of l have a significant chance

of leading an agent to winning only if all other agents obtain outcome 0. Because of this, outcome

r provides almost the same probability of winning as these outcomes. Thus, shifting mass from a

neighborhood of l to r does not have a large impact on an agent’s probability of winning, while it

allows the agent to shift some mass to higher outcomes. For sufficiently small neighborhoods of

l, doing so increases the agent’s probability of winning. Therefore, r must be the greatest lower

bound of S−{0}.

Lemmas 3, 5, and 8 imply that any symmetric equilibrium strategy has the form F(x) = a+cx

over [r,h], where a and c are positive constants. Furthermore, this strategy may place a mass m > 0

at 0 (so that F(r) = m). The following claim establishes that for x ∈ [r,h], F(x) must lie on a line

originating from the origin.

Claim In the two-agent equal-budget game with a minimum necessary outcome of r, there is

some c so that for x ∈ [r,h], F(x) = cx. (That is, a = 0.)

Proof Suppose on the contrary that a > 0. Let x1 = r, x2 = x ∈ (r,h), and x3 = h. Applying the

result of Lemma 3 and substituting for F (using F = a+ cx) gives

x(1−m)+hm = ha+hcx+ r− ra− rcx (A-1)

Now set x1 = 0, keeping x2 = x ∈ (r,h) and x3 = h. Applying the result of Lemma 3 again and

substituting for F as before gives

x(1−m)+hm = ha+hcx (A-2)

Combining equations (A-1) and (A-2), we obtain 1 = a + cx for all x ∈ (r,h) (where a and c are

constants). Moreover, h > r holds since the budget b is positive and F is continuous on [r,h].

Hence, it follows that c = 0, implying F(0) = 1. This contradicts agents having positive budgets.

Since F(r) = m and since F(x) = cx over [r,h], we have m = cr. In addition, since F(h) = 1,

we have that h = c−1. Finally, the budget constraint requires
∫ c−1

r xdF(x) = b. Substituting for

F in the constraint and rearranging, we obtain c =
√

b2+r2−b
r2 . Since F(0) = F(r) = cr, we have

F(x) =
√

b2+r2−b
r for 0≤ x ≤ r. We also have h = c−1 = r2√

b2+r2−b
. Thus, the unique candidate

symmetric equilibrium strategy is for each agent to select the lottery specified by

F(x) =





√
b2+r2−b

r if 0≤ x < r
√

b2+r2−b
r2 x if r ≤ x≤ r2√

b2+r2−b

1 if x > r2√
b2+r2−b

(A-3)

It remains to verify that (A-3) indeed constitutes an equilibrium strategy. To check this, sup-

pose agent 1 employs strategy F . Given this, agent 2 would not find it optimal to place mass

on outcomes higher than c(b,r)−1. Thus, agent 2’s problem is to choose lottery F2 to maximize
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∫ c(b,r)−1

r F(x)dF2(x) = c(b,r)
∫ c(b,r)−1

r xdF2(x) subject to
∫ c(b,r)−1

0 xdF2(x) = b. For any F2 that

satisfies the constraint and places no mass on (0,r),
∫ c(b,r)−1

r xdF2(x) equals b, so the objective

becomes c(b,r) · b. Hence, any such F2 is a best response, including F . Figure 4 shows how the

symmetric equilibrium strategy varies as r increases.

Outcome

1

Cumulative Density

r=0 r=20r=10r=5

0.5

0.75

0.25

Fig. 4: Cumulative distribution of symmetric equilibrium strategies for different values of r,

given equal budgets b = 5.

We can observe the following facts about the equilibrium strategies from (A-3) and Figure

4. First, as r approaches 0, c−1(b,r) approaches 2b, so that we converge to the equilibrium of

Example 1. Second, c(b,r) is decreasing in r, so that, as r grows larger, the cumulative distribution

of the lottery chosen over outcomes larger than r becomes flatter. Meanwhile, the mass m at 0

approaches 1. Thus, the equilibrium strategy becomes ever riskier as r increases.

A.2 The n-agent equal-budget game with a minimum necessary outcome

We now extend the equilibrium result to n agents.

Theorem 5 In the n-agent equal-budget game with a minimum necessary outcome of r, the

unique symmetric equilibrium strategy is for each agent to play F described by

F(x) =





m(b,r) if x < r

(c(b,r)x)
1

n−1 if x ∈ [r,(c(b,r))−1]

1 if x > (c(b,r))−1

where m(b,r)= (c(b,r)r)
1

n−1 and c(b,r) is implicity and uniquely defined by 1
n (c−1−c

1
n−1 r

n
n−1 )=

b.

Proof As in the two-agent game, the symmetric equilibrium strategy F will have support in

{0}∪ [r,h], where h > r is some least upper-bound, which exists by Lemma 6. The support is
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contained in this set because outcomes in (0,r) can never lead to winning, and an agent is better

off redistributing mass over this interval to 0 and outcomes greater than r. Now, for a given i,

Lemmas 3, 8, and 5 imply that that over [r,h], F−i = Fn−1 takes the form Fn−1(x) = a + cx,

where a and c are positive constants. Let m ≥ 0 denote the mass F places at 0. Then by Lemma

5, Fn−1(0) = F−i(r) = mn−1. The following claim establishes that Fn−1(x) must lie on a line

originating from the origin.

Claim In the n-agent equal-budget game with a minimum necessary outcome, the symmetric

equilibrium strategy F , with Fn−1(x) = a+ cx over [r,h], has intercept 0. Hence, a = 0.

The proof follows a similar argument to the one made above in the two-agent game with a min-

imum necessary outcome. It follows that F(x) = (cx)
1

n−1 over [r,h]. From F(h) = 1 we obtain

h = c−1. Also, from Fn−1(r) = mn−1 we obtain

m = (cr)
1

n−1 (A-4)

Finally, the budget constraint requires
∫ c−1

r
xdF(x) = b (A-5)

Substituting for F in (A-5) we obtain

1
n
(c−1− c

1
n−1 r

n
n−1 ) = b (A-6)

Equality (A-6) implicitly and uniquely defines11 c(b,r), whereas m(b,r) = (c(b,r)r)
1

n−1 from (A-

4). The candidate symmetric equilibrium strategy is for each agent to select the lottery specified

by

F(x) =





m(b,r) if x < r

(c(b,r)x)
1

n−1 if x ∈ [r,(c(b,r))−1]

1 if x > (c(b,r))−1

(A-7)

By construction, the specification in (A-7) provides the unique candidate symmetric equilibrium

strategy. It remains to verify that (A-7) indeed constitutes an equilibrium strategy. To check this,

suppose all agents other than i employ strategy F . Given this, agent i would not find it optimal

to place mass on outcomes higher than c(b,r)−1. Then, agent i’s problem is to select lottery Fi to

maximize ∫ c(b,r)−1

r
F−i(x)dFi(x) = c(b,r)

∫ c(b,r)−1

r
xdFi(x)

subject to ∫ c(b,r)−1

r
xdFi(x) = b

Playing F is a best-response to F−i for agent i and thus F constitutes a unique symmetric equi-

librium strategy.

11 c(b,r) exists and is unique because the left-hand side of (A-6) is continuously decreasing in c, positive when c

is small, and negative when c is large.
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As in the two-agent game, it can be verified that c(b,r) is increasing in r. Also, as r ap-

proaches 0, c(b,r) approaches 1/nb, so that F becomes the unique symmetric equilibrium strat-

egy described in Theorem 1. Figure 5 shows how the symmetric equilibrium strategy changes as

n increases.

Outcome

Cumulative Density

1
2 3FF 4F F 5

0.5

0.75

0.875

0.625

20 3010
0

Fig. 5: Cumulative distribution of symmetric equilibrium strategies for different values of n,

given equal budgets b = 5 and r = 10.

Figure 5 resembles Figure 2 (where there is no minimum outcome requirement). One addi-

tional effect that the minimum outcome requirement introduces is that as n gets larger, the mass

that the equilibrium strategy places on 0 increases—in fact, this mass converges to 1 as n→ ∞.

B Omitted Proofs

Proof of Lemma 1:

If x1 = x2 or x2 = x3, the lemma is trivial, so suppose without loss of generality that x1 < x2 < x3.

The proof proceeds by contradiction. Suppose on the contrary that

(x2− x1)F−i(x3)+(x3− x2)F−i(x1) > (x3− x1)F−i(x2) (A-8)

Then
(x2− x1)
(x3− x1)

F−i(x3)+
(x3− x2)
(x3− x1)

F−i(x1) > F−i(x2) (A-9)

For any ε2 > 0, we have that

ε2
(x2− x1)
(x3− x1)

F−i(x3)+ ε2
(x3− x2)
(x3− x1)

F−i(x1) > ε2F−i(x2) (A-10)

Define ε1 by

ε1 = ε2
(x3− x2)
(x3− x1)
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Similarly, define ε3 by

ε3 = ε2
(x2− x1)
(x3− x1)

By definition, ε2 = ε1 + ε3 and ε1x1 + ε3x3 = ε2x2. Inequality (A-10) reduces to

ε1F−i(x1)+ ε3F−i(x3) > ε2F−i(x2) (A-11)

There are now two possible scenarios:

(i) If Fi has positive mass at outcome x2, that is, there is a positive probability that i will get exactly

x2, then the contradiction follows immediately: setting ε2 to equal this mass, inequality (A-11)

implies that agent i would be better off redistributing ε2 to outcomes x1 and x3. The definitions of

ε1 and ε3 ensure that i would be shifting mass in a way that satisfies his budget constraint.

(ii) If Fi has no mass at outcome x2, we can still show that agent i has a profitable deviation by

gathering up mass in a neighborhood12 of x2 for which inequality (A-8) holds, and redistributing

this mass to outcomes x1 and x3 in a mean-preserving way. We now show this formally. Define θ

by

θ =
(x2− x1)
(x3− x1)

F−i(x3)+
(x3− x2)
(x3− x1)

F−i(x1)−F−i(x2) (A-12)

θ > 0 by inequality (A-9). Continuity of F−i implies that for any ε > 0, there exists a ν > 0, such

that for |x− x2|< ν , |F−i(x)−F−i(x2)|< ε . Let

ε =
θ
2

δ = min{1
2

ν ,ε(x3− x1)} (A-13)

and

ψ = Fi(x2 +δ )−Fi(x2−δ ) (A-14)

Since x2 is in the support of Fi and δ > 0, Fi has positive mass over [x2−δ ,x2 +δ ]. Thus, ψ > 0.

Define φ by

ψ(
(x3− x2)
(x3− x1)

+φ)x1 +ψ(
(x2− x1)
(x3− x1)

−φ)x3 =
∫ x2+δ

x2−δ
xdFi(x) (A-15)

φ is the adjustment required in the coefficients of x1 and x3 (which correspond to ε1 and ε3) in

order to ensure that the budget constraint is preserved after redistributing mass from [x2−δ ,x2 +

δ ] to x1 and x3 (φ could be negative). By definition,

(
(x3− x2)
(x3− x1)

+φ)x1 +(
(x2− x1)
(x3− x1)

−φ)x3 ≥ x2−δ (A-16)

Furthermore,
x3− x2

x3− x1
x1 +

x2− x1

x3− x1
x3 = x2 (A-17)

Combining (A-13)-(A-17) and using the definition of δ , we obtain

φ ≤ δ
x3− x1

≤ ε (A-18)

12 By neighborhood of x2, we refer to a closed interval that contains x2 in its interior.
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Utilizing the above construction, we have that

ψ(
(x3− x2)
(x3− x1)

+φ)F−i(x1)+ψ(
(x2− x1)
(x3− x1)

−φ)F−i(x3)

= ψ
(x3− x2)
(x3− x1)

F−i(x1)+ψ
(x2− x1)
(x3− x1)

F−i(x3)−ψφ(F−i(x3)−F−i(x1))

≥ ψF−i(x2 +δ )

>
∫ x2+δ

x2−δ
F−i(x)dFi(x)

(A-19)

The first inequality follows from (A-12), whereby F−i(x2) = (x2−x1)
(x3−x1) F−i(x3)+

(x3−x2)
(x3−x1) F−i(x1)−2ε ,

and from continuity of F−i at x2. We also make use of φ ≤ ε , which was obtained in (A-18), and of

the fact that F−i(x3)−F−i(x1)≤ 1. The second inequality follows from the definition of ψ . Lastly,

the budget constraint is preserved by (A-15). Thus, the inequalities in (A-19) imply that agent i

is better off redistributing mass from [x2−δ ,x2 +δ ] to outcomes x1 and x3, which contradicts Fi

being i’s best-response to F−i. The lemma follows.

Proof of Lemma 2:

If x1 = x2 or x2 = x3, the lemma is trivial, so suppose without loss of generality that x1 < x2 < x3.

The proof proceeds by contradiction. Suppose on the contrary that

(x2− x1)F−i(x3)+(x3− x2)F−i(x1) < (x3− x1)F−i(x2)

Then
(x2− x1)
(x3− x1)

F−i(x3)+
(x3− x2)
(x3− x1)

F−i(x1) < F−i(x2) (A-20)

For any ε2 > 0, we have that

ε2
(x2− x1)
(x3− x1)

F−i(x3)+ ε2
(x3− x2)
(x3− x1)

F−i(x1) < ε2F−i(x2) (A-21)

Define ε1 by

ε1 = ε2
(x3− x2)
(x3− x1)

(A-22)

Similarly, define ε3 by

ε3 = ε2
(x2− x1)
(x3− x1)

(A-23)

By definition, ε2 = ε1 + ε3 and ε1x1 + ε3x3 = ε2x2. Inequality (A-21) reduces to

ε1F−i(x1)+ ε3F−i(x3) < ε2F−i(x2) (A-24)

There are now four possible scenarios:

(i) If Fi has positive mass at outcomes x1 and x3, then the contradiction follows immediately,

as agent i would be better off shifting some mass to outcome x2 by (A-24). The construction

of ε1, ε2, and ε3 ensures that mass can be redistributed in a way that preserves agent i’s budget

constraint (e.g. if Fi has mass m1 at x1 and m3 at x3, then let ε2 = min{ x3−x1
x3−x2

m1,
x3−x1
x2−x1

m3}. Define
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ε1 and ε3 as in (A-22) and (A-23). This ensures that ε1 ≤ m1 and ε3 ≤ m3). The contradiction

follows.

(ii) If Fi has no mass at both outcomes x1 and x3, we can still show that agent i has a profitable

deviation by gathering up mass in neighborhoods of x1 and x3 and reallocating this mass to

outcome x2. We now show this formally. Since x1 and x3 are in the support of Fi, Fi has mass over

neighborhoods of these outcomes. Define θ by

θ = F−i(x2)− (x2− x1)
(x3− x1)

F−i(x3)− (x3− x2)
(x3− x1)

F−i(x1)

θ > 0 by (A-20). Continuity of F−i implies that for any ε > 0, there exist δ1 > 0 and δ3 > 0, such

that for |x− x1|< δ1 and |y− x3|< δ3, |F−i(x)−F−i(x1)|< ε and |F−i(y)−F−i(x3)|< ε . Let

ε =
θ
3

and

δ = min{1
2

δ1,
1
2

δ3,x3− x2,x2− x1,ε(x3− x1)}

Define M(Fi,x,ε) to be the distribution of outcomes in a neighborhood of x, derived from Fi,

that has total mass ε . (Technically, M(Fi,x,ε) would need to be normalized by a factor of 1/ε

in order to be a CDF.) By definition, the expectation of M(Fi,x,ε) is continuous in ε . Denote

this expectation by E[M(Fi,x,ε)] (This expectation is the upward pressure placed on the budget

constraint by M(Fi,x,ε)). Define m1(t) by

m1(t) = Fi(x1 +
δ
2t )−Fi(x1− δ

2t )

In words, m1 denotes mass taken in the δ/2t neighborhood of x1. Also, define ψ(t) by

ψ(t) =
∫ x1+ δ

2t

x1− δ
2t

xdFi(x)

ψ(t) denotes the upward pressure on the budget constraint added by probability mass distributed

over outcomes in this neighborhood. Since x1 < x2 < x3, continuity of E[M(Fi,x,ε)] implies that

for any t ≥ 0, there exists some mass m3(t) such that

ψ(t)+E[M(Fi,x3,m3(t))] = (m1(t)+m3(t))x2 (A-25)

We can now take t sufficiently high, so that M(Fi,x3,m3(t)) is distributed only over outcomes in

[x3− δ ,x3 + δ ]. Denote such t by T . We know T exists because x3 > x2 and because Fi has no

mass at x1, so that for sufficiently high t, m1(t) becomes arbitrarily small. From now on, we will

refer to m j(T ) by m j, j ∈ {1,3}, to ψ(T ) by ψ , and to M(Fi,x3,m3(T )) by M. By construction,

we have that

|ψ/m1− x1|< δ (A-26)

and

|E[M]/m3− x3|< δ (A-27)
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In order to perturb masses m1 and m3 so as to fit the setting of (A-24), define φ by

(m1 +φ)x1 +(m3−φ)x3 = (m1 +m3)x2 (A-28)

Note that φ can be negative. By (A-25)-(A-28), we have that

ψ−m1δ +φx1 +E[M]−m3δ −φx3 ≤ (m1 +m3)x2

Simplifying and rearranging, we obtain that

φ ≥−δ
m1 +m3

x3− x1

By construction of δ (which further implies that m1 +m3 ≤ 1), we have that

φ ≥−ε (A-29)

We are now ready to derive a contradiction. By inequality (A-24) and the definitions of δ and φ ,

we have that

(m1 +m3)F−i(x2)

> (m1 +φ)F−i(x1 +δ )+(m3−φ)F−i(x3 +δ )

= m1F−i(x1 +δ )+m3F−i(x3 +δ )−φ(F−i(x3)−F−i(x1))

(A-30)

Furthermore, because F−i(x3)−F−i(x1)≤ 1, by construction of ε , and by (A-29), (A-30) implies

that

(m1 +m3)F−i(x2) > m1F−i(x1 +δ )+m3F−i(x3 +δ ) (A-31)

Lastly, by definition of m1 and m3, it follows that

m1F−i(x1 +δ )+m3F−i(x3 +δ )

>

∫ x1+ δ
2T

x1− δ
2T

F−i(x)dFi(x)+
∫ x3+δ

x3−δ
F−i(y)dM(y)

(A-32)

Combining inequalities (A-31) and (A-32), we obtain

(m1 +m3)F−i(x2) >

∫ x1+ δ
2T

x1− δ
2T

F−i(x)dFi(x)+
∫ x3+δ

x3−δ
F−i(y)dM(y) (A-33)

Therefore, agent i would find it profitable to redistribute mass from neighborhoods of outcomes x1

and x3 to outcome x2 in a mean-preserving way, which contradicts the premise that Fi constitutes

a best response to F−i.

(iii and iv) In these scenarios, Fi has positive mass at either outcome x1 or x3 (but not at both

outcomes). In this case, we apply the same argument as in scenario (ii), with the exception that

we gather mass only around the outcome that has no mass. The lemma follows.
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Proof of Lemma 6:

Consider agent i. Since F constitutes a symmetric equilibrium, Corollary 1 tells us that both F

and F−i are continuous. Suppose on the contrary that l > 0. Continuity of F−i implies that for any

ε > 0, there exists a δ > 0 such that for |x− l| < δ , |F−i(x)−F−i(l)| = F−i(x) < ε (where we

make use of the fact that F−i(l) = 0). Let h denote the least upper bound of the support, which

exists by Lemma 4. Note that h > l and F−i(h) = 1 hold by continuity. We set ε = l/h. Consider

an upper neighborhood of l, [l, l +ψ ], where 0 < ψ < δ . Denote the probability mass spread over

[l, l +ψ] by εl , so that ∫ l+ψ

l
dF(x) = εl (A-34)

Note that εl > 0 by continuity of F and the fact that l is in the support. Also, we have that
∫ l+ψ

l
F−i(x)dF(x) < F−i(l +ψ)εl (A-35)

and

F−i(l +ψ) < ε (A-36)

where (A-36) holds since ψ < δ . Define εh by
∫ l+ψ

l
xdF(x)dx = εhh (A-37)

In words, εh is the probability mass that would need to be placed on outcome h when mass is

removed from [l, l +ψ], so as not to change the expected outcome of the lottery. Note that

εl(l +ψ) > εhh > εl l (A-38)

holds by definition of εh. Thus, εh > εl(l/h). Lastly, define ε0 by

ε0 = εl − εh (A-39)

We plan on reallocating mass from [l, l +ψ] to outcomes 0 and h. Specifically, we will shift mass

ε0 to outcome 0 and εh to outcome h. Conditions (A-37) and (A-39) ensure that the magnitude of

the mass and the budget constraint will be preserved. By reallocating this mass, agent i’s expected

utility changes by

εhF−i(h)−
∫ l+ψ

l
F−i(x)dF(x)

> εh− εlF−i(l +ψ) (A-40)

> εh− εlε

= εh− εl
l
h

> 0

The first two inequalities follow from (A-34)-(A-36). The equality follows from the definition of

ε , and the last inequality follows from (A-38). Hence, agent i possesses a profitable deviation,

which is in contradiction to the equilibrium assumption. Thus, l = 0.
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Proof of Lemma 8:

Let l denote the greatest lower bound of the support of F excluding 0. Then l ≥ r. Consider agent

i. Lemma 5 and the fact that F constitutes a symmetric equilibrium tell us that both F and F−i are

continuous over outcomes greater or equal to r. Suppose on the contrary that l > r. Continuity of

F−i over outcomes greater or equal to r implies that for any ε > 0, there exists a δ (ε) > 0 such

that for |x− l| < δ (ε), |F−i(x)−F−i(l)| < ε . Furthermore, F−i(r) = F−i(l) = mn−1, where m is

the mass F places at 0. Let h denote the least upper bound of the support, which exists by Lemma

4. Note that h > l and F−i(h) = 1 hold by continuity. We set

ε =
l− r
h− r

(1−mn−1)

In order to work with a neighborhood that is fully within the support, we define δ as follows:

δ = min{δ (ε),h− l}

Consider an upper neighborhood of l, [l, l + ψ ], where 0 < ψ < δ . Denote the probability mass

spread over [l, l +ψ ] by εl , so that

εl =
∫ l+ψ

l
dF(x) (A-41)

εl > 0 by continuity of F in this region and the fact that l is in the support. Also, we have that
∫ l+ψ

l
F−i(x)dF(x) < F−i(l +ψ)εl (A-42)

and

F−i(l +ψ) < ε +mn−1 (A-43)

where (A-43) holds since ψ < δ . Since r < l < l + ψ < h, there exist strictly positive εr and εh

such that

εrr + εhh =
∫ l+ψ

l
xdF(x)dx

and

εr + εh =
∫ l+ψ

l
dF(x)dx

In words, there exists a mean- and mass-preserving spread from [l, l + ψ] to outcomes r and h.

By definition,

εl(l +ψ) > εhh+ εrr > εl l

Substituting for εr = εl − εh, we obtain

εh >
l− r
h− r

εl (A-44)

By reallocating mass from [l, l + ψ] to outcomes r and h as described above, agent i’s expected

utility changes by

εhF−i(h)+ εrF−i(r)−
∫ l+ψ

l
F−i(x)dF(x)

> εh + εrmn−1− εlF−i(l +ψ)
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> εh + εrmn−1− εl(ε +mn−1)

= εh(1−mn−1)− εlε

= (1−mn−1)(εh− εl
l− r
h− r

)

> 0

The first two inequalities follow from continuity of F−i and (A-42)-(A-43). The next two

equalities follow from the definitions of εr, εh, and ε . The last inequality follows directly from (A-

44). Hence, agent i possesses a profitable deviation, which is in contradiction to the equilibrium

assumption. Thus, l = r.

Proof of Theorem 3:

Consider any b in the support of W and the probability W (b) of a budget at or below it. The

conditional expectation of this probability mass (i.e. the conditional expectation of W given that

the resulting budget is at or below b) is

(W (b))−1
∫ b

0
xdW (x)

Given a G that transforms W into J, all of the probability mass that W places on budgets at or

below b must correspond (i.e. get mapped by G) to probability mass in J. Moreover, by the budget

constraint, that mass in J must have the same conditional expectation. But a subset of the mass

of J with a total probability of W (b) must have a conditional expectation of at least

(W (b))−1
∫ J−1(W (b))

0
xdJ(x)

(because the mass in J with the lowest conditional expectation is the mass that is placed on the

smallest outcomes in the support). It follows that
∫ b

0
xdW (x)≥

∫ J−1(W (b))

0
xdJ(x)

Similarly, consider the probability mass that W places on outcomes greater than b (a total mass

of 1−W (b)). The conditional expectation of this mass is equal to

(1−W (b))−1
∫ ∞

b
xdW (x)

(Note that any mass at b should not be included in this integral.) Again, the mass must correspond

to mass in J, with the same conditional expectation. But a subset of the mass of J with a total

probability of 1−W (b) must have a conditional expectation of at most

(1−W (b))−1
∫ ∞

J−1(W (b))
xdJ(x)

(because the mass in J with the highest conditional expectation is the mass that is placed on the

largest outcomes in the support). It follows that
∫ ∞

b
xdW (x)≤

∫ ∞

J−1(W (b))
xdJ(x)
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Proof of Theorem 4:

For any budget b in the support of W , define p(b) by

k
2

p(b)+
3k
2

(1− p(b)) = b

So that

p(b) =
3k−2b

2k

Note that p(b) ∈ [0,1] because b ∈ [k/2,3k/2]. Now, consider the following compound (fair)

lottery Fb:

1. Choose the lottery that with probability p(b) generates outcome k/2, and with probability

1− p(b) generates outcome 3k/2.

2. If outcome k/2 was generated, then subsequently choose the lottery U [0,k]. If outcome 3k/2

was generated, then subsequently choose the lottery U [k,2k].

Suppose agent i plays Fb given budget b. Since k is the expectation of W and strategy Fb

involves only fair lotteries, agent i must play U [0,k] with probability 1/2 and U [k,2k] with prob-

ability 1/2 (so that the overall expected budget outcome equals k). Therefore, the distribution

over agent i’s outcome is U [0,2k].

C An alternative method to derive Theorem 1:

In this section, we provide an alternative proof of Theorem 1 (the symmetric equilibrium strategy

and its uniqueness) using results from common-value all-pay auctions along with some of the

intermediate results that we proved before Theorem 1 (for a review of the common-value all-pay

auction literature, see Baye et al. [1996]).

Consider a common-value all-pay auction whose prize is nb (this prize is chosen so that

the supports of the equilibrium strategies in the two games will coincide). We will show that

F is a symmetric equilibrium strategy of our game (with budget b for each agent) if and only

if it is a symmetric equilibrium strategy of this common-value all-pay auction. It is known that

the common-value all-pay auction has a unique symmetric equilibrium [Baye et al., 1996], so

Theorem 1 follows.

First, we prove the easier direction: if F is a symmetric equilibrium strategy in the common-

value all-pay auction, then it is a symmetric equilibrium strategy in our game. The unique equi-

librium strategy of the common-value all-pay auction is known to have expectation b, so it is a

valid strategy in our game. Moreover, if there were a beneficial deviation from this strategy in our

game, then it would also constitute a beneficial deviation in the common-value all-pay auction,

because the player would obtain a higher probability of winning with the same expected payment;

but this is contrary to the assumption that F is an equilibrium strategy of the common-value all-

pay auction.
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Now, we will prove the more difficult direction: if F is a symmetric equilibrium strategy

of our game, then it is a symmetric equilibrium strategy of the common-value all-pay auction

with prize nb. We will show this as follows. Suppose, for the sake of contradiction, that G is a

beneficial deviation (in the common-value all-pay auction setting) when everyone plays F . We

will derive a strategy H such that H is also a beneficial deviation, but E(H) = E(F) = b. (Here,

E[F ] refers to the expectation of a random variable distributed according to F .) Hence, H is a

valid strategy in our game, and it will give a higher probability of winning than F when everyone

else plays F , contrary to the assumption that F is a symmetric equilibrium strategy of our game.

All that remains to do is to show how to construct H.

Since E[F ] = b, playing F in the common-value all-pay auction (when everyone else does

so as well) yields an expected utility of nb(1/n)− b = 0. By Corollary 1, we know that F is

continuous. Let W (x) denote the probability that i wins given that i realizes outcome x, when all

other agents use F . If G constitutes a beneficial deviation, then there must exist an outcome x in

the support of F such that

(nb)W (x)− x > 0

Because W (x)≤ 1, we have x < nb.

First, suppose that x ≥ b. Let H be the lottery that places mass b/x at x and 1− b/x at 0;

its expectation is b, so it is a valid strategy in our game. If an agent plays H in our game when

everyone else plays F , then the agent wins with probability bW (x)/x. But we know bW (x)/x >

1/n, so it constitutes a beneficial deviation, contrary to the assumption that F is a symmetric

equilibrium strategy.

Now, suppose x < b. Let U denote the least upper bound of the support of F , which exists by

Lemma 4. We have that U > b (since the degenerate distribution at b is never a best response)

and, by continuity, W (U) = 1. Let α and β satisfy αx + βU = b and α + β = 1. Now, we let

distribution H place mass α at x and β at U , so that E(H) = b and thus H is a valid strategy

for our game. An agent’s expected utility from playing H in the common-value all-pay auction,

given that all other agents play F , is given by

α(nbW (x)− x)+β (nb−U) (A-45)

We note that the term on the left in (A-45) is positive. Furthermore, when U ≤ nb, the right term

in (A-45) is non-negative, so that (A-45) is strictly positive. In this case, the expectation of H

is equal to the expectation of F (which is b), so it follows that the probability of winning using

H is greater than the probability of winning using F (when everyone else uses F). Since H is a

valid strategy in our game, we obtain the desired contradiction. All that remains to show is that

U ≤ nb, which we prove below in Lemma 9. This completes the proof.

Lemma 9 Let F denote a symmetric equilibrium of the equal-budget game and let U denote the

least upper bound of its support. Then U ≤ nb.
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Proof Suppose on the contrary that U > nb. By Lemma 6, 0 is the greatest lower bound of the

support of F . It follows that F places positive probability mass on outcomes larger than nb, and

similarly, F places positive probability mass on outcomes in the neighborhood of 0. Since F is

a symmetric equilibrium strategy, the probability of winning (and subsequent expected utility)

from playing F is 1/n (when everyone else plays F). We will show that under the premise that

U > nb, there exists a beneficial deviation strategy.

Consider a probability mass εnb spread over some region [nb + φ ,nb + φ ′] , where 0 < φ <

φ ′ and nb + φ ′ < U . Continuity of F−i implies that for any ε > 0, there exists a δ > 0 such

that for |x− 0| < δ , |F−i(x)−F−i(0)| = F−i(x) < ε . Set ε = (1/n)(1−F−i(nb + φ ′)), so that

F−i(nb + φ ′) = 1− nε , and consider a neighborhood of 0, [0,ψ ], where 0 < ψ < δ . Denote the

probability mass spread over [0,ψ] by ε0, so that
∫ ψ

0
dF(x) = ε0

We note that ∫ ψ

0
F−i(x)dF(x) < F−i(ψ)ε0

and since ψ < δ ,

F−i(ψ) < ε

The weighted expectation of the regions over which ε0 and εnb are spread is given by
∫ ψ

0 xdF(x)+
∫ nb+φ ′

nb+φ xdF(x). Without loss of generality, we can assume that

∫ ψ

0
xdF(x)+

∫ nb+φ ′

nb+φ
xdF(x) > (ε0 + εnb)b (A-46)

If that is not the case, we can choose a smaller ψ (and correspondingly, ε0) such that (A-46)

is indeed satisfied. For such ψ , as we increase φ , εnb shrinks. We shrink εnb until ε0 becomes

sufficiently large relative to εnb that
∫ ψ

0
xdF(x)+

∫ nb+φ ′

nb+φ
xdF(x) = (ε0 + εnb)b (A-47)

We can then modify F into a distribution H that has the same expectation, as follows:

– Remove mass εnb from the region [nb+φ ,nb+φ ′],

– Remove mass ε0 from [0,ψ],

– Place the combined mass of εnb + ε0 on playing F again.

Since εnb is taken from outcomes larger than nb, in order for (A-47) to hold we must have

εnb < (1/n)(ε0 + εnb). Hence, such deviation would result in an increase in the probability of

winning for the deviating agent of at least

(1/n)(εnb + ε0)− ε0F−i(ψ)− εnbF−i(nb+φ ′) >

(1/n)(εnb + ε0)− εε0− ε0 + εnb

n
(1−nε) = εεnb > 0

It follows that F is not a best response, which is contrary to assumption.


