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Abstract

Security games involving the allocation of multiple security
resources to defend multiple targets generally have an ex-
ponential number of pure strategies for the defender. One
method that has been successful in addressing this computa-
tional issue is to instead directly compute the marginal prob-
abilities with which the individual resources are assigned
(first pursued by Kiekintveld et al. (2009)). However, in
sufficiently general settings, there exist games where these
marginal solutions are not implementable, that is, they do not
correspond to any mixed strategy of the defender.
In this paper, we examine security games where the defender
tries to monitor the vertices of a graph, and we show how
the type of graph, the type of schedules, and the type of de-
fender resources affect the applicability of this approach. In
some settings, we show the approach is applicable and give
a polynomial-time algorithm for computing an optimal de-
fender strategy; in other settings, we give counterexample
games that demonstrate that the approach does not work, and
prove NP-hardness results for computing an optimal defender
strategy.

Introduction
Algorithms for computing game-theoretic solutions are an
important component of noncooperative multiagent systems.
Such algorithms have recently started to be deployed in real-
world security applications. They are used for the placement
of checkpoints and canine units at Los Angeles International
Airport (Jain et al. 2008; Pita et al. 2009), the assignment
of Federal Air Marshals to international flights (Tsai et al.
2009), and the choice of patrol routes for the US Coast
Guard in Boston (Shieh et al. 2012). Another application
that is currently being pursued is the choice of schedules for
fare inspectors on the Los Angeles Metro Rail system (Yin
et al. 2012). In all these applications, choices are made in
a randomized fashion because otherwise it would be easy to
circumvent the security measures. Game theory provides a
systematic approach to randomizing in an intelligent way.
Specifically, the focus has been on computing Stackelberg
mixed strategies, which are distributions that are optimal to
play when the other player observes the distribution before
playing.
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All the security games above involve the allocation of
multiple security resources to multiple targets (or, more gen-
erally, a single resource can be assigned to multiple targets,
in which case the subset is referred to as a schedule). This re-
sults in exponentially many pure strategies for the defender,
because every assignment of resources is a pure strategy. As
a result, general linear or mixed integer program formula-
tions for the Stackelberg problem (Conitzer and Sandholm
2006; Paruchuri et al. 2008; von Stengel and Zamir 2010)
are exponential in size. A natural question to ask, how-
ever, is whether we really need to have a probability vari-
able for every complete assignment of resources. Can we
not restrict our attention simply to the marginal probability
that a particular resource is assigned to a particular sched-
ule? This would result in only a polynomial number of
variables (one for each resource-schedule pair). In the con-
text of security games, this approach was first pursued by
Kiekintveld et al. (Kiekintveld et al. 2009), showing that in-
deed it is possible to find polynomial-size formulations that
only refer to the marginal probabilities. Unfortunately, there
are examples where this approach fails, in that the marginal
probabilities returned do not correspond to any mixed strat-
egy (distribution over assignments). On the other hand, Ko-
rzhyk et al. (Korzhyk, Conitzer, and Parr 2010) showed that
the Birkhoff-von Neumann (BvN) theorem can be applied
to show that under certain conditions, such a mixed strat-
egy is guaranteed to exist and can be found efficiently. This
work focused primarily on the relationship between the size
of schedules, the applicability of the BvN theorem, and the
complexity of computing Stackelberg strategies. For exam-
ple, they showed that if schedules have size 1—so that re-
sources are assigned to single targets—the BvN theorem ap-
plies, resulting in a polynomial-size linear program formula-
tion for finding the marginal probabilities, together with an
efficient algorithm for finding a corresponding mixed strat-
egy.1

In contrast, in this paper we focus not on the size of sched-
ules, but rather on the structure of their relationship to each
other. Specifically, many security games are naturally repre-
sented by a graph whose vertices are the targets and whose

1A nonconstructive direct proof of the existence of a corre-
sponding mixed strategy in this case was already given by Kiek-
intveld et al. (Kiekintveld et al. 2009).



edges are related to which schedules are feasible. For exam-
ple, the vertices might represent stations of a subway system,
and feasible schedules may be paths along the edges of the
subway system graphs. Our approach is similar to that of
Korzhyk et al. at a high level, but it turns out that for one
of these problems, we need a generalization of the BvN the-
orem that was given by Budish et al. (Budish et al. 2013).
This generalization allows us to characterize a new class of
games where a mixed strategy corresponding to the marginal
probabilities is guaranteed to exist, and gives us an algorithm
for finding it. In another case, we show how to compute op-
timal marginal probabilities in a specific way, and show how
to directly obtain a mixed strategy that corresponds to these
marginal probabilities.

Background
We first review the standard algorithm for computing
a Stackelberg mixed strategy in two-player normal-form
games (Conitzer and Sandholm 2006; von Stengel and Za-
mir 2010). This algorithm creates a separate LP for each
follower (attacker) pure strategy t∗ ∈ T , which, in our case,
is a target for the attacker to attack. An optimal solution
of this LP gives the optimal leader (defender) strategy and
utility, under the constraint that t∗ is the attacker’s best re-
sponse. After solving this set of LPs, the solution of the LP
with the highest objective value will be optimal overall. Let-
ting α ∈ A denote the defender’s pure strategies and Ud and
Ua the defender and attacker’s utility functions, the LP is as
follows:
General LP

maximize
∑
α

pαUd(α, t
∗)

subject to:

∀t ∈ T :
∑
α

pαUa(α, t) ≤
∑
α

pαUa(α, t∗)∑
α

pα = 1

Security games (Kiekintveld et al. 2009)
A security game has a set of targets T (|T | = n). A sched-

ule s ∈ S ⊆ 2T consists of a subset of targets that can be
simultaneously covered by a single defender resource. De-
fender resources (denoted by ω ∈ Ω) can be either homo-
geneous, meaning that any defender resource can cover any
schedule, or heterogeneous, meaning that, for each resource
ω, there is a set of schedules A(ω) that that resource can
cover. A target t is said to be covered if a resource has been
assigned to a schedule that covers it. Finally, the utility of
the defender (attacker) is denoted as U cd(t) (U ca(t)) if a target
is covered and Uud (t) (Uua (t)) if it is not covered. We have
U cd(t) ≥ Uud (t) and U ca(t) ≤ Uua (t).
Compact security game LP

In the context of security games, the linear program pre-
sented above has exponentially many variables pα (one for
every assignment of resources). The following LP is an at-
tempt to modify the above LP to instead use variables for
the marginal probabilities cω,s that resource ω is assigned to
schedule s ∈ A(s). (A similar LP was given in (Korzhyk,

Conitzer, and Parr 2010), which in turn was a linear program
reformulation of the MIP given in (Kiekintveld et al. 2009).)
In this LP, ct denotes the probability that target t is covered.
Compact LP

maximize ct∗U cd(t∗) + (1− ct∗)Uud (t∗)

subject to:
∀ω ∈ Ω,∀s ∈ A(ω) : 0 ≤ cω,s ≤ 1

∀t ∈ T : ct ≤
∑

ω∈Ω,s∈A(ω):t∈s

cω,s

∀t ∈ T : ct ≤ 1

∀ω ∈ Ω :
∑

s/∈A(ω)

cω,s = 0

∀ω ∈ Ω :
∑

s∈A(ω)

cω,s ≤ 1

∀t ∈ T : ctU
c
a(t) + (1− ct)Uua (t)

≤ ct∗U ca(t∗) + (1− ct∗)Uua (t∗)

The problematic part of this LP is that it is not clear that
it makes sense to set ct =

∑
ω∈Ω,s∈A(ω):t∈s cω,s; this cal-

culation would be correct only if all the events where some
ω covers some s with t ∈ s are disjoint events. Indeed,
in some games, the optimal marginal probabilities ct can-
not be achieved in any mixed strategy. In previous work,
the Birkoff-von Neumann (Birkhoff 1946) theorem has been
used to characterize some special cases where it is guaran-
teed that the marginal probabilities do correspond to some
mixed strategy (Korzhyk, Conitzer, and Parr 2010). In this
paper, we also have such a result, but we need a generaliza-
tion of the BvN theorem that we discuss next. (Also note
that we allow ct to be lower than the total probability on
schedules that cover t; this corresponds to the common as-
sumption that every subset of a schedule is also a schedule,
i.e., we can always reduce our coverage on a target without
affecting anything else.)
Bihierarchy extension of BvN Theorem (Budish et al.
2013)

For problems where there are two sets of objects X and
Y (in our case, resources and schedules) and for every pair
(x, y) ∈ X × Y a marginal probability px,y (in our case,
cω,s) is given, this result gives a sufficient condition for
there to exist a distribution over assignments of X to Y
(in our case, a distribution over assignments of resources to
schedules, i.e., a mixed strategy) that is consistent with the
marginal probabilities.

In these problems, generally, for various subsetsZ ⊆ X×
Y , there is a constraint of the form qZ ≤

∑
(x,y)∈Z px,y ≤

qZ , where qZ and qZ are integers. Not only does this con-
straint hold on the probabilities, but we also would like it
to hold for the realized assignments; that is, in such a real-
ized assignment µ, we want

∑
(x,y)∈Z bx,y ∈ {qZ , . . . , qZ},

where bx,y ∈ {0, 1} indicates whether x is matched to y in
µ. (For example, in our problem, for each resource ω, we
want 0 ≤

∑
s∈A(ω) cω,s ≤ 1, and moreover in the assign-

ments over which we randomize, we need
∑
s∈A(ω) bω,s ∈

{0, 1}.) The result (Budish et al. 2013) gives a sufficient



condition on the family (or constraint structure) C of sets
Z (with Z ∈ C) to guarantee that a distribution over partial
matchings that has the right marginal probabilities and that
satisfies all the constraints can be found, namely that C is a
bihierarchy, defined as follows. A constraint structureH is a
hierarchy if, for every pair of elements Z,Z ′ ∈ H, we have
Z ⊆ Z ′, Z ′ ⊆ Z or Z ∩ Z ′ = ∅. Constraint structure B
is a bihierarchy if there exists hierarchies H1 and H2 such
that H1 ∪ H2 = B and H1 ∩ H2 = ∅. (Budish et al. 2013)
also gives an efficient flow-based algorithm for finding such
a distribution.

Dimensions of the problem
In this section, we describe the different dimensions along
which we vary the problem. The first dimension concerns
whether the defender resources are homogeneous or hetero-
geneous. If we restrict ourselves to homogeneous defense
resources, then any defender resource can cover any sched-
ule.

The second dimension concerns the graph (whose vertices
correspond to the targets and whose edges are related to the
schedules). We consider:

• Path graph. A graph consisting of a single path.

• Tree. A graph with a single acyclic component.

• General graph. A general graph consisting of a single
component.

In fact, for our positive results, we can also allow for multi-
ple connected components in each case (e.g., forests instead
of trees). We sometimes also require each component to
have a distinguished root vertex.

The final dimension concerns how the graph restricts the
possibilities for feasible schedules. We consider:

• Edge. Every schedule consists of two adjacent vertices in
the graph.

• Path. Every schedule consists of a path in the graph. We
also consider the further restrictions of: (1) only paths that
pass through the root, and (2) only paths that start at the
root.

We emphasize that not every subset of targets satisfying the
requirement is a feasible schedule; rather only the converse
is the case, that any subset not satisfying the requirement
cannot be a feasible schedule. Our results are summarized
in Figure 1.

Motivating examples. We now give two motivating ex-
amples for which we obtain positive results.

1. Consider a subway system without any cycles that is
rooted at a central station. An inspector or guard can start
a patrol from the central station, travel down a path, and
then return along the same path. This corresponds to a
tree graph with all feasible schedules being paths from
the root.

2. Consider a high-speed rail line between two locations
(such as the Japanese Shinkansen or the partially com-
plete line between Beijing and Hong Kong). An inspector
or guard can enter the train at some point, stay on it for

some number of stops, and get off. This corresponds to a
path graph with all feasible schedules being (sub)paths.

Positive results
In this section, we cover the cases where we can solve for an
optimal strategy in polynomial time via marginal probabili-
ties:

1. Defender resources are heterogeneous, the graph is a set
of rooted trees, and schedules correspond to paths starting
at a root.

2. Defender resources are homogeneous, the graph is a path
graph, and schedules correspond to paths.

Heterogeneous, set of trees, paths from the root
Theorem 1. There exists a polynomial-time algorithm for
finding the optimal Stackelberg strategy when defender re-
sources are heterogeneous, the graph is a set of rooted trees,
and schedules correspond to paths starting at a root.

Proof. We start by solving the Compact LP above to obtain
marginal probabilities. The following constraints on the cω,s
variables hold:

1. ∀t ∈ T : b
∑
ω∈Ω,s∈A(ω):t∈s cω,sc

≤
∑
ω∈Ω,s∈A(ω):t∈s cω,s ≤ d

∑
ω∈Ω,s∈A(ω):t∈s cω,se

2. ∀ω ∈ Ω : 0 ≤
∑
s∈A(ω) cω,s ≤ 1

The constraints under 2 clearly form a hierarchy, because
their variable sets do not intersect with each other. When
the graph is a set of rooted trees and schedules correspond
to paths starting at a root, the constraints under 1 also form a
hierarchy: if t is an ancestor of t′ (i.e., t is on the path from
the root to t′), then {(ω, s) : s ∈ A(ω) : t′ ∈ s} ⊆ {(ω, s) :
s ∈ A(ω) : t ∈ s}; if neither of t and t′ is an ancestor of
the other, then {(ω, s) : s ∈ A(ω) : t′ ∈ s} ∩ {(ω, s) :
s ∈ A(ω) : t ∈ s} = ∅. Therefore, these constraints form a
bihierarchy, and we can apply the algorithm from (Budish et
al. 2013) to obtain a probability distribution over (determin-
istic) assignments of resources to schedules, where in each
such assignment:

• each resource is used at most once (by the second con-
straint),
• every target for which 0 ≤

∑
ω∈Ω,s∈A(ω):t∈s cω,s < 1 is

covered either by 0 resources or by 1 resources, so that the
coverage events are disjoint and the overall probability of
covering t is in fact

∑
ω∈Ω,s∈A(ω):t∈s cω,s,

• every target for which 1 ≤
∑
ω∈Ω,s∈A(ω):t∈s cω,s is al-

ways covered by at least 1 resource.

We note that it is possible that ct <∑
ω∈Ω,s∈A(ω):t∈s cω,s; this can cause a problem in the

case of t = t∗, which we may wish to defend less in order to
lure the attacker to it. If so, we can simply move probability
from a schedule s that places probability on t∗ to schedule
s′ = s \ {t∗} until the coverage on t∗ reaches the desired



HOMOGENEOUS RESOURCES
Graph \ Schedule Edge Path (start root) Path (pass through root) Path (general)

Path Yes/P (KCP 2010) Yes/P (Th 1) Yes∗/P (Th 2) Yes∗/P (Th 2)
Tree Yes/P (KCP 2010) Yes/P (Th 1) No/? (Ex 3) No/NP-h (Ex 3/(LCL 2006))

General No/P (KCP 2010) No/NP-h (Ex 2/Th 4) No/NP-h (Ex 3/Th 4) No/NP-h (Ex 3/(LCL 2006))

HETEROGENEOUS RESOURCES
Graph \ Schedule Edge Path (start root) Path (pass through root) Path (general)

Path No/NP-h (Ex 1/Th 3) Yes/P (Th 1) ? No/NP-h (Ex 1/Th 3)
Tree No/NP-h (Ex 1/Th 3) Yes/P (Th 1) No/NP-h (Ex 3/Th 5) No/NP-h (Ex 3/(LCL 2006))

General No/NP-h (Ex 1/Th 3) No/NP-h (Ex 2/Th 4) No/NP-h (Ex 3/Th 5) No/NP-h (Ex 3/(LCL 2006))

Figure 1: Summary of results. Every entry states, before the /, whether the Birkhoff-von Neumann property holds (“Yes” or
“No”), that is, whether marginal probabilities can always be realized. (“Yes∗” indicates that we only prove this for the marginal
probabilities that result from our direct algorithm.) After the /, it states the complexity of finding an optimal Stackelberg
strategy. All of the positive results hold even if the graph consists of multiple lines/trees/DAGs (that each have their own root
in the rooted case), and all the negative results hold even if there is only one component.

value ct∗ .2 (Note that we move this probability after obtain-
ing a mixed strategy using the Budish et al. result.) By the
constraints of the Compact LP, the resulting strategy will
incentivize the attacker to attack t∗, and obtain the optimal
value from this LP.

Homogeneous, path graph, general paths
Theorem 2. There exists a polynomial-time algorithm for
finding the optimal Stackelberg strategy when defender re-
sources are homogeneous, the graph is a set of path graphs,
and schedules correspond to (sub)paths.

Proof. We start by solving the Compact LP above. How-
ever, for our argument, we will need a particular type of
optimal solution for the marginal probabilities, which this
LP is not guaranteed to give. The only parts of the LP
solution that we will use are the attacker’s preferred target
t∗ and the utility that the attacker receives in this solution
(ua = cLP

t∗U
c
a(t∗) + (1 − cLP

t∗ )Uua (t∗)). We now describe a
method to generate a new marginal solution that results in
the same utility for the defender as the LP solution and for
which we can find a corresponding mixed strategy.

Let t1, . . . , tn be the targets in the order in which they
appear in the path graph, from left to right. Initialize the
current target coverage probabilities as ctj = 0 for all
j. Now, for j = 1 to n, consider the schedule that cov-
ers tj and extends as far as possible towards the right. If
ctjU

c
a(tj)+(1−ctj )Uua (tj) > ua, then place on this sched-

ule the amount of probability needed to make ctjU
c
a(tj) +

(1 − ct′j )Uua (tj) = ua, and update the other targets’ cov-
erage probabilities accordingly. We then assign the proba-
bility mass that we have now placed on this schedule to the
first remaining available resource. If the schedule requires
more probability mass than this resource has left, then cover
as much as possible with this resource, and cover the re-
mainder with the start of the next resource. Let cω,s be the

2Dropping a target from a schedule in this way might corre-
spond, for example, to an officer who is riding the train not in-
specting a station when the train stops there.

probability mass from resource ω that is assigned to sched-
ule s at the end of the for loop. It is straightforward to see
that this solution minimizes the number of resources needed
to bring the attacker down to utility ua. Hence, this solution
uses at most the number of defender resources used in the
LP.

Next, we need to guarantee that the attacker is incen-
tivized to attack target t∗. If the attacker’s expected util-
ity for attacking target t∗ is ua, then we are done with this
step. Otherwise, starting with the last schedule s in the
marginal solution that covers t∗, we can simply move prob-
ability from schedule s to schedule s0 = s \ {t∗} until
ct∗U

c
a(t∗) + (1 − ct∗)U

c
a(t∗) = ua. Since our marginal

solution now has the same coverage on target t∗ as the LP
solution, and guarantees that each other target’s utility is at
most ua, it will give the defender the same expected utility.

Finally, we need to transform our marginal solution into
a mixed strategy. This transformation can be intuitively de-
scribed by the following process. Randomly draw a single
number p uniformly from [0, 1]. For each resource ω, con-
sider the schedule s that, in the sequential process described
above, made ω’s total assigned mass rise above p; then, sim-
ply assign ω to this schedule s. The assignment chosen by
this process corresponds to one pure strategy in the support
of our mixed strategy, and the probability that this is chosen
is the probability placed on this strategy in the mixed strat-
egy. It is easy to see that this process indeed results in a
marginal probability of cω,s that ω is assigned to s.3

3Instead of performing this procedure explicitly when draw-
ing an assignment, one can explicitly write the mixed strategy as
follows. Consider all values p1, . . . , px ∈ [0, 1] at which one of
the resources switches schedules. Then, for i ∈ {1, . . . , x + 1},
assign probability pi − pi−1 to the schedule that occurs when
pi−1 < p < pi, interpreting p0 = 0 and px+1 = 1. We note
that x+ 1, the total number of assignments with positive probabil-
ity, can be at most n + 1: in the sequential process above, every
one of the n vertices introduces at most one new schedule, and the
very first one does not correspond to a cutoff point, so at the end
of the sequential process there were at most n cutoff points; how-
ever, in the process of reducing the probability on t∗, we may have
introduced a single additional cutoff point by splitting a schedule



Negative results
In this section, we give our negative results. We consider the
following settings:

1. Defender resources are heterogeneous, the graph is a path
graph, and schedules correspond to edges.

2. Defender resources are homogeneous, the graph is gen-
eral, and schedules correspond to paths from the root.

3. The graph is a tree and schedules correspond to paths
through the root.

In each of these settings, we first give an example instance
where the optimal marginal solution does not correspond to
any mixed strategy. (In setting 3, this example works even
for homogeneous resources.) Then, we show that the prob-
lem of finding an optimal Stackelberg strategy is in fact NP-
hard. (In setting 3, we are only able to show this hardness
for heterogeneous resources.)

Heterogeneous resources, a path graph, schedules
are edges
Counterexample 1. Consider the graph depicted in Fig-
ure 2a. There are two defender resources, one that can cover
either edge (A,B) or edge (C,D), and one that can cover
either edge (B,C) or edge (D,E). Suppose the utility func-
tions are such that the defender would like to defend A with
probability 1/2, and C and D each with probability 1. (For
example, suppose that the defender greatly prefers A to be
attacked rather than any other target, the attacker is not in-
terested inB orE, and ifA is defended with probability 1/2,
the attacker would prefer attacking C or D unless these are
defended with probability 1.) The numbers in the figure de-
pict a marginal solution that achieves this. However, it is
easy to see that there is no mixed strategy that achieves this:
wheneverA is defended by the first resource, it is impossible
for the second resource to cover bothC andD; so, the latter
two cannot be defended with probability 1 if A is defended
with nonzero probability.

Theorem 3. Finding the optimal Stackelberg strategy is NP-
hard when defender resources are heterogeneous, the graph
is a path graph, and schedules correspond to edges.

Proof. We show this by a reduction from 3-COVER, in
which we are given a set of elements {1, 2, . . . ,m} and n
subsets of size 3, and the goal is to find m

3 sets that exactly
cover all m elements.
Structure of the resources, path graph, and schedules.

We create one resource ωj for every element j ∈
{1, 2, . . . ,m}. For every one of the n subsets Si, we create

s into s and s \ {t∗}, so x ≤ n. All that remains to show is that
a target either is never covered by more than one resource, or, if it
sometimes is, then it is covered with probability 1. To show this,
note that in the sequential process above, it is impossible that we
add mass to a schedule containing resource t, then to a schedule not
containing t, and then later again to a schedule containing t. Now,
suppose that t is sometimes covered by two resources, ω1 and ω2,
where ω1 is the earlier resource. Suppose this happens for p = p0.
Then, for p > p0, ω1 must cover t; and for p < p0, ω2 must cover
t.

three resources, ω1
Si
, ω2

Si
, ω3

Si
. Finally, we create n −m/3

interchangeable resources ω1
φ, . . . , ω

n−m/3
φ .

For the sake of exposition, we in fact create multiple
path graphs; it is easy to connect all these together into
a single path graph using dummy edges. For each subset
Si = {j, k, l}, we create 4 path graphs G1

Si
, G2

Si
, G3

Si
, G4

Si
.

We use GSi to denote the union of these four graphs. G1
Si

and G4
Si

have three vertices and two edges; G2
Si

and G3
Si

have four vertices and three edges. The utility functions are
such that our goal is to cover every internal vertex (with two
neighbors) with probability 1; the leaf vertices do not need to
be defended. Any resource ωxφ can defend the leftmost edge
of G1

Si
; resource ωj can defend the leftmost edge of G2

Si
;

resource ωk can defend the leftmost edge of G3
Si

; resource
ωl can defend the leftmost edge of G4

Si
. Resource ω1

Si
can

cover either the rightmost edge of G1
Si

or the center edge
of G2

Si
; resource ω2

Si
can cover either the rightmost edge of

G2
Si

or the center edge ofG3
Si

; resource ω3
Si

can cover either
the rightmost edge of G3

Si
or the rightmost edge of G4

Si
.

Proof of equivalence We now show that there exists a
strategy that covers all the internal vertices with probabil-
ity 1 if and only if there is a 3-cover. If there is a 3-
cover, then consider the following pure strategy. If Si =
{j, k, l} is in the cover, then we defend the leftmost edges of
G2
Si
, G3

Si
, G4

Si
with resources ωj , ωk, ωl, respectively, and

we defend the rightmost edges of G1
Si
, G2

Si
, G3

Si
with re-

sources ω1
Si
, ω2

Si
, ω3

Si
, respectively, thereby covering all the

internal vertices of these path graphs. If Si is not in the
cover, then we defend the leftmost edge of G1

Si
with some

resource ωxφ, and we defend the middle edges of G2
Si
, G3

Si

and the rightmost edge of G4
Si

with resources ω1
Si
, ω2

Si
, ω3

Si
,

respectively, thereby covering all the internal vertices of
these path graphs. Note that this uses exactly all the n−m/3
resources ωxφ. Thus, there exists a strategy that covers all the
internal vertices with probability 1.

Conversely, suppose that there exists a strategy that covers
all the internal vertices with probability 1. Any pure strat-
egy on which this mixed strategy places positive probability
must cover all the internal vertices; consider one such pure
strategy. Consider some subset Si = {j, k, l} where this
pure strategy does not allocate any of the resources ωxφ to
G1
Si

. To cover the center vertex of G1
Si

, ω1
Si

must be allo-
cated to G1

Si
. Then, to cover the left internal vertex of G2

Si
,

ωj must be allocated to G2
Si

. Then, to cover the right inter-
nal vertex of G2

Si
, ω2

Si
must be allocated to G2

Si
. Then, to

cover the left internal vertex of G3
Si

, ωk must be allocated
to G3

Si
. Then, to cover the right internal vertex of G3

Si
, ω3

Si

must be allocated toG3
Si

. Then, to cover the center vertex of
G4
Si

, ωl must be allocated to G4
Si

. So, all of ωj , ωk, ωl have
been assigned to GSi

(and cannot be used elsewhere). Now,
because there are only n−m/3 resources ωxφ, there must be
exactly m/3 subsets Si for which none of the ωxφ resources
are allocated to G1

Si
. Moreover, these Si cannot overlap on

any element j, if they did, they would both have ωj assigned
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to them. Therefore, these Si constitute a 3-cover.

Homogeneous, general graph, paths from the root
Counterexample 2. Consider the graph depicted in Fig-
ure 2b. The root is the node in the middle. There are 6
feasible schedules, each corresponding to a path from the
root. They correspond to the (solid, dashed, dotted) edges to
the (left, right) of the root. For example, one schedule cov-
ers the center (root) node, the top-left node, and the far-left
node (the solid path to the left).

We have 3 homogeneous resources that we can assign to
these schedules. The marginal solution picks each of these
six possible schedules with a probability of 1/2, resulting in
a total defense probability of 1 for each target. However, it
is easy to see that it is not in fact possible to cover all the
targets all the time: for any assignment, either the left or the
right side of the graph has only one resource assigned to it,
and therefore an uncovered target.

Theorem 4. Finding the optimal Stackelberg strategy is NP-
hard when defender resources are homogeneous, the graph
is general, and schedules correspond to paths starting at a
single root vertex.

This can be shown by reduction from 3-COVER; how-
ever, we omit this proof due to space considerations.

Tree graph, paths that pass through the root
For this case, our counterexample works even for homoge-
neous resources, but our NP-hardness result only works with
heterogeneous resources; the complexity with homogeneous
resources is open.

Counterexample 3. Consider the graph depicted in Fig-
ure 2c. The root of each tree is the middle vertex. There are
six feasible schedules, each consisting of a path from one
leaf vertex to another leaf vertex (covering both those leaves
as well as the root of the corresponding tree). For example,
one schedule covers targets A, D, and B.

We have 3 homogeneous resources that we can assign to
these schedules. The marginal solution picks each of these
six possible schedules with a probability of 1/2, resulting in
a total defense probability of 1 for each target. However, it
is easy to see that it is not in fact possible to cover all the
targets all the time: for any assignment, either the left or the
right tree has only one resource assigned to it, and therefore
an uncovered target.

While this example uses two trees, it is easy to turn it into
an equivalent single-tree example, by mergingD andW into
a single root vertex.
Theorem 5. Finding the optimal Stackelberg strategy is
NP-hard when defender resources are heterogeneous, the
graph is a tree, and schedules correspond to paths that pass
through the root.

This can be shown by reduction from tripartite matching;
however, we omit this proof due to space considerations.

Conclusion
Many security games involve guarding the vertices of a
graph by letting the defender resources travel across the
edges of the graph. In this paper, we showed two cases
where optimal Stackelberg strategies can be computed ef-
ficiently by first computing optimal marginal probabilities
of assigning resources to schedules, and then computing a
mixed strategy that is consistent with these marginal proba-
bilities. In other cases, we showed that there does not nec-
essarily exist a mixed strategy corresponding to the optimal
marginal probabilities, and also gave explicit NP-hardness
results for computing optimal Stackelberg strategies.

Overall, the results in this paper suggest that it is rare to
find a case where there does not necessarily exist a mixed
strategy corresponding to the optimal marginal probabili-
ties, but nevertheless an optimal Stackelberg strategy can
be found in polynomial time. (One such case does appear
in (Korzhyk, Conitzer, and Parr 2010): homogeneous re-
sources, arbitrary schedules with size 2.) Future research
could focus on identifying other strategies where the con-
straint structure is a bihierarchy. Another interesting di-
rection is the following. When we find that, for a specific
game, there is no mixed strategy corresponding to the opti-
mal marginal probabilities, can we incrementally add vari-
ables or constraints to the compact LP formulation to rule
out the current marginal solution, until we find a solution
that does correspond to a mixed strategy—but without blow-
ing up to the fully general LP formulation?
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and Kraus, S. 2008. Bayesian Stackelberg games and their
application for security at Los Angeles International Airport.
SIGecom Exch. 7(2):1–3.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
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