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Abstract
In a principal-agent problem, a principal seeks
to motivate an agent to take a certain action ben-
eficial to the principal, while spending as little
as possible on the reward. This is complicated
by the fact that the principal does not know the
agent’s utility function (ortype). We study the
online setting where at each round, the principal
encounters a new agent, and the principal sets the
rewards anew. At the end of each round, the prin-
cipal only finds out the action that the agent took,
but not his type. The principal must learn how
to set the rewards optimally. We show that this
setting generalizes the setting of selling a digital
good online.

We study and experimentally compare three main
approaches to this problem. First, we show how
to apply a standard bandit algorithm to this set-
ting. Second, for the case where the distribution
of agent types is fixed (but unknown to the prin-
cipal), we introduce a new gradient ascent algo-
rithm. Third, for the case where the distribution
of agents’ types is fixed, and the principal has a
prior belief (distribution) over a limited class of
type distributions, we study a Bayesian approach.

1. Introduction

In many economic settings, one party (theprincipal) de-
sires that another party (theagent) takes a certain action,
even though the agent has no direct interest in the action
being performed. For instance, the principal may have a
certain task that she does not have the resources to perform,
or that is more efficiently performed by the agent. As an il-
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lustrative example, a homeowner (the principal) may want
her neighbor’s child (the agent) to shovel her driveway. Un-
less the agent can be forced to take the desired action, the
principal will need tomotivatehim to do so, by promising a
reward (monetary or other) for performing the action. This
reward typically comes at the cost of the principal’s utility.
Thus, if the principal knew the agent’s utility function, she
would promise him a reward that is only just sufficiently
high for the agent to want to take the action. However, typ-
ically, the agent’s utility function is not known, so that a
more complex optimization needs to be performed. If the
principal has a probability distribution over the agent’s util-
ity function (also known as the agent’stypein this context),
she can optimize the promised reward to maximize her ex-
pected utility. Such problems are known asprincipal-agent
problems (for an overview, see (Mas-Colell et al., 1995)).
Applications include deciding on incentives for employees,
deciding on the most effective grading system to motivate
students,etc. Principal-agent problems are closely related
to (or subsumed by, depending on the definition) problems
of implementationandmechanism design—topics that are
receiving ever-increasing attention among AI researchers
(some recent examples include (Porter, 2004; Bartal et al.,
2004; Parkes & Schoenebeck, 2004; Blumberg & She-
lat, 2004; Conitzer & Sandholm, 2004; Smorodinsky &
Tennenholtz, 2004; Bahar & Tennenholtz, 2005; Babaioff
et al., 2005)). As we will show, they are also closely related
to pricing problems, where prices for goods need to be set
to maximize the seller’s (expected) gain.

In practice, typically not even a distribution over the types
is known.1 However, if the problem repeats itself, the prin-
cipal may be able tolearn how to set the rewards. We
consider the online model where the principal faces a new
agent every round, and gets to set a new reward structure

1From a decision-theoretic standpoint, the principal will have
some subjective distribution over the agent’s types, but this dis-
tribution may or may not be close initially to the distribution of
types in the general population of agents.
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every round. We assume that the principal only observes
the action taken by the agent, and not the agent’s type
(not even after the round is over). Thus, we cannot infer
what the agent would have done for other reward structures.
Such problems, in which one of multiple alternatives is to
be chosen, and only the result from the chosen alternative
is observed, are calledbanditproblems (Auer et al., 1995).

In this paper, we compare three approaches to the online
principal-agent problem. First, we take a general bandit al-
gorithm from the online learning literature and show how
to apply it to this new domain. We then introduce a new
approach, which requires that the agents’ types are drawn
from a fixed distribution. It also requires that we can add
another action to the domain, which is no more useful to the
principal than the original action, but less desirable from
the agent’s perspective (we will argue that for many appli-
cations, this can be done). We show how to use this extra
action to do a form of gradient ascent on the reward space.
In general, this gradient ascent approach can get stuck in a
local optimum, but natural distributions typically satisfy a
concavity condition that precludes such local optima. We
provide experimental results for the fixed-distribution case,
showing that the second approach converges much faster
and generates less variance in the rewards that are set. Fi-
nally, we study the case where the principal has a prior be-
lief over the agents’ type distribution, so that a Bayesian
approach can be taken. We show that this approach can
learn the optimal reward extremely fast when the prior be-
lief places probability on a limited class of type distribu-
tions, but may fail to converge to the optimal reward when
this class becomes larger. We also discuss how to apply
these techniques to online auctions.

2. Definitions

We now present the basic definitions for one round of the
online principal-agent problem as studied in this paper.

Action set: The agent has to choose one action from an
action setA. We will first concern ourselves with the case
whereA = {a0, a1}; later in the paper, we will add a third
actiona2. The actiona0 can be interpreted as the agent
doing nothing. We will assume that associated with each
actiona, there is a fixed amount ofwork, w(a), that is in-
dependent of the agent’s type. We will use the shorthand
wi = w(ai), and assume thatw0 = 0.

Reward function: Before the agent chooses his action, the
principal must set a reward functionr : A → R, where
R is the space of possible rewards.r(a) is the reward that
the principal pays the agent upon selectinga. We will use
the shorthandri = r(ai). We will let R = R, and assume
r0 = 0. Thus, whenA = {a0, a1}, the principal only needs
to setr1; once we adda2, she will also need to setr2.

Agent’s utility: The agent’s utility depends on the reward
he collects, as well as his dislike for the action he performs.
This dislike is given by his typet, which is known to the
agent but unknown to the principal. The agent is rational
and will always choose the action that maximizes his utility,
given the reward function. We will assume the agent’s util-
ity function can be written asV (t, a, r) = v(t, a)+ r(a) =
−tw(a) + r(a). That is, the typet represents the agent’s
dislike for doing a unit of work. The space of possible types
is thusR. We note thatv(t, a0) = 0 for all t.

Principal’s utility: The principal’s utility depends on the
reward she must award, as well as her appreciation for the
action the agent performs. We will assume the principal’s
utility function can be writtenU(a, r) = u(a) − r(a). We
will use the shorthandui = u(ai). We will assumeu0 = 0.

This interaction between the principal and an agent repeats
itself each round. At each round,t is drawn anew (we can
think of this as the principal facing a different agent every
round). The principal’s learning objective can be either to
perform well relative to the best fixed reward function in
hindsight (a standard objective in the online learning lit-
erature), or, in case the types are drawn from a fixed dis-
tribution, to converge to an expected (principal’s) utility-
maximizing reward function.

3. Application: Selling a digital good online
using posted prices

In this section, we show how the previously studied prob-
lem of learning to sell a digital good in an online set-
ting (Bar-Yossef et al., 2002; Blum et al., 2003) can be
seen as a special case of the setting that we study. In this
problem, we have a seller with an unlimited supply of a
good. At each round, the seller faces a new buyer with an
unknown value for a unit of the good, and the seller needs
to set a pricep for a unit of the good for this buyer. The
buyer will buy a unit of the good at the posted price if and
only if his value exceeds the price.

We can model this as a principal-agent problem as follows.
The seller will take the role of the principal, and the buyer
will take that of the agent. The seller will give the buyer
the choice of two actions: not buying the good (denoted
by a0), and buying the good (denoted bya1). The seller
will set a negative “reward”r1 for buying the good, which
is the negative of the price of the good (r1 = −p). Let
the amount of “work” associated with obtaining the good
be w1 = −1 (one way to interpret this is that the good
may facilitate other tasks for the agent and thereby reduce
the agent’s workload), and let the agent’s typet indicate
his utility for having the good (or his dislike for the work
that he would not have to do if he had the good). Then, the
agent’s utility for buying the good is−tw1+r1 = t−p. For
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the seller, we setu1 = u0 = 0 (since the seller is indifferent
between keeping the good herself and not keeping it), so
that the seller’s utility for selling the good isu1 − r1 = p.
(More generally, if the seller has a reservation priceh for
the good, we can setu1 = −h so that the seller’s utility for
selling the good isu1 − r1 = p− h.)

4. How to Apply a General Bandit Algorithm

In this section, we show how to apply a general online ban-
dit learning algorithm to the principal-agent problem.

4.1. Viewing our problem as a bandit problem

In a bandit setting (Auer et al., 1995), we must choose one
of a number of “arms,” and we then receive a utility that
depends on the arm we chose. We do not find out what
rewards the other arms would have given us. (This is in
contrast withexpertssettings (Cesa-Bianchi et al., 1997;
de Farias & Megiddo, 2003), where we do find out what
utilities we would have received for following other ex-
perts’ recommendations.) This process repeats itself for
a number of rounds, over which we accumulate utility.
The standard goal is to perform well compared to the best
(fixed) arm in hindsight.

In the online principal-agent problem, the “arms” of the
bandit correspond to the various reward functions the prin-
cipal can set for the agent. Each reward function will give
the principal some utility (depending on the agent’s type),
but the principal does not find out the utilities that other re-
ward functions would have given her, because by assump-
tion the agent’s type remains unknown at the end of the
round.2 This approach requires that we discretize the re-
ward space in order to have a finite number of arms.3 In

2This is why we require a bandit algorithm instead of an ex-
perts algorithm. We note that in our setting it is not true that we
cannot makeany inferences about what would have happened for
other reward functions: for example, if the agent did not take an
action, we know that the agent would still not have taken this ac-
tion at a lower reward. Nevertheless, this is not enough to allow
us to use an experts algorithm. Moreover, in the setting of selling
a digital good online (discussed above), it has been shown theo-
retically (Blum et al., 2003) that having to use a bandit algorithm
does not come at much of a loss relative to being able to use an
experts algorithm. Such experts algorithms in turn outperform
other methods (Bar-Yossef et al., 2002) designed specifically for
this problem (and that use the same information as an experts al-
gorithm). Thus, bandit algorithms constitute the natural baseline
for our problem.

3Recent work on online convex programming (Zinkevich,
2003) provides an algorithm that does not require discretization
for settings with a continuum of experts, but it cannot be applied
here because we are in a bandit setting and do not observe the
principal’s utility for rewards other than the one chosen (which is
necessary for a gradient computation in that algorithm). Addition-
ally, the principal’s utility function is discontinuous in rewards.

our setting, a reward function consists of a single reward
r1, so the arms correspond to different values forr1.

4.2. Algorithm

The bandit algorithmExp3 (Auer et al., 1995) specializes
to the following form in our domain. (We refer the reader
to the original work for the intuition behind the algorithm
and the meaning of its parameters.)

BANDIT ALGORITHM
R ← { possible rewards}
for all r ∈ R {

sr ← 0, mr ← 1
}
repeat{

with probability γ {
rc ← choose reward uniformly at random
}
else{

rc ← choose rewardr with probability mr∑

r′∈R

mr′

}
set reward r1 = rc

if the agent choosesa1 {
src

← src
+ (u1−rc)γ

|R|( γ
|R|+(1−γ)

mrc∑

r′∈R

m
r′

)

mrc
← (1 + α)

src
h

}
}

This algorithm is effectively identical to the algorithm pre-
sented in (Blum et al., 2003) for learning to sell a digital
good in an online setting. As such, it is a natural bench-
mark for the algorithms that we present later in the paper.

4.3. Experimental results

In this subsection, we describe experimental results for the
bandit algorithm. Letu1 = 1, w1 = 1. Every round,t is
drawn from a fixed distribution: we study both a uniform
distribution over[0, 1], and an exponential distribution with
λ = 1. It can be shown analytically that with these distri-
butions, the optimal (expected utility-maximizing) settings
for r1 are0.5 and0.44, respectively. We discretize the re-
ward space at intervals of0.05 to get a finite number of
bandit arms, and do not consider rewards greater than1
(because the optimal rewards clearly lie below1).

First, we present the results for the best setting of the pa-
rameters that we found when holdingγ fixed over time
(Figures 1 and 2). (We show the chosenr1 only every
1000th round.)
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Figure 1.Convergence for uniform (left) and exponential (right)
distributions withγ = 0.1, α = 0.8, andh = 0.2.
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Figure 2.Final weightsmr on rewards for uniform (left) and ex-
ponential (right) distributions withγ = 0.1, α = 0.8, and
h = 0.2. Recall that we have discretized the reward space at
intervals of 0.05, hence the reward is in “nickels.”

The final weights are quite good in both cases, placing al-
most all of the probability mass on optimal or near-optimal
rewards. The algorithm chooses a random reward with
probabilityγ = 0.1, leading to “spikes” in the convergence
graphs; but disregarding the spikes the algorithm converges
quite fast.

The next results (Figures 3 and 4) show that the spikes
can be minimized by decreasingγ over time according to
a fixed schedule. However, we cannot decreaseγ too fast
without hurting the algorithm’s convergence. (We show the
results for the best setting of the parameters that we found.)
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Figure 3.Convergence for uniform (left) and exponential (right)
distributions withγ = 0.1

i0.1 in roundi, α = 0.8, andh = 0.2.

The final weights are again quite good, and we do not see
as many spikes in the rewards in later rounds.
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Figure 4.Final weightsmr on rewards for uniform (left) and ex-
ponential (right) distributions withγ = 0.1

i0.1 in roundi, α = 0.8,
andh = 0.2.

5. Gradient Ascent

We now take a newgradient ascent-based approach to the
online principal-agent problem.

5.1. Intuition

For the gradient ascent algorithm, we assume that the distri-
bution from which the agents’ types are drawn is fixed.4 As
a result, there is some reward structure (somer1) that max-
imizes the principal’s expected utility. The goal is to find
this r1 using gradient ascent. However, the principal does
not actually know the gradient, because the distribution of
agents’ types is unknown. Instead, we propose a method
that closely approximates gradient ascentin expectation.

To do so, consider the tradeoffs involved in slightly increas-
ing (or decreasing)r1. (We will derive exact expressions
for these tradeoffs in the next subsection.) On the one hand,
increasingr1 will decrease the principal’s utility for any
type for which the agent performsa1, because the principal
will have to pay more. On the other hand, increasingr1

will increase the set of types for which the agent performs
actiona1, thereby increasing the probability that the agent
performsa1. Thus, the decision of whether to increaser1

by a given amount depends on the probability mass on the
types for which the agent will performa0 with the original
reward, buta1 with the new reward. This mass is difficult
to estimate, because the principal does not see what the
agent’s type was at the end of a round. One approach to es-
timating this mass is to run with a fixed rewardr1 = r for a
long time, then to run withr1 = r + ε for a long time, and
finally to take the difference in the fraction of times that the
agent chose to performa1 between these two approaches.
Of course, to be confident in our estimate, we would have
to run for a very long time in both cases.

4The bandit algorithm from the previous section does not as-
sume this, even though we did do that section’s experiments in the
fixed-distribution setting (so that we can compare them with the
experiments for this algorithm).
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Instead, we take the following approach. We assume that
we can add another actiona2 to the action space, with the
following properties. First, the principal is indifferent be-
tween the agent performinga1 anda2—that is,u(a1) =
u(a2). Second, the agent prefers performinga1 to perform-
ing a2, becausea2 is slightly more work—w2 exceedsw1

slightly. (We note that because we assume the agent’s util-
ity function can be written asV (t, a, r) = v(t, a)+ r(a) =
−tw(a) + r(a), all the work has the same “dislike” mul-
tiplier t, and in this sense,a2 is more of the samework as
a1.) For example, ifa1 corresponds to the task of shoveling
a large area, thena2 may correspond to the task of shovel-
ing the same area, plus another small area for which the
principal does not care if it is shoveled or not. In the case
where we are selling a good online,a2 may correspond to
buying a slightly inferior product—for example, one with a
reduced quality or lifetime. (We note that most real-world
goods can straightforwardly be made slightly worse in the
manner desired. For example, the lifetime of a product can
always be reduced by using the product before the sale.)

Naturally, the rewardr2 must be set at least slightly higher
thanr1 if the agent is ever to choosea2. As we will show,
the principal can set the rewardr2 to effect the following:
the agent will choosea1 rather thana2 if and only if his
typet was almost high enough to choosea0. Thus,a1 being
chosen indicates that the agent is close to being indifferent
between all the actions, that is,t is close tor1/w1. As-
suming continuity of the probability density function over
types, this suggests that there is significant probability mass
on types close tor1/w1. This suggests that increasing the
rewards is likely to decrease the probability ofa0 being se-
lected significantly.

We note that, unlike in the case of the bandit algorithm from
the previous section, we do not need to discretize the re-
ward space. The following subsection will make the algo-
rithm more precise, and show how to turn this observation
into an online gradient ascent algorithm.

5.2. Analysis and Algorithm

The principal’s objective is to maximize her expected
utility. The agent will switch froma0 to a1 when
V (t, a0, r0) = V (t, a1, r1), or equivalently,t = r1

w1
. Be-

cause the principal’s utility for the agent choosinga1 is
u1 − r1, the principal’s expected utility is given byU =

(

r1
w1∫

t=−∞
p(t)dt)(u1 − r1). We emphasize that this is the ex-

pression for her expected utilitywhen actiona2 does not
come into play. Our goal in this section will be to letr1

converge to a value that maximizes this expression, rather
than to setr1 andr2 to maximize the expected utility of the
three-action setting. This makes our analysis easier, and it
is reasonable because: 1.a2 is helpful for learning the dis-

tribution over types, but for anysingle round, there is no
purpose in using it. 2. In our algorithm, we will keepr1

andr2 very close to each other, and thus the above expres-
sion is a close approximation of the actual expected utility
for the principal in any given round.

Taking the derivative ofU , we getdU
dr1

=
p(

r1
w1

)

w1
(u1−r1)−

r1
w1∫

t=−∞
p(t)dt. To use this to do gradient ascent, we will

need to estimate bothp( r1
w1

) and

r1
w1∫

t=−∞
p(t)dt. The latter is

easy to estimate without introducing an extra action, by the
fraction of times thata1 is selected. However, to estimate
the other term, we will need to introduce another action,
a2. In the following, we describe how to do this.

We recall that the agent will switch froma0 to a1 when
t = r1

w1
. He will switch froma1 to a2 whenV (t, a1, r1) =

V (t, a2, r2), or equivalently,t = r2−r1
w2−w1

.

a1a2 a0

ε

t = (r2−r1)

t (typespace)

(w2−w1) t = r1/w1

Figure 5.Switching points between actions.

The purpose of the new action is to get an estimate of the
probability mass on types for which the agent is close to
being indifferent between the actions. What is considered
“close” is defined by the distance between the two switch-
ing points in the type space; we can determine this distance
ourselves by setting the rewards appropriately. Suppose
we want the distance between the switching points to be
ε. Then we must setr2−r1

w2−w1
= r1

w1
− ε, or equivalently

r2 = w2
w1

r1 + ε(w1−w2). Given thatε is small, we can say
that the probability ofa1 being selected is approximately
εp( r1

w1
), and the probability ofa2 being selected is approx-

imately

r1
w1∫

t=−∞
p(t)dt—corresponding to the terms we were

seeking to estimate. Now consider the following algorithm:

GRADIENT ASCENT ALGORITHM
initialize rc1, rc2

repeat{
set rewardsr1 = rc1, r2 = rc2

if the agent choosesa0

do nothing
if the agent choosesa1

increaserc1 by u1−rc1
εw1

K
if the agent choosesa2

decreaserc1 by K
update rc2 ← w2

w1
rc1 + ε(w1 − w2)

}
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With this algorithm, theexpected changeto r1 in any round
is approximately:

εp( r1
w1

)u1−r1
εw1

K −
r1
w1∫

t=−∞
p(t)dtK = K(p( r1

w1
)u1−r1

w1
−

r1
w1∫

t=−∞
p(t)dt) = K dU

dr1
.

It follows that (in expectation) we are (approximately)
doing gradient ascent, and the step size is proportional to
K. Thus, if we initialize the rewards within the support
of the distribution,K is set appropriately over time, and
the objective function has no local optima other than the
global optimum, then we will converge to the optimal
setting forr1. We note that for the uniform and exponential

distributions, dU
dr1

=
p(

r1
w1

)

w1
(u1 − r1) −

r1
w1∫

t=−∞
p(t)dt is

decreasing inr1 because the probability density function
is nonincreasing; hence, the objective function is concave
and has no local optima other than the global optimum.

5.3. Experimental results

In this subsection, we describe experimental results for the
gradient ascent algorithm. Letu1 = u2 = 1, w1 = 1,
w2 = 1.001. Every round,t is drawn from a fixed distri-
bution: again, we study both a uniform distribution over
[0, 1], and an exponential distribution withλ = 1. We re-
call that the optimal (expected utility-maximizing) settings
for r1 are0.5 and0.44, respectively. We letε = 0.02. We
note that for the gradient ascent algorithm, we do not need
to discretize or cap the reward space (as we did for the ban-
dit algorithm).

First (Figure 6), we present the results obtained when hold-
ing K fixed over time at the best value that we found for it.
(We show the bandit algorithm’s results with fixedγ in the
background of the graphs as a dotted line.)
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Figure 6.Convergence for uniform (left) and exponential (right)
distributions withK = .00005.

Convergence is reasonably fast, but becauseK is fixed, the
rewards fluctuate around the optimal reward. (It is possi-
ble to obtain much faster convergence, at the cost of much

greater fluctuation, by increasingK.) The solution is, of
course, to decreaseK over time.

We next (Figure 7) present results whereK decreases over
time according to a fixed schedule. (We show the bandit
algorithm’s results with a changingγ in the background of
the graphs as a dotted line.)
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Figure 7.Convergence for uniform (left) and exponential (right)
distributions withK = 0.1

i0.8 in roundi.

Convergence is now almost immediate, and fluctuation is
minimized becauseK is decreased over time.

6. A Bayesian approach

In this section, we take a Bayesian approach. We continue
to assume that agents’ types are drawn from a fixed dis-
tribution, but we will no longer require the availability of
an extra action.5 We do, however, require that the princi-
pal has a prior belief (distribution) over the distribution of
agents’ types. Each round, the principal chooses the reward
that maximizes her expected utility, given her beliefs over
type distributions; then, the principal updates these beliefs
based on the observed result, using Bayes’ rule. (We omit
the mathematical details due to space constraint, but they
are straightforward.)

Again, we run experiments on both a uniform distribution
over [0, 1], and an exponential distribution withλ = 1.
We must now also specify the principal’s prior beliefs, and
we do so as follows. In each case, the principal knows
the type of distribution (uniform over[0, k], or exponen-
tial with parameterλ), but is uncertain about the param-
eter in the distribution (k or λ, respectively). Specifi-
cally, the principal initially believes that the parameter (k
or λ, respectively) is equally likely to be any member of
{0.00, 0.01, . . . , 10.00}. The results are in Figures 8 and 9.

5The Bayesian approach can be extended to make use of such
an extra action; however, insofar as the Bayesian approach can
perform well without it, it is of course preferable not to require
this assumption. We will show shortly that the Bayesian approach
can indeed perform well without the extra action.
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Figure 8.Convergence for uniform (left) and exponential (right)
distributions under the Bayesian approach, when the prior places
probability only on distributions of the correct type (uniform or
exponential).

0 2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

k in (0.01,0.02,...,9.99,10.00)

f

1 3 5 7 9 0 2 4 6 8 10

0.
00

0
0.

01
0

0.
02

0
0.

03
0

lambda in (0.01,0.02,...,9.99,10.00)

f

1 3 5 7 9

Figure 9.Final principal beliefs over parameter values for uni-
form (left) and exponential (right) distributions under the
Bayesian approach, when the prior places probability only on dis-
tributions of the correct type (uniform or exponential).

The Bayesian approach converges much faster than the ap-
proaches studied earlier in the paper. This is perhaps not
too surprising, because the principal now has significant in-
formation at the outset about the distribution (namely, the
type of distribution). For example, in both cases, if the prin-
cipal knows the value of the cumulative distribution at any
given reward (i.e. what the true probability is that an agent
will accept that reward), then the principal can immediately
infer the entire true distribution.

To see what happens if the principal initially has slightly
less information about the distribution of agents’ types, we
ran the same experiments again with the following modifi-
cation: all the principal knows initially is that the distribu-
tion is uniformor exponential—she does not know which
of the two is true. She believes that both types of distri-
bution are equally likely, and given the type of distribu-
tion, that each parameter value in{0.00, 0.01, . . . , 10.00}
is equally likely. The results are in Figures 10, 11, and 12.

The Bayesian approach still converges fast, but it no longer
converges to the optimal reward (for the uniform distribu-
tion, it converges to 0.45 instead of 0.5, and for the ex-
ponential distribution, it converges to 0.48 instead of 0.44).
Moreover, while the approach is still able to eliminate most
parameter values, the principal is unable to distinguish
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Figure 10.Convergence when the true distribution is uniform
(left) and exponential (right) under the Bayesian approach, when
the prior places probability on both types of distribution.
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Figure 11.Final principal beliefs for values ofk (the uniform dis-
tribution parameter) when the true distribution is uniform (left)
and exponential (right) under the Bayesian approach, when the
prior places probability on both types of distribution.

0 2 4 6 8 10

0.
00

0
0.

00
5

0.
01

0
0.

01
5

lambda in (0.01,0.02,...,9.99,10.00)

f

1 3 5 7 9 0 2 4 6 8 10

0.
00

0
0.

00
5

0.
01

0
0.

01
5

lambda in (0.01,0.02,...,9.99,10.00)

f

1 3 5 7 9

Figure 12.Final principal beliefs for values ofλ (the exponential
distribution parameter) when the true distribution is uniform (left)
and exponential (right) under the Bayesian approach, when the
prior places probability on both types of distribution.

whether the distribution is uniform or exponential. This
can be explained as follows. The principal ends up placing
all the probability mass on or close to one value forλ, and
one value fork, such that the optimal reward to set under
this belief has the following property: the probability that
the agent will accept given the value forλ is the same as
the probability that the agent will accept given the value
for k. Therefore, the agent’s decision tells us nothing about
the relative probabilities of these two parameter values, and
we remain stuck at the same reward value, which is subop-
timal with respect to the true parameter value. Put another
way, the problem is that the principal’s focus on exploita-
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tion prevents her from distinguishing type distributions that
produce the same behavior under the current optimal re-
ward. It may be possible to force the principal to do some
limited exploration to prevent this problem.

7. Conclusions

In a principal-agent problem, a principal seeks to motivate
an agent to take an action beneficial to the principal, while
spending as little as possible on the reward. Typically, this
is complicated by the fact that the principal does not know
the agent’s utility function (ortype). If no (accurate) dis-
tribution of the agent’s type is known beforehand, then the
principal needs to learn over time how to set the rewards.

We studied the following model. At each round, the prin-
cipal encounters a new agent, and the principal sets the re-
wards anew. At the end of each round, the principal only
finds out the action that the agent took, but not his type. We
showed that this setting generalizes the setting of selling of
a digital good online. We first applied a standard bandit al-
gorithm to this setting. Then, we made two assumptions:
1. agents are drawn from a fixed distribution, 2. the prin-
cipal can add an extra action to the domain that is equally
desirable from the principal’s viewpoint, but less desirable
from the agent’s viewpoint. We showed how this allows
the principal to do a form of gradient ascent on the reward
space. Experimental results show that the gradient ascent
approach converges much faster than the general-purpose
bandit algorithm (and generates much less variance in the
rewards that are set). Finally, we made the assumption that
the principal has a prior belief (distribution) over the distri-
bution of agents’ types. Under this assumption, we studied
a Bayesian approach, under which the principal chooses the
reward that maximizes her expected utility (with respect
to her belief), and updates her belief based on the action
that the agent takes. Experimental results show that the
Bayesian approach can converge extremely fast if the prior
belief places probability only on a limited class of type dis-
tributions, but it can also fail to converge to the optimal
reward if the class of type distributions that the prior belief
places probability on is larger.

There are numerous avenues for future research, includ-
ing at least the following questions. Can we make the
Bayesian approach converge to the optimal reward if the
prior places probability on a large class of varied type dis-
tributions? Presumably, this requires forcing the principal
to explore other rewards, and there are many conceivable
ways of doing so (random exploration, taking future utili-
ties into account,etc). Another interesting question is the
following: how powerful is the assumption that an addi-
tional action is available (which we used for the gradient
ascent algorithm)? Prior research has shown lower bounds
on the value of knowing the type distribution (for exam-

ple, those presented in (Kleinberg & Leighton, 2003)), but
these may no longer hold given the possibility of an addi-
tional action. Another possible line of future research is to
extend these results to richer domains with more actions,
different reward spaces, multiple agents that act simulta-
neously,etc. (although the model in this paper appears to
capture at least the most natural applications).
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