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Abstract lustrative example, a homeowner (the principal) may want
In a principal-agent problema principal seeks her neighbor’s child (the agent) to shovel her driveway. Un-
to motivate an agent to take a certain action ben-  less the agent can be forced to take the desired action, the
eficial to the principal, while spending as little principal will need tamotivatehim to do so, by promising a
as possible on the reward. This is complicated reward (monetary or other) for performing the action. This
by the fact that the principal does not know the reward typically comes at the cost of the principal’s utility.
agent’s utility function (ortype. We study the Thus, if the principal knew the agent’s utility function, she

online setting where at each round, the principal vvpuld promise him a reward that is only just sufficiently

rewards anew. At the end of each round, the prin- ically, the agent’s utility function is not known, so that a
cipal only finds out the action that the agent took, more complex optimization needs to be performed. If the
but not his type. The principal must learn how principal has a probability distribution over the agent’s util-
to set the rewards optimally. We show that this ity function (algo known as _the agentjgein this _co.ntext),
setting generalizes the setting of selling a digital she can optimize the promised reward to maximize her ex-
good online. pected utility. Such problems are knowngasicipal-agent

problems (for an overview, see (Mas-Colell et al., 1995)).
Applications include deciding on incentives for employees,
deciding on the most effective grading system to motivate
studentsgtc. Principal-agent problems are closely related
to (or subsumed by, depending on the definition) problems
) A . of implementatiorand mechanism desigrtopics that are
qpal), we introduce a new gradient agcept a]go- receiving ever-increasing attention among Al researchers
rithm. Third, jor t_he_case where the_ dl_str|but|on (some recent examples include (Porter, 2004; Bartal et al.,
of agents’ types is fixed, and the principal has a 2004; Parkes & Schoenebeck, 2004; Blumberg & She-
prior peligf (gistribution) over a Iimi@ed class of lat, 2b04; Conitzer & Sandholr,n, 200,4; Smorodinsky &
type distributions, we study a Bayesian approach. Tennenholtz, 2004; Bahar & Tennenholtz, 2005; Babaioff
et al., 2005)). As we will show, they are also closely related
. to pricing problems, where prices for goods need to be set
1. Introduction to maximize the seller's (expected) gain.

In many economic settings, one party (tencipal) de-  |n practice, typically not even a distribution over the types
sires that another party (tregen) takes a certain action, s known! However, if the problem repeats itself, the prin-
even though the agent has no direct interest in the actiobipal may be able tdearn how to set the rewards. We
being performed. For instance, the principal may have &onsider the online model where the principal faces a new
certain task that she does not have the resources to perforggent every round, and gets to set a new reward structure
or that is more efficiently performed by the agent. As anil-

We study and experimentally compare three main
approaches to this problem. First, we show how
to apply a standard bandit algorithm to this set-
ting. Second, for the case where the distribution
of agent types is fixed (but unknown to the prin-

'From a decision-theoretic standpoint, the principal will have

Appearing inProceedings of th@3™ International Conference SOme subjective distribution over the agent's types, but this dis-

on Machine LearningPittsburgh, PA, 2006. Copyright 2006 by {ribution may or may not be close initially to the distribution of
the author(s)/owner(s). types in the general population of agents.
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every round. We assume that the principal only observeggent's utility: The agent’s utility depends on the reward
the action taken by the agent, and not the agent’s typée collects, as well as his dislike for the action he performs.
(not even after the round is over). Thus, we cannot infefThis dislike is given by his type, which is known to the
what the agent would have done for other reward structuresgent but unknown to the principal. The agent is rational
Such problems, in which one of multiple alternatives is toand will always choose the action that maximizes his utility,
be chosen, and only the result from the chosen alternativgiven the reward function. We will assume the agent’s util-
is observed, are calldshnditproblems (Auer et al., 1995). ity function can be written a¥ (¢, a,r) = v(t,a) +r(a) =

w(a) + r(a). That is, the type represents the agent’s

. . =t
In this paper, we compare three approaches to the online. . ) . .
principal-agent problem. First, we take a general bandit aI=8ISIIke for doing a unit of work. The space of possible types

gorithm from the online learning literature and show howIS thusR. We note thab(#, ao) = 0 for all .

to apply it to this new domain. We then introduce a newPrincipal’s utility: The principal’s utility depends on the
approach, which requires that the agents’ types are drawreward she must award, as well as her appreciation for the
from a fixed distribution. It also requires that we can addaction the agent performs. We will assume the principal’s
another action to the domain, which is no more useful to thautility function can be writterU (a, r) = u(a) — r(a). We
principal than the original action, but less desirable fromwill use the shorthand; = u(a;). We will assumes, = 0.

the agent’s perspective (we will argue that for many appli-

cations, this can be done). We show how to use this extrTh'S interaction between the principal and an agent repeats

fself each round. At each roundjs drawn anew (we can

In general, this gradient ascent approach can get stuck in‘i{ftl]Ink of this as the principal facing a different agent every

. S . . round). The principal’s learning objective can be either to
local optimum, but natural distributions typically satisfy a . . .
X o . erform well relative to the best fixed reward function in
concavity condition that precludes such local optima. W

! : ) S indsight (a standard objective in the online learning lit-

provide experimental results for the fixed-distribution case, . ! )
. erature), or, in case the types are drawn from a fixed dis-
showing that the second approach converges much fastgr, . R e
: . ribution, to converge to an expected (principal’s) utility-
and generates less variance in the rewards that are set. Fi-~ . . .
o : maximizing reward function.
nally, we study the case where the principal has a prior be-
lief over the agents’ type distribution, so that a Bayesian o ] o )
approach can be taken. We show that this approach cad. Application: Selling a digital good online

learn the optimal reward extremely fast when the prior be- using posted prices

lief places probability on a limited class of type distribu-
tions, but may fail to converge to the optimal reward when
this class becomes larger. We also discuss how to appl

these techniques to online auctions.

In this section, we show how the previously studied prob-

m of learning to sell a digital good in an online set-
ing (Bar-Yossef et al., 2002; Blum et al., 2003) can be
seen as a special case of the setting that we study. In this
- problem, we have a seller with an unlimited supply of a
2. Definitions good. At each round, the seller faces a new buyer with an
dinknown value for a unit of the good, and the seller needs
to set a pricep for a unit of the good for this buyer. The

buyer will buy a unit of the good at the posted price if and
Action set: The agent has to choose one action from arpnly if his value exceeds the price.

action setd. We will first concern ourselves with the case i o
whereA = {ao, a; }; later in the paper, we will add a third We can model this as a principal-agent problem as follows.

actionas. The actiona, can be interpreted as the agent The seller will take the role of the principal, and the buyer

doing nothing. We will assume that associated with eactVill t2ke that of the agent. The seller will give the buyer
actiona, there is a fixed amount afork, w(a), that is in- the choice of two actions: not buying the good (denoted

dependent of the agent's type. We will use the shorthand¥ @o). and buying the good (denoted by). The seller
w; = w(a;), and assume thaty = 0. will set a negative “reward?; for buying the good, which

is the negative of the price of the gooch (= —p). Let
Reward function: Before the agent chooses his action, thethe amount of “work” associated with obtaining the good
principal must set a reward function: A — R, where bew;, = -1 (One way to interpret this is that the good
R is the space of possible rewardsa) is the reward that  may facilitate other tasks for the agent and thereby reduce
the principal pays the agent upon selecting/Ve will use  the agent’s workload), and let the agent's typiadicate
the shorthand; = r(a;). We will let R = R, and assume hjs utility for having the good (or his dislike for the work
o = 0. Thus, whem = {ay, a1 }, the principal only needs  that he would not have to do if he had the good). Then, the
to setr;; once we add., she will also need to set. agent’s utility for buying the good istw, +r; = t—p. For

We now present the basic definitions for one round of th
online principal-agent problem as studied in this paper.
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the seller, we sat; = ug = 0 (since the seller is indifferent our setting, a reward function consists of a single reward
between keeping the good herself and not keeping it), s@;, so the arms correspond to different valuesrfor

that the seller’s utility for selling the good ig, — r; = p.

(More generally, if the seller has a reservation pricir 4.2, Algorithm

the good, we can set; = —h so that the seller’s utility for

selling the good isi; — 7y = p — h.) The bandit algorithnExp3 (Auer et al., 1995) specializes

to the following form in our domain. (We refer the reader

) ) to the original work for the intuition behind the algorithm
4. How to Apply a General Bandit Algorithm and the meaning of its parameters.)

In this section, we show how to apply a general online ban

dit learning algorithm to the principal-agent problem. BANDIT ALGORITHM

R — { possible reward$

4.1. Viewing our problem as a bandit problem forall r € 1t {
Sp—0,m, «— 1

In a bandit setting (Auer et al., 1995), we must choose one}

of a number of “arms,” and we then receive a utility that| repeat {

depends on the arm we chose. We do not find out what with probability ~ {

rewards the other arms would have given us. (This is in r. < choose reward uniformly at random

contrast withexpertssettings (Cesa-Bianchi et al., 1997, }

de Farias & Megiddo, 2003), where we do find out what| else{

utilities we would have received for following other ex- r. < choose reward with probabilityz"#

perts’ recommendations.) This process repeats itself fg "

a number of rounds, over which we accumulate utility.| }

The standard goal is to perform well compared to the best setrewardr; = r.

(fixed) arm in hindsight. if the agent chooses {
+ (w1 =7re)y -
IRI( +(1=7) <="—)

m_y

=

' €R

Sr., < Sr,

In the online principal-agent problem, the “arms” of the
bandit correspond to the various reward functions the print
cipal can set for the agent. Each reward function will give me, — (1+a) fre
the principal some utility (depending on the agent’s type) } ‘
but the principal does not find out the utilities that other re-|
ward functions would have given her, because by assump
tion thze ag_ents type remains unknown aJ.[ the _end of thel'his algorithm is effectively identical to the algorithm pre-
round¢ This approach requires that we discretize the re- . . L
. . sented in (Blum et al., 2003) for learning to sell a digital
ward space in order to have a finite number of afmis. ; . . -
good in an online setting. As such, it is a natural bench-
2This is why we require a bandit algorithm instead of an ex- mark for the algorithms that we present later in the paper.
perts algorithm. We note that in our setting it is not true that we
cannot makeanyinferences about what would have happened for ;
other reward fgnctions: for example, if the agent did Egt take an4'3' Experimental results
?ctiont, e know that(;h?\lagerlthwlould ?ﬂ” not h?Ve taker? tthiS”aCm this subsection, we describe experimental results for the
ion at a lower reward. Nevertheless, this is not enough to allo ; : ;
us to use an experts algorithm. Moreover, in the settin% of sellin andit algorlthm. Let.“ " 1? wy = 1. Every round/ .IS
a digital good online (discussed above), it has been shown thedirawn from a fixed distribution: we study both a uniform
retically (Blum et al., 2003) that having to use a bandit algorithmdistribution ovei{0, 1], and an exponential distribution with
does not come at much of a loss relative to being able to use ap = 1. It can be shown analytically that with these distri-
experts algorithm. Such experts algorithms in turn outperformbutions, the optimal (expected utility-maximizing) settings

other methods (Bar-Yossef et al., 2002) designed specifically fo . . . i
this problem (and that use the same information as an experts aﬁQY r1 are0.5 and0.44, respectively. We discretize the re

gorithm). Thus, bandit algorithms constitute the natural baselin@vard space at intervals @£05 to get a finite number of

for our problem. bandit arms, and do not consider rewards greater than
®Recent work on online convex programming (Zinkevich, (because the optimal rewards clearly lie belgw

2003) provides an algorithm that does not require discretization_ .

for settings with a continuum of experts, but it cannot be appliedFirst, we present the results for the best setting of the pa-

here because we are in a bandit setting and do not observe tllameters that we found when holdingfixed over time

principal’s utility for rewards other than the one chosen (which is(Figures 1 and 2). (We show the chosenonly every

necessary for a gradient computation in that algorithm). Addition-lOOOth round.)

ally, the principal’s utility function is discontinuous in rewards. ’

reR
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Figure 1.Convergence for uniform (left) and exponential (right) Figure 4.Final weightsm,. on rewards for uniform (left) and ex-

distributions withy = 0.1, = 0.8, andh = 0.2. ponential (right) distributions witly = %% in roundi, a = 0.8,

The final weights are quite good in both cases, placing al-

without hurting the algorithm’s convergence. (We show the

Weights
e
Weights

andh = 0.2.

x10"% x10%

5. Gradient Ascent

We now take a newradient ascenbased approach to the
online principal-agent problem.

I S S R SR

o

5 10 15 20 0 5 10 15
Reward in nickels (x 0.05) Reward in nickels ( 0.05)

5.1. Intuition

Figure 2.Final weightsm,. on rewards for uniform (left) and ex- For the gradient ascent algorithm, we assume that the distri-

ponential (right) distributions withy = 0.1, « = 0.8, and  bution from which the agents’ types are drawn is fifetls

h = 0.2. Recall that we have discretized the reward space af result, there is some reward structure (semehat max-

intervals of 0.05, hence the reward is in “nickels.” imizes the principal’s expected utility. The goal is to find
this 1 using gradient ascent. However, the principal does
not actually know the gradient, because the distribution of

t all of th babilit timal i Iagents’ types is unknown. Instead, we propose a method
most alf of the probability mass on optimal or near-optimaly, ., closely approximates gradient asdergxpectation
rewards. The algorithm chooses a random reward with

probabilityy = 0.1, leading to “spikes” in the convergence To do so, consider the tradeoffs involved in slightly increas-

graphs; but disregarding the spikes the algorithm convergesg (or decreasingy;. (We will derive exact expressions

quite fast. for these tradeoffs in the next subsection.) On the one hand,

increasingr, will decrease the principal’s utility for any
pe for which the agent performas, because the principal

will have to pay more. On the other hand, increasing

will increase the set of types for which the agent performs
ctionay, thereby increasing the probability that the agent
erformsa;. Thus, the decision of whether to increase

by a given amount depends on the probability mass on the

The next results (Figures 3 and 4) show that the spike
can be minimized by decreasingover time according to
a fixed schedule. However, we cannot decrepsso fast

results for the best setting of the parameters that we found

os types for which the agent will performy, with the original

od reward, buta; with the new reward. This mass is difficult
to estimate, because the principal does not see what the
agent's type was at the end of a round. One approach to es-
timating this mass is to run with a fixed reward= r for a

long time, then to run withr; = r + € for a long time, and

03 finally to take the difference in the fraction of times that the

0 20 40 60 80 100 o 20 40 60
Rounds (in thousands) Rounds (in thousands)

w = ggent chose to perforay between these two approaches.
Of course, to be confident in our estimate, we would have
Figure 3.Convergence for uniform (left) and exponential (right) to run for a very long time in both cases.
distributions withy = % in roundi, oo = 0.8, andh = 0.2. — _ _ _
The bandit algorithm from the previous section does not as-
) ) ) ) sume this, even though we did do that section’s experiments in the
The final weights are again quite good, and we do not segxed-distribution setting (so that we can compare them with the

as many spikes in the rewards in later rounds. experiments for this algorithm).
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Instead, we take the following approach. We assume thatibution over types, but for angingleround, there is no
we can add another actien to the action space, with the purpose in using it. 2. In our algorithm, we will keep
following properties. First, the principal is indifferent be- andr, very close to each other, and thus the above expres-

tween the agent performing, andas—that is,u(a;) =  sion is a close approximation of the actual expected utility
u(az). Second, the agent prefers performingo perform-  for the principal in any given round.
ing as, because; is slightly more work—w, exceedsu, g
; ; i . . . dU P(wl)
slightly. (We note that because we assume the agent’s utilfaking the derivative o/, we getg= = —==(u1 —r1) —
ity function can be written a¥ (¢, a, ) = v(t,a) +r(a) = =

—tw(a) + r(a), all the work has the same “dislike” mul- [ p(¢)dt. To use this to do gradient ascent, we will
tiplier ¢, and in this sensey; is more of the sameork as ==
a1.) For example, ifi; corresponds to the task of shoveling ) . wy )
a large area, them, may correspond to the task of shovel- N€€d to estimate bop{ ) andt_[oo p(t)dt. The latter is

ing the same area, plus another small area for which thgasy to estimate without introducing an extra action, by the
principal does not care if it is shoveled or not. In the caseraction of times that:; is selected. However, to estimate
where we are selling a good onling, may correspond to  the other term, we will need to introduce another action,

buying a slightly inferior product—for example, one with a 4, |n the following, we describe how to do this.
reduced quality or lifetime. (We note that most real-world ) )
goods can straightforwardly be made slightly worse in the/Ve recall that the agent will switch fromy to a; when

manner desired. For example, the lifetime of a product cah = w- - He will switch froma; to a; whenV' (¢, ay, 1) =
ro—r1

always be reduced by using the product before the sale.) V (¢, a2,72), or equivalentlys = 2=t

I

. . = (r2-r1
Naturally, the reward, must be set at least slightly higher ' ((:N;val) t=
thanr, if the agent is ever to choosg. As we will show,
the principal can set the reward to effect the following: az/\}ad}/\ a0
the agent will choose, rather tham, if and only if his ~ t (typespace)

€

typet was almost high enough to choagg Thus,a, being Figure 5.Switching points between actions.

chosen indicates that the agent is close to being indifferent
between all the actionghat is,t is close tor;/wi. As-  The purpose of the new action is to get an estimate of the
suming continuity of the probability density function over probability mass on types for which the agent is close to
types, this suggests that there is significant probability masgeing indifferent between the actions. What is considered
on types close te; /w;. This suggests that increasing the “close” is defined by the distance between the two switch-
rewards is likely to decrease the probabilitysgfbeing se-  ing points in the type space; we can determine this distance

lected significantly. ourselves by setting the rewards appropriately. Suppose
We note that, unlike in the case of the bandit algorithm from"/€ want the distance Qbiertlween Ttlhe switching points to be
the previous section, we do not need to discretize the reS THen we must sef2=/> = .- — ¢, or equivalently

e 3 . :
ward space. The following subsection will make the algo-"2 = w; "1 +€(wi —w2). Given thak is small, we can say

rithm more precise, and show how to turn this observatiorflat the probability ofa; being selected is approximately
into an online gradient ascent algorithm. ep(£+), and the probability ofi; being selected is approx-

wy
Ty

w1
5.2. Analysis and Algorithm imately [ p(t)dt—corresponding to the terms we were
t=—o0

The principal’s objective is to maximize her expectedseekingto estimate. Now consider the following algorithm:

utility. The agent will switch fromay to a; when
V(t.a0,r0) = V(t,a1,r1), or equivalentlys = ™. Be- | |' GRADIENT ASCENT ALGORITHM
cause the principal’s utility for the agent choosiagis | 'Ntalize re1, e
uy — r1, the principal’'s expected utility is given by = repeat {
L setrewardsry = r.1,72 = T2
( [ p(t)dt)(u; — r1). We emphasize that this is the ex- | 1T the agent chooses,
t="00 do nothing
pression for her expected utilityhen actiona, does not if the agent chooses
come into play Our goal in this section will be to let; increaser.; by “L="el K
converge to a value that maximizes this expression, rather if the agent Choose@l
than to set; andr, to maximize the expected utility of the decreaser.; by K
Fhree—action setting. This makes our analysi; easier,.and it updater., — Z_frcl + e(wy — wy)
is reasonable because:db. is helpful for learning the dis- |}
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With this algorithm, theexpected change r; in any round
is approximately:

71

w1

J

t=—o00

)ul—"'l
€Wl

— | pOdE = Kz

w1

KdU

f p(t

t=—o0

1
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It follows that (in expectation) we are (apprommateh o
doing gradient ascent, and the step size is proporuonc
K. Thus, if we initialize the rewards within the suppouos
of the distribution, K is set appropriately over time, anwu“
the objective function has no local optima other than 1<,
global optimum, then we will converge to the optlm. 02
setting forr;. We note that for the uniform and exponenti.

distributions

p(:ﬁ)(

w1

f p(t)dt is
decreasing i because the probablhty densny function

up — 1) —

greater fluctuation, by increasing.) The solution is, of
course, to decreade€ over time.

We next (Figure 7) present results whéfedecreases over

time according to a fixed schedule. (We show the bandit
algorithm’s results with a changingin the background of
the graphs as a dotted line.)

——

100

0 40 60
Rounds (in thousands)

Figure 7.Convergence for uniform (left) and exponential (right)
distributions withK = 0 L in rounds.

is nonincreasing; hence, the objective function is concave

and has no local optima other than the global optimum.

5.3. Experimental results

In this subsection, we describe experimental results for th

gradient ascent algorithm. Lety = us = 1, w; = 1,
wg = 1.001. Every round; is drawn from a fixed distri-

Convergence is now almost immediate, and fluctuation is
minimized becaus& is decreased over time.

®. A Bayesian approach

In this section, we take a Bayesian approach. We continue

bution: again, we study both a uniform distribution over to assume that agents’ types are drawn from a fixed dis-

[0,1], and an exponential distribution with = 1. We re-

tribution, but we will no longer require the availability of

call that the optimal (expected utility-maximizing) settings an extra actioR. We do, however, require that the princi-

for vy are0.5 and0.44, respectively. We let = 0.02. We

pal has a prior belief (distribution) over the distribution of

note that for the gradient ascent algorithm, we do not needgents’ types. Each round, the principal chooses the reward
to discretize or cap the reward space (as we did for the banhat maximizes her expected utility, given her beliefs over

dit algorithm).

First (Figure 6), we present the results obtained when hold-

ing K fixed over time at the best value that we found for it.
(We show the bandit algorithm’s results with fixedn the
background of the graphs as a dotted line.)

g

0 100

40 60
Rounds (in thousands)

Figure 6.Convergence for uniform (left) and exponential (right)
distributions withK' = .00005.

Convergence is reasonably fast, but becdkiss fixed, the

type distributions; then, the principal updates these beliefs
based on the observed result, using Bayes’ rule. (We omit
the mathematical details due to space constraint, but they
are straightforward.)

Again, we run experiments on both a uniform distribution
over [0, 1], and an exponential distribution with = 1.

We must now also specify the principal’s prior beliefs, and
we do so as follows. In each case, the principal knows
the type of distribution (uniform ovel0, k], or exponen-
tial with parameter\), but is uncertain about the param-
eter in the distribution ¥ or \, respectively). Specifi-
cally, the principal initially believes that the parametgr (
or )\, respectively) is equally likely to be any member of
{0.00,0.01,...,10.00}. The results are in Figures 8 and 9.

5The Bayesian approach can be extended to make use of such
an extra action; however, insofar as the Bayesian approach can
perform well without it, it is of course preferable not to require

rewards fluctuate around the optimal reward. (It is possithis assumption. We will show shortly that the Bayesian approach
ble to obtain much faster convergence, at the cost of muchan indeed perform well without the extra action.
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Figure 9.Final principal beliefs over parameter values for uni- tribution parameter) when the true distribution is uniform (left)
form (left) and exponential (right) distributions under the and exponential (right) under the Bayesian approach, when the
Bayesian approach, when the prior places probability only on disPrior places probability on both types of distribution.

tributions of the correct type (uniform or exponential).

The Bayesian approach converges much faster than the
proaches studied earlier in the paper. This is perhaps
too surprising, because the principal now has significant
formation at the outset about the distribution (namely, t~
type of distribution). For example, in both cases, if the pri
cipal knows the value of the cumulative distribution at ar  _
given reward i(e. what the true probability is that an ager < -
will accept that reward), then the principal can immediate
infer the entire true distribution.
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Figure 12Final principal beliefs for values of (the exponential
To see what happens if the principal initially has slightly distribution parameter) when the true distribution is uniform (left)
less information about the distribution of agents’ types, weand exponential (right) under the Bayesian approach, when the
ran the same experiments again with the following modifi-Prior places probability on both types of distribution.
cation: all the principal knows initially is that the distribu-
tion is uniformor exponential—she does not know which
of the two is true. She believes that both types of distri-
bution are equally likely, and given the type of distribu-
tion, that each parameter value {0.00,0.01,...,10.00}
is equally likely. The results are in Figures 10, 11, and 12.

whether the distribution is uniform or exponential. This
can be explained as follows. The principal ends up placing
all the probability mass on or close to one value Xpand

one value fork, such that the optimal reward to set under
this belief has the following property: the probability that
the agent will accept given the value faris the same as
The Bayesian approach still converges fast, but it no longethe probability that the agent will accept given the value
converges to the optimal reward (for the uniform distribu-for k. Therefore, the agent’s decision tells us nothing about
tion, it converges to 0.45 instead of 0.5, and for the ex-+the relative probabilities of these two parameter values, and
ponential distribution, it converges to 0.48 instead of 0.44)we remain stuck at the same reward value, which is subop-
Moreover, while the approach is still able to eliminate mosttimal with respect to the true parameter value. Put another
parameter values, the principal is unable to distinguishway, the problem is that the principal’s focus on exploita-
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tion prevents her from distinguishing type distributions thatple, those presented in (Kleinberg & Leighton, 2003)), but
produce the same behavior under the current optimal rethese may no longer hold given the possibility of an addi-
ward. It may be possible to force the principal to do sometional action. Another possible line of future research is to

limited exploration to prevent this problem. extend these results to richer domains with more actions,
different reward spaces, multiple agents that act simulta-
7. Conclusions neously,etc. (although the model in this paper appears to

capture at least the most natural applications).
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