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ABSTRACT
Restricting the preferences of the agents by assuming that
their utility functions linearly depend on a payment allows
for the positive results of the Vickrey auction and the Vickrey-
Clarke-Groves mechanism. These results, however, are lim-
ited to settings where there is some commonly desired com-
modity or numeraire—money, shells, beads, etcetera—which
is commensurable with utility. We propose a generalization
of the Vickrey auction that does not assume that the agents’
preferences are quasilinear, but nevertheless retains some of
the Vickrey auction’s desirable properties. In this auction,
a bid can be any alternative, rather than just a monetary
offer. As a consequence, the auction is also applicable to
situations where there is a fixed budget, or no numeraire
is available at all (or it is undesirable to use payments for
other reasons)—such as, for example, in the allocation of
the task of contributing a module to an open-source project.
We show that in two general settings, this qualitative Vick-
rey auction has a dominant-strategy equilibrium, invariably
yields a weakly Pareto efficient outcome in this equilibrium,
and is individually rational. In the first setting, the center
has a linear preference order over a finite set of alterna-
tives, and in the second setting, the bidders’ preferences can
be represented by continuous utility functions over a closed
metric space of alternatives and the center’s utility is equi-
peaked. The traditional Vickrey auction turns out to be a
special case of the qualitative Vickrey auction in this second
setting.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics; K.4.4 [Computers and Society]: Electronic Com-
merce

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
Although it may often seem otherwise, even nowadays,

money is not always the primary issue in a negotiation.
Consider, for instance, a buyer with a fixed budget, such
as a government issuing a request for proposals for a specific
public project, a scientist selecting a new computer using
a fixed budget earmarked for this purpose, or an employee
organizing a grand day out for her colleagues. In such set-
tings, the buyer has preferences over all possible offers that
can be made to him. A similar situation, in which the roles
of buyers and sellers are reversed, occurs when a freelancer
offers his services at a fixed hourly fee. If he is lucky, several
clients may wish to engage him to do different assignments,
only one of which he can carry out. Needless to say, the free-
lancer might like some assignments better than others. In
this paper, we consider a general setting which covers all of
the examples above. In this setting, we distinguish between
a center who accepts bids—the government, the scientist,
the employee, or the freelancer in the examples above—and
a number of bidders.

In order to get the best deal, the center could ask for offers
and engage in a bargaining process with each of the bidders
separately. Another option would be to start an auction (or
reverse auction). In this paper, we show that even without
payments, it is possible to obtain a reasonable outcome, by
using an auction in which bidders compete on other aspects
of their offers. We propose an auction protocol in which the
dominant strategy for each bidder is to make the offer that,
among the ones that are acceptable to her, is most liked
by the center. We also show that if all bidders adhere to
this dominant strategy, a weakly Pareto optimal outcome
results.

To run such an auction without payments, the preferences
of the center over the alternatives are made public. (In a
typical auction with monetary bids, it can be assumed to be
common knowledge that buyers prefer lower prices to higher
ones, and sellers higher to lower ones; in general, the cen-
ter’s preferences may not be immediately obvious. However,
in many cases it is reasonable to assume that the center’s
preferences should be common knowledge, for example if the
center is a government that is transparently run. Otherwise,
we assume, as is generally done in mechanism design, that
the center can commit to the mechanism.) Our “qualitative”
protocol closely follows the protocol of a Vickrey, or sealed-
bid second-price, auction [16]. First, each bidder submits



an offer (an alternative). The winner is the bidder who has
submitted the offer that ranks highest in the center’s prefer-
ence order. Subsequently, the winner has the opportunity to
select any other alternative, as long as it is ranked at least
as high as the second-highest offer in the center’s preference
order. This alternative is then the outcome of the auction.

For example, suppose an open-source project requires a
particular module, and several companies want to contribute
it for free, as being the contributor makes it easier to inter-
face with one’s existing code. Each party proposes various
combinations of functionality, and the best proposal wins;
the winner is only obligated to deliver something as good as
the next best proposal.

In the next section some general notations and definitions
from mechanism design are introduced, and in Section 3 we
define the qualitative auction sketched above for the set-
ting in which the bidders are indifferent among all outcomes
where they do not win the auction (a no-externalities as-
sumption). This restriction allows us to sidestep the nega-
tive conclusions of the impossibility result by Gibbard and
Satterthwaite [4, 13]. In Section 4 we prove that a dominant-
strategy equilibrium exists in the qualitative Vickrey auction
when there are finitely many alternatives and the preference
order of the center is a linear order, and that this yields
a weakly Pareto efficient outcome. The remainder of that
section discusses several other properties, including a mono-
tonicity property. Thereafter, in Section 5, we show that
similar results hold when the bidders’ preferences can be rep-
resented by continuous utility functions over a closed metric
space of alternatives, and the center’s utility is equipeaked.
We conclude the paper by relating our work to other general
auction types, such as multi-attribute auctions.

2. DEFINITIONS
In this section, we review some terminology from mech-

anism design and fix some notations. For more extensive
expositions, we refer the reader to [8], [9], and [15].

Let N = {1, . . . , n} be a finite set of agents with n ≥ 2
and Ω a set of outcomes (possibly infinite). A preference
relation %i of agent i is a transitive and total binary re-
lation (that is, a weak order or a total preorder) on Ω,
with �i and ∼i denoting its strict and indifferent part, re-
spectively. We use infix notation and write a %i b to in-
dicate that agent i values alternative a at least as much as
alternative b. It is not uncommon to restrict one’s attention
to particular subsets of preference relations on Ω, for in-
stance, quasilinear preferences or single-peaked preferences
on Ω. Let Θi be such a class for each i ∈ N ; we let Θ de-
note Θ1 × · · · × Θn. A preference profile % in Θ (over Ω
and N) is a vector (%1, . . . ,%n) in Θ1 × · · · ×Θn, associat-
ing each agent with a preference relation over Ω. We will
assume that the preferences %i of each player i can be rep-
resented by a utility function ui : Ω → R. This will prove
particularly convenient if the set Ω of outcomes is infinite.

Given a preference profile in Θ on Ω, an outcome ω in Ω
is said to be weakly Pareto efficient whenever there is no
outcome ω′ in Ω such that all agents strictly prefer ω′ to ω.
Outcome ω is said to be Pareto efficient if there is no out-
come ω′ in Ω such that that ω′ is weakly preferred to ω by
all agents and strictly preferred by some.

A social choice function (on Θ) is a map f : Θ → Ω as-
sociating each preference profile with an outcome in Ω. A
social choice function on Θ is said to be (weakly) Pareto

efficient whenever f(%) is (weakly) Pareto efficient for all
preference profiles % in Θ.

A mechanism (or game form) M on a set Ω of outcomes
is a tuple (N,R1, . . . , Rn, g), where N is a set of n agents;
for each agent i in N , Ri is a set of actions available to i;
and g : R1×· · ·×Rn → Ω is a function mapping each action
profile in R1×· · ·×Rn to an outcome in Ω. We will from now
on refer to functions si : Θi → Ri as strategies and vectors
s = (s1, . . . , sn) of such functions, one for each agent, as
strategy profiles.

In this paper we are primarily concerned with implementa-
tion in dominant-strategy equilibrium, which has been stud-
ied extensively in the context of mechanism design [2, 5].
We say that a strategy s∗i is a dominant strategy for agent i
if, for any %i, no matter which actions r−i the other agents
choose, i is not worse off playing s∗i (%i) than any of her
other actions, that is, for all %i∈ Θi, r−i ∈ R−i, ri ∈ Ri, we
have

g (r1, . . . , s
∗
i (%i), . . . , rn) %i g (r1, . . . , ri, . . . , rn)

A strategy profile s∗ = (s∗1, . . . , s
∗
n) is a dominant-strategy

equilibrium if s∗i is a dominant strategy for all agents i in N .
In this case, we say that the mechanism implements in a
dominant-strategy equilibrium the social choice function de-
fined by f(%) = g(s∗(%)).

The advantage of a dominant-strategy equilibrium is that
it is very robust. The dominant strategies of an agent i do
not depend on the preferences of the other agents, so they
can be calculated on the basis of i’s preferences alone. More-
over, there seems to be no reason why an agent would play
a strategy that fails to be dominant if a dominant one is
available.1 The downside is that it is not always possible
to implement desirable social choice functions in dominant
strategies. For example, the Gibbard-Satterthwaite theo-
rem states that implementation in dominant-strategy equi-
librium for three or more achievable alternatives allows only
for social choice functions in which one of the players is a
dictator, or in which at least one of the alternatives is never
chosen, unless one imposes restrictions on the agents’ pref-
erence relations [4, 13].

3. A QUALITATIVE VICKREY AUCTION
In the setting we consider, a commission is issued and auc-

tioned among a set N of n agents, henceforth called bidders.
The commission can have a number of alternative imple-
mentations, denoted by A. The commission is assigned to
one of the bidders, who commits herself to implement it in a
particular way. Thus, the outcomes of the auction are given
by pairs (a, i) of alternatives a ∈ A and bidders i in N , that
is, Ω = A×N . Intuitively, (a, i) is the outcome in which i
wins the auction and implements alternative a. For each
bidder i in N we let Ωi denote A × {i}, that is, the set of
offers i can make, and let Ω̄i be short for Ω \Ωi. Each offer
is also an outcome, and vice versa, so we have Ω =

S
i∈N Ωi.

We make the no-externalities assumption that each bidder
is indifferent among outcomes in which the commission is
assigned to another bidder. Formally, a bidder i is an in-
different loser if ω ∼i ω′ for all outcomes ω, ω′ ∈ Ω̄i, and
we have no externalities if all bidders are indifferent losers.
Without further loss of generality, we assume that ui(ω) = 0

1An exception is if the agents can make a binding agreement
with each other to collude.



for all bidders i and all outcomes ω ∈ Ω̄i. In what follows,
we have Θi denote the set of i’s preferences over Ω that
comply with this restriction.

An outcome ω ∈ Ω is said to be acceptable to i if ω %i ω
′

for some ω′ ∈ Ω̄i—that is, ui(ω) ≥ 0—and unacceptable
otherwise. That is, an outcome ω is acceptable to a bidder
if she values it at least as much as any outcome in which
she does not win the auction. We observe that according to
this definition every outcome in Ω̄i is acceptable to i. Pref-
erences %i are said to be satisfiable if the set Ωi contains at
least one acceptable outcome ω (with ui(ω) ≥ 0). Satisfiable
preferences can be argued for in contexts where a bidder is
assumed not to partake in the auction if winning is sure to
make her worse off.2

Let ≥ be a total preorder, that is, a reflexive, transitive,
and total relation, on Ω. We say that outcome ω is ranked
at least as high as outcome ω′ in ≥ if ω ≥ ω′. The qualita-
tive Vickrey auction on ≥ is then defined by the following
protocol. First, the order ≥ is publicly announced. Then,
each bidder i submits a sealed offer (a, i) ∈ Ωi to the center.
The bidder i∗ who submitted the offer ranked highest in ≥
is declared the winner of the auction. Ties are broken by
means of a tie-breaking rule (for the moment unspecified).
Finally, the winner i∗ of the auction may choose from among
her own offers in Ωi∗ any outcome that is ranked at least as
high in ≥ as the offer that ranks second highest in ≥ among
the ones submitted. The outcome she chooses is then the
outcome of the auction. The winner’s initial offer is witness
to the fact that such an outcome always exists.

Example 1. Let N = {1, 2, 3} and A = {a, b, c, d}. Let
us further suppose that the order ≥ on the alternatives is
lexicographic, that is,

(a, 1) > (a, 2) > (a, 3) > · · · > (d, 1) > (d, 2) > (d, 3).

Suppose the three bidders 1, 2, and 3 submit the offers (c, 1),
(a, 2) and (d, 3), respectively. Bidder 2 then emerges as
the winner, as (a, 2) > (c, 1) > (d, 3). Since (c, 1) is the
second-highest offer, bidder 2 may now select from the out-
comes (a, 2) and (b, 2), these being the only outcomes in Ω2

that rank at least as high as (c, 1). In case bidder 2 prefers
(b, 2) to (a, 2), she will be better off selecting (b, 2), which
would then also be the outcome of the auction.

Naturally, the qualitative Vickrey auction can yield dif-
ferent outcomes for different orders ≥ on the outcomes. So,
we have actually defined a class of auctions. With a slight
abuse of terminology, we will nonetheless speak of the qual-
itative Vickrey auction if the order ≥ can be taken as fixed.
At first, we will consider ≥ an exogenous feature of the auc-
tion. Later, we will consider the case in which ≥ represents
the preferences of the center.

The classic Vickrey or second-price auction [16] is strategy-
proof—that is, bidding truthfully is a dominant strategy—
because a bidder’s monetary offer only determines whether
she turns out to be the winner, but not what price she has
to pay if she does. The situation is similar in the qualita-
tive Vickrey auction. Again, the bidder’s offer determines

2In a similar vein, one could introduce a zero outcome 0,
which represents the possibility of no transaction taking
place. A bidder i could also offer 0, which would intuitively
mean that i refrains from participating in the auction.

whether she emerges as the winner, but the range of alter-
natives from among which she may choose is decided by the
second-highest offer.

A strategy for a bidder i in the qualitative Vickrey auction
specifies the offer (a, i) in Ωi to make, along with a contin-
gency plan for which outcome to choose from among the out-
comes in Ωi that are ranked higher than the second-highest
offer submitted, in case i happens to win the auction. Of
course, bidder i’s choices can depend on her preferences %i

in Θi. We call a strategy for i straightforward if it satisfies
the following properties:

(i) the offer i submits is an outcome in Ωi that is ranked
highest in ≥ among those that are acceptable to i,

(ii) in case Ωi contains no outcomes acceptable to her, i
submits an outcome in Ωi that is ranked lowest in ≥,

(iii) in case i wins the auction, she selects one of the out-
comes in Ωi she values most among those that are
ranked at least as high as the second-highest offer sub-
mitted. If there are more than one such outcomes
(equally valued by i), she selects the one that is highest
ranked.

Making appropriate assumptions aboutΩ, %i, and≥, straight-
forward strategies can be guaranteed to exist. We say that
the auction is strategy-proof if straightforward strategies ex-
ist, and all straightforward strategies are dominant strate-
gies. We say that the auction is individually rational if for
each bidder i a straightforward strategy exist, and if i plays
any straightforward strategy the outcome will be acceptable
to i.

Example 1 (continued). Let the preferences of the bid-
ders 1, 2 and 3 be given by the following table, where higher
placed outcomes are more preferred.

1 2 3

(c, 1) (d, 2) (x, i) /∈ Ω3

(d, 1) (b, 2) (a, 3)
(x, i) /∈ Ω1 (a, 2) (d, 3)
(b, 1) (x, i) /∈ Ω2 (c, 3)
(a, 1) (c, 2) (b, 3)

If the bidders 1, 2 and 3 all were to play a straightforward
strategy, they would offer (c, 1), (a, 2) and (d, 3), respec-
tively, because these are the highest-ranked acceptable offers
for 1 and 2, and the lowest ranked offer for 3. Also, if the
bidders adopt straightforward strategies, (b, 2) is the outcome
of the auction, as bidder 2 is the winner and may select any
alternative ranked at least as high as (c, 1).

In Sections 4 and 5, we study straightforward strategies
in two natural settings. The first is where the set of out-
comes Ω is finite and the order ≥ is linear. Then, straight-
forward strategies exist and no ties can occur. Moreover, we
find that all straightforward strategies are dominant without
qualification, proving the strategy-proofness of the qualita-
tive Vickrey auction in this setting. In the second setting,
Ω is a possibly infinite but closed space, and the bidders’
preferences as well as the center’s order ≥ are representable
by continuous utility functions. In this case, too, straight-
forward strategies prove to be dominant, if we assume that
any local maximum in the center’s order ≥ is also a global



maximum, a condition we refer to as equipeakedness. Also,
the tie-breaking rule has to comply with a rather natural
restriction.

4. THE FINITE LINEAR SETTING
In this section we consider the setting in which the set

of alternatives is finite and the center’s order ≥ is linear,
that is, in addition to being total, transitive and reflexive,
it also is anti-symmetric. Obviously, this type of order pre-
cludes ties. Intuitively, this can be understood as the center
breaking possible ties in advance and including the results
of this tie-breaking in ≥ when it is announced. If moreover
the no-externalities assumption holds, we say the setting
is finite linear. We now show that under these conditions,
straightforward strategies are dominant, that is, the quali-
tative Vickrey auction is strategy-proof.

Theorem 1. If the set of outcomes is finite, ≥ is a linear
order, and there are no externalities, then the qualitative
Vickrey auction is strategy-proof.

Proof. Under the conditions stated in the theorem, for
each bidder straightforward strategies are guaranteed to ex-
ist. All that remains to show is that every straightforward
strategy is also dominant.

Let i be an arbitrary bidder and let si : Θi → Si be
an arbitrary straightforward strategy for i. First, we con-
sider the case where there are no outcomes in Ωi that are
acceptable to i, so that i adheres to si by submitting the
lowest-ranked offer in Ωi, denoted by (ai0, i). If i loses the
auction, some other bidder i∗ ends up winning the auction
and chooses some offer (a∗, i∗) in Ωi∗ as the eventual out-
come. We observe that (a∗, i∗) is acceptable to i and among
her most preferred outcomes. If i wins the auction, she may
choose among all outcomes in Ωi and, following si, she will
select one that she likes best. Any other offer she could
make would still make her win the auction and leave her the
same range of outcomes to choose from. So, in both cases, i
cannot make herself better off by changing strategies.

For the remainder of the proof we may assume that there is
at least one outcome inΩi which is acceptable to i. Let (ai, i)
denote the highest-ranked offer in Ωi that is still accept-
able to i, that is, the offer i would make if she followed
the straightforward strategy si. First, we consider the case
where submitting (ai, i) would make i lose the auction, that
is, where some other bidder i∗ would win the auction by
offering (a, i∗) and choose (a∗, i∗) as the eventual outcome.
Now, consider any other offer (a′, i) in Ωi which i could sub-
mit. Obviously, if (a′, i) were also a losing offer, i∗ would
still win the auction and i would be indifferent between the
outcome i∗ would then choose and (a∗, i∗). On the other
hand, if (a′, i) would make i win the auction, then we have
(a′, i) ≥ (a, i∗), rendering (a, i∗) the second-highest offer.
Then, i has to choose from among the outcomes in Ωi ranked
higher than (a, i∗). All of these outcomes, however, are un-
acceptable to i, that is, (a∗, i∗) �i ω for all ω ∈ Ωi with
ω ≥ (a, i∗). Thus, also in this case, i cannot make herself
better off by changing strategies.

The final case to consider is where i wins the auction by of-
fering (ai, i) and (b, j) is the second-highest offer. Let (a∗, i)
be the outcome i chooses as her most preferred outcome
among the outcomes in Ωi that are ranked higher than (b, j).
Then, (ai, i) ≥ (a∗, i) > (b, j), because any outcome in Ωi
ranked higher than (ai, i) is unacceptable to i. We have

(a∗, i) %i ω for any outcome ω /∈ Ωi. If i were to submit
another offer that would still make her win, then the second-
highest offer would remain the same, and so would the set
of outcomes from which i may choose. Thus, i would do no
better than by offering (ai, i) as prescribed by si. On the
other hand, if i were to submit a losing offer instead, some
outcome ω /∈ Ωi would result. Since (a∗, i) %i ω, again i
would have done no worse by offering (ai, i). We can now
conclude that si is a dominant strategy for i.

The no-externalities requirement is meant to exclude ex-
amples like the following. Let there be two bidders, 1 and 2,
and two alternatives, a and b. Suppose the center’s order is
given by

(a, 1) > (a, 2) > (b, 2) > (b, 1).

Suppose further that bidder 1’s preferences are such that

(b, 1) �1 (b, 2) �1 (a, 1) �1 (a, 2).

Obviously, bidder 1 is no indifferent loser, that is, the no-
externalities assumption is violated here. Also, she does not
have a dominant strategy in this qualitative Vickrey auction.
If bidder 2 submits (b, 2), with the intention of also choosing
(b, 2) if she wins, bidder 1 is better off submitting (b, 1) and
losing the auction, than bidding (a, 1), winning the auction
and being forced to choose (a, 1). If, on the other hand,
bidder 2 were to submit (a, 2), with the intention of also
choosing (a, 2) if she wins, bidder 1 prefers to avert disaster
by submitting (a, 1) and winning the auction. (By submit-
ting (b, 1), bidder 1 loses the auction and the outcome will
be (a, 2), an outcome less favorable to bidder 1 than (a, 1).)

Without the requirement that the center’s order is linear,
one runs into all kinds of trouble concerning tie-breaking,
at least in the finite case. Later we will see that in the
continuous case, such problems can be side-stepped and no
such restriction is necessary.

It is quite possible that, given a preference profile %, if all
bidders play a straightforward (and hence dominant) strat-
egy, the outcome (a∗, i∗) of the qualitative Vickrey auction is
unacceptable to i∗, even though some submitted offers (a, i)
were acceptable to the respective bidder i. To see why, con-
sider once more Example 1, but now suppose that the bid-
ders’ preferences are such that all offers are unacceptable
to them, apart from (d, 2), which is acceptable to bidder 2.
Then, bidder 1 would win the auction and be forced to select
some outcome (x, 1) that is unacceptable to her. This could
be considered a serious weakness. This problem, however,
can easily be side-stepped, by assuming all preferences to be
satisfiable, that is, if for each bidder i the set Ωi contains at
least one acceptable outcome.

Proposition 1. In the finite linear setting the qualita-
tive Vickrey auction is individually rational if all bidders’
preferences are satisfiable.

Proof. If a bidder i plays a straightforward strategy, he
submits an acceptable bid, which is guaranteed to exist since
all preferences are satisfiable. If i loses, the outcome is ac-
ceptable. If i wins, he can at least choose the offer he sub-
mitted.

Besides individual rationality, another reason for requiring
satisfiable preferences is that without this, the qualitative
Vickrey auction fails to be (strongly) Pareto efficient among



the bidders. In other words, for some preference profiles
there could be an outcome (a∗∗, j) that is weakly preferred
by all bidders over the straightforward outcome (a∗, i∗), and
strictly preferred by some.

Proposition 2. For any order ≥ on the outcomes, there
is a preference profile for which the outcome of the qualita-
tive Vickrey auction on ≥ is not Pareto efficient among the
bidders.

Proof. Let ≥ be any order on the outcomes and let (a, i)
be the lowest-ranked outcome therein. Now define the pref-
erence profile % such that for all bidders j distinct from i all
outcomes in Ωj are unacceptable to j and such that (a, i) is
the only outcome in Ωi that i strictly prefers to losing the
auction. Obviously, there is no way in which (a, i) can be
the outcome of the auction. Still, (a, i) Pareto dominates
any other outcome (a∗, i∗) with i∗ 6= i: bidder i∗ strictly
prefers (a, i) to (a∗, i∗) whereas all other bidders are at least
indifferent.

In contrast to strong Pareto efficiency, weak Pareto effi-
ciency among the bidders is satisfied almost trivially when
there are at least three bidders. The mechanism is weakly
Pareto efficient if there are no preference profiles and or-
ders ≥ such that some outcome is strictly preferred over
the straightforward outcome by all bidders. If there are
three or more bidders, for any two outcomes (a, i) and (b, j)
there is some bidder k distinct from both i and j and thus
(a, i) ∼k (b, j).

Thus far, we have assumed that the center’s order ≥ has
been given externally. The order ≥ could of course also be
construed as the preference relation of an additional player
with an interest in the outcome of the auction, in particu-
lar, the center of the commission. Extending the concepts
of Pareto efficiency so as to include the preferences of this
new party, we find that the qualitative Vickrey auction is
both weakly and strongly Pareto efficient provided that the
preferences of each bidder i are satisfiable and linear over Ωi.

Proposition 3. In the finite linear setting the qualita-
tive Vickrey auction is strongly Pareto efficient among the
bidders and the center, provided preferences are satisfiable.

Proof. Let (a∗, i∗) be an outcome of the qualitative Vick-
rey auction resulting from straightforward strategies. Hav-
ing assumed the preferences to be satisfiable, (a∗, i∗) is ac-
ceptable to i∗. We now show that (a∗, i∗) is not Pareto dom-
inated by any other outcome. For a contradiction, assume
that (a, i) weakly Pareto dominates (a∗, i∗). Then, (a, i) is
distinct from (a∗, i∗) and by linearity of ≤, (a, i) > (a∗, i∗).
If i = i∗, we have (a∗, i∗) �i∗ (a, i), for, otherwise, (a∗, i∗)
would not have been a choice of i∗ that is compatible with
her playing a straightforward strategy. On the other hand,
if i 6= i∗, (a, i) is ranked higher in ≥ than the bid i sub-
mitted, that is, than the highest-ranked outcome that is
still acceptable to i. Hence, (a, i) is unacceptable to i,
whereas (a∗, i∗) is acceptable to i. Hence, (a∗, i∗) �i (a, i).
In either case, (a, i) does not Pareto dominate (a∗, i∗).

Another interesting property of social choice functions
implemented by the qualitative Vickrey auction is that of
mononicity. A social choice function f on Ω is said to be
(weakly) monotonic on Θ if we have f(%) = f(%′) for any
two preference profiles % and %′ in Ω that satisfy the fol-
lowing property: for all i, the orders %i and %′i are identical,

except for the position of f(%), which is ranked higher or
the same in the rankings %′i. In other words, if for all bid-
ders i in N , we have (1) for all outcomes ω and ω′ distinct
from f(%), ω %i ω

′ if and only if ω %′i ω
′; and (2) for ev-

ery outcome ω 6= f(%), f(%) %i ω implies f(%) %′i ω; then
f(%) = f(%′). Intuitively, weak monotonicity captures the
desirable property that if the current social choice ω∗ be-
comes more preferred by some agents while the agents’ pref-
erences over the other outcomes stay the same, ω∗ remains
the social choice. A mechanism is said to be weakly mono-
tonic if the social choice functions it implements are weakly
monotonic.

For the qualitative Vickrey auction, we have imposed the
no-externalities restriction on the individual preferences that
a bidder is indifferent among all outcomes in which she does
not win. As long as there are two or more alternatives or
more than two bidders, it is impossible for a loser i of the
auction to move the outcome (a∗, i∗) up in her preference
order while keeping all her other preferences intact, with-
out violating no-externalities (because the other outcomes
in which she loses cannot also move up). Hence, for weak
monotonicity on Θ we only have to consider preference pro-
files that only differ in that the outcome (a∗, i∗) moves up
in the preferences of the winner. We then find that the
qualitative Vickrey auction is indeed weakly monotonic.

Proposition 4. In the finite linear setting, the qualita-
tive Vickrey auction is weakly monotonic.

Proof. If there is only one alternative and no more than
two bidders, then the proof is trivial. For any other case,
let us consider two preference profiles % and %′ in Θ, and
let (a∗, i∗) be the outcome of the auction if the bidders’ pref-
erences are given by %. Without loss of generality we may
assume that %i and %′i are identical for all bidders i distinct
from i∗, and that %i∗ and %′i∗ only differ in that (a∗, i∗)
is moved up in %′i∗ . We now show that (a∗, i∗) is also the
outcome of the auction if the bidders’ preferences are given
by %′. For all bidders distinct from i∗, the sets of acceptable
outcomes given %i and %′i are the same. Hence, the highest-
ranked offer (a, i) submitted by any bidder distinct from i∗

will be identical given either % or %′. Now, either (a∗, i∗)
is acceptable in % if and only if (a∗, i∗) is acceptable in %′,
or (a∗, i∗) is unacceptable in % but acceptable in %′. In
the former case, the offer by i∗ given %′ will be identical
to her offer given %. In the latter case, i∗ will offer (a∗, i∗)
when the preferences are given by %′. In either case, i∗ also
wins the auction for %′. Because under %, (a∗, i∗) is one
of i’s most-preferred outcomes among those ranked higher
in ≥ than (a, i), it must be the case that under %′, (a∗, i∗)
is uniquely i’s most-preferred outcome among those ranked
higher in ≥ than (a, i). So, (a∗, i∗) will be the outcome of
the auction if the preferences are given by %′.

A social choice function f is said to be strongly monotonic
on Θ if f(%) = f(%′) for all preference profiles % and %′

in Θ such that f(%) %i ω implies f(%) %′i ω, for all bidders i
and all outcomes ω. This is a very strong property that is
satisfied by hardly any reasonable social choice function. It
is therefore not very surprising that the qualitative Vickrey
auction fails to be strongly monotonic as well, as the fol-
lowing example involving two bidders and three outcomes
shows.

Example 2. Let ≥ be given by (a, 1) > (a, 2) > (b, 1) >
(b, 2) > (c, 1) > (c, 2) and let the preference profiles (%1,%2)



and (%′1,%2) be as follows.

1 1′ 2

(c, 1) (c, 1) (b, 2)
(b, 1) (x, i) /∈ Ω1 (a, 2)
(x, i) /∈ Ω1 (b, 1) (c, 2)
(a, 1) (a, 1) (x, i) /∈ Ω2

In the first profile, bidder 1 and bidder 2 offer (b, 1) and (a, 2),
respectively, so that bidder 2 wins the auction and the out-
come is (a, 2). However, if we move (a, 2) up in bidder 1’s
preference order, together with (b, 2) and (c, 2) so as to com-
ply with no-externalities, and leave bidder 2’s preferences
intact, then we obtain the profile (%′1,%2). Now, however,
bidder 1 submits the losing offer (c, 1), leaving bidder 2 in a
position to choose her most preferred outcome (b, 2).

So far, we have assumed that the preference order of the
center is publicly known. In some settings this is reasonable—
for example, in a standard auction where it is common knowl-
edge that the center prefers larger payments to smaller ones,
or in the case where the center is a transparently run govern-
ment. In some settings, however, this order ≥ may not be
common knowledge. Therefore, we should also investigate
whether the proposed mechanism is incentive compatible for
the center. Unfortunately, we can show that this is not the
case, leaving an open problem for future work to investigate
how much the center can profit by lying.3

Consider the following case where the mechanism is not
incentive compatible for the center. As always, the winner
can select any alternative that is ranked at least as highly
as the second-highest offer in the center’s ordering. Sup-
pose that there is an alternative in this set that she strictly
prefers to her own offer. This alternative is less preferred
by the center than the agent’s original offer. Had the center
manipulated its order by moving the second-highest offer up
and positioning it right under the winner’s offer, then the
winner would not have had any choice but to accept her
original offer.

To make the example concrete, let us take the preferences
and the offers from Example 1. Suppose the center moves
the alternative (c, 1) up in its order to the spot between
(a, 2) and (a, 3). In that case, the (dominant) straightfor-
ward strategies for the bidders would still lead to the same
offers, and the winner would still be bidder 2 with her offer
(a, 2), but she is only allowed to choose among the offers
higher than or equal to (c, 1), which now leaves (a, 2) as
the only allowed alternative. This outcome is better for the
center than (b, 2), which was the outcome resulting from its
true preference order.

5. A CONTINUUM OF ALTERNATIVES
In the previous section, we have been concerned with the

setting in which the alternative set is finite and the cen-
ter’s order is linear, and found that the qualitative Vickrey

3It should be noted that this does not affect anything from
the perspective of the bidders, in the following sense. It is
generally assumed that the center can commit to the mech-
anism. Hence, if the center commits to a qualitative Vickrey
auction that uses an order ≥ that does not correspond to the
center’s true preferences, from the perspective of the bidders,
this is no different from the case where ≥ does correspond
to the center’s true preferences.

auction is strategy-proof in this case. If the number of al-
ternatives is infinite, however, this no longer holds without
certain restrictions being fulfilled. For instance, if A = R
and the center’s and bidders’ preferences are all given by
the natural order ≥ over R, then no bidder’s bid can be high
enough, and even if a bidder were to win the auction, there
would be no optimal way for her to choose an alternative.
This particular example can easily be obviated by making
some assumptions on the set of outcomes and the bidders’
preferences. But even if we do so, an additional assumption
needs to be made to render the qualitative Vickrey auction
on continuous domains strategy-proof.

For the remainder of this section, we assume that each
set Ωi of outcomes constitutes a closed, but not necessary
bounded, metric space with a metric di : Ω × Ω → R. We
also assume each bidder i to be an indifferent loser (no exter-
nalities) and her preferences over Ωi to be representable by a
continuous utility function ui : Ωi → R. We require ui(ω) =
0 for all ω ∈ Ω̄i. Furthermore, for each bidder i, we as-
sume the set Ω∗i of outcomes in Ωi that are acceptable to i
to be non-empty, bounded and closed. Whenever these re-
strictions are fulfilled, and the center’s order ≥ can more-
over be represented by a continuous utility function uc, we
say the setting is continuous. We call the center’s ordering
competitive if for every bidder i and every ω ∈ Ωi, there
is, for every bidder j distinct from i, some ω′ ∈ Ωj such
that uc(ω) = uc(ω

′).
The continuous setting does not exclude ties and thus

sometimes tie-breaking is in order. Tie-breaking rules come
in all sorts and kinds, some more reasonable than others. A
mild condition is that of neutrality (with respect to the alter-
natives) which is fulfilled by a probabilistic tie-breaking rule
τ : ×i∈N Ωi → ∆(Ω) if all tying bids of a bidder i in Ωi have
an equal chance of winning. Formally, let τi(ω1, . . . , ωn) de-
note the probability that ωi is selected by τ(ω1, . . . , ωn).
Then, τ is neutral if for all bidders i, all (ω1, . . . , ωn) ∈
×i∈N Ωi and all ω′i ∈ Ωi, uc(ωi) = uc(ω

′
i) implies

τi(ω1, . . . , ωn) = τi(ω1, . . . , ωi−1, ω
′
i, ωi+1, . . . , ωn).

Given a neutral tie-breaking mechanism a bidder cannot im-
prove the probability of her winning a tie-breaking event by
bidding ω′ instead of ω if uc(ω) = uc(ω

′). In this section we
will assume tie-breaking to be neutral with respect to the
alternatives.

We say that x ∈ A is a local maximum or a peak of a
continuous function f : A → R on a closed metric space
with metric d if there is an ε > 0 such that f(y) ≤ f(x)
for all y ∈ Bε(x), where Bε(x) = {y ∈ A : d(x, y) ≤ ε}
is the ε-ball around x. We then say that a function f :
A→ R is equipeaked if all local maxima of f are also global
maxima of f , that is, for all local maxima x ∈ A of f there
is no y ∈ A with f(y) > f(x). For bounded and closed
domains a continuous function f is equipeaked if and only
if f(x) = f(y) for all local maxima x, y ∈ A of f , hence
the terminology. If an order ≤ over A is represented by an
equipeaked utility function u : A→ R, we also say that ≤ is
equipeaked. Note that equipeakedness is not too restrictive,
since for example settings with no local maxima, or with a
unique local maximum that is also the global maximum are
special cases.

We find that within the continuous setting, equipeaked-
ness of the center’s order over each Ωi and neutral tie-
breaking are sufficient conditions for the qualitative Vick-



rey auction to be strategy-proof. If moreover the center’s
order is assumed to be competitive, then equipeakedness
is also necessary. The intuition behind the proof of suffi-
ciency is captured by the following informal argument that
no strategies can yield a higher payoff to a bidder i than the
straightforward ones. Let ω̂1, . . . , ω̂n be the bids submitted
by bidders 1, . . . , n, respectively. Suppose that i followed a
straightforward strategy when bidding ω̂i. If ω̂i does not
tie the highest other bid(s), the argument is basically as in
the finite linear setting. So we can assume that ω̂i is among
the highest-ranked bids submitted but that it is tied with at
least one other bid. The tie-breaking rule then determines
the winning bid. We distinguish two cases. Either ω̂i is a
local maximum in uc, or it is not. In the former case, it is
impossible for i to submit a higher-ranked bid because of the
assumption that uc is equipeaked over Ωi. Neither would it
help i to offer a bid that is ranked just as high as ω̂i by the
center so as to manipulate the tie-breaking, as tie-breaking
is assumed to be neutral with respect to the alternatives. If,
on the other hand, ω̂i is not a local maximum in uc, then it
can be shown that bidder i’s utility is zero no matter which
bid she submits, that is, i is indifferent between winning and
losing the auction.

Theorem 2. In the continuous setting, the qualitative Vick-
rey auction is strategy-proof if the center’s order ≥ is equi-
peaked over each Ωi and tie-breaking is neutral with respect
to the alternatives. Moreover, if the center’s order is com-
petitive, and tie-breaking gives every tied bidder a positive
chance of winning, then equipeakedness of ≥ is also a nec-
essary condition.

Proof. For the first claim, we need to prove that straight-
forward strategies are dominant, that is, no other strategy
ever gives a higher utility. So let ω̂1, . . . , ω̂n be the bids
submitted by bidders 1, . . . , n, respectively. Let i be an ar-
bitrary bidder who plays a straightforward strategy in sub-
mitting ω̂i. Having assumed Ω∗i , that is the outcomes in Ωi
that are acceptable to i, to be non-empty, ω̂i is acceptable
to i and maximizes the center’s utility function uc in Ω∗i .
Let υ ∈ Ω̄i be one of the highest-ranked offers among the
other bids, that is, υ ∈ argmaxω∈{ω̂j :j 6=i} uc(ω). Now con-

sider the set Υi = {ω ∈ Ω∗i : uc(ω) ≥ uc(υ)} of acceptable
outcomes from among which i can choose if she submits
a winning bid. Since Ω∗i is bounded and closed, so is Υi.
Hence, if i wins the auction—be it by submitting the high-
est bid or by tying and subsequently winning the tie-break—
an outcome maximizing i’s utility function ui in Υi exists.
Let ω∗i ∈ argmaxω∈Υi

ui(ω). Without loss of generality we
may assume that i submits ω̂i and chooses outcome ω∗i if
she wins.

We distinguish three cases: uc(ω̂i) > uc(υ), uc(ω̂i) <
uc(υ) and uc(ω̂i) = uc(υ). In the first case, i wins the auc-
tion, chooses ω∗i , and i’s utility is ui(ω

∗
i ). By submitting

any other winning bid, her utility will likewise be ui(ω
∗). If

she were to submit a losing bid, her utility would drop to
zero, whereas a bid which ties υ would yield her a utility of
at most ui(ω

∗
i ).

Next, we consider the case in which uc(ω̂i) < uc(υ). Then, i
loses the auction and her utility is zero. Moreover, Υi = ∅,
that is, there are no outcomes acceptable to i that i can
choose from if she were win the auction. Accordingly, by
submitting any other bid than ω̂i, i’s utility would be zero
or less.

Finally, let us consider the case where uc(ω̂i) = uc(υ).
Then, ω∗i exists and i obtains utility ui(ω

∗
i ) ≥ 0 with some

probability p. Now, either ω̂i is a local maximum of the
center’s utility function uc on Ωi, or ω̂i is not. In the former
case, consider an arbitrary ωi ∈ Ωi. Then uc(ωi) ≤ uc(ω̂i),
due to uc being equipeaked on Ωi. If uc(ωi) < uc(υ), i would
lose the auction bidding ωi, and her utility would be zero.
If, on the other hand, uc(ωi) = uc(ω̂i), then by bidding ωi,
i still obtains utility ui(ω

∗) with probability p by virtue of
tie-breaking being neutral.

So, for the remainder of the proof of the first claim, we
may assume that Ω∗i contains no local maxima in uc. We
first prove for all ω̃i ∈ argmaxω∈Ω∗

i
uc(ω) that ui(ω̃) =

0. For a contradiction, assume that there is some ω̃i ∈
argmaxω∈Ω∗

i
uc(ω) with ui(ω̃i) 6= 0. Because ω̃i is accept-

able to i, clearly, ui(ω̃i) > 0. By continuity of ui on Ωi, there
is an ε > 0 such that ui(ω) > 0 for each outcome ω ∈ Ωi
with di(ω̃i, ω) ≤ ε, that is, there is some some ball Bε(ω̃i)
of outcomes around ω̃i that are all acceptable to i. More-
over, since ω̃i is not a local maximum of uc in Ωi, there is
some ω′ ∈ Bε(ω̃i) with uc(ω

′) > uc(ω̃i). This, however, is at
variance with our assumption that ω̃i maximizes uc in Ω∗i ,
that is, that ω̃i ∈ argmaxω∈Ω∗

i
uc(ω).

It now follows that i cannot do better than by bidding ω̂i,
because even if i wins the auction using another bid, she
must select from outcomes in argmaxω∈Ω∗

i
uc(ω) to provide

an acceptable outcome at least as good as the highest other
bid, but we have just shown this gives her utility zero. This
completes the proof of the first claim.

For the second claim, we may assume that ≥ is com-
petitive and tie-breaking gives every tied winner a positive
chance of winning. Let us assume that uc is not equipeaked
over some Ωi, that is, there is some local maximum ω̂i ∈ Ωi
of uc and a non-empty set Ω′i = {ω ∈ Ωi : uc(ω) > uc(ω̂i)}.
Then, there is some ε > 0 such that uc(ω) ≤ uc(ω̂i) for
all ω ∈ Ωi with d(ω, ω̂i) ≤ ε. Now, define i’s preference so
that ui(ω) ≥ 0 if and only if d(ω, ω̂i) ≤ ε, and so that ω̂i
uniquely maximizes i’s utility.

We show now that bidder i has no dominant strategy in
this situation. By competitiveness, for each bidder j there
is a bid ω̂j ∈ Ωj such that uc(ω̂j) = uc(ω̂i). First, consider
the case in which all bidders j distinct from i offer ω̂j . If i
also offers ω̂i, a tie-breaking event results and the best she
can hope for is a utility of ui(ω̂i) with probability p < 1. By
bidding some ω ∈ Ω′i instead, however, she will get ui(ω̂i)
for certain. It follows that any dominant strategy of i will
prescribe i to submit some offer from Ω′i. Now consider an
arbitrary ω′i ∈ Ω′i. By competitiveness, for each bidder j
there is some ω′j with uc(ω̂i) < uc(ω

′
j) = uc(ω

′
i). If any

bidder j other than i was to submit ω′j , bidder i had bet-
ter lose the auction and be satisfied with a utility of zero,
because each outcome ω ∈ Ωi with uc(ω) ≥ uc(ω

′
j) yields a

negative outcome. It follows that bidding some ω′i ∈ Ω′i is
not part of any dominant strategy for i and, hence, there is
no dominant strategy for i at all.

We observe that in the continuous case, the set of out-
comes is not assumed to be bounded. Accordingly, it also
includes scenarios in which the center always wants “more.”
One such setting is the standard setting of auctioning a sin-
gle good for a real-valued amount. We find that there, the
qualitative Vickrey auction and the traditional Vickrey or
second-price auction [16] are equivalent.



Example 3 (Vickrey Auction). Consider the stan-
dard setting in which a single item is auctioned for a real-
valued amount. The outcomes of such an auction are given
by a positive real number and a bidder, the latter specifying
the winner of the auction and the former the amount the
winner has to pay. Formally, let A = [0,∞). We assume
each bidder i to entertain a private value vi ∈ [0,∞) for
the object, and her utility function ui to be such that for
all (x, j) ∈ Ω,

ui(x, j) =

(
vi − x if i = j

0 otherwise.

Moreover, the center’s order is such that for all x, y ∈ R and
all bidders i and j we have uc(x, i) ≥ uc(y, j) if and only if
x ≥ y.

In the Vickrey auction, each bidder i submits an offer (ai, i)
from Ωi, where we say that ai is i’s bid. The winner of the
Vickrey auction is then the bidder i∗ with the highest bid,
where possible ties are broken by some tie-breaking mecha-
nism. The winner then has to pay the second-highest bid aj
submitted. As is well-known, for each bidder i, bidding her
private value vi is a dominant strategy, that is, the unique
bid x such that ui(x, i) = 0.

We observe that in this setting each bidder’s set of accept-
able outcomes is bounded and closed. Moreover, uc has no
local maxima, so the center’s order is equipeaked. Also, for
no bidder i are there distinct ω, ω′ ∈ Ωi such that uc(ω) =
uc(ω). Hence, tie-breaking is vacuously neutral. The condi-
tions specified in Theorem 2 are thus fulfilled. As we are now
in the case where there are no local maxima in uc, it follows
from the proof of Theorem 2 that every offer ω̂i submitted
by any bidder i who plays a straightforward strategy in the
qualitative Vickrey auction gives i a payoff of zero. Observe
that in the present setting there is only one such offer for
each bidder. The winner i∗ of the qualitative Vickrey auc-
tion can now choose from all outcomes that are ranked at
least as high by the center as the second-highest bid. Choos-
ing (x, i∗), where (x, j) is the second-highest bid, is the most
profitable choice i∗ can make. Hence, the qualitative Vickrey
auction and the traditional Vickrey auction are equivalent.

6. RELATED WORK
The idea of applying the principle of the Vickrey auction

without payments was originally introduced by Máhr and
de Weerdt in a paper on auctions with arbitrary deals [7]
and presented in a more formal way in a later workshop [6].
The paper at hand not only improves the presentation of this
idea, placing it in a solid theoretical context, it also shows
that this approach works both when the domain is finite
and the center’s order is linear, and when the center’s order
is equipeaked in the continuous setting, and gives separate
proofs for these two settings.

In our framework, a payment can be part of the specifica-
tion of an alternative. The results given for the continuous
case thus not only generalize the traditional Vickrey auc-
tion in which payments are in fact the only parameter of
the alternatives, it also generalizes multi-attribute auctions.
In a multi-attribute auction each alternative is defined by a
set of values (the attributes). In extant work the payments,
however, are always seen as a special attribute for which the
preferences of the center and the bidders are related: a lower
price for the bidder means a worse outcome for the center.

For example, Che analyzed situations where a bid consists of
a price and a quality attribute, and proposed first-price and
second-price sealed-bid auction mechanisms [1]. His work
was extended by David et al. for situations where the good
is described by two attributes and a price [3]. They an-
alyzed the first-price sealed-bid and English auction, and
derived strategies for bids in a Bayesian-Nash equilibrium.
In addition, they studied a setting where the center can also
strategize, and they showed when and how much the center
can profit from lying about its valuations of the different
attributes.

Parkes and Kalagnanam concentrated on iterative multi-
attribute reverse English auctions [11]. In their work, prices
of attribute-value combinations (a full specification of the
good) are initially set high, and bidders submit bids on some
attribute-value combinations to lower the prices. The auc-
tion finishes when there are no more bids. Such auctions al-
low the bidders to have any (non-linear) cost structure, and
the authors claim that myopic best-response bidding—that
is, the strategy always to bid a little bit below the current
ask price—results in an ex-post Nash equilibrium for bid-
ders, and that the auction then yields an efficient outcome.
All of the above multi-attribute auctions try to capture the
value of non-price-related attributes in auction mechanisms.
While they share motivation with our work, the most im-
portant difference is that those models require a payment to
transfer utility.

Also, for single-item and multi-unit auctions, there is work
studying the Vickrey auction in the case where the utility
functions of the agents are not linear in the payments [12].
This allows for example for situations where the value of an
item is less when the payment is high because the bidder
has no money left to fully exploit the item (e.g. refurnishing
a house, exploiting radio frequencies, or vehicle ownership
licenses in Singapore). Our main contribution in light of
this paper is again that the Vickrey auction generalizes even
further, to settings where there is no need for any payment.
Their conditions of continuity and finiteness seem to be the
equivalents of our conditions in their restricted setting with
payments.

A limited number of settings is known that allow for effi-
cient and strategy-proof mechanisms without requiring trans-
ferable utility. We discuss the best known of these below:
situations where the preferences of the players are single-
peaked, the house allocation problem, and the stable match-
ing problem [14].

Preferences are single-peaked when the outcomes can be
mapped onto a one-dimensional domain, each player has one
preferred outcome in this domain, and each player’s prefer-
ences are strictly decreasing as one moves away from her pre-
ferred outcome. In such a setting a mechanism is strategy-
proof, onto and anonymous if and only if it gives the median
of all peaks (possibly after inserting a number of artificial
peaks) [10].

As in our case, in the house allocation problem the pref-
erences of each player only depend on their own allocation.
The house allocation problem is to find an allocation of
houses to players for which there is no blocking coalition,
that is, , a set of players that can be better off by trading
houses among each other (of which at least one should be
strictly better off). It is shown that there is exactly one
allocation for which no such blocking coalition exists. This
setting is quite different from ours, since in our case the



problem is to select one winner.
The standard application of the stable matching problem

is the problem of matching men to women or medical stu-
dents to residencies. As in the house allocation problem, a
group of players can block a (proposed) matching. In this
case a blocking pair is a man and a woman who prefer each
other over their partners in the (proposed) matching. The
goal here is to find a matching without such blocking pairs.
Although this is another example of a mechanism without
money, it appears to have no further relation to the quali-
tative Vickrey auction proposed in this paper.

7. CONCLUSIONS AND FUTURE WORK
In this paper we showed that there is another way to deal

with the impossibility theorem by Gibbard and Satterthwaite
besides requiring quasilinear utility functions. For settings
where there is only one winner, the most important require-
ment is that all bidders are indifferent between all outcomes
where they are not the winner (the no-externalities require-
ment). We proposed a protocol for settings where the pref-
erence order of the center is publicly known, in a way similar
to the public knowledge that sellers prefer high prices and
buyers low prices. This protocol is called the qualitative
Vickrey auction, since it can be seen as a generalization of
the Vickrey auction to settings where payments are not nec-
essarily possible.

We defined a class of dominant strategies for this qualita-
tive Vickrey auction—the straightforward strategies—and
saw that the resulting outcome is weakly Pareto efficient,
provided that the center’s order is linear and the domain
of alternatives is finite. We also found that the qualitative
Vickrey auction for this setting is weakly, but not strongly,
monotonic. In the case of continuous domains, we showed
that the qualitative Vickrey auction is strategy-proof, and
individually rational, provided that the center’s utility func-
tion is equipeaked. Still, there are a number of interesting
questions left unanswered regarding the properties of quali-
tative mechanisms such as the one presented here.

Firstly, we expect to be able to generalize the English
auction in a similar manner to a qualitative auction, obtain-
ing similar results on incentive compatibility and Pareto-
efficiency. In such a setting the center accepts only bids in
increasing order of the global ordering until no bidder is in-
terested anymore, and the outcome is the last alternative
that is bid. A straightforward strategy for a bidder i is then
to offer the highest alternative (if it is acceptable) in her
preference order that is higher in ≥ than the last submitted
bid. Another extension of this work that we would like to
pursue is to generalize to multi-unit auctions, where n iden-
tical items need to be allocated to at least n+ 1 agents. We
do not expect to be able to generalize combinatorial auctions
in a similar way, but showing the exact reasons for this is
part of our future work.

Furthermore, as in many mechanism design settings, we
require the center to follow the protocol. This is impor-
tant, because in principle (given enough knowledge about
the bidders’ preferences) the center can lie about its pref-
erence order by moving the second-best bid up in its order
up to just below the best bid. This will force the winner
to choose her original bid, which is generally strictly better
than the second-best bid. For many settings the prefer-
ence order of the center will be publicly known (such as the
case of a government that is transparently run, or when the

center is a seller that just wants to maximize the payment),
but for some settings the center may indeed behave strategi-
cally. We would like to study how to modify the mechanism
to incentivize the center to be truthful in such settings (if
possible).

Finally, we would like to further study potential compu-
tational an communication problems that will undoubtedly
arise when using this type of auction in a variety of realistic
applications. For example, in this paper we require that the
total pre-order of the center is known by all bidders, giving
rise to the question of how to communicate these prefer-
ences efficiently, but also whether it is possible to create a
similar mechanism in case the center itself may not even
know its preferences beforehand explicitly. If we succeed
in dealing with such issues, we believe the result could be
effectively used in many real-world settings, ranging from as-
signing programming and development tasks in open-source
projects, to allocating an infrastructural project with a fixed
budget to one of a number of competing construction com-
panies.
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[7] T. Máhr and M. de Weerdt. Auctions with arbitrary
deals. In V. Marek, V. Vyatkin, and A. Colombo, edi-
tors, HoloMAS 2007, volume 4659 of LNAI, pages 37–
46. Springer, 2007.



[8] A. Mas-Colell, M. D. Whinston, and J. R. Green. Mi-
croeconomic Theory. Oxford University Press, Inc.,
1995.

[9] J. Moore. Implementation, contracts, renegotiations in
environments with complete information. In J. Laffont,
editor, Advances in Economic Theory, chapter 5, pages
182–282. Cambridge University Press, 1992.

[10] H. Moulin. On strategy-proofness and single peaked-
ness. Public Choice, 35(4):437–455, 1980.

[11] D. Parkes and J. Kalagnanam. Models for iterative
multiattribute procurement auctions. Management Sci-
ence, 51(3):435–451, 2005. Special Issue on Electronic
Markets.

[12] H. Saitoh and S. Serizawa. Vickrey allocation rule with
income effect. Economic Theory, 35(2):391–401, 2008.

[13] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions. Journal
of Economic Theory, 10(2):187–217, 1975.

[14] J. Schummer and R. Vohra. Mechanism Design with-
out Money. In N. Nisan, T. Roughgarden, E. Tardos,
and V. Vazirani, editors, Algorithmic Game Theory,
chapter 10, pages 243–266. Cambridge University Press,
2007.

[15] Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press, Cambridge, 2008.

[16] W. Vickrey. Counter speculation, auctions, and com-
petitive sealed tenders. Journal of Finance, 16(1):8–37,
1961.


