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Abstract

Infinitely repeated games can support cooperative
outcomes that are not equilibria in the one-shot
game. The idea is to make sure that any gains
from deviating will be offset by retaliation in future
rounds. However, this model of cooperation fails
in anonymous settings with many strategic agents
that interact in pairs. Here, a player can defect and
then avoid penalization by immediately switching
partners. In this paper, we focus on a specific set
of equilibria that avoids this pitfall. In them, agents
follow a designated sequence of actions, and restart
if their opponent ever deviates. We show that the
socially-optimal sequence of actions consists of an
infinitely repeating goal value, preceded by a haz-
ing period. We introduce an equivalence relation on
sequences and prove that the computational prob-
lem of finding a representative from the optimal
equivalence class is (weakly) NP-hard. Neverthe-
less, we present a pseudo-polynomial time dynamic
program for this problem, as well as an integer lin-
ear program, and show they are efficient in practice.
Lastly, we introduce a fully polynomial-time ap-
proximation scheme that outputs a hazing sequence
with arbitrarily small approximation ratio.

1 Introduction

In social dilemmas, individual incentives hinder collective
benefit: mutual cooperation is the best outcome for both play-
ers, but it is not a Nash equilibrium. Consider the symmetric
two-player game in Table 1:

D C1 C2

D 4,4 11,0 14,0
C1 0,11 5,5 0,0
C2 0,14 0,0 8,8

Table 1: Payoffs of a two-player symmetric game (row, column)

Notice that for each player, D is the strictly dominant ac-
tion, ensuring the maximum payoff against any fixed action
of their opponent. This results in (D,D) being the only Nash
equilibrium. In the infinitely repeated version of this game,

however, mutual cooperation can be achieved: Consider the
grim-trigger strategy where both players agree to play C2 in
every round, but if their opponent defects, they switch to play-
ing D in all future rounds. During the game, a player can
increase their payoff in a round by at most 14 � 8 = 6 by
defecting, but their payoff in all future rounds is now bound
above by 4, as their opponent will switch to D, resulting in
a per-round net loss of at least 8 � 4 = 4 compared to if
they had stuck to C2. If the players value future rounds suffi-
ciently (i.e., have a ‘discount factor’ close to 1, assumed true
for the rest of this section), the gain of defecting (6, once) will
be offset by loss due to the opponent retaliating (4, all future
rounds), resulting in neither of the players defecting from C2.

This model of cooperation, however, fails in anonymous
settings with many players, in which players can simply find
a new partner to play with. This setting can model any sit-
uation that involves two-player interactions within a larger
pool, such as monogamous relationships, employer-employee
interactions, and two-person research collaborations. Criti-
cally, each of these ‘partnerships’ can last for arbitrarily many
rounds, but can be terminated at any point by one of the part-
ners, who can then find themselves a new partner in the larger
pool. In this game-theoretic setting, a player can defect and
avoid retaliation, if they are able to switch partners immedi-
ately following the defection. If there is no way for a player to
check their partner’s history (that is, players are anonymous),
this setting may result in the emergence of ‘serial defectors,’
who perpetually defect on a partner and move on the next,
even if all their partners would follow the ‘grim trigger’ strat-
egy if the relationship continued. This is especially relevant
for settings where the players are AI agents (such as trading
bots), who might more easily conceal their identity compared
to traditional human players.

To avoid this pitfall, we turn to a specific type of equilib-
ria in such infinitely repeated two-player games, those with
restarts. Instead of the grim-trigger strategy of ‘defect for-
ever once the opponent deviates’, consider instead a strategy
profile where all players agree on a planned sequence of ac-
tions to follow, and they restart the same sequence with a new
partner if their opponent ever deviates from it. (In the context
of our paper, the punishment strategy of simply leaving the
relationship, thereby forcing the partner to restart as well, is
in fact without loss of generality: no other punishment strat-
egy could be more effective, because if it were more effective,



the partner would simply leave the relationship.)1

For instance, going back to the game in Table 1, say the two
players agree on the sequence (D,C1, C2, C2, C2, . . .). If the
players stick to the plan, the sequence of payoffs they receive
is (4, 5, 8, 8, 8, . . .). Neither will deviate from the plan in the
first round (D), as doing so can only lower their payoff. In
the second round (C1), deviating brings a payoff of 11, but
results in the opponent ending the relationship and having to
go back to the start of the sequence with someone else. This
results in a per-round average payoff of (4 + 11)/2 = 7.5 for
the deviating player, which is less than the per-round payoff
of 8 she can eventually receive by sticking to the planned se-
quence. Similarly, once the players get to the (C2) portion of
their sequence, any deviation can bring at most a payoff of 14
(an increase of 6), but results in a restart where the next two
rounds (4,5) does a total damage of (8�4)+(8�5) = 7 when
compared to sticking with the sequence, making the overall
sequence stable. Conceptually, the planned sequence consists
of a ‘hazing’ period (D,C1), followed by lasting socially-
optimal cooperation (C2, C2, ...).

Not every planned sequence is stable: an alternative plan
(C1, C2, C2, C2, . . .) would incentivize repeatedly deviating
on the first step, to obtain 11 per round. Another alterna-
tive, (D,C2, C2, C2, . . .), would see a player repeatedly de-
viating on the second step, ensuring a per round utility of
(4 + 14)/2 = 9 > 8. Both of these alternatives suffer from
under-hazing, as the cost of a restart for a defecting player
fails to offset the gains from defection.

(D,C1, C2, C2, . . .) is not the only stable sequence; so
is (D,C1, C1, . . . , C1, C2, C2, . . .), for an arbitrarily large
(positive) number of C1s. However, this results in unneces-
sarily delaying the socially optimal outcome of C2, i.e., over-
hazing. Hence, in this paper we ask: how can we optimize the
payoff of a planned sequence, while ensuring its stability?

1.1 Related Work

Repeated games (without restarts) have long been of interest
to the AI community. In contrast to one-shot games, they in-
troduce a temporal component to the game, and they allow
modeling settings where cooperation can be sustained thanks
to the threat of deviators being punished in future rounds.
This is now of particular interest in the context of the nascent
research area of cooperative AI [Dafoe et al., 2021], espe-
cially for game-theoretic approaches to that [Conitzer and
Oesterheld, 2023]. Thanks to the folk theorem, they also al-
low for more efficient computation of Nash equilibria than
one-shot games, as was observed by [Littman and Stone,
2005] for two players. With three or more players the prob-
lem becomes hard again [Borgs et al., 2010], though in prac-
tice it can often be solved fast [Andersen and Conitzer, 2013]
and if correlated punishment is allowed then the problem be-
comes easy again [Kontogiannis and Spirakis, 2008].

Separately, the role of anonymity in game theory has long
been of interest to the AI community. Perhaps most signif-

1The type of equilibrium we study remains an equilibrium in the
standard repeated game setting (without restarts), and so is a refine-
ment of the traditional concept. In this case, if one’s partner deviates,
one continues with the same partner but plays as if one were starting
from the beginning, which is sufficient to deter deviation.

icantly, in mechanism design, there is a long line of work
on false-name-proof mechanisms, in which agents cannot
benefit from participating multiple times using fake identi-
fiers [Yokoo et al., 2001; Yokoo et al., 2004; Conitzer and
Yokoo, 2010]. This is conceptually related to the work in this
paper, insofar as an agent that restarts with a different partner
makes use of a degree of anonymity in the system. However,
in our context an agent does not use multiple identifiers si-
multaneously, and the work seems technically quite distinct.

Cooperation in repeated games with the possibility of re-
matching with a new partner has been studied in the eco-
nomic theory community, similarly identifying the impor-
tance of building up relations gradually. Our work dif-
fers from this literature in that we focus on the computa-
tional problem of optimizing the equilibrium, for arbitrary
games, whereas the economics literature focuses on obtain-
ing characterization results in specific settings such as lend-
ing and borrowing games [Datta, 1996; Wei, 2019], pris-
oner’s dilemma [Fujiwara-Greve and Okuno-Fujiwara, 2009;
Rob and Yang, 2010; Izquierdo et al., 2014], and envi-
ronments with agents of multiple types [Kranton, 1996;
Ghosh and Ray, 1996; Rob and Yang, 2010].

1.2 Overview

In Section 2, we introduce the concepts and notation. In Sec-
tion 3, we introduce optimal sequences and prove their vari-
ous properties. In Section 4, we define an equivalence relation
on sequences based on their total discounted utility with high
discount factor. In Section 5, we formalize the computational
problem of computing a representative of the optimal equiv-
alence class of this relation. As our main results, we prove
an NP-hardness result and present three algorithms for the
problem: a pseudo-polynomial time dynamic program and an
integer linear program that exactly solves it, as well as a fully
polynomial time approximation scheme. In Section 6, we re-
port runtimes from our experiments with these algorithms.
We present directions for future research in Section 7.

2 Preliminaries

In this work, we restrict our attention to symmetric games and
strategies, which allows us to condense the representation of
a game and thereby simplify the presentation. We discuss
moving beyond symmetry in Section 7.

2.1 Problem Instance

Given a two-player finite, symmetric normal form game �
with actions A = {a(1), ..., a(n)} and integer payoffs, we de-
fine:

• The cooperative payoff function p : A ! Z, which
maps a(j) to the payoff that the two players receive in
� if they both play a(j) for each j 2 [n].

• The deviation payoff function p⇤ : A! Z, which maps
each a(j) to the max. payoff a player can achieve given
they play any A \ {a(j)} and their opponent plays a(j).

• The discount factor � 2 [0, 1), such that if a player re-
ceives payoff pi in round i 2 N, her total discounted



utility is
P1

i=0 �
ipi. To avoid confusion, we use sub-

script i 2 N = {0, 1, . . .} to iterate over the rounds, and
superscript j 2 [n] = {1, . . . , n} to iterate over actions.

Thus any finite symmetric game � can for our purposes be
represented as G = ({(p(j), p⇤(j))}j2[n],�), where p(j) :=

p(a(j)) and p⇤(j) := p⇤(a(j)). For instance, the game in Table
1 is represented as G1 = ({(4, 0), (5, 11), (8, 14)},�).

2.2 Equilibria with Restarts

In this paper, we focus on strategy profiles � where each
player plans to follow the sequence of moves (a0, a1, ...) 2
AN, and will restart the sequence if the other player devi-
ates from it. We define pi := p(ai) and p⇤

i
:= p⇤(ai) for

all i 2 N. Two forever-cooperating agents will achieve to-
tal discounted utility

P1
i=0 �

ipi, whereas an agent deviating
on round k will achieve total discounted utility

P
k�1
i=0 �ipi +

�kp⇤
k
+
P1

i=0 �
i+k+1pi.2 Accordingly, for � to be stable

(i.e., a Nash equilibrium), we need (for all k 2 N):

k�1X

i=0

�ipi + �kp⇤
k
 (1� �k+1)

1X

i=0

�ipi (1)

Since � is completely defined by the planned sequence, we
can succinctly represent it using its corresponding sequence
of payoffs (pi)i2N 2 {p(j)}N

j2[n] and (p⇤
i
)
i2N 2 {p⇤(j)}N

j2[n].

3 Optimal Sequences

Given a game instance G, there can be infinitely many stable
sequences (pi)i2N. For instance, given G1, our representation
of the game in Table 1, both of the following sequences are
stable for � = 0.9, as they fulfill Equation (1) for all k 2 N:

pa
i
=

⇢
4 if i  10
5 otherwise

and pb
i
=

8
<

:

4 if i  3
8 if i > 3, i even
5 otherwise

The multitude of stable sequences for a given game raises
two questions: how can we (i) determine which sequences
are more desirable than others, and (ii) compute the most de-
sirable sequences? The answer to (i) is straightforward in our
context of symmetric games, where the payoffs of two coop-
erating players are the same. Thus, one can focus on maxi-
mizing total discounted utility without fairness concerns. For
instance,

P1
i=0 �

ipa
i
⇡ 43.1 and

P1
i=0 �

ipb
i
⇡ 56.9, indicat-

ing (pb
i
)i2N to be ‘the better plan’. More generally, we define:

Definition 1 (Optimal sequence). Given any G =
({(p(j), p⇤(j))}j2[n],�), a sequence of payoffs (pi)i2N sur-

passes sequence (p0
i
)i2N if

P1
i=0 �

ipi >
P1

i=0 �
ip0

i
. A se-

quence (pi)i2N is an optimal sequence if:
1. it is stable, i.e., satisfies Equation (1) for all k 2 N, and
2. it is not surpassed by any other other stable sequence.

We first prove an existence result:
2Note that this assumes the deviating agent never deviates again;

this is WLOG, since deviating repeatedly in this way is an improve-
ment if and only if deviating once in this way is an improvement.

Proposition 1. For any G = ({(p(j), p⇤(j))}j2[n],�), if there
is any stable sequence, then an optimal sequence exists. This
sequence is not necessarily unique.

Proof. The proof follows from the following claim. To save
space, we present the proof of the claim as well as an example
for non-uniqueness in Appendix A.1 of the full version of the
paper.
Claim 1. Given any instance G, the set of achieveable total
utilities is a closed set, where we say total t 2 R is achievable
if there exists a stable sequence (pi)i2N with

P1
i=0 �

ipi = t.
Since the set of achievable total discounted utilities is

closed and bounded, it contains its supremum [Rudin, 1976,
Thm. 2.28], proving an optimal stable sequence exists.

Having proven the existence of optimal sequences, we now
present two lemmas about their properties.
Lemma 1. Any optimal sequence will reach a step after
which a single payoff (the highest in the sequence) is repeated
forever. We call this payoff the goal value of the sequence.

Intuitively, Lemma 1 implies that any optimal sequence
consists of an infinitely repeating goal value, the highest pay-
off, as well as a preceding hazing period, a finite sequence
of non-maximal payoffs. These two stages are interdepen-
dent: an agent cooperates during the hazing period due to the
promise of the goal value, whereas any defection after reach-
ing the goal value is avoided by the threat of facing the hazing
period again.
Lemma 2. For large enough �, the goal value of any optimal
sequence is p⌦ := maxj2[n] p

(j).

Together, Lemmas 1 and 2 (proven in Appendix A.2) allow
easily ruling out many sequences as non-optimal for suffi-
ciently high values of �, including (pa

i
)i2N and (pb

i
)i2N from

above, the latter since it never converges to a goal value, and
the former since it converges to one that is not the highest in
the game. As we have seen in Lemma 2, the large � set-
ting achieves the largest goal values, and accordingly, the
largest gap between achieving cooperation and failing to do
so, adding to the significance of computing stable and opti-
mal sequences. Indeed, in much of the literature on repeated
games in general (including folk theorems), the focus is on
the limit case where � ! 1. Accordingly, in the next section,
we study the optimality of sequences in the � ! 1 limit.

4 Limit-Utility Equivalence Classes

We say that a sequence (pi)i2N is stable in the � ! 1 limit
if there exists a �0 such that (pi)i2N is stable for all � > �0.
Of course, as � ! 1, the total discounted utility diverges.
Hence, we now introduce an equivalence relation that allows
us to compare the total discounted utilities in this limit:
Definition 2 (Limit-utility equivalence). Given a game G =
{(p(j), p⇤(j))}j2[n], two stable sequences (pi)i2N and (p0

i
)i2N

are limit-utility equivalent if lim�!1
P1

i=0 �
i(pi�p0

i
) = 0.

Indeed, this relationship is symmetric, reflexive, and tran-
sitive. We now introduce the optimal equivalence class:



Proposition 2. There exists a well-defined optimal limit-
utility equivalence class: that is, an equivalence class such
that for any member sequence (pi)i2N and any other se-
quence (p0

i
)i2N, we have lim�!1

P1
i=0 �

i(pi � p0
i
) � 0.

Proof. By Lemmas 1 and 2, any (pi)i2N that converges to
p⌦ = maxj2[n] p

(j) will surpass any (p0
i
)i2N that does not,

implying the equivalence class of the latter cannot be opti-
mal. Ruling such sequences out allows us to define for any
sequence of payoffs (pi)i2N a corresponding sequence of haz-
ings (hi)i2N , where hi = p⌦ � pi. For any two sequences
that converge to p⌦, we have lim�!1

P1
i=0 �

i(pi � p0
i
) =P1

i=0 h
0
i
�
P1

i=0 hi, where neither of the sums diverge since
hi 6= 0 or h0

i
6= 0 for only finitely many i. Hence, the equiva-

lence class of a sequence with goal value p⌦ is entirely deter-
mined by the (non-discounted) sum of its per-round hazings.
By Lemma 2, there exists at least one such stable sequence
(hi)i2N, say with total hazing H =

P1
i=0 hi. Since the to-

tal non-discounted hazing for any sequence is an integer and
bounded below by 0, there can only be finitely many improve-
ments over H , implying that there is a well-defined minimum
total hazing Hmin with at least one corresponding stable se-
quence. Hence, any stable sequence with total hazing Hmin

cannot be surpassed (as � ! 1) by any other stable sequence,
either converging to p⌦ or not, proving its equivalence class
is optimal.

5 Computational problem: OptRep

Having proven the existence of the optimal equivalence class,
the natural next question becomes: how do we compute a
(representative) sequence from this class? Before formaliz-
ing this as computational problem, we investigate the stability
condition given in Equation (1) in the � ! 1 limit:
Proposition 3. A sequence (pi)i2N with goal value p⌦ =
maxj2[n] p

(j) is stable in the � ! 1 limit if and only if the
following holds for all k 2 N :

k�1X

i=0

(p⌦ � pi) > p⇤
k
� p⌦ (2)

The proof is given in Appendix A.3. Intuitively, the left-hand
side of (2) is the cost of restarting, as repeating each step i re-
sults in a loss of p⌦�pi (the so-called hazing cost) compared
to the goal value, whereas the right-hand side is the gains
from deviating, represented by the advantage over the goal
value one can gain by deviating now. The inequality needs to
be strict because, intuitively, for any � < 1, a “tie” between
the two sides of the equation would be broken towards the
side of deviation, as that deviation payoff comes earlier.

Motivated by this way of expressing the stability condition,
we modify the representation of a game to fit our problem:
Given G = {(p(j), p⇤(j))}j2[n] and p⌦ = maxj2[n] p

(j),
for each j 2 [n] we define a corresponding hazing cost
h(j) = p⌦ � p(j) and a threshold t(j) = p⇤(j) � p⌦. We
now represent the game as G = {(h(j), t(j))}j2[n] and any
sequence of payoffs (pi)i2N with the corresponding sequence

of hazing costs (hi)i2N. The stability condition from (2) then
becomes:

k�1X

i=0

hi > tk (3)

As shown in the proof of Prop 2, all members of the op-
timal limit-utility equivalence class necessarily have p⌦ as
their goal value, and hence hi 6= 0 for finitely many i, and
the equivalence class of any such sequences is entirely deter-
mined by

P1
i=0 hi. Any such stable sequence must satisfyP1

i=0 hi > p⇤⌦ � p⌦ ⌘ �, to ensure (3) is fulfilled for the
steps after reaching the goal value. Thus, the goal of finding
a representative of the optimal equivalence class reduces to:
Definition 3 (OptRep). Given {(h(j), t(j))}j2[n] ⇢ Z+ ⇥
Z and � 2 Z+, OptRep asks to find a finite sequence
(hi)i2{0}[[`] 2 {h(j)}`+1

j2[n] for some ` 2 N such that
P

`

i=0 hi is minimized, subject to:

(8k 2 {0} [ [`]) :
P

k�1
i=0 hi > tk and

P
`

i=0 hi > �

We now prove a hardness result for OptRep:
Theorem 1. OptRep is (weakly) NP-hard, and the corre-
sponding decision problem is NP-complete.

Proof. We will prove the theorem by reducing the Un-
bounded Subset-Sum Problem (USSP) to OptRep. USSP is
NP-complete [Lueker, 1975] and asks:

Given positive integers {ai}i2[m] and A, do there exist
non-negative integers {ri}i2[m] such that

P
m

i=1 ri · ai = A?
We now present our reduction: For each j 2 [m], define

h(j) = aj and t(j) = �1 (in the payoff representation, this
simply implies p⇤(j) = p⌦ � 1). Lastly, set � = A � 1. We
claim that the answer to the Unbounded Subset-Sum Problem
is yes if and only if the total hazing of the optimal sequence
computed by OptRep on input G = ({(h(j), t(j))}j2[m],�)
is A. The backwards direction is obvious. For the forward
direction, say that the answer to USSP is yes, with coeffi-
cents (rj)j2[m]. We can construct a finite hazing sequence
(hi)i2{0}[[R] that has each h(j) repeating rj times, where
R =

P
m

j=1 rj . Notice that (3) is fulfilled since ti = �1 for
all i 2 {0} [ [R]. As for the final hazing threshold, we haveP

R

i=0 hi =
P

m

j=1 rjaj = A = � + 1 > �, so the overall
sequence is stable. Since the total hazing will be integral, any
sequence with less total hazing will fail to meet the threshold
set by �. Hence, the total hazing of the optimal sequence
computed by OptRep on input G = ({(h(j), t(j))}j2m,�) is
A.

The reduction proves that OptRep is NP-hard. The cor-
responding decision problem (of whether a stable sequence
with total hazing H in the � ! 1 limit exists) is NP-complete,
since, as we will see in Lemma 3, every sequence has a
polynomial-size representation that does not change its total
hazing cost, which can be computed in polynomial time.

As shown by [Wojtczak, 2018, Theorem 4], USSP be-
comes strongly NP-complete when the inputs are rational
numbers rather than integers. Due to our reduction above,
the same result readily translates to OptRep:



Corollary 1. OptRep with rational inputs is strongly NP-
hard, and the corresponding decision problem is strongly NP-
complete.

Considering the similarities between OptRep and USSP
presented in the proof of Theorem 1, one might wonder if
a reduction from OptRep to USSP is also possible. However,
OptRep has additional challenges: instead of a set of items,
we need to pick a sequence and ensure that every step of it
meets the requirement in (3), as opposed to only a final ca-
pacity requirement.

Despite these challenges, we can exploit the structural
properties of OptRep to develop techniques similar to those
employed for knapsack problem variants such as USSP. One
key observation is that the stability of a given sequence at any
step solely depends on the hazing that has already occurred.
This enables us to solve the problem with a dynamic program
with a single state variable (the hazing so far), leading to:
Theorem 2. OptRep is solvable in pseudo-polynomial time.

Proof. We prove the theorem by showing the correctness,
time complexity, and space complexity of Algorithm 1.
(a) Correctness: Due to integral hazing costs, the minimum
hazing cost for any stable sequence is � + 1. We prove (by
strong induction on decreasing h) that once Algorithm 1 is
complete, D[h] contains the minimum overshoot over this
lower bound one can achieve starting from a hazing cost of
h. As a base case, for any h � � + 1, the hazing goal has
been met and the best we can do is an overshoot of h���1
(Line 4). For any h < � + 1, at least one more action needs
to be added to meet the hazing goal. In Line 7, the algorithm
chooses the next eligible action that minimizes the overshoot,
where action j 2 [n] is eligible if the hazing so far, h, has
met its threshold, t(j). Inductively assuming that D[h0] is
correct for all h0 > h ensures that D[h] is correctly set. Ac-
cordingly, D[0] gives the overshoot of a sequence from the
optimal equivalence class, and the list A keeps track of the
next steps to later reconstruct the sequence.
(b) Time complexity: Line 4 takes constant time and is imple-
mented hmax = maxj2[n] h

(j) times. Lines 5-8 take O(n)
time and are executed O(�) times. Since the sequence re-
turned has at most � + 1 actions, Lines 10-12 take O(�)
time. All other steps take constant time. Overall, the algo-
rithm runs in O(n� + hmax) time, which can be improved
to O(n�) by feeding Line 4 into the definition of D[h] in
Lines 5-8. This is polynomial in the input but, since input is
represented in binary, exponential in the problem size.
(c) Space complexity: D and A both have � variable entries,
giving the algorithm a space complexity of O(�). If we are
not interested in reconstructing the representative sequence,
the space complexity improves to O(min{hmax,�}), since
we may only store the most recent hmax entries of D, which
are sufficient for Line 7.

Alternatively, one can formulate OptRep as an Integer Lin-
ear Program (ILP), using binary variables for whether action
(j) is the ith action in the sequence. But the hazing period can
have as many as �+1 actions, resulting in O(n�) variables,
exponentially many. Instead, we ask if one can impose some
structure on the output sequence without losing generality.

Algorithm 1 Dynamic Program for OptRep
Input: Final hazing goal: � > 0, tuples of (hazing, thresh-
olds) values for each action: {(h(j), t(j))}j2[n] ⇢ Z+ ⇥ Z
Output: a list So representing a sequence from the optimal
equivalence class, along its hazing cost Ho 2 Z+.

1: Let ` = �+maxj2[n] h
(j).

2: D  [inf]`, A [inf]`
3: for h = `, `� 1, . . . , 1, 0 do

4: if h � �+ 1 then D[h] h��� 1
5: else

6: Sh  {j 2 [n] : h > t(j)}
7: D[h] minj2Sh D[h+ h(j)]
8: A[h] argmin

j2Sh
D[h+ h(j)]

9: Ho  D[0] +�+ 1, So  [], i 0
10: while i 6= inf do

11: So  So + [A[i]], i A[i]
12: end while

13: return So, Ho

One intuitive candidate is monotonicity: does the opti-
mal equivalence class always have a sequence with non-
increasing hazing costs (non-decreasing payoffs), consider-
ing the goal value is the highest payoff? The answer, it
turns out, is no. Consider: � = 10 with (h(1), t(1)) =
(5,�1), (h(2), t(2)) = (6, 4). The sequence (h(1), h(2)) is
stable and achieves a hazing of 11. The minimum hazing
from any non-increasing sequence is 15, by (h(1), h(1), h(1)).

There is, however, a property that can be imposed on the
sequences without ruling out the optimal equivalence class:

Lemma 3. Any stable sequence of the optimal equivalence
class can be converted to a stable sequence in the same class
where (a) all appearances of any action are adjacent and (b)
actions appear in order j1, j2, ..., j` where t(j1)  t(j2) 
. . .  t(j`). We call such sequences threshold-monotonic.

Proof. For a given action j, say ij is its first appearance in
the sequence. Move all appearances of h(j) to appear imme-
diately after ij , pushing all the actions that were previously
there to later steps, without changing their order. The total
hazing (and hence the equivalence class) has not changed.
The stability of all h(j) follows from its stability at step ij :
once its threshold is met, this action will always be stable.
All other actions are still stable since the hazing that precede
them could have only increased. Repeating this for every
j 2 [n] achieves (a).

Say the actions now appear in order j1, j2, . . . , jn. Assume
the first k of them are the lowest k threshold actions (with the
base case k = 0). Then the action with (k+1)th lowest thresh-
old is jz for some z 2 {k+1, . . . n}. Move every occurrence
of action jz to the starting point of action jk+1, sliding ev-
ery other action to the right. The occurrences of action jz
will be stable by the stability of jk+1 prior to the shift, which
has an equal or greater threshold. All other actions are stable
as their preceding hazing can only increase. Repeating this
inductively results in the overall sequence fulfilling (b).



Algorithm 2 Integer Linear Program for OptRep
Input: Final hazing threshold: � > 0, tuples of (hazing,
thresholds) values for each action: {(h(j), t(j))}j2[n] ⇢ Z+⇥
Z, with t(1)  t(2)  . . .  t(n)  �
Parameters: (8j 2 [n]) : r(j) indicating how many times
action j is repeated in the output sequence
Output: Final values of [r(j)]j2[n]

1: if t(1) � 0 then raise error
2: minimize

P
n

j=1 r
(j)h(j)

3: subject to

4: (8j 2 [n] \ {1})
P

j�1
j0=1 r

(j0)h(j0) � t(j) + 1

5:
P

n

j=1 r
(j)h(j) � �+ 1

6: return [r(j)]j2[n]

By Lemma 3, we can restrict our attention to threshold-
monotonic sequences while solving OptRep, leading to an
ILP with O(n) variables, presented in Algorithm 2. Note that
ordering actions by thresholds takes an additional O(n log n)
preprocessing time. The assumption t(n)  � is WLOG,
since any action j with t(j) � �+ 1 cannot be used until the
final hazing threshold is met. The ILP returns [r(j)]j2[n], the
number of times each action is repeated, as this is sufficient
to represent a threshold-monotonic sequence. As seen in our
experiments in Section 6, Algo. 2 is efficient in practice.

Lemma 3 can also improve the space complexity of Al-
gorithm 1: each A[h] can now store a size-n vector corre-
sponding to [rj ]j2[n], with Line 8 replaced with A[h][j⇤]  
A[h][j⇤] + 1 where j⇤ = argmin

j2Sh
D[h + h(j)]. Thus, it

now suffices to store only hmax entries of A and D. Call Al-
gorithm 1 with this modification (as well as those mentioned
in the proof of Theorem 2(b-c)) Algorithm 1⇤. This leads to
the below strengthening of Theorem 2:
Theorem 3. Algorithm 1⇤ solves OptRep in O(n�) time us-
ing O(min{�, n · hmax}) space. The space complexity is
O(min{�, hmax}) for the corresponding decision problem.

While efficient in practice, both Algorithms 1 and 2 are ex-
ponential in the worst case, which motivates the question of
whether OptRep can be approximated with a Fully Polyno-
mial Time Approximation Scheme (FPTAS), which runs in
polynomial in the problem size and in 1/", where " is the ap-
proximation ratio, given as an input. While we have given
a pseudopolynomial-time algorithm for our problem, doing
so in general does not guarantee the existence of an FPTAS:
for instance, knapsack with multiple constraints is pseudo-
polynomial-time solvable but does not have an FPTAS unless
P = NP [Magazine and Chern, 1984]. However, for OptRep
there is in fact an FPTAS, given as Algorithm 3. The algo-
rithm is a modification of Ibarra and Kim’s original FPTAS
for unbounded knapsack [1975], with additions that address
the differences between OptRep and unbounded knapsack.
Theorem 4. Algorithm 3 is an FPTAS for OptRep, and runs
in O(n log n+ n

"2
) time.

Proof. (a) Correctness: To prove correctness, we first present
several claims, the proofs of which are in Appendix A.4

Algorithm 3 FPTAS for OptRep
Input: Same as Algorithm 2
Output: Ĥ, L̂, where L̂ is a list of actions representing the
output sequence, and Ĥ is the corresponding hazing cost.

1: if t(1) � 0 then raise error
2: F  {j 2 [n] : ti < 0, hi  �}
3: if F = ; then

4: L̂ [argmin
j2[n]:ti<0 h

(j)], Ĥ  h(L̂[0])

5: return Ĥ, L̂
6: j⇤  minF , H̃  k·h(j⇤) where k is the min. integer

s.t. k · h(j⇤) > �
7: �  H̃

�
"

3

�2, g  
j
H̃

�

k
=
j�

3
"

�2k, S  ;
8: T  [inf]g+1,L [inf]g+1, T [0] 0, L[0] [ ]
9: for j = 1, . . . , n do

10: if h(j)  "

3H̃ then S  S + [j]
11: else

12: f (j)  
j
h
(j)

�

k

13: for k = 0, ..., g � f (j)
do

14: if T [k] 6= inf and T [k] > t(j) and (T [k + f (j)] =
inf or T [k] + h(j) > T [k + f (j)]) then

15: T [k + f (j)] T [k] + h(j)

16: L[k + f (j)] L[k] + [j]

17: js  argmin
j2S

t(j)

18: k⇤  argmin
k2{0}[[g]:T [k]>t(js) T [k]+nk ·h(js) where

nk is the min. integer s.t. T [k] + nk · h(js) > �
19: Ĥ  T [k⇤] + nk⇤ · h(js) , L̂ L[k⇤] + [js]nk⇤

20: return Ĥ, L̂

Claim 2. Say H⇤ is the optimal hazing. If the algo. returns
on Line 5, Ĥ = H⇤. Else, H̃ � H⇤ � 1

2H̃ after Line 6.

Note that Line 7 sets a ‘normalizing factor’ of � = H̃
�
"

3

�2,
later used for computing normalized hazing costs f (j) =⌅
h(j)/�

⇧
and a normalized upper bound for the optimal haz-

ing g = bH̃/�c.
Claim 3. Any f (j) set on Line 12 satisfies f (j) · �  h(j) 
f (j) · � ·

�
1 + "

2

�

Claim 4. At any point during the execution, for any k 2
{0, ..., g}, either T [k] = L[k] = inf or L[k] contains a list
[j1, . . . , j`] with

P
`

i=0 f
(ji) = k and

P
`

i=0 h
(ji) = T [k]

Claim 5. Say (hi)i2{0}[[`] is any stable threshold-monotonic
subsequence (i.e., it fulfills (3) for all i, but does not necessar-
ily meet the final hazing goal �), where the order of actions is
consistent with the labeling, with hi >

"

3H̃ for all i and total
hazing at most H̃ . Defining fi = bhi/gc and F =

P
`

i=0 fi,
we must have T [F ] �

P
`

i=0 hi in the end of the execution.
We now complete the proof of the theorem: Say

(h?

i
)
i2{0}[[`] is a member of the optimal equivalence class

(
P

`

i=0 h
?

i
= H⇤), with corresponding normalized hazing

costs (f?

i
)
i2{0}[[`] and F ⇤ =

P
`

i=0 f
?

i
. By Lemma 3, we can



Figure 1: The semi-log plots of runtimes of Algorithms 1,2, and 3 (with " = 0.3, 0.2, and 0.1). Each data point is averaged over 5000 trials.
Top Row: Fixed number of actions (n); x-axis shows Maximum Payoff from Deviation (MPD). Bottom Row: Fixed MPD; x-axis shows n.

assume WLOG that (h?

i
)
i2{0}[[`] is threshold-monotonic,

with respect to the current labeling of the actions.
Say Ĥ = T [k⇤] + nk⇤ · hjs and L̂ = L[k⇤] + [js]nk⇤ are

the final outputs of the algorithm, as set in Line 19, and S is
the set of actions j with h(j)  ("/3)H̃ , as filled in Line 10.
By Claim 4, the total hazing of the sequence represented by
L̂ is indeed Ĥ . The stability of every step in L[k⇤] in ensured
by the if statement in Line 14. The stability of the final nk⇤

steps is ensured by the T [k⇤] > t(js) condition in Line 18.
Case 1: (h?

i
)
i2{0}[[`] has no element from S. Then it fulfills

the assumptions of Claim 5 (as H⇤  H̃ by Claim 2), imply-
ing T [F ⇤] � H⇤ � �+ 1 > t(js). Since H⇤  H̃ , we have
F ⇤  g, so T [F ⇤] is one of the options considered in Line 18
(with nF⇤ = 0), implying Ĥ  T [F ⇤]. By Claim 4, we getP

j2L[F⇤] f
(j) = F ⇤ =

P
`

i=0 f
?

i
. Using Claim 3 twice:

T [F ⇤] =
X

j2L[F⇤]

h(j) 
⇣
1 +

"

2

⌘
�F ⇤ 

⇣
1 +

"

2

⌘ `X

i=0

h?

i

!

Hence, Ĥ  T [F ⇤] 
�
1 + "

2

�
H⇤, fulfilling the bound.

Case 2: (h?

i
)
i2{0}[[`] does have an action from S. Say

i⇤ is the first index where such an action appears and F 0 =P
i
⇤�1
i=0 f?

i
. Then (h?

i
)
i2{0}[[i⇤�1] satisfies the assumptions of

Claim 5, so we have T [F 0] �
P

i
⇤�1
i=0 h?

i
> t?

i⇤ � t(js), where
the inequalities follow from Claim 5, stability of hi⇤ and the
minimality of t(js), respectively. Then T [F 0] + nF 0h(js) is
considered in Line 18, implying Ĥ  T [F 0] + nF 0h(js).
Say nF 0 6= 0: since nF 0 is the smallest integer such that
T [F 0] + nF 0h(js) > �, we have:

Ĥ  T [F 0] + (nF 0 � 1)h(js) + h(js)  �+ h(js)

< H⇤ +
"

3
H̃  H⇤ +

2"

3
H⇤  (1 + ")H⇤

fulfilling the bound. Otherwise, say nF 0 = 0, implying
T [F 0] > �. By the same argument as Case 1, using Claims

4 and 3, we have T [F 0] 
�
1 + ✏

2

� ⇣P
i
⇤�1
i=0 hi

⌘
. How-

ever, we have
P

i
⇤�1
i=0 hi  � < H⇤ as otherwise item i⇤

would be unnecessary to reach the goal value. This gives us:
Ĥ  T [F 0] 

�
1 + "

2

�
H⇤, fulfilling the bounds.

Overall, we have shown that in all cases, the output L̂ con-
tains a stable sequence with total hazing cost Ĥ < (1+")H⇤.
(b) Time complexity: Ordering actions by thresholds takes
O(n log n) time. Lines 1-8 take O(n) time. The outer loop
in Line 9 gets executed O(n) times, each running a constant
number of operations plus the inner loop in Line 13, which
gets executed at most g = O(1/"2) times with constant time
per iteration. Thus, Lines 9-16 take O

�
n

"2

�
time. Lines 30,

31 take O(n) and O(g) time, respectively. Overall, Algo. 3
takes O

�
n log n+ n

"2

�
time, polynomial in both n and 1

"
.

6 Experiments

We present the semi-log plots for the runtimes of Algorithms
1-3 in Figure 1. Given the number of actions n and a positive
integer Maximum Payoff of Deviation (MPD), we generated
a game by (for each action j 2 [n]) uniformly choosing p(j)

from {i 2 Z : 0  i  30} and uniformly choosing p⇤(j)

from {i 2 Z : p(j)  i  MPD}.3 As expected, the run-
times of all algorithms increase with increasing n, and the
runtime of FPTAS increases with decreasing ". Similarly,
consistent with our runtime analysis, Algorithm 1 (DP) in-
creases with increasing MPD, since MPD and � are posi-
tively correlated, whereas the other algorithms do not exhibit
such an increase, as their runtimes are independent of the ac-
tual payoffs.4 While the DP consistently outperforms the ILP

3Imposing p⇤(j) � p(j) ensures � > 0 for each game.
4In fact, as seen in Fig.1(top), the runtime for Algo. 3 sometimes

decreases with increasing MPD. This is likely because increasing
MPD increases the upper bound for the deviation payoffs but not for
the cooperation payoffs, resulting in � increasing while h(j)s stay
in the same range. Thus, more actions are placed in S and skip the
inner loop in Line 13, resulting in less computation by the FPTAS.



Figure 2: Runtimes of Algorithms 1 and 2 for a fixed number of
actions (30) as a function of Maximum Payoff of Deviation (MDP).
Each data point is averaged over 5000 trials.

in the plots, this trend is naturally reversed for high �, which
we demonstrate by rerunning the same runtime experiment
for these algorithms for larger values of MPD. Our results are
presented in Figure 2.

Notice that for n = 30, we see that the ILP (the runtime of
which is robust to increases in the payoffs) starts to outper-
form the DP (the runtime of which steadily increases with in-
creasing MPD) when the MPD reaches approximately 1500.
The figure demonstrates the better performance of the ILP
in the high � limit, which corresponds to games requiring
longer (in terms of the number of rounds) hazing periods be-
fore the goal value is reached.

7 Future Work

As mentioned in Section 5, Algorithm 3 is inspired by the
original FPTAS for the unbounded knapsack problem [Ibarra
and Kim, 1975]. Since then, faster schemes for the same
problem have been developed [Lawler, 1979; Jansen and
Kraft, 2018]. It is possible that similar modifications can be
made to these algorithms to enable them to solve OptRep,
improving the runtime of its FPTAS.

A natural next step following our work is considering
asymmetric games and strategies. While some of our results
generalize to this setting, there are important differences. For
example, goal values must be generalized to goal sequences
to maximize payoff (e.g., if (C2, C2) from Table 1 instead had
payoff (6,6), it would be better to forever alternate between
(D,C2) and (C2, D)); hence, computing the “optimal goal
sequence” is a separate computational problem on its own.
A two-variable generalization of Algorithm 1 can compute
sequences reaching a goal sequence that maximizes the total
payoff, but fails for any other goal sequence. However, since
fairness concerns come into play with asymmetric payoffs,
maximizing the total payoff may not be sufficient, requiring
novel algorithmic techniques.

Another possible extension is to consider Bayesian games
[Harsanyi, 1967], where agents have private information
about how they value certain outcomes. In such games, play
might differ depending on an agent’s type, and we may even
have defection and restarting on the path of play in equilib-
rium. For example, if a small fraction of the population ob-

tains great benefit from deviating in the first round, it may be
better to tolerate those few agents repeatedly taking advan-
tage for one round and then finding another partner, than to
add significant hazing for the entire population to prevent this.
In this context, partial anonymity could also be of interest,
for example where one can choose to reveal one’s history to a
new partner, for example to show that one behaved properly
in a previous relationship but the partner unfairly defected.
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