The Revelation Principle for Mechanism Design with Reporting Costs

ANDREW KEPHART, Duke University

VINCENT CONITZER, Duke University

The revelation principle is a key tool in mechanism design. It allows the designer to restrict attention to the
class of truthful mechanisms, greatly facilitating analysis. This is also borne out in an algorithmic sense, al-
lowing certain computational problems in mechanism design to be solved in polynomial time. Unfortunately,
when not every type can misreport every other type (the partial verification model), or—more generally—
misreporting can be costly, the revelation principle can fail to hold. This also leads to NP-hardness results.
The primary contribution of this paper consists of characterizations of conditions under which the revelation
principle still holds when misreporting can be costly. (These are generalizations of conditions given earlier
for the partial verification case [Green and Laffont 1986; Yu 2011].) We also study associated computational
problems.

Additional Key Words and Phrases: automated mechanism design, signaling costs, partial verification, rev-
elation principle

1. INTRODUCTION

Mechanism design concerns making decisions based on the private information of one
or more agents, who will not report this information truthfully if they do not see this
to be in their interest. The goal is to define a mechanism—a game to be played by
the agent(s)—that defines actions for the agents to take and maps these actions to
outcomes, such that in equilibrium, the agents’ true types map to outcomes as de-
sired. This may, at first, appear to leave us in the unmanageable situation of having
to search through all possible games we could define. Fortunately, there is the revela-
tion principle, which states that anything that can be implemented by a mechanism
can also be implemented by a truthful mechanism, where agents in equilibrium report
their types truthfully. This vastly reduces the search space, and indeed under certain
circumstances allows optimal mechanisms to be found in polynomial time (e.g., if the
number of agents is constant and randomized outcomes are allowed [Conitzer and
Sandholm 2002, 2004]). And of course, the revelation principle is also extremely useful
in the process of obtaining analytical results in mechanism design.

Authors’ addresses: Andrew Kephart, Department of Computer Science, Duke University; email: kephart@
cs.duke.edu; Vincent Conitzer, Department of Computer Science, Duke University; email: conitzer@cs.duke.
edu

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EC’16, July 24-28, 2016, Maastricht, The Netherlands. ACM 978-1-4503-3936-0/16/07 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2940716.2940795

Unfortunately!, there are situations where the revelation principle fails to hold. No-
tably, this is the case in settings with so-called partial verification. This means that not
every type is able to report every other type (without detection). For example, an agent
in an online marketplace may be able to pretend to arrive later than she really does,
but not earlier. Indeed, due to this absence of a revelation principle in this context, the
problem of determining whether a particular choice function can be implemented be-
comes, in general, NP-hard [Auletta et al. 2011]. It is thus natural to ask the question
under which conditions on the misreporting graph—which represents which types can
misreport which other types—the revelation principle holds. Such a characterization
can help us both obtain analytical results in mechanism design as well as algorithms
for efficiently finding mechanisms. Indeed, these conditions have been previously char-
acterized [Green and Laffont 1986; Yu 2011]; we review them later as they come up as
special cases of our characterizations.

Nevertheless, in practice, it is not always black and white whether one type can mis-
report another. Often, one type can misreport another at some cost. This cost may
correspond to financial cost or effort. For example, a minor may acquire a fake driver’s
license at some cost. A consumer may engage in tricks to improve his credit score.
In college admissions, a student can improve on his/her “natural” SAT score by extra
prepping for the test.? And so on. This falls in the general domain of signaling games,
such as Spence’s famous model of education [Spence 1973]. Generally, for every type

¢ and every type 0 she might misreport, there is a cost (0, 0) for doing so. Traditional
mechanism design is the case where ¢(6,0) = 0 everywhere; partial verification is the
special case where ¢(6,6) € {0, 00}.

In this paper, we characterize when the revelation principle holds with arbitrary
misreporting costs. The previous characterizations for partial verification straightfor-
wardly follows as a special case. We also consider cases where some aspects beyond the
misreporting costs, such as the valuation function, are known.

1.1. Related Work

In earlier work, we studied the computational complexity of deciding whether a given
choice function can be implemented when misreporting is costly [Kephart and Conitzer
2015]; these results will be relevant in Section 6 of this paper.

[Kartik and Tercieux 2012] gives a necessary condition, evidence-monotonicity, which

is required for a social choice function to be implementable with no signaling costs
incurred in equilibrium. Applications of signaling costs to more specific settings in-
clude [Bull 2008], [Lacker and Weinberg 1989], [Kartik 2008], and [Deneckere and
Severinov 2007]. In the latter it is shown that if the agent can send multiple signals,
in the limit as the number of these increases the principal can elicit the agent’s private
information at a very small cost.

A different variant that also does not have the black-and-white nature of partial veri-
fication is that of probabilistic verification, in which a lying agent is caught with some
probability [Caragiannis et al. 2012].

1This is only unfortunate from analytical and algorithmic viewpoints. Indeed, often a non-truthful mecha-
nism in these settings will perform better than any truthful one. We show several examples of this.

2We have in mind here not prepping that has value beyond the test—e.g., studying algebra in order to be
able to solve more problems—but rather acquiring tricks—e.g., about how best to guess when unsure—that
improve the score on the test but are otherwise of no societal value.

We also consider our work related to machine learning in contexts where what is being
classified is an agent that may put in some effort to resist accurate classification. The
most obvious version of this is adversarial classification: detecting spam, intrusions,
fraud, etc. when the perpetrators wish to evade detection [Barreno et al. 2010; Dalvi
et al. 2004].

However, as the examples in the introduction indicate, there are many situations
which are not zero-sum. This is also brought out in more recent work on “strategic
classification,” which takes less of a mechanism design viewpoint than we do [Hardt
et al. 2016].

1.2. Introductory Example - Inspection Game

We now provide an introductory example that illustrates our model as well as the
failure, in general, of the revelation principle when misreporting is costly.? We will give
another, more complex example in Section 3, which we will use as a running example
throughout the paper.

Suppose Beth is considering buying a crate of produce from Pam. The produce can be
fresh, decent, or rotten (and Pam will know which it is). Beth can either accept or reject
the crate. If the produce is fresh or decent, Beth would like to accept it, otherwise she
would like to reject it. This gives:

© = {fresh, decent, rotten} — the set of types.

O = {accept, reject} — the set of outcomes.

F = {fresh — accept, decent — accept, rotten — reject} — the choice function Beth seeks
to implement.

Before making her decision, Beth can inspect the appearance of the produce. However,
at some cost Pam can add dyes or scents to the produce, which will alter how it appears
to Beth. The following matrix gives the cost of making a crate of type 6 appear to be
of type 6. For example, at a cost of 30, Pam can make a crate of rotten produce appear
fresh.

fresh decent rotten

A fresh 0 0 0
c(0,0) = decent | 10 0 0
rotten 30 10 0

The value that Pam receives if the crate is accepted is 20:*

vg(accept) = 20
vg(reject) =0

Beth needs to commit to a mechanism for choosing an outcome based on how the pro-
duce appears. The naive mechanism of accepting the produce whenever it does not
appear rotten, i.e., A = {fresh — accept, decent — accept, rotten — reject} would fail.
It would be worth it to Pam to pay the cost of 10 to make rotten produce appear to
be decent, netting 10 value. Hence Beth would end up inadvertently accepting rotten
produce.

3We present a similar example in [Kephart and Conitzer 2015]. This is the smallest example where a choice
function is implemented by some nontruthful mechanism, but not by any truthful one.
4In general, the value of each outcome to the agent can depend on the type.

What Beth should do instead is use A* = {fresh — accept, decent — reject, rotten —
reject}. Under A*, if the produce really is rotten it will not be worth it for Pam to alter
it, and it will be rejected. On the other hand, if the produce is decent, Pam will make
it appear to be fresh and it will be accepted, resulting in the implementation of Beth’s
desired choice function.

2. MODEL

As is common in this type of setting, we focus on the case of a single type-reporting
agent; this corresponds to holding the other agents’ reports fixed.

In a fully specified instance, we have a set of types ©; we will generally use 6,01,05, ...
to denote variable types and a,b,c, ... to denote specific types. We also have a set of
outcomes (alternatives) O. There is a valuation function v : © x O — R, where v(6,0)
is the valuation that type 6 has for outcome 0. We sometimes write vg(o) rather than
v(6,0). Finally, there is a cost function ¢ : © x © — R, where ¢(:,6,) denotes the
cost type 6; incurs when misreporting 5. Reporting truthfully is always costless. We
sometimes use the shorthand ab for ¢(a, b).

A (direct-revelation) mechanism is defined by, first, an allocation function A : © — O,
where A(é) = o0 denotes that the mechanism chooses o when type 6 is reported. (When
there is a risk of confusion, we generally use 6 to denote the true type and 6 to de-
note the reported type. Note that the fact that the mechanism is a direct-revelation
mechanism—i.e., agents report types directly—does not mean it is necessarily truth-
ful.) When we allow for transfers, then another part of the mechanism is the trans-
fer function T : © — R, where T'(0) denotes the transfer (payment) received by the
agent when reporting 6. (Hence, T(é) < 0 implies the agent is making a transfer.) In a
mechanism without transfers, T(é) = 0 for all §. The agent’s utility for having type 0,
reporting type ¢, receiving outcome o and transfer ¢ is u(6,6’, 0,t) = vg(0) — ¢(6,6") + t.
We are generally interested in implementing a choice function F : © — O. We some-
times use the shorthand o, for F(a). Let S : © — O denote a strategy for the agent,
where S(0) = 6 denotes that the agent reports § when her true type is 6. We say S
is optimal for mechanism M = (A, T) if for all 8 and 6, u(9, S(9), A(S(9)), T(S(6))) >
u(8,6, A(), T(9)).

A mechanism M = (A,T) together with strategy S implements F if S is optimal for

M and for all 8, A(S(0)) = F(6). (Moreover, it implements it with transfer 7(S(6)) and
utility w (0, S(6), A(S(9)),T(S(9))) for type 6.)

We will sometimes use N to denote a not-necessarily truthful mechanism and H
to denote a truthful one.® Additionally, Sy and Sy will refer to optimal strate-
gies for the respective mechanisms. We use Uy (f) to refer to the utility that
an agent of type 0 achieves by reporting optimally under M. That is, Uy (0) =
u(0, Sar(0), An (Sm(9)), Tna (Sar (0)).

2.1. Revelation Principle

We say that a revelation principle (RP) holds whenever we can, without loss of general-
ity, restrict our attention to truthful mechanisms when trying to implement the choice

5Here, H stands for “honest” to prevent confusion with the transfer function 7.

function. Thus, we say that given © and ¢ (we will refer to a combination of © and c as
an instance), the revelation principle holds if for any O, v, N = (An,Tn), and Sy which
is optimal for N, there exists another mechanism H = (A, Ty) such that the truthful-
reporting strategy (identity function) Sy (with Sy (0) = 0) is optimal for H, and for all
0, Ap(0) = An(Sn(0)). Hence, any choice function F' that can be implemented can be
implemented truthfully.

Sometimes, we will also wish to implement the choice function with specific trans-
fers and/or utilities. We say that the revelation principle holds with fixed trans-
fers if the mechanism H can always be chosen such that Tx(0) = Tn(Sn(0)) for
all 0, and with fixed utilities if the mechanism H can always be chosen such that
w(0,0, Ap(0), Tr(0)) = u(d,Sn(6), An(Sn(0)), Tn(Sn(0))) for all 6. Note that if the rev-
elation principle holds with fixed transfers, then it also holds when no transfers are
possible at all, since this is simply the special case where the transfers are fixed to 0.

3. RUNNING EXAMPLE: STOCKING FOOD BANKS

Throughout the paper we will use a running example of stocking food banks to help
illustrate the various instantiations of our framework. (This example is purely for il-
lustration purposes.) Imagine that a city has four districts: North, East, South, West,
each of which has a food bank and a population of people living in it. A person’s type
thus consists of the location in which she lives.

Based on demographics and health conditions, the city government has determined
how much it values the population of each district receiving certain types of food. For
example, it may wish to distribute milk in a district with many families with young
children, and vegetables in a district with many single, middle-aged people. Note that
the city’s objective here is different from maximizing the sum of the utilities of the
people who will make use of the food bank. For example, the latter may solely want to
consume tasty food, whereas the city may prefer for them to eat healthy food in order
to reduce the burden on the health care system. For the purpose of our example, we
assume there are three food types, namely (those high in) fiber, protein, and vitamins.

Determining which food to stock in each bank would be straightforward except that
there is a possibility that the population from one district might travel to another dis-
trict if it prefers the latter district’s food. This would correspond to them “lying” about
their district. We assume here that the food banks cannot check the home address of
people arriving at them.

That being said, such “misreporting” is not without cost, because it requires traveling
to another district. The transportation costs to residents for traveling between districts
are summarized as follows:

North West East South

North 0 2 8 8

N West oo 0 4 2
0.9)= East [oo 4 0 9
South 00 2 2 0

It can also be useful to visualize this reporting cost structure as a graph. The directed
edge between two districts represents the cost of traveling from one to the other. We
leave off the zero-cost self reporting edges. All other unshown edges are assumed to
have infinite cost.

South

Suppose that the people of each district value the food as follows.

fiber protein vitamins

North 1 9 1

(6, 0) = West 2 3 3
’ East 1 3 9
South 1 1 1

Moreover, suppose that the city’s objective function is as follows.

fiber protein vitamins

North 10 0 0

_ West 0 10 5
J0.0=" Bt 0 10 5
South 0 5 10

The city’s problem is to specify a mechanism—that is, which food each district’s food
bank distributes—such that it is happy with the equilibrium result of this mechanism.
Possibly, the city also has the option to distribute a (welfare) transfer to each person
who comes to the food bank.

We assume that there are no capacity constraints on any food bank—that is, the food
bank does not run out of food if too many people come to it. Hence, this is effectively
a mechanism design problem for a single agent—the person turning up at the food
bank—because other agents’ decisions do not affect this agent.

There are multiple variants of this problem, depending on whether the city can make
transfers, whether it wants these transfers to be a certain amount, whether it cares
about the transportation costs incurred by people traveling to a different district, etc.

If the revelation principle holds for the variant in question, the city’s problem is sig-
nificantly easier; it can focus on truthful implementations, i.e., mechanisms such that
nobody would travel to another district. On the other hand, if it does not hold, the city
needs to consider mechanisms that do incentivize some districts’ populations to travel
to the food bank in another district, because this may result in better outcomes than
any truthful mechanism can achieve. We will see examples of both cases.

4. RESULTS

We now move on to our contributions.

4.1. High Level Overview

We first provide a high level overview of the intuition behind our main results.

The revelation principle holds iff for any choice function F' implemented by a non-
truthful mechanism N, there also exists a truthful mechanism H which implements
F'. For the purpose of providing intuition, let us limit ourselves here to the case where
there is only one non-truthful report in N. Under N let b obtain F(b) by reporting some
other type c.

To create H where A(b) = F(b), b must now obtain F(b) by reporting b. This risks that
some type a now prefers reporting b to truthfully reporting a. We can visualize these
types and the relevant reporting costs between them as follows®:

There are two ways to keep a truthful in H.

First: Pay an agent extra for reporting a. This keeps a honest but may cause other
types to misreport under H. So we pay off all the types which can report to a too, and
so on. This works as long as the process terminates without reaching . If we had to
pay b, the extra transfers would cancel out and all would be for naught. Thus, with
variable transfers and variable utilities, if there exists no path of finite reporting cost
edges from b to a the revelation principle holds.

Second: Pay less to an agent for reporting b. We can safely subtract bc” from the trans-
fer that b received for reporting ¢ under N (making b equally happy under H and N).
Note that a did not report c under N. Consider how much greater a’s incentive to report
b under H is than to report c under N. It is ac — ab — be, which will be nonpositive iff
ac < ab + be, i.e. the triangle inequality holds among «a, b, and ¢, in which case a still
will not misreport. Thus, with variable transfers if the triangle inequality holds the
revelation principle holds with fixed utilities (and thus with variable utilities as well).

If we have fixed transfers, neither of the previous two techniques are allowed. So a
must prefer not to report b without any altering of transfers. This could only be the
case if it is no easier for a to report b than it could ¢, i.e. ab > ac.

Finally, with fixed transfers and fixed utilities b must receive the same utility in both
H and N. Clearly this can only be the case if bc = 0. If so, this reduces to the partial
verification setting and we can use the known revelation principle for that case.

4.2. Variable Transfers, Variable Utilities

Consider the case where we allow the transfers and utilities agents achieve to vary
between non-truthful and truthful implementations. That is, all that is needed for the
revelation principle to hold is that for any non-truthful implementation of a choice
function, there exists a truthful one as well—but the transfers and utilities received
by types may be different in the latter.

60ther types not shown in the graph may exist.
7Subtracting any more might cause b to misreport under H.

Definition 4.1 (VI'VU condition). An instance satisfies the VI'VU condition if for all
ordered triples a, b, c of types, either:

(i) There exists no path of finite reporting cost edges from b to a, or
(1i) ac < ab+be
i.e., the triangle inequality holds on the reporting cost structure.

THEOREM 4.2. The RP holds with variable transfers and variable utilities iff the
VTVU condition holds.

PrOOF.

VTVU condition =—> RP holds with variable transfers and variable utilities. Consider
the reporting graph consisting of only the edges with finite reporting costs. Consider
the strongly connected components of this graph; the graph decomposes into a DAG
over these components

Suppose there is a mechanism N that, together with a strategy Sy, nontruthfully
implements a choice function F. Let us restrict our attention to a single component.
Within it, the triangle inequality must hold since there clearly is a path between every
pair of types in it. Hence, within this component the RP holds even with variable trans-
fers and fixed utilities (Theorem 4.5), and hence there exists a truthful implementation
within this component.

Choose such an internally truthful implementation (including transfers) within each
component; this does not necessarily result in a mechanism that is truthful overall,
because there may be incentives to misreport across components. We can fix this as
follows.

We order the components in a way consistent with the DAG, such that types in an ear-
lier component can report types in a later component, but not vice versa. Additionally,
for each component we specify an additional transfer that all types in that component
will receive. By making this transfer sufficiently larger for earlier components in this
order, no type will wish to misreport to a later component (and misreporting to an
earlier component comes at infinite cost).

(Specifically, if component C; comes before C5, then the additional transfers wacfd and
7214 should be such that for all §; € C; and 6, € Cs,

vg, (F(61)) + 7o ® + 7 > wg, (F(62)) + mou® + 71 — 616,
&

mE = mE > v, (F(02)) + 75)% = 010> — o, (F(01)) — mpr'®

where the 7°¢ are the transfers obtained from applying the VTFU revelation principle
within the components.)

Since the additional transfer to a component is the same for all types in it, internal
truthfulness is maintained. So, since no type will misreport within a component, or
now to another component, the implementation is truthful.

VTVU not holding —> RP does not hold with variable transfers and variable utilities.
Given that the VIVU condition does not hold, we must have some a, b, c with ac >
ab + be for which there is a path of finite-cost edges b = 01,05, ...,60;_1,0; = a (Where we
consider [+ 1 = 1). If the path goes through ¢, we can assume without loss of generality
that ¢ = 92.

Assume first ¢ = 0,.

Consider an outcome set with a separate outcome oy, for every type 6; (except o, =
o.), and a valuation function with vy, (0s,) = ¢(6;,0;41), ve,(0s,,,) = 2¢(6;,0;41) (except
v (0p) = ab + (ac + ab + be) /2 and vy (0.) = vp(0p) = be), and v = 0 elsewhere.

Consider the mechanism N where Ay (6;) = oy,, except Ay (b) = o,; moreover, let Ty be
a large constant value on all the 6; and ¢, and 0 everywhere else, so that none of the 6;
would misreport somewhere outside that set. Then an optimal strategy has Sy (6;) =
0;, except Sy(b) = c. This is because for any 6; ¢ {a,b}, the only viable alternative
is to misreport 6,1, but the cost of doing so exactly cancels out the benefit; for b,
misreporting ¢ results in utility bc —bc = 0, which is just as good as reporting truthfully
and getting o,; for a, misreporting ¢ would give utility Ty + ab + (ac + ab + be)/2 — ac,
which is less than the Ty + ab it gets for reporting truthfully.

Hence, this is a non-truthful implementation of some choice function with F'(6;) = oy,.

On the other hand, such a choice function cannot be implemented truthfully. This is
because we have a Rochet-style negative cycle [Rochet 1987]. For truthful reporting
we must have Ty (0;) > Ty (6;11) for each 6;, except Ty (b) > Tr(c) — be and Ty (a) >
T (b) + (ac+ ab+bc)/2 — ab > Ty (b) + ab+ be — ab = T (b) + be. Hence T (a) > Tr(c).
But this leads to a contradiction as we follow the inequalities around the cycle.

For the case where ¢ # 0>, we can make a similar argument, treating c as before but
using a separate outcome oy, for 6, and letting v;,(0g,) = b0s.

By doing so, b is indifferent between c and 6 in the non-truthful implementation which
therefore still works®, and for the cycle we get T (b) > T (02) — be, allowing us to get
the same contradiction. O

4.2.1. Relation to Partial Verification. In the partial verification case (reporting costs are
zero or infinity), if we allow transfers to vary, it is known that the revelation principle
is characterized by the following “Strong Decomposability” condition [Yu 2011]: in the
reporting graph (where there is an edge from a to b if and only if a can report b, at zero
cost), (1) every strongly connected component is fully connected, i.e., every type in the
component can report every other type; and (2) within a strongly connected component,
all types have the same image set, i.e., the set of types they can report is the same.

PROPOSITION 4.3. In the partial verification case (reporting costs are zero or infin-
ity), strong decomposability is equivalent to the VI'VU condition.

Of course, if both results are correct, this must in fact be the case. Nevertheless, it is
instructive to verify it directly.

PROOF.

The VIVU condition = Strong Decomposability. First, to show (1), assume a,b,c
are in the same strongly connected component (so in particular, « is reachable from

8So0 b still reports to c.

b with edges of zero reporting cost), and that ab = 0 and bc = 0. Then, by VTVU,
ac < ab+ bc = 0, so ac = 0. This implies transitivity, and hence full connectivity,
within every strongly connected component. Second, to show (2), suppose a and b are
in the same strongly connected component—so by (1), ab = 0—and bc = 0. Because a
is reachable from b, by VIVU ac < ab 4 bc = 0, so ac = 0. Hence, nodes in a strongly
connected component have the same image set.

Strong Decomposability — the VITVU condition. Suppose ab = bc = 0 and a is
reachable from b with edges of zero reporting cost; it suffices to show that ac = 0.
But in fact, because ¢ and b are in the same strongly connected component, by (2),
ac=0 = bc=0.5 O

4.2.2. Revisiting the Running Example. Suppose the city wants to maximize its objective
without regard to the transfers it makes or the resulting utilities of the different types
of agent. When we consider the conditions for the revelation principle we just obtained,
we see that the triangle inequality is violated by the following triples: (North, West,
East) and (North, West, South). However, in both cases there is no path back to North.

Hence, in fact the revelation principle holds. Thus, any choice function that is imple-
mentable is also implementable truthfully. So the city only needs to search through the
space of truthful mechanisms to maximize its objective. In fact, the following truthful
mechanism achieves the best conceivable objective value of 40.

North ~ West East South
A [fiber | protein | protein | vitamins
T 6 0 4 0

H =

4.3. Variable Transfers, Fixed Utilities

We now consider the case where, given a non-truthful mechanism, we wish to obtain
a truthful mechanism that implements the same choice function and maintains the
utility that each type obtains, but we allow the two mechanisms to be different in the
transfers they make to the agents.

Definition 4.4 (VTFU condition). An instance satisfies the VI'FU condition if for all
ordered triples a, b, ¢ of types,

ac < ab+ be
i.e., the triangle inequality holds on the reporting cost structure.

THEOREM 4.5. The RP holds with variable transfers and fixed utilities iff the VTFU
condition holds.

PRrROOF.

VTFU condition —> RP holds with variable transfers and fixed utilities. By way of
contradiction, assume there exists an instance where the VIFU condition holds, but
the RP does not. That is, there exists a mechanism N together with a strategy Sy,
such that the mechanism H given by Ay = Ay o Sy and for all 6,

Tu(0) = Tn(Sn(0)) — 05N (6)

9The careful reader may wonder why we did not need to use condition (1) in this part of the proof. This is
because condition (1) in Strong Decomposability is in fact redundant—condition (2) implies condition (1).

(which are the only transfers that could result in # getting the same utility under both
N and H) does not truthfully implement F.

Given that H is not truthful, there must exist two distinct types a,b with o, =
AN(Sn (D)) and o, = AN (Sn(a)) such that under H, a prefers to misreport to b, hence:

Ug(a) = v4(0p) + T (b) — ab > v,(04) + T (a) = Uy(a)

Then it cannot be the case that Sy (b) = b; for if this were so, then under N, an agent
of type a could report b and obtain:

Va(0p) + T (b) — ab = v4(0p) + T (b) —ab > Un(a)

which contradicts the definition of Uy (a) as the highest utility a could achieve under
N.

Hence, Sy (b) = ¢ for some ¢ # b, and
Tn(b) —be=Tg(b)
Now consider the utility that a would receive from reporting ¢ under N. It would be:
Vg (0p) + Tn(¢) — ac = vg(0p) + TH(b) + be — ac >

Ve (0p) + T (b) —ab > Ug(a) > Un(a)

and we have our contradiction.

VTFU condition being violated —> RP does not hold with fixed transfers and variable
utilities.. Choose an instance where the VIFU condition is violated, i.e., there exist
a,b,c € © such that:

ac > ab + be

Choose an arbitrary outcome o and let F(-) = 0. Let e = (ac — ab — bc)/2 > 0. N defined
by:

AN() =0
Tn(c)=ab+bc+e

Tn(0) =0 for 6 # c

implements F' and is non-truthful as b will report ¢ to obtain a utility of v;(0) + ab + e.
On the other hand a will report truthfully and thus obtain a utility of v,(0) (since
ac > ab + be + e).

Consider any mechanism H with Ay (-) = o and for which each type 6, if it reports
truthfully, gets utility Uy (0) (so that Ty (b) = ab + € and Ty () = 0 for 0 # b). If
the revelation principle is to hold, this mechanism must be truthful. But in fact, by
reporting b, a can obtain a utility of v,(0) + € > v,(0) = Un(a). So the revelation
principle does not hold. O

4.3.1. Revisiting the Running Example. The mechanism in 4.2.2 maximized the city’s ob-
jective but resulted in uneven utilities for the different types of agent: North and East
each obtained 7 while West only obtained 3 and South only 1. Suppose now the city
would like equal utilities for all types. (Note that, because the city can make arbitrary
transfers, any mechanism where all types receive utility uo can easily be transformed
into another mechanism where all types receive utility u; and that implements the

same choice function, simply by adding u; — ug to each transfer.) The best truthful
mechanism is the following, resulting in an objective of 30 while ensuring each type
achieves a utility of exactly 3 (again, this utility can easily be transformed into any
other number).

North West East South
A [fiber | vitamins | protein | protein
T 2 0 0 2

H =

But might there be a non-truthful mechanism that achieves a higher objective? When
we check the VIFU condition, we see that the following triples violate the triangle
inequality: (North, West, East) and (North, West, South). Thus, the revelation principle
does not hold. Indeed, in this case there is in fact a better non-truthful mechanism.
Consider the following non-truthful mechanism under which West travels to the South
food bank. It results in an objective of 35 while still giving all types utility 3.

North West East South
A [fiber | fiber | protein | protein
T 2 0 0 2

N =

4.4, Fixed Transfers, Variable Utilities

Definition 4.6 (FTVU condition). An instance satisfies the FTVU condition if for all
ordered triples a, b, ¢ of types,

bc< oo = ac<ab

THEOREM 4.7. The RP holds with fixed transfers and variable utilities iff the FTVU
condition holds.

PROOF.

FTVU condition —> RP holds with fixed transfers and variable utilities. By way of
contradiction, assume there exists an instance where the FTVU condition holds, but
the RP does not. That is, there exists a mechanism N, together with a strategy Sy,

such that the mechanism H where Ay = Ay o Sy £ F and Ty = T o Sy is not
truthful. That is, using the fact that misreporting always comes at a nonnegative cost,
there must exist types a,b with F'(a) = o, # o, = F(b) such that a prefers misreporting
to b, that is:

va(op) + T (b) — ab > ve(0q) + ThH(a)

Moreover, since N together with Sy does implement F', there must exist some ¢ € ©
such that Sy (b) = ¢, An(c) = o, and Sy(a) # c. Now, by the FTVU condition, for any ¢
that is reportable by b, ac < ab. Hence,

Ve (AN (€)) + Tn(c) — ac = v (0p) + T (b) — ac
> ’Ua(Ob) + TH(b) —ab > Ua(oa) + TH(a) 2

v (An(Sn(a))) + Tn(Sn(a)) — c(a, Sn(a))

Hence, under N, by reporting ¢, a can achieve a higher utility than by following Sy,
contradicting the optimality of s.

FTVU condition being violated —> RP does not hold with fixed transfers and variable
utilities. Let a,b, c € © violate the FTVU condition. That is, bc < co and ac > ab. We will
show that we can choose an F' and N such that N (with associated optimal strategy
Sy) implements F, but H where Ay = F and Ty = Ty o Sy is not truthful. In fact we
will show that there is even a constant function F for which this is the case, which we
will use in a later proof. (Other than this, the second part of the proof of Theorem 4.8
will also prove the claim being proven here.)

Choose an arbitrary outcome o and let F'(-) = o. Let ¢ = ac — ab. The N defined as
follows trivially non-truthfully implements F.

AN() =0
Tn(c) =bc+ (ab+ ac)/2
Tn(a) = be

Tn(-) = 0 everywhere else
Note Sy(a) = a because (ab+ ac)/2 < ac, and Sy (b) = c because bc + (ab + ac)/2 > be.
Now consider H where Ay = oand Ty = Ty o Sy. We have:
T (b) = bc+ (ab+ ac)/2

Ty (a) = be

But then, a can improve its utility by (ab + ac)/2 — ab > 0 by misreporting b. Thus H
does not truthfully implement F'. O

4.4.1. Special Case: Zero Transfers. We now consider the special case where we have no
transfers at all; that is, transfers are fixed at zero. Of course, if the FTVU condition
holds in general, then the revelation principle will also hold for this special case. How-
ever, we may wonder whether the full FTVU condition is necessary for the revelation
principle to hold in this special case, or if a more relaxed condition will do for the case
of zero transfers. It turns out that the full FTVU condition is still necessary, as we now
show. (This will no longer be true if we know the valuation function, as we will show
in5.3.1.)

THEOREM 4.8. The RP holds with zero transfers and variable utilities iff the FTVU
condition holds.

PROOF.

The FTVU condition holding = the RP with zero transfers and variable utilities
holds. This follows immediately from Theorem 4.7 as zero transfers is a special case of
fixed transfers.

The FTVU condition not holding —> the RP with zero transfers and variable utilities
does not hold. Let a,b,c € © violate the FTVU condition. That is, bc < oo and ac > ab.
We will show that we can define outcomes and valuation functions for the types, as
well as a non-truthful mechanism N (with an associated optimal strategy Sy) without
transfers that implements a choice function F' that no truthful mechanism without
transfers would implement. That is, H with Ay = Ay o Sy and Ty = 0 is not truthful.

Create outcomes o, and o, and let v,(0,) = 0, va(0p) = (ab + ac)/2, vp(04) = 0, vp(0p) =
bc+ 1. Consider the mechanism N defined by Ty = 0, Ay (a) = An (D) = 04, An(c) = oy,

and An(-) = o, everywhere else. Associated with it is some optimal strategy Sy for
which Sy(a) = a and Sy (b) = c. However, a mechanism H with Ty = 0, Ag(a) = o4,
and A (b) = op is not truthful, because v,(0p) — ab = (ac — ab)/2 > 0 = v,(0,). O

4.4.2. Revisiting the Running Example. In this setting, the city no longer cares that the
types all receive the same utility, but now the city is unable to make welfare transfers.
That is, transfers are fixed at zero. The FTVU condition does not hold for this cost func-
tion: the following triples all violate the condition: (North, West, East), (North, West,
South), (West, South, East), and (East, South, West). Thus, we may wonder whether a
non-truthful mechanism exists that is better than any other mechanism. However, it
turns out that the revelation principle still holds for the agent’s specific valuation func-
tion that we are considering here, and so in fact we can restrict attention to truthful
mechanisms.

4.5. Fixed Transfers, Fixed Utilities

Definition 4.9 (FTFU condition). An instance satisfies the FTFU condition if for all
ordered pairs a, b of types,

ab € {0,000}
and for all ordered triples a, b, ¢ of types,

(ab=0Abc=0) = ac=0

Indeed, in the partial verification case (which, in our notation, is the case where for all
a,b € ©,ab € {0,00}), the case where (ab = 0 Abc = 0) = ac = 0 is known as the
nested range condition [Green and Laffont 1986], which is known to characterize when
the revelation principle holds in that case, if the transfers are considered part of the
choice function (i.e., they are fixed); note that in this case utilities are also necessarily
fixed because no agent will ever incur nonzero reporting costs.

THEOREM 4.10. The RP holds with fixed transfers and fixed utilities iff the FTFU
condition holds.

Proof appears in the appendix.

5. REVELATION PRINCIPLE FOR KNOWN VALUATIONS

So far, we have always considered whether the revelation principle holds for a given
combination of © and ¢ : © x © — R. For it to hold meant that no matter what the val-
uation function v and the choice function F' (and, possibly, the transfer and/or utilities
to be achieved) are, it is either truthfully implementable or not implementable at all.
But if we have a particular valuation function in mind, we may not care whether the
revelation principle holds for other valuation functions; we just want to know whether
for this valuation function we can restrict our attention to truthful mechanisms. As we
already alluded to in 4.4.2, the revelation principle may hold for a specific valuation
function even when it does not hold for all valuation functions. Accordingly, in this
section, we consider the case where the valuation function is known (or fixed). Hence,
in this section, an instance consists of not only © and ¢, but also O and v. Later, in Sec-
tion 6, we will consider the case where everything is fixed, including the choice function
(and, possibly, the transfer and/or utilities to be achieved).

5.1. Known Valuations, Variable Transfers, Variable Utilities

Finding useful conditions that ensure that the RP holds in this case is currently an
open problem. We conjecture that verifying whether the revelation principle holds in
this case is NP-complete.

5.2. Known Valuations, Variable Transfers, Fixed Utilities

It turns out that in the VTFU case, it makes no difference whether we know the valu-
ation function.

THEOREM 5.1. The RP holds with known valuations, variable transfers, and fixed
utilities iff the VTFU condition holds.

PROOF.

VTFU condition holds —> RP holds. By Theorem 4.5, the VTFU condition implies
that the RP holds for all possible valuation functions, so it will continue to hold for a
specific valuation function.

VTFU condition being violated —> RP does not hold. In the corresponding part of
the proof of Theorem 4.5 (without known valuations), we used a constant choice func-
tion whose choice of outcome did not matter. Hence, this part of the proof carries over
unmodified to this case. O

5.3. Known Valuations, Fixed Transfers, Variable Utilities

THEOREM 5.2. The RP holds with known valuations, fixed transfers and variable
utilities iff the FTVU condition holds.

PRrOOF.

FTVU condition holds —> RP holds. By Theorem 4.7, the FTVU condition implies
that the RP holds for all possible valuation functions, so it will continue to hold for a
specific valuation function.

FTVU condition being violated —> RP does not hold. In the corresponding part of the
proof of Theorem 4.7 (without known valuations), we used a constant choice function
whose choice of outcome did not matter. Hence, this part of the proof carries over un-
modified to this case. (Note this is not true for the case where transfers must be zero—
Theorem 4.8—and as we will see next, the condition does change in that case.) O

5.3.1. Special Case: Zero Transfers. We now again consider the special case of zero trans-
fers. Unlike in the unknown-valuations case, here the condition turns out not to be the
same as in the general fixed-transfers case.

For example, consider a setting with a single outcome o. Then, even if the cost function
violates the FTVU condition, the RP still holds when transfers must be 0, because
there is only a single mechanism, in which every type gets the same outcome.

Thus, we provide a separate condition for this case. It is not elegant, but, as we show,
it can still be checked in polynomial time.

Definition 5.3 (KZTVU condition). An instance satisfies the KZTVU condition if for
all ordered triples a, b, ¢ of types, there exists no two outcomes o, and oy, type 6, # c,
and allocation function A : © — O, such that the following hold.

oy # 0a 1)
Va(0b) — ab > v4(04) 2)

A(0.) = 04 3)

(V0) vp(03) — be > vp(A(6)) — bl (4)
(V0) va(0a) — afla > va(A(0)) — af (5)

Note that if the FTVU condition holds on a triple a, b, ¢, then the KZTVU condition also
holds for that triple; but the converse is not true as the single-outcome example above
illustrates.

THEOREM 5.4. The RP holds with known valuations, zero transfers and variable
utilities iff the KZTVU condition holds.

Proof appears in the appendix.

5.4. Known Valuations, Fixed Transfers, Fixed Utilities

THEOREM 5.5. The RP holds with known valuations, fixed transfers, and fixed util-
ities iff the FTFU condition holds.

Proof appears in the appendix.

6. REVELATION PRINCIPLE FOR FULLY SPECIFIED INSTANCES

In the previous section, we considered the case where we already know the valuation
function, and wish to know if the revelation principle holds for that valuation function.
Still, all that is needed to violate of the revelation principle is that there is some choice
function (possibly together with transfers and/or utilities) that can be nontruthfully,
but not truthfully, implemented. But this may be of little interest if we already know
the precise choice function (etc.) we wish to implement. Indeed, even if the revelation
principle does not hold for all choice functions (etc.), it may yet hold for the one we care
about. This is what we study in this section. Hence, an instance is now a fully specified
instance, consisting of ©, ¢, O, and v as before, but also F', possibly a specific transfer
function 7* : © — R, and possibly a specific utility function U* : © — R, which we wish
to implement.

Definition 6.1 (Revelation Principle on an Fully Specified Instance). We say the RP
is true for a fully specified instance if either (1) there either a truthful mechanism T
that implements the choice function (with the required utilities and/or transfers), or
(2) no non-truthful mechanism N that does.

As it turns out, deciding whether the RP holds on individual fully specified instances
comes down to the computational problem of deciding whether a nontruthful imple-
mentation exists. The following lemma makes this clear.

LEMMA 6.2. Determining whether the revelation principle fails to hold on a given
fully specified instance is as hard as determining whether there is a (not necessarily
truthful) implementation for that instance.

PROOF. In each case, we can efficiently verify whether there is a truthful imple-
mentation of that instance: if there are no transfers, there is only one mechanism to
verify; if there are transfers but they are fixed (or implicitly fixed because utilities are),
again there is only one mechanism to verify. Finally, if neither transfers nor utilities
are fixed, then it is a simple linear feasibility problem to determine whether transfers
exist that implement the choice function.

Hence, we can reduce the problem of determining whether a (not necessarily truthful)
implementation exists for an instance to the RP in a fully specified instance problem,
as follows. First, check whether a truthful implementation exists; if so the answer is
“yes.” Otherwise, there is an implementation if and only if the revelation principle fails
to hold on this instance. O

THEOREM 6.3. Computing whether the revelation principle holds on a given fully
specified instance is coNP-complete (whether or not transfers and /or utilities are fixed).

PROOF. The problem of determining whether a (not necessarily truthful) imple-
mentation for an instance exists is NP-complete in all these cases [Auletta et al.
2011; Kephart and Conitzer 2015]. Hence, the result follows immediately from
Lemma 6.2. O

7. CONCLUSIONS

In this paper, we studied mechanism design with costly reporting. Because the reve-
lation principle is the foundation for so much of existing mechanism design theory, we
focused on determining necessary and sufficient conditions for it to hold, under var-
ious circumstances (allowing transfers/utilities to vary or requiring them to remain
fixed from the nontruthful to the truthful implementation; knowing the valuation func-
tion/choice function, or not).

We believe that the framework of mechanism design with costly reporting is one that
will be of increasing importance. This is because the parties that run mechanisms in-
creasingly have data on the other agents, as opposed to knowing nothing about them
ex ante and only being able to ask them about their preferences. Now, an agent can
often change the data that the mechanism has about it. We discussed several exam-
ples in the introduction; another possibility is for the agent to actively (and possibly
selectively) avoid having data collected on it, for example by logging out of systems,
erasing cookies, avoiding using credit cards that identify them, filing “right to be for-
gotten” requests, etc. All of these, though, come at some effort (or other) cost. Hence,
the standard mechanism design framework where an agent can report any type at no
cost—the “anonymous bidder walking into a Sotheby’s auction” model'>—does not ex-
actly fit such applications. But the mechanism design with reporting framework does.

Acknowledgments

We are thankful for support from ARO under grants W911NF-12-1-0550 and W911NF-
11-1-0332, NSF under awards IIS-1527434, 1IS-0953756, CCF-1101659, and CCF-
1337215, and a Guggenheim Fellowship. This work was done in part while the authors
were visiting the Simons Institute for the Theory of Computing.

100f course, the standard mechanism design framework where misreporting is costless can perfectly well
address situations where the party running the mechanism has prior information over the agent. The point
is that the standard framework does not address the agent being able to change this prior information at
some cost.

REFERENCES

Vincenzo Auletta, Paolo Penna, Giuseppe Persiano, and Carmine Ventre. 2011. Alter-
natives to truthfulness are hard to recognize. Autonomous Agents and Multi-Agent
Systems 22, 1 (2011), 200-2186.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. 2010. The security
of machine learning. Machine Learning 81, 2 (2010), 121-148.

Jesse Bull. 2008. Mechanism Design with Moderate Evidence Cost. The B.E. Journal
of Theoretical Economics 8, 1 (May 2008), 1-20.

Ioannis Caragiannis, Edith Elkind, Mario Szegedy, and Lan Yu. 2012. Mechanism de-
sign: from partial to probabilistic verification. In Proceedings of the ACM Conference
on Electronic Commerce (EC). Valencia, Spain, 266-283.

Vincent Conitzer and Tuomas Sandholm. 2002. Complexity of Mechanism Design. In
Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence
(UAI). Edmonton, Canada, 103-110.

Vincent Conitzer and Tuomas Sandholm. 2004. Self-interested Automated Mechanism
Design and Implications for Optimal Combinatorial Auctions. In Proceedings of the
ACM Conference on Electronic Commerce (EC). New York, NY, USA, 132-141.

Nilesh N. Dalvi, Pedro Domingos, Mausam, Sumit K. Sanghai, and Deepak Verma.
2004. Adversarial Classification. In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA,
99-108.

Raymond Deneckere and Sergei Severinov. 2007. Optimal Screening
with Costly Misrepresentation. (2007). Working paper available at
http://www.severinov.com/working_papers/screening_costly_misrepresentation_jul07.pdf.

Jerry Green and Jean-Jacques Laffont. 1986. Partially verifiable information and
mechanism design. Review of Economic Studies 53 (1986), 447-456.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. 2016.
Strategic Classification. In Innovations in Theoretical Computer Science (ITCS).
Cambridge, MA, USA.

Navin Kartik. 2008. Strategic Communication with Lying Costs. 2008 Meeting Papers
350. Society for Economic Dynamics. https://ideas.repec.org/p/red/sed008/350.html
Navin Kartik and Olivier Tercieux. 2012. Implementation with evidence. Theoretical

Economics 7, 2 (2012), 323-355.

Andrew Kephart and Vincent Conitzer. 2015. Complexity of Mechanism Design with
Signaling Costs. In Proceedings of the Fourteenth International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS). Istanbul, Turkey, 357-365.

Jeffrey Lacker and John Weinberg. 1989. Optimal Contracts under Costly State Falsi-
fication. Journal of Political Economy 97, 6 (1989), 1345-63.

Jean-Charles Rochet. 1987. A necessary and sufficient condition for rationalizability
in a quasi-linear context. Journal of Mathematical Economics 16, 2 (April 1987),
191-200.

Michael Spence. 1973. Job Market Signaling. Quarterly Journal of Economics 87, 3
(1973), 355-374.

Lan Yu. 2011. Mechanism design with partial verification and revelation principle.
Autonomous Agents and Multi-Agent Systems 22, 1 (2011), 217-223.

