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The revelation principle is a key tool in mechanism design. It allows the designer to restrict attention to truthful mechanisms, greatly

facilitating analysis. This is also borne out algorithmically, allowing certain computational problems in mechanism design to be solved

in polynomial time. Unfortunately, when not every type can misreport every other type (the partial verification model), or—more

generally—misreporting can be costly, the revelation principle can fail to hold. This also leads to NP-hardness results. The primary

contribution of this paper consists of characterizations of conditions under which the revelation principle still holds when reporting

can be costly. (These are generalizations of conditions given earlier for the partial verification case [11, 21].) Furthermore, our results

extend to cases where, instead of reporting types directly, agents send signals that do not directly correspond to types. In this case, we

obtain conditions for when the mechanism designer can restrict attention to a given (but arbitrary) mapping from types to signals

without loss of generality.
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1 INTRODUCTION

Mechanism design concerns making decisions based on the private information of one or more agents, who will not

report this information truthfully if they do not see this to be in their interest. The goal is to define a mechanism—a

game to be played by the agent(s)—that defines actions for the agents to take and maps these actions to outcomes, such

that in equilibrium, the agents’ true types map to outcomes as desired.

This may appear to leave us in the unmanageable situation of having to search through all possible games we could

define. Fortunately, we are rescued by the revelation principle. It states that anything that can be implemented by a

mechanism can also be implemented by a truthful mechanism, where agents in equilibrium report their types truthfully.
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2 Andrew Kephart and Vincent Conitzer

This vastly reduces the search space, and under certain circumstances allows optimal mechanisms to be found in

polynomial time (e.g., if the number of agents is constant and randomized outcomes are allowed [6, 7]). And of course,

the revelation principle is also extremely useful in the process of obtaining analytical results in mechanism design.

Unfortunately
1
, there are situations where the revelation principle fails to hold. Notably, this is the case in settings

with partial verification.2 Here, some types may be unable to report that they are other types (without detection). For

example, an agent in an online marketplace may be able to pretend to arrive between 0min and 30min after she really

does, but not any earlier or later.

We can use this example to show how non-truthful mechanisms can sometimes allow us to distinguish types better than

truthful mechanisms. An agent of type (i.e. arrival time) 12:10 can report that it is of type ‘12:20’, but not of type ‘12:45’.

Thus, an agent of type 12:20 can prove that it is not of type 12:10 by reporting that it is of type ‘12:45’. In contrast, a

truthful report of type ‘12:20’ does not prove this, because a type 12:10 agent can generate such a report as well.

Due to this absence of a revelation principle in this context, the problem of determining whether a particular choice

function can be implemented becomes, in general, NP-hard [1]. It is thus natural to seek to characterize those conditions

on the misreporting graph—which represents which types can misreport which other types— under which the revelation

principle holds. Such a characterization can help us obtain analytical results in mechanism design and algorithms for

efficiently finding mechanisms. Indeed, these conditions have been previously characterized [11, 21]; we review them

later as they come up as special cases of our characterizations.

In practice, it is not always black and white whether one type can misreport another. Often, one type can misreport

another at some cost. We call this mechanism design with reporting costs. Reporting costs may correspond to financial

expense or to expended effort. For example, a minor may acquire a fake driver’s license at some price. A consumer

may engage in tricks to improve his credit score. In college admissions, a student may improve on his/her “natural”

SAT score by extra prepping for the test.
3
Generally, for every type θ ∈ Θ and every report

ˆθ ∈ Θ that the agent might

report, there is a non-negative cost c(θ , ˆθ ) for doing so (with c(θ ,θ ) = 0). Traditional mechanism design is the special

case where c(θ , ˆθ ) = 0 everywhere; partial verification is the special case where c(θ , ˆθ ) ∈ {0,∞} and c(θ ,θ ) = 0. Because

partial verification is a special case, it immediately follows that the revelation principle does not hold in general with

costly reporting. However, in this paper, we identify necessary and sufficient conditions for the revelation principle to

still hold, generalizing the earlier conditions for the partial revelation case [11, 21].

Furthermore, we present our results for a more general setting,
4
namely the one where agents may be restricted to

send (costly) signals that do not necessarily correspond directly to types. We call this mechanism design with signaling

costs. Here we say an agent emits a signal s , rather than reports a type θ . This puts us in the domain of signaling games.

Consider, for example Spence’s famous model of education [19]. In this model, agents signal their type (capabilities)

by attaining a certain level of education; the idea is that higher-ability agents can more easily attain a higher level of

education, so that in equilibrium the different types separate and employers take the level of education into account in

hiring decisions. In this case, there is no ex-ante correspondence between types and signals.

1
This is only unfortunate from analytical and algorithmic viewpoints. Indeed, often a non-truthful mechanism in these settings will perform better than

any truthful one. We show several examples of this.

2
Also known as hard evidence.

3
We have in mind here not prepping that has value beyond the test—e.g., studying algebra in order to be able to solve more problems—but rather acquiring

tricks—e.g., about how best to guess when unsure—that improve the score on the test but are otherwise of no societal value.

4
The EC’16 version of this paper did not consider this more general setting.
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The Revelation Principle for Mechanism Design with Signaling Costs 3

Now consider an employer who can commit to a mapping from signals (levels of education) to hiring decisions. This

employer then is in a position to design a mechanism, but cannot restrict attention to “truthful” mechanisms in a

straightforward sense, because it is not clear what reporting truthfully would mean. It would be very helpful to the

employer to know a mapping from types to signals (that the agent would be incentivized to follow) with the following

property: if there is any such mapping that suffices for the employer’s objective, then so does this one. In standard

mechanism design, that special mapping is the truthful one. In our case, it is not clear which mapping, if any, works.

But, for any given mapping, we provide necessary and sufficient conditions for it to have the desired property. This, of

course, generalizes the case discussed before where signals correspond to types and reporting truthfully is costless;

there the mapping of interest is the truthful one.

We believe that the mechanism design with signaling costs framework will be of increasing importance. This is because

those running mechanisms increasingly have data on the agents, as opposed to knowing nothing about them ex ante

and only being able to ask them about their preferences.

Now, an agent can often change the data that the mechanism has about it. But this can come at some effort (or other)

cost to the agent. Hence, the standard mechanism design framework where an agent can report any type at no cost—the

“anonymous bidder walking into a Sotheby’s auction” model
5
—does not exactly fit such applications. But the mechanism

design with costly signaling framework does.

In Sections 6 and 7, we consider cases where aspects beyond the signaling costs, such as the valuation function and

choice function, are known.

1.1 Introductory Example - Inspection Game

The “Inspection Game” example illustrates our model as well as the failure, in general, of the revelation principle in the

mechanism design with reporting costs setting.
6 7

We will introduce another, more complex example in Section 3.

Suppose Beth is considering buying a crate of produce from Pam. The produce can be fresh, decent, or rotten (and Pam

will know which it is). Beth can either accept or reject the crate. If the produce is fresh or decent, Beth would like to

accept it, otherwise she would like to reject it. This gives:

Θ = {fresh, decent, rotten} — the set of types.

O = {accept, reject} — the set of outcomes.

F = {fresh→ accept, decent → accept, rotten → reject} — the choice function Beth seeks to implement.

Before making her decision, Beth can inspect the produce. However, at some cost Pam can add dyes or scents to the

produce, which will alter how it appears to Beth. Thus we also have:

S = { ˆfresh, ˆdecent, ˆrotten} – the set of signals.

5
Of course, the standard mechanism design framework where misreporting is costless can perfectly well address situations where the party running the

mechanism has prior information over the agent. The point is that the standard framework does not address the agent being able to change this prior
information at some cost.

6
We present a similar example in [15]. This is the smallest example where a choice function is implemented by some non-truthful mechanism, but not by

any truthful one.

7
Of course, we are not the first to note that the revelation principle may not hold when reports are limited. [11] show this for the special case of partial

verification.
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4 Andrew Kephart and Vincent Conitzer

Since we are in the reporting costs setting, this set is the same as the set of types. We add the “ ˆ ” symbol to each signal

to distinguish it from its corresponding type. The following matrix gives the cost of making a crate of type θ give off

the signal s . For example, at a cost of 30, Pam can make a crate of rotten produce appear fresh. Since we are in the

reporting costs setting, c(θ , ˆθ ) = 0

ˆfresh ˆdecent ˆrotten

fresh 0 0 0

c(θ , s) = decent 10 0 0

rotten 30 10 0

The value that Pam receives if the crate is accepted is 20:
8

vθ (accept) = 20

vθ (reject) = 0

Beth needs to commit to a mechanism for choosing an outcome based on how the produce appears. The naïve mechanism

of accepting the produce whenever it does not appear rotten, H = { ˆfresh → accept, ˆdecent → accept, ˆrotten → reject}

would fail. It would be worth it to Pam to pay the cost of 10 to make rotten produce appear to be decent, netting 10

value. Hence Beth would end up inadvertently accepting rotten produce.

What Beth should do instead is use N = { ˆfresh → accept, ˆdecent → reject, ˆrotten → reject}. Under N , if the produce

really is rotten it will not be worth it for Pam to alter it, and it will be rejected. On the other hand, if the produce is

decent, Pam will make it appear to be fresh and it will be accepted, resulting in the implementation of Beth’s desired

choice function.

Here the revelation principle does not hold. There exists a set of outcomes, choice function, and valuation function

(namely those given here) such that there exists a mechanism (namely N ) that implements the choice function. But,

there exists no mechanism (H would be our best candidate) that both incentivizes the agent to report truthfully and

implements the choice function.

This example had the property that signals are type reports, and reporting one’s type is costless. In the more general

setting where types emit signals that do not directly correspond to the types, it is not immediately clear what truthful

reporting means; in this context, we will be interested in whether we can, without loss of generality, restrict our

attention to some mappingG from types to signals. In the example above, the mapping of interest wasG = {fresh →

ˆfresh, decent → ˆdecent, rotten → ˆrotten}, and we showed that we cannot restrict attention to it without loss of

generality.

1.2 Intuition Behind Main Results

We can capture a high-level intuition behind our main results (in the reporting costs setting):

The revelation principle holds

if and only if

8
In general, the value of each outcome to the agent can depend on the type.
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The Revelation Principle for Mechanism Design with Signaling Costs 5

aĉ is small relative to a ˆb and bĉ

for all types a,b, c .

(Recall that ĉ is the signal corresponding to the type c . Here we also introduce shorthand aĉ for the cost of a emitting ĉ .)

Why is this the case? Let us try to create a choice function F violating the revelation principle. Thus, F should be

non-truthfully implementable, but not truthfully implementable.

Construct F such that a envies b’s outcome ob over its own, oa . Thus, in a truthful mechanism, when a ˆb is small, a will

want to emit
ˆb to receive ob . Hence F is not truthfully implementable. When bĉ is also small, we can try to non-truthfully

implement F by having b emit ĉ to receive ob .

But, if aĉ is small, a would emit ĉ as well and thus we would not be able to implement F . Hence the revelation principle

holds. On the other hand, if aĉ is large, we can successfully keep ob away from a at ĉ , implementing F . So the revelation

principle fails.

1.2.1 Relation to Inspection Game. We illustrate how our intuition applies to the inspection game example. Consider

the type triple: a = rotten, b = decent, and c = fresh. The heuristic for this triple is:

The revelation principle holds

if and only if

c(rotten, ˆfresh) is small relative to c(rotten, ˆdecent) and c(decent, ˆfresh).

In the inspection game c(rotten, ˆfresh) = 30, c(rotten, ˆdecent) = 10, and c(decent, ˆfresh) =10. These costs violate the

heuristic’s inequality.
9
Hence the revelation principle does not hold.

But, if we were to modify the cost function to respect the heuristic’s inequality, we can observe that the revelation

principle holds.

– Let c(rotten, ˆfresh) = 0. Under N it’s now worth it for Pam to make rotten fish appear fresh. So Beth would accept

rotten fish under N . Hence N no longer implements F , so the revelation principle holds.

– Let c(rotten, ˆdecent) = 30. Under H it’s not worth it for Pam to make rotten fish appear decent. So Beth would reject

rotten fish under H . Hence H now implements F , so the revelation principle holds.

– Let c(decent, ˆfresh) = 30. Under N it’s not worth it for Pam to make decent fish appear fresh. So Beth would reject

decent fish under N . Hence N no longer implements F , so the revelation principle holds.

2 MODEL

As is common in this type of setting, we focus on the case of a single signal-emitting agent; this corresponds to holding

the other agents’ signals fixed.

9
Here we are deliberately vague as to the precise mathematical statement of the inequality as it can vary based on the setting we are considering. We will

give precise statements later on.
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6 Andrew Kephart and Vincent Conitzer

In an instance, we have a set of types Θ; we will generally use θ ,θ1,θ2, . . . to denote variable types and a,b, c, . . . to

denote specific types. We have a set of signals S ; with s, s1, s2 . . . denoting variable signals and x ,y, z denoting specific

signals. (When agents report types directly, we have S = Θ.)

We then have the revelation principle mapping G : Θ → S which designates a signal for each type. The question is

whether the designer can restrict attention, without loss of generality, to mechanisms in which each type θ emits signal

G(θ ). (When agents report types directly, the mapping G of interest is always the identity function, corresponding to

truthful reporting.)
10

We assume throughout that G is a one-to-one (injective) mapping from types to signals and only maps types to signals

which have a finite cost for that type. This automatically holds in the type-reporting case. In the general signaling

model, it is not entirely without loss of generality,
11

but ifG maps two types to the same signal then they can never

receive distinct outcomes.

This assumption allows us to overload our notation by using θ ,θ1, . . . ,a,b, . . . also to indicate the designated signal of

the type with the same name. That is, we use a shorthand where θ refers both to the type θ and the signal G(θ ). This is

natural in the type-reporting setting and remains convenient in the general signaling setting. Because of this, we will

rarely mention G explicitly (it is generally held fixed), but G is implicit in how the signals are named.

We also have a set of outcomes (alternatives)O . There is a valuation functionv : Θ×O → R, wherevθ (o) is the valuation

that type θ has for outcome o.

Finally, there is a cost function c : Θ × S → R≥0, where c(θ , s) denotes the cost type θ incurs when emitting s . We often

use the shorthand ax for c(a,x). Combining this shorthand with that for G, we will often use ab to mean c(a,G(b)).

A mechanism is defined by, first, an allocation function A : S → O , where A(s) = o denotes that the mechanism chooses

outcome o when signal s is emitted. When we allow for transfers, then another part of the mechanism is the transfer

function T : S → R, where T (s) denotes the transfer received by the agent when emitting s . (Hence, T (s) < 0 implies

the agent is making a payment.) The agent’s utility for having type θ , emitting signal s , and receiving outcome o and

transfer t is u(θ , s,o, t) = vθ (o) − c(θ , s) + t .

Let R : Θ → S denote a response for the agent to the mechanism, where R(θ ) = s denotes that the agent emits s

when her true type is θ . We say R is optimal for mechanismM = (A,T ) if for all θ and s , u(θ ,R(θ ),A(R(θ )),T (R(θ ))) ≥

u(θ , s,A(s),T (s)).

We are generally interested in implementing a choice function F : Θ → O . We sometimes use the shorthand oa for F (a).

A mechanism M = (A,T ) together with response R implements F if R is optimal for M and for all θ , A(R(θ )) = F (θ ).

(Moreover, it implements it with transfer T (R(θ )) and utility u(θ ,R(θ ),A(R(θ )),T (R(θ ))) for type θ .)

We say a mechanism is truthful if all types emit in accordance withG, and non-truthful otherwise. Similarly, we say a

type θ misemits if it emits a signal other than G(θ ).

10
The next section will discuss the revelation principle mapping in more detail.

11
For example, consider a setting with two types and only one possible signal. Here, there is only one possible mapping G and so, technically, the

revelation principle holds for this mapping, even though it maps two types to the same signal.
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The Revelation Principle for Mechanism Design with Signaling Costs 7

We will sometimes use N to denote a not-necessarily truthful mechanism and H to denote a truthful one.
12

Additionally,

RN and RH will refer to optimal responses for the respective mechanisms.

2.1 Truthfulness and The Revelation Principle Mapping, G

Essential to the Revelation Principle is a clear understanding of truthfulness. In the type-reporting setting, truthfulness is

straightforward: a type is truthful if it reports itself. In the signaling setting, things are not so simple. Because there is no

assumed relationship between signals and types, we have no inherent notion of truthfulness.
13

Rather than imposing an

arbitrary definition of truthfulness, we make it user-defined with theG mapping. (With the “user” being the mechanism

designer.) Thus, “truthfulness” can be whatever is natural for the instance at hand.

We do enforce one restriction on G: that it be one-to-one from types to signals. This is for two reasons:

– A one-to-one G mapping is (implicitly) assumed in earlier revelation principle work in the type-reporting setting:

under truthful reporting, obviously, distinct types are supposed to make distinct type reports. By continuing this

assumption, our work is more directly comparable.

– We believe that revelation principles for G functions that are not one-to-one would look significantly different

and make the characterizations significantly more cumbersome without much benefit. This is because when

G(θ1) = G(θ2), any choice function F with F (θ1) , F (θ2) will automatically not be truthfully implementable

according to the definition.
14

Thus, the revelation principle holds if and only if none of these choice functions are

implementable non-truthfully (and, additionally, the other conditions hold). Proving this would be much different

in flavor than the proofs for the one-to-one case that we present here. Our proofs study whether non-truthful

implementations can be ‘transformed’ into truthful implementations, rather than whether they exist at all.

2.2 Revelation Principle

We say that the revelation principle (RP) holds on a mapping G whenever we can, without loss of generality, restrict

our attention to truthful mechanisms when trying to implement the choice function.

Definition 2.1 (Revelation Principle). Given Θ, S , and c , the revelation principle holds on G if:

For every O , v , N = (AN ,TN ), and RN which is optimal for N .

There exists another mechanism H = (AH ,TH ) with AH (G(θ )) = AN (RN (θ )) for all θ , where the truthful-emitting

response RH (with RH (θ ) = G(θ )) is optimal for H .

Hence, any choice function F that can be implemented can be implemented truthfully.

12
Here, H stands for “honest” to prevent confusion with the transfer function T .

13
It is tempting to define a type’s truthful emission as the signal which has the lowest emission cost for it, but this is limiting. We can imagine situations

in which everyone can send a common signal of ‘doing nothing’ at zero cost, but emitting the natural ‘truthful’ signal comes at some cost, such as filling

out a form.

14
The same issue occurs ifG is stochastic—the agent is expected to use a mixed strategy—and multiple types place positive probability on the same signal.

This is one reason why we only consider pure strategies for the agent.
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8 Andrew Kephart and Vincent Conitzer

Here both the valuations and choice function are unknown when we determine whether the revelation principle holds.

This is the standard way of interpreting the revelation principle.

Later we will consider a variation on the revelation principle where valuations are known. Finally we will consider a

further variation where both the valuations and choice function are known, which we call a fully specified instance.

Sometimes, we will also wish to implement the choice function with specific transfers and/or utilities.

Definition 2.2 (Fixed Transfers). The revelation principle holds with fixed transfers (to the agent) if the revelation principle

holds when we add the additional constraint on the mechanism H that:

TH (G(θ )) = TN (RN (θ )) for all θ .

Definition 2.3 (Fixed Utilities). The revelation principle holds with fixed utilities if the revelation principle holds when

we add the additional constraint on the mechanism H that:

u(θ , G(θ ), AH (G(θ )), TH (G(θ ))) = u(θ , RN (θ ), AN (RN (θ )), TN (RN (θ ))) for all θ .

If transfers or utilities are not fixed, we say they are variable.

We also consider scenarios without transfers, of which there are two flavors:

Definition 2.4 (No Transfers In Equilibrium). The revelation principle holds with no transfers in equilibrium if it holds

when we only consider the space of (truthful and non-truthful) mechanismsM where:

TM (RM (θ )) = 0 for all θ .

Note that this allows negative (or positive, but those would not be useful) transfers to signals the agent does not emit.

Definition 2.5 (No Transfers At All). The revelation principle holds with no transfers at all if it holds when we only

consider the space of mechanismsM where:

TM (·) = 0.

Note that if the revelation principle holds with fixed transfers, then it also holds when we wish to have no transfers in

equilibrium. This does not automatically imply that the revelation principle holds when we have no transfers at all. The

difference between the two no-transfers conditions becomes relevant when we have a signal that we would prefer the

agent never use. With no transfers in equilibrium, we can put a sufficiently negative transfer on it to prevent use. But,

with no transfers at all, our only recourse would be to put an unappealing outcome on it, which might not be sufficient.

But, as we will show, in the type-reporting setting, with unknown valuations the revelation principle is the same, and

with known valuations it is essentially the same. Finding useful conditions that ensure the revelation principle holds

with no transfers at all when we are in the signaling setting is currently an open problem.

We will use acronyms to refer to our various revelation principles. The possible words used to describe a revelation

principle and the letter(s) used to represent the words are as follows: Fixed; Variable; Transfers; Utilities; No Transfers
(in) Equilibrium; No Transfers At All; Known (valuations). For instance, FTFU means fixed transfers and fixed utilities;

KNTEVU means known valuations, no transfers in equilibrium, and variable utilities.
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The Revelation Principle for Mechanism Design with Signaling Costs 9

2.2.1 Finding the G Mapping. In this work we assume the G mapping is given exogenously. This is certainly helpful

if there is a natural candidate for G. The obvious case is when the type space and the signal space are equal, and G

corresponds to reporting truthfully.

Sometimes, the type and signal spaces will differ, but there still is a naturalG. For example, suppose that the agent’s

private information is her native language. To send a signal, she can take any one of a number of written language tests.

The natural G mapping would be to expect her to take the test corresponding to her native language.

But this might not always be the best way to proceed. For example, the native language may have a script that is hard

to master, so that passing the agent’s own language test comes at significant cost. Expecting the agent to instead take

the test for a related language with a simpler script may help in implementation. We may even use languages not in the

type space. E.g., a Latin test could pick out speakers of a Romance language, even though today there are no native

Latin speakers.

Yet, in spite of these theoretical possibilities, we might suspect the revelation principle holds: if something can be

implemented at all, then it can also be implemented by a mechanism for which the agent has an incentive to take the

test in her native language. Our results allow one to determine when this is the case.

However, in general, our conditions do not give any explicit guidance as to when aG satisfying the revelation principle

exists, and if so, how to find it. We leave this to future research.

3 RUNNING EXAMPLE: STOCKING FOOD BANKS

We will use a running example of stocking food banks to illustrate the various instantiations of our framework. This

example is type-reporting, as the signal space and the type space coincide. Imagine that a city has four districts: North,

East, South,West, each of which has a food bank and a population of people living in it. A person’s type is the district

where she lives.

Based on demographics and health conditions, the city government has determined how much it values the population

of each district receiving certain types of food. For example, it may wish to distribute milk in a district with many

young children, and vegetables in a district with many single, middle-aged people. Note that the city’s objective is

different from maximizing the sum of the utilities of the people who will make use of the food bank. In this example,

we assume there are three food types, (those high in) fiber, protein, and vitamins.

Determining which food to stock in each bank would be straightforward except that the population from one district

might travel to another if they prefer the latter’s food. This would correspond to them “misreporting” their district.

Such misreporting is costly because it requires traveling to another district. These costs are summarized as follows:

North West East South

North 0 2 8 8

c(θ , ˆθ ) =
West ∞ 0 4 2

East ∞ 4 0 2

South ∞ 2 2 0
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10 Andrew Kephart and Vincent Conitzer

It can also be useful to visualize this reporting cost structure as a graph. The directed edge between two districts

represents the cost of traveling from one to the other. We leave off the zero-cost self reporting edges.
15

All other edges

not shown are assumed to have infinite cost.

North
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��
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��

22
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Suppose that the people of each district value the food as follows.

fiber protein vitamins

North 1 9 1

vθ (o) =
West 2 3 3

East 1 3 6

South 1 1 1

Moreover, suppose that the city’s objective function is as follows.

fiber protein vitamins

North 10 0 0

J (θ ,o) =
West 0 10 5

East 0 10 5

South 0 5 10

The city’s problem is to specify a mechanism—that is, which food each district’s food bank distributes—such that it is

happy with the equilibrium result. Possibly, the city also can distribute a (welfare) transfer to each person who comes

to the food bank.

We assume that there are no capacity constraints on any food bank—that is, it does not run out of food if too many people

come. Hence, this is a mechanism design problem for a single agent—the person turning up at the food bank—because

other agents’ decisions do not affect this agent.

There are multiple variants of this problem, depending on whether the city can make transfers, whether it wants these

transfers to be a certain amount, whether it cares about the transportation costs incurred by people traveling to a

different district, etc.

If the revelation principle holds for the variant in question, the city’s problem is significantly easier; it can focus on

truthful implementations, i.e., mechanisms such that nobody would travel to another district. If it does not hold, the

city needs to consider mechanisms that do incentivize some districts’ populations to travel to the food bank in another

15
In the signaling setting these edges might not be zero-cost.
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district, because this may result in better outcomes than any truthful mechanism can achieve. We will see examples of

both cases.

4 SUMMARY OF REVELATION PRINCIPLE RESULTS

We now summarize our main results, those for the revelation principle with unknown valuations and unknown choice

function, i.e. the standard revelation principle.

4.1 Intuition High Level Overview

We first provide a high level overview of the intuition behind our main results.

The revelation principle holds iff for any choice function F implemented by a non-truthful mechanism N , there also

exists a truthful mechanism H which implements F . That is, for every θ we have H (θ ) = F (θ ) and RH (θ ) = θ . For the

purpose of providing intuition, we limit ourselves here to the case where only one type signals non-truthfully in N .

Under N let b obtain F (b) by emitting some signal x , b.

Under H , A(b) = F (b) so b can now obtain F (b) by emitting truthfully. This risks that some type a now prefers emitting

b to truthfully emitting a.

We can visualize these types and the relevant signaling costs between them as follows
16
. We use our shorthand for the

cost function here, so that (for instance) ax is the cost incurred by an agent of type a to emit the signal x .

x

bbb ::

bx

OO

a
ab

oo

ax

__

This way of displaying the costs makes heavy use of the fact that we conflate types and the signals those types emit to,

which is natural in the type-reporting case but a bit more subtle in the general signaling case. An edge in this graph

corresponds to the type at the beginning of the edge emitting the signal at the end of the edge, and the weight on the

edge is the cost for doing so. In general, some signals in the graph may not have a type associated with them; such

signals cannot have outgoing edges in the graph. In the type-reporting setting, every vertex has a self-edge with cost 0,

but this is not true in the general signaling setting.

There are two ways to use transfers to keep a truthful in H .

Variable Transfers, Variable Utilities

First: Pay an agent extra for emitting a. This keeps a honest but may cause other types to misemit to a under H . So we

16
Other types not shown in the graph may exist.
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12 Andrew Kephart and Vincent Conitzer

pay off all the types which can emit a too, and so on. This works as long as the process terminates without reaching

b. If we had to pay b, the extra transfers would cancel out and all would be for naught. Thus, with variable transfers

and variable utilities, if there exists no path of finite emission cost edges along signals in ranдe(G) from b to a, the

revelation principle holds. (Note that signals not in ranдe(G) do not have a type corresponding to them and thus by

definition cannot have outgoing edges.)

Variable Transfers, Fixed and Variable Utilities

Second: Pay less to an agent for emitting b. We can safely subtract bx −bb from the transfer that b received for emitting

x under N (making b equally happy under H and N ).
17

Note that a did not emit x under N . Consider how much greater

a’s incentive is to emit b under H than to emit x under N . It is (ax − ab) − (bx − bb), which will be nonpositive iff

ax ≤ ab + bx − bb. In this case a still will not misemit. Thus, with variable transfers, if ax ≤ ab + bx − bb holds, then

the revelation principle holds with fixed utilities (and thus with variable utilities as well). Note that in the case where

bb = 0 this condition is equivalent to the triangle inequality holding on the signaling cost structure.

Fixed Transfers, Variable Utilities

If we have fixed transfers (but variable utilities), neither of the previous two techniques are allowed. So, a should prefer

not emitting b outright, given it did not want to emit x under N . Ensuring this requires ab ≥ ax . Additionally, this

condition is only necessary when b can actually emit x .18 So we have bx < ∞ =⇒ ab ≥ ax .

Here, our limited example leaves out an aspect that will affect the general condition. The additional aspect is that a

might emit some signal y , a in the non-truthful mechanism.
19

Hence an honest emission of a by a would leave it

aa − ay worse off in the truthful mechanism, which affects a’s incentives to misemit to b. To keep this from happening,

(when bx < ∞) we now need ab − (aa − ay) ≥ ax , i.e. ab − aa ≥ ax − ay.

Fixed Transfers, Fixed Utilities

Finally, with fixed transfers and fixed utilities, b must receive the same utility in both H and N . This requires that there

exists some δb such that when bx , ∞ then bx = bb = δb . This then reduces to the partial verification setting and we

can use the known revelation principle for that case. In our notation this becomes: (ab = δa ∧ bx = δb ) =⇒ ax = δa .

As it turns out, our reasoning above captures all the key aspects, so our general results involve the exact same conditions

as those presented here (though the proofs are more intricate).

4.2 Summary of Main Results

The revelation principle holds with {variable, fixed} transfers and {variable, fixed} utilities iff for all ordered doubles

a , b of types and all ordered doubles x ,y of signals:

17
Subtracting any more might cause b to misemit under H .

18
We don’t need to explicitly check this for any of the other cases as bx is already present in the conditions.

19
This aspect does not play a part in the variable transfers revelation principles as we can compensate a for any change in signaling costs.
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Variable Utilities Fixed Utilities

Variable Transfers

ab + bx − bb ≥ ax , or

no b to a path
21

ab + bx − bb ≥ ax

Fixed Transfers bx < ∞ =⇒ ab − aa ≥ ax − ay
bx ∈ {δb ,∞}, and

(ab = δa ∧ bx = δb ) =⇒ ax = δa

where 0 ≤ δa ,δb < ∞.

To recover the revelation principles for the type-reporting case set bb, aa, ay22, δa , and δb to 0.

And we can restate for the signaling setting the intuition from Section 1.2 as:

The revelation principle holds

if and only if

ax is small relative to ab and bx

for all types a,b and every signal x .

4.2.1 Triangle Inequalities. In both variable transfers cases, if bb = 0 then the inequality conditions become triangle

inequalities. This corresponds to real-world scenarios where smaller misrepresentations are proportionally more costly

than larger misrepresentations.

The case where the type corresponds to the agent’s geographic location (and emission cost to travel effort) fits this

criterion especially well, which is why we chose it for our running example. The effort of traveling from location x to

location z will almost always
23

be no more than adding the costs of traveling from x to y and then y to z. Thus, when a

government or company wants to determine outcomes based on geographic location (and has flexibility with giving

out transfers), it is almost always sufficient to use a truthful mechanism.

4.3 Related Work

In earlier work, we studied the computational complexity of deciding whether a given choice function can be imple-

mented when misreporting is costly [15]; these results will be relevant in Section 7 of this paper.

Several other papers study the revelation principle in the setting of partial verification, including the more general

variant where the signal space differs from the type space (but we still have c(θ , s) ∈ {0,∞} for all θ , s). [4] and [9]

consider what [16] calls instances satisfying normality. Here, each type has some “maximal evidence” signal it can emit,

which does as much to distinguish it from other types as any other signal can. The revelation principle holds for the

specific mapping where each type emits its maximal evidence.

With signaling costs, though, normality is not as helpful. Particularly, the maximal evidence for a type might be so

costly that it would never consider emitting it.

21
Along signaling cost edges between signals in range(G).

22ay = 0 in the type-reporting case as this is always the minimum possible value for it, which is when y = a.
23

This is not always the case, e.g., due to discontinuities in mass-transit pricing. For instance, a ten-hour train ride may require an overnight sleeper car,

which would cost more than two five-hour train rides.
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14 Andrew Kephart and Vincent Conitzer

When normality does not hold, both [4] and [9] consider dynamic mechanisms of the following form. First, the agent

gives a costless type report. Then, the mechanism requests she follow up with a ‘verifying’ signal or signals which

are the same as those she would emit in the non-truthful implementation. If the agent does not emit the verifying

signal, she is allocated a punishment outcome. Building on these ideas, [20] proposes a reinterpretation of the revelation

principle. If we consider the verifying signal to be part of outcome, then the only ‘reporting’ happening is a costless

type report. Hence, in a sense, the revelation principle still holds.

We find this dynamic approach unsatisfactory in our context. It is of little use to the designer in the search through

the space of mechanisms, because it does not help in determining which signal each type should eventually (after the

costless type report) emit.
24

And that search corresponds to an NP-hard problem [1]. In contrast, if we know which

signal each type is supposed to emit, the problem becomes easy. This is what the revelation principle does for us in the

traditional mechanism design setting, and what we would like any revelation principle to reproduce here.
25

A variety of papers consider revelation type principles in more limited partial verification or costly signaling settings.

These include: [17] for contracts in an exchange economy; [3] for enforcement of contract disputes; [14] for when

agents have preferences for honesty; [16] for when each type has a signal which can be used to distinguish it from all

other types. [10] shows that when costs are monotonically increasing with a signal’s distance from ‘truth’, increasing

the number of signals available for agents to use expands the set of implementable choice functions. Additionally, they

characterize the optimal mechanism for a setting with a one-dimensional type space.

Other papers explore implementability of choice functions in costly signaling-like settings, but do not derive revelation

principles. [13] gives a necessary condition, evidence-monotonicity, which is required for a choice function to be

implementable with no signaling costs incurred in equilibrium. [5] characterizes truthfully implementable choice

functions in the setting of probabilistic verification, in which there is a certain probability that a lying agent will be

caught.

We also consider our work related to machine learning in contexts where what is being classified is an agent that may

put in some effort to resist accurate classification. The most obvious version of this is adversarial classification: detecting

spam, intrusions, fraud, etc. when the perpetrators wish to evade detection [2, 8]. However, as the examples in the

introduction indicate, there are many situations where the objectives of the classifier and agent are not diametrically

opposed. This is also brought out in more recent work on “strategic classification,” [12] which has a heavier focus on

the machine learning aspect.

5 RESULTS: REVELATION PRINCIPLE

5.1 Variable Transfers, Fixed Utilities

Consider the case where, given a non-truthful mechanism, we wish to obtain a truthful mechanism that implements the

same choice function and maintains the utility that each type obtains, but can differ in the transfers made to the agent.

24
It is somewhat more helpful when a non-truthful mechanism might involve multiple rounds of signaling as is the case in [4] and [9].

25
One caveat is that, in the general signaling setting, we do not provide an algorithm for finding the without-loss-of-generality mapping from types to

signals.
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The Revelation Principle for Mechanism Design with Signaling Costs 15

Definition 5.1 (VTFU Condition). An instance satisfies the VTFU condition if for all ordered doubles a , b of types, for

every signal x ,

ax ≤ ab + bx − bb

Note that if bb > ab + bx , the VTFU condition cannot hold as ax will always be non-negative.

Theorem 5.2. The RP holds with variable transfers and fixed utilities iff the VTFU condition holds.

Proof.

VTFU condition =⇒ RP holds

We will show that for any F , for any non-truthful implementation, we can construct a truthful implementation. Let N

together with RN implement F . Let H = N except:

AH (θ ) = F (θ ) for θ ∈ Θ

TH (θ ) = TN (RN (θ )) − θRN (θ ) + θθ for θ ∈ Θ

If H is truthful, it clearly implements F with fixed utilities. We show this is the case.

The following series of inequalities holds for any a , b, and x = RN (b):

va (oa ) +TH (a) − aa

= va (oa ) +TN (RN (a)) − aRN (a) by definition of TH

≥ va (ob ) +TN (x) − ax by optimality of RN

≥ va (ob ) +TN (x) − bx − ab + bb by VTFU condition

= va (ob ) + (TH (b) + bx − bb) − bx − ab + bb by definition of TH

= va (ob ) +TH (b) − ab

Similarly, for any type a and signal z < ranдe(G) we have:

va (oa ) +TH (a) − aa

= va (oa ) +TN (RN (a)) − aRN (a) by definition of TH

≥ va (AN (z)) +TN (z) − az by optimality of RN

= va (AH (z)) +TH (z) − az by definition of H

This shows that under H , a is willing to emit a over any other signal. Thus, H is truthful.

VTFU condition not holding =⇒ RP does not hold

Choose an instance where the VTFU condition is violated, i.e., there exist a , b ∈ Θ and x ∈ S such that:

ax > ab + bx − bb

We first consider the cases where x is equal to a or b:
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16 Andrew Kephart and Vincent Conitzer

– If x = b, then ab > ab + bb − bb, which clearly cannot be the case.

– If x = a, then aa > ab + ba − bb, i.e. aa − ab > ba − bb. Consider the choice function F (·) = o for some arbitrary

outcome o. F is clearly implementable by some (possibly non-truthful) mechanism.

But F is not truthfully implementable by anymechanismH . To keepa frommisemitting tob, we needTH (a)−TH (b) ≥

aa − ab. And, to keep b from misemitting to a, we need ba − bb ≥ TH (a) −TH (b). But this leads to a contradiction

as aa − ab > ba − bb. Hence the revelation principle fails.

So, from now on we assume x , a,b.

Define λ s.t. ax > λ > ab + bx − bb.

Choose an arbitrary outcome o and let F (·) = o. N defined by:

AN (·) = o

TN (x) = λ

TN (a) = aa

TN (θ ) = −bb for θ , x ,a

implements F and is non-truthful as b will prefer to emit x over itself asvb (o)+λ−bx > vb (o)+ab −bb ≥ vb (o) −bb ≥

vb (o) − 2bb = vb (o) +T (b) − bb. And since ax > λ, a will emit truthfully over emitting x and thus obtain a utility of

va (o).

Consider any mechanism H where for all θ , AH (θ ) = o, and truthful emission gives it the same utility it achieved under

N . Thus:

TH (b) ≥ λ − bx + bb, and

TH (a) = aa

If the revelation principle is to hold, this mechanism must be truthful. But in fact, by emitting b, a can obtain a utility of:

va (o) +TH (b) − ab

≥ va (o) + λ − bx + bb − ab by definition of TH (b)

> va (o) by definition of λ

which is what it would get for emitting a. So the revelation principle does not hold. □

5.1.1 Revisiting the Running Example. Suppose the city would like to maximize its objective and have equal utilities

for all types.
26

The best truthful mechanism is the following, resulting in an objective of 30 while ensuring each type

achieves a utility of exactly 3.
27

26
Because the city can make arbitrary transfers, any mechanism where all types receive utility u0 can easily be transformed into another mechanism

where all types receive utility u1 and that implements the same choice function, simply by adding u1 − u0 to each transfer.

27
Again, this utility can easily be transformed into any other number.
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ˆNorth ˆWest ˆEast ˆSouth

H =
A fiber vitamins protein protein

T 2 0 0 2

But might there be a non-truthful mechanism that achieves a higher objective? When we check the VTFU condition,

we see that the following triples violate it:

a = North, b = West, x = East

a = North, b = West, x = South

Thus, the revelation principle does not hold. And in fact there is a better non-truthful mechanism. Consider the following

non-truthful mechanism under which West travels to the South food bank. It results in an objective of 35 while still

giving all types utility 3.

ˆNorth ˆWest ˆEast ˆSouth

N =
A fiber fiber protein protein

T 2 0 0 2

5.2 Variable Transfers, Variable Utilities

We consider the case where the transfers and utilities the agent achieves can differ between non-truthful and truthful

implementations. That is, all that is needed for the revelation principle to hold is that for any non-truthful implementation

of a choice function, there exists a truthful implementation as well.

Definition 5.3 (VTVU Condition). An instance satisfies the VTVU condition if for all ordered doubles a , b of types and

every signal x , either:

(i) There exists no path from b to a of finite signaling cost edges between signals in ranдe(G), or

(ii) ax ≤ ab + bx − bb.28

Theorem 5.4. The RP holds with variable transfers and variable utilities iff the VTVU condition holds.

Proof.

VTVU condition =⇒ RP holds

Consider the signaling graph consisting of the vertices in ranдe(G) and the edges with finite signaling costs between

signals in ranдe(G). Consider the strongly connected components of this graph; the graph decomposes into a DAG over

these components.

Suppose there is a mechanism N that, together with a response RN , non-truthfully implements a choice function F .

Let us restrict our attention to types inside a single component. For these types, for any signal (even one outside the

component), part (ii) of the VTVU condition holds since there clearly is a path between every pair of types in the

component. Thus the VTFU condition holds on the types within this component. Hence, if we considered a restricted

28
Note that (ii) is identical to the VTFU condition.
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instance consisting of only the types in this component (and all signals) the RP holds with fixed utilities by Theorem 5.2.

So, when we return to the unrestricted instance, this means that every type θ in the component can receive F (θ ) and

some transfer at θ , while also having no incentive to misemit to any other signal inside the component.

Choose such an internally truthful implementation (including transfers) with fixed utilities within each component. For

signals not in any component (i.e., signals not in ranдe(G)), let the implementation be the same as N . There will be

no incentive to misemit inside each component by internal truthfulness. Nor will there be incentive to misemit to a

signal that is outside every component because the utility each agent receives is the same as in N . But, this does not

necessarily result in a mechanism that is truthful overall, because there may be incentives to misemit across components.

We can fix this as follows.

We order the components in a way consistent with the DAG, such that types in a later component can emit types in an

earlier component, but not vice versa. Additionally, for each component we specify an additional transfer that all types

in that component will receive. By making this transfer sufficiently larger for later components in this order, no type

will wish to misemit to an earlier component (and misemitting to a later component comes at infinite cost).
29

Specifically, if component C1 comes before C2, then the additional transfers π add

C1

and π add

C2

should be such that for all

θ1 ∈ C1 and θ2 ∈ C2,

vθ2 (F (θ2)) + π
orig

θ2
+ π add

C2

− θ2θ2 ≥ vθ2 (F (θ1)) + π
orig

θ1
+ π add

C1

− θ2θ1

⇔

π add

C2

− π add

C1

≥ vθ2 (F (θ1)) + π
orig

θ1
− θ2θ1 −vθ2 (F (θ2)) − π

orig

θ2
+ θ2θ2

where the πorig
are the transfers obtained from applying the VTFU revelation principle within the components.

Since the additional transfer to a component is the same for all types in it, internal truthfulness is maintained. Since the

additional transfers are positive no type will want to emit a signal that is outside every component. So, since no type

will misemit within a component, to a signal outside every component, or to another component, the implementation is

truthful.

VTVU not holding =⇒ RP does not hold

Given that the VTVU condition does not hold, there exists some a , b and x with:

ax > ab + bx − bb

for which there is a path of types connected by finite-cost edges: b = θ1,θ2, . . . ,θl−1,θl = a (where we consider

l + 1 = 1).

By the same reasoning as in this part of the proof of Theorem 5.2 (fixed rather than variable utilities) we know that

when x equals a or b the revelation principle fails to hold. So, from now on we assume x , a,b.

If the path goes through x , we can assume without loss of generality that x = θ2. We can visualize this as follows.

29
Note that if there are an infinite number of components, transfers may go to infinity in the later components.
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x = θ2

��
θ3...θl−2

33

b = θ1

bx

OO

bb

[[ a = θlab
oo

ax

dd

aa

��

θl−1

II

Define λ s.t. ax > λ > ab + bx − bb.

Consider an outcome set with a separate outcome oθi for every type θi (except ob = ox ), and a valuation function with:

vθi (oθi ) = θiθi

vθi (oθi+1 ) = θiθi+1

except,

va (ob ) = λ

vb (ox = ob ) = bx

and v = 0 elsewhere.

Consider the mechanism N where AN (θi ) = oθi , except AN (b) = oa . Moreover, let TN be a large constant value on all

the θi and x , and 0 everywhere else, so that none of the θi would misemit somewhere outside that set.

Then an optimal response has RN (θi ) = θi , except RN (b) = x , since:

– For any θi < {a,b}, the only viable alternative is to misemit θi+1, but the cost of doing so exactly cancels out the

benefit.

– For b, emitting x results in utility TN + bx − bx = TN , which is no worse than emitting truthfully and getting

TN +vb (oa ) − bb ≤ TN .

– For a, emitting x would give utility TN + λ − ax , which is less than the TN + aa − aa it gets for emitting truthfully.

Hence, this is a non-truthful implementation of some choice function with F (θi ) = oθi .
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On the other hand, such a choice function cannot be implemented truthfully. This is because we have a Rochet-style

negative cycle [18]. Truthful emissions require TH (θi ) ≥ TH (θi+1) for each θi , except:

TH (b) +vb (ob ) − bb ≥ TH (x) +vb (ox ) − bx , i.e.

TH (b) + bx − bb ≥ TH (x) by definition of vb

and

TH (a) +va (oa ) − aa ≥ TH (b) +va (ob ) − ab, i.e.

TH (a) ≥ TH (b) +va (ob ) − ab, i.e. by definition of vθi

TH (a) ≥ TH (b) + λ − ab by definition of va

> TH (b) + (ab + bx − bb) − ab by definition of λ

= TH (b) + bx − bb

≥ TH (x) by final equation from above

Hence TH (a) > TH (x). But this leads to a contradiction as we follow the inequalities around the cycle.

For the case where the path does not go through x , we can make a similar argument, treating x as before but using a

separate outcome oθ2 for θ2 and letting vb (oθ2 ) = bθ2. By doing so, b is indifferent between x and θ2 in the non-truthful

implementation which therefore still works
30
, and for the cycle we have:

TH (b) +vb (ob ) − bb ≥ TH (θ2) +vb (oθ2 ) − bθ2, i.e.

TH (b) + bx − bb ≥ TH (θ2) by definitions of vb and vθi

allowing us to have TH (a) > TH (θ2) and thus we get the same contradiction around the cycle. □

5.2.1 Relation to Partial Verification. Earlier work studied the revelation principle in the partial verification case.

Definition 5.5 (Partial Verification). An instance is a partial verification instance if:

– The signal set and the type set are the same.

– ∀θ : G(θ ) = θ

– ∀θ : θθ = 0

– ∀θ , s : θs ∈ {0,∞}

In the partial verification case, if we allow transfers and utilities to vary, it is known that the revelation principle is

characterized by the following “Strong Decomposability” condition [21] in the reporting graph (where there is an edge

from a to b if and only if a can report b, at zero cost):

(1) Every strongly connected component is fully connected, i.e., every type in the component can report every other

type.

30
So b still emits x .
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(2) All types within the same strongly connected component have the same image set, i.e., the set of types they can

report is the same.

We can observe what the VTVU condition simplifies to in the partial verification case.

Definition 5.6 (Partial Verification VTVU Condition). An instance satisfies the partial verification VTVU condition

(PVVTVU) if for all ordered doubles of types a , b, and every type x , either:

(i) There exists no path from b to a of zero reporting cost edges, or

(ii) ab,bx = 0 =⇒ ax = 0

Proposition 5.7. In the partial verification case, strong decomposability is equivalent to the PVVTVU condition.

Of course, if both results are correct, this must in fact be the case. Nevertheless, it is instructive to verify it directly.

Proof.

The PVVTVU condition =⇒ Strong Decomposability

First we show (1). Assume a , b and x are in the same strongly connected component, and that ab = 0 and bx = 0.

Since they are in the same component, a is reachable from b along a path with edges of zero reporting cost. Thus (i) of

the PVVTVU condition does not hold, so (ii) must. By (ii), ax = 0. This implies transitivity, and hence full connectivity,

within every strongly connected component.

Second we show (2). Suppose a and b are in the same strongly connected component — so by (1), ab = 0 — and bx = 0

for some x . Because a is reachable from b, (ii) of PVVTVU must hold. Thus ax = 0. Hence, nodes in a strongly connected

component have the same image set.

Strong Decomposability =⇒ The PVVTVU condition

Suppose ab = bx = 0 and a is reachable from b with edges of zero reporting cost; it suffices to show that ax = 0. We

know a and b must be in the same strongly connected component, so by (2), bx = 0 =⇒ ax = 0.
31 □

5.2.2 Revisiting the Running Example. Suppose the city wants to maximize its objective without regard to the

transfers or the resulting utilities. When we consider the conditions for the revelation principle we just obtained, we

see that part (ii) of the VTVU condition is violated by the following triples: (North, West, East) and (North, West, South).

However, in both cases there is no path back to North.

Hence, the revelation principle holds. Thus, any choice function that is implementable is implementable truthfully.

So the city only needs to search through the space of truthful mechanisms to maximize its objective. The following

truthful mechanism achieves the best possible objective value of 40.

ˆNorth ˆWest ˆEast ˆSouth

H =
A fiber protein protein vitamins

T 6 0 1 0

31
The careful reader may wonder why we did not need to use condition (1) in this part of the proof. This is because condition (1) in Strong Decomposability

is in fact redundant—condition (2) implies condition (1).
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5.3 Fixed Transfers, Variable Utilities

We consider the case where, given a non-truthful mechanism, we wish to obtain a truthful mechanism that implements

the same choice function and makes the same transfers to the agent, but can differ in the utility obtained by the agent.

Definition 5.8 (FTVU Condition). An instance satisfies the FTVU condition if for all ordered doubles a , b of types, for all

ordered doubles x ,y of signals,

bx < ∞ =⇒ ab − aa ≥ ax − ay

Theorem 5.9. The RP holds with fixed transfers and variable utilities iff the FTVU condition holds.

Proof.

FTVU condition =⇒ RP holds

We will show that for any F , for any non-truthful implementation we can construct a truthful implementation. Let N

together with RN implement F . Define H = N except:

AH (θ ) = F (θ ) for θ ∈ Θ

TH (θ ) = TN (RN (θ )) for θ ∈ Θ

TH (z) = −L for some L large enough that no type would ever emit z, for z < ranдe(G).32

If H is truthful, it clearly implements F with fixed transfers. We show this is the case.

The following series of inequalities holds for any pair of types a , b, and signals x = RN (b)33, y = RN (a):

va (oa ) +TH (a) − aa

= va (oa ) +TN (y) − aa since H and N have fixed transfers

≥ va (oa ) +TN (y) − ay + ax − ab by FTVU condition

≥ va (ob ) +TN (x) − ax + ax − ab by optimality of RN

= va (ob ) +TN (x) − ab

= va (ob ) +TH (b) − ab since H and N have fixed transfers

For any type a, and signal z < ranдe(G) we have:

va (oa ) +TH (a) − aa

≥ va (AH (z)) +TH (z) − az by definition of TH (z)

This shows that under H , a is willing to emit a over any other signal. Thus, H is truthful.

FTVU condition not holding =⇒ RP does not hold

Let a , b ∈ Θ and x ,y ∈ S violate the FTVU condition. Thus:

bx < ∞, and ab − aa < ax − ay

32
This does not contradict our definition of fixed transfers as the definition allows transfers to signals that no type emits.

33
This will imply bx , ∞.
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Note that in the following proof, unlike those for variable transfers, we do not need to specially address when any of

the following equivalencies (or pair of them) hold: b = x , x = y, or y = a. (Though if all three hold simultaneously, we

have a = b, which is ruled out by definition).

We will show that we can define outcomes and valuation functions, as well as a non-truthful mechanism N (with

an associated optimal response RN ) without transfers at all
34

that implement a choice function F that no truthful

mechanism with fixed transfers would implement. That is, H withAH = AN ◦RN andTH (θ ) = 0 for all θ is not truthful.

Create outcomes oa , ob , ∅ with:

va (oa ) = ay

va (ob ) = ax

va (∅) = 0

vb (oa ) = 0

vb (ob ) = bx

vb (∅) = 0

Consider the mechanism N defined by TN = 0, AN (y) = oa , AN (x) = ob , and otherwise AN (·) = ∅. Associated with it

is some optimal response RN for which RN (a) = y and RN (b) = x .

However, a mechanism H with TH (a) = TH (b) = 0, AH (a) = oa , and AH (b) = ob is not truthful. We have:

va (ob ) − ab

= ax − ab by definition of va

> ay − aa by violation of the FTVU condition

= va (oa ) − aa by definition of va

Hence a would prefer to misemit b. □

5.3.1 Special Case: No Transfers In Equilibrium, Variable Utilities. We now consider the special case where we have

no transfers in equilibrium. That is, the agent never receives any transfers (although we may allow transfers to signals

no type would emits).

Of course, if the FTVU condition holds in general, then the revelation principle will also hold for this special case.

However, we may wonder whether the full FTVU condition is still necessary, or if a more relaxed condition will do. It

turns out that the full FTVU condition is still necessary.

Theorem 5.10. The RP holds with no transfers in equilibrium and variable utilities iff the FTVU condition holds.

Proof. For the if direction, no transfers in equilibrium is a special case of fixed transfers.

For the only if direction, in the proof of Theorem 5.9 we used a transfer function with no transfers at all, and thus no

transfers in equilibrium. Hence the result carries over. □

34
To prove the FTVU it is not necessary that N has no transfers at all. But, we will reuse this part of the proof in to prove Theorems 5.10 (no transfers in

equilibrium) and 5.11 (no transfers at all), in which case having this condition is necessary.
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5.3.2 Special Case: No Transfers At All, Variable Utilities, Type-Reporting Setting. We now consider the special case

where we are in a type-reporting setting and have no transfers at all; that is, transfers are fixed at zero.

There is not necessarily any relation between this special case and the case of fixed transfers to the agent,
35

but as it

turns out, the revelation principle will be the same.

Theorem 5.11. The RP holds with no transfers at all and variable utilities in the type-reporting setting iff the FTVU

condition holds.

Proof. For the if direction, the proof of Theorem 5.9 derived a truthful mechanism with fixed transfers to types and

large negative transfers on unused signals. In the type-reporting setting, under the truthful mechanism there are no

unused signals. Hence the large negative transfers are no longer needed. So, for any non-truthful mechanism with no

transfers at all we can create a corresponding truthful mechanism with no transfers at all.

For the only if direction, in the proof of Theorem 5.9 we used a transfer function with no transfers at all. Hence the

result carries over. □

5.3.3 Special Case: No Transfers At All, Variable Utilities, Signaling Setting. Finding useful conditions that ensure

the revelation principle holds when we are in the signaling setting, have no transfers at all, and variable utilities, is

currently an open problem.

5.3.4 Revisiting the Running Example. In this setting, the city no longer cares that the types all receive the same

utility, but now the city is unable to make welfare transfers. That is, transfers are fixed at zero. The FTVU condition does

not hold for this cost function, the following assignments to a,y,b, and x all violate the condition:

a = North, y = North, b = West, x = East

a = North, y = West, b = West, x = East

a = North, y = North, b = West, x = South

a = North, y = West, b = West, x = South

a = West, y = West, b = South, x = East

a = East, y = East, b = South, x = West

Thus, we may wonder whether a non-truthful mechanism exists that is better than any other mechanism. However, it

turns out that the revelation principle still holds for the agent’s specific valuation function that we are considering here,

and so in fact we can restrict attention to truthful mechanisms. We will return to this example in 6.6.1, at which point

we will have given conditions for the revelation principle to hold for specific valuation functions in the FTVU case.

5.4 Fixed Transfers, Fixed Utilities

We consider the case where, given a non-truthful mechanism, we wish to obtain a truthful mechanism that implements

the same choice function, makes the same transfers to each type, and maintains the utility that each type achieves.

35
Indeed, in the setting of known valuations the conditions will turn out to differ.
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Definition 5.12 (FTFU Condition). An instance satisfies the FTFU condition if there exists some 0 ≤ δθ < ∞ for each type

θ such that for all pairs of type b and signal x ,

bx ∈ {δb ,∞}

and for all ordered doubles a , b of types, and signal x ,

(ab = δa ∧ bx = δb ) =⇒ ax = δa

Indeed, in the partial verification case (which, in our notation, is the type-reporting case where for all a , b ∈ Θ : ab ∈

{0,∞}), the condition (ab = 0 ∧ bx = 0) =⇒ ax = 0 is known as the nested range condition [11], which is known

to characterize when the revelation principle holds in that case, with no transfers at all. Note that utilities are also

necessarily fixed because no agent will ever incur nonzero reporting costs.

We first provide intuition as to why the FTFU condition is essentially the same as the nested range condition even

though we have: a general signaling rather than type-reporting setting; fixed transfers rather than no transfers at all;

and signaling costs that may be δθ rather than 0.

– In the nested range condition proof, that x may have a type corresponding to it does not play a role. Thus, we can

extend it to a signaling setting with a,b as types and x as a signal.

– The key difference between implementations with fixed transfers and with no transfers at all is the ability to give a

large negative transfer to a signal that no type emits. This is equivalent to banning its emission.

This ban is useful for a ‘nuisance’ signal for which putting any outcome at it (without a negative transfer) would

cause at least one type to misemit to it. Since we have fixed utilities, the presence of a nuisance signal is equally

problematic in both truthful and non-truthful implementations. If a type emitted it under one implementation, it

also would in the other. Thus the ability to ban it will not change when the revelation principle holds.

– Finally, for each type b, replacing 0 by δb shifts the utility function by a constant and does not affect behavior.

Theorem 5.13. The RP holds with fixed transfers and fixed utilities iff the FTFU condition holds.

Proof.

FTFU condition =⇒ RP holds

We will show that for any F , for any non-truthful implementation we can construct a truthful implementation. Let N

together with RN implement F . Define H = N except:

AH (θ ) = F (θ ) for θ ∈ Θ

TH (θ ) = TN (RN (θ )) for θ ∈ Θ

If H is truthful, it clearly implements F with fixed transfers and fixed utilities. (Note that because of the FTFU condition,

the reporting cost for a type is always the same.) So now we show this is the case.
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The following series of inequalities holds for any pair of types a , b, and signals x = RN (b), y = RN (a):

va (oa ) +TH (a) − aa

= va (oa ) +TN (y) − ay since H and N have fixed transfers and utilities

≥ va (ob ) +TN (x) − ax by optimality of RN

≥ va (ob ) +TH (b) − ab by definition of TH and the FTFU condition

For any type a, signal y = RN (a), and signal z < ranдe(G) we have:

va (oa ) +TH (a) − aa

= va (oa ) +TN (y) − ay since H and N have fixed transfers and utilities

≥ va (AN (z)) +TN (z) − az by optimality of RN

= va (AH (z)) +TH (z) − az by definition of H

This shows that under H , a is willing to emit a over any other signal. Thus, H is truthful.

FTFU condition not holding =⇒ RP does not hold

Consider first the case where for all s ∈ S , sθ ∈ {δθ ,∞}, but there exist some a , b and x such that ab = δa , bx = δb ,

and ax = ∞.

Let N be a mechanism with AN (·) = o, with o being any fixed outcome, and TN (·) = 0, except TN (x) = 1. We have

RN (b) = x , so TN (RN (b)) = 1. Also, we know that TN (RN (a)) = 0 since a cannot emit x .

Now consider any mechanism H with AH = AN ◦ RN and TH = TN ◦ RN . We then have TH (b) = 1 and TH (a) = 0.

Since we also have AH (a) = AH (b) = o and aa = ab, a would emit b over a and thus H is not truthful.

Hence there exists no truthful mechanism with the same transfers as N that implements the choice function. So the

revelation principle fails.

Now, all that is left to do is to show that if for some b there is no δb (i.e., bx , bb, and bx , ∞ for some b ∈ Θ and

x ∈ S) then the revelation principle fails.

Consider a mechanism N where AN maps all signals to some fixed outcome o and TN pays bx + 1 to any type that

emits x , and 0 otherwise. For an optimal response RN we have RN (b) = x , so that b’s utility is 1 +vb (o).

Now consider any truthful mechanism H with AH (b) = o and where b receives the same utility as under N , which is

1 +vb (o). TH (b) must be bb + 1 for this to be the case. But, since bb , bx we will not have fixed transfers and thus the

revelation principle fails. □

5.4.1 Revisiting the Running Example. Suppose the city is unable to make transfers and wants each type to receive

the same utility. To make the example more interesting in this context, we add another outcome ∅, which consists of

giving the agent nothing, for which all types have utility 0 and for which the city has objective 0. Clearly, the FTFU

condition does not hold because there are edge costs that are neither 0 nor ∞. The optimal truthful mechanism in this

Manuscript submitted to ACM



The Revelation Principle for Mechanism Design with Signaling Costs 27

context is simply to give all agents ∅; this is simply because there is no value other than 0 that the types would all be

able to get as their utility in this context. On the other hand, the following is an optimal non-truthful implementation

(combined with the response where West and East misreport South, but North and South report truthfully), resulting in

an objective value of 35 and each type obtaining utility 1.

ˆNorth ˆWest ˆEast ˆSouth

N =
A fiber ∅ ∅ protein

T 0 0 0 0

Now let us again modify the example, and replace the ∅ outcome with cod liver oil, which all types dislike (utility 0.1)

but the city would love for the agent to take (objective 11 for all types). Obviously, in this case the optimal mechanism is

to give all types cod liver oil, which is truthful. In this case, unlike in 5.3.4, what is happening is not that the revelation

principle holds for the specific valuation function at hand, but rather that it holds for the specific combination of both

the valuation function and the choice function at hand—that is, for the specific instance at hand. We will return to this

in Section 7.

6 RESULTS: REVELATION PRINCIPLE FOR KNOWN VALUATIONS

So far, we have always considered whether the revelation principle holds for a given combination of Θ and c : Θ × S →

R≥0. For it to hold meant that no matter what the valuation function v and the choice function F (and, possibly, the

transfer and/or utilities to be achieved) are, it is either truthfully implementable or not implementable at all.

But if we have a particular valuation function in mind, we may not care whether the revelation principle holds for other

valuation functions; we just want to know whether for this valuation function we can restrict our attention to truthful

mechanisms. Accordingly, in this section, we consider the case where the valuation function is known (or fixed). Hence,

an instance will consist not only of Θ, S and c , but also O and v .

Later, in Section 7, we will consider the case where everything is fixed, including the choice function (and, possibly, the

transfer and/or utilities to be achieved).

6.1 Known Valuations, Variable Transfers, Variable Utilities

We consider the case where the valuation function is known and we allow the transfers and utilities the agent achieves

to vary between non-truthful and truthful implementations.

Finding useful conditions that ensure that the RP holds here is currently an open problem. We conjecture that verifying

whether the revelation principle holds is NP-complete.

6.2 Known Valuations, Variable Transfers, Fixed Utilities

We consider the case where the valuation function is known and given a non-truthful mechanism, we wish to obtain a

truthful mechanism that implements the same choice function and maintains the utility that each type obtains, but can

differ in the transfers made.
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With variable transfers and fixed utilities, it makes no difference whether we know the valuation function.

Theorem 6.1. The RP holds with known valuations, variable transfers, and fixed utilities iff the VTFU condition holds.

Proof.

VTFU condition holds =⇒ RP holds

By Theorem 5.2, the VTFU condition implies that the RP holds for all possible valuation functions, so it will continue to

hold for a specific valuation function.

VTFU condition not holding =⇒ RP does not hold

In the corresponding part of the proof of Theorem 5.2 (without known valuations), we used a constant choice function

whose choice of outcome did not matter. Hence, this part of the proof carries over unmodified to this case. □

6.3 Known Valuations, Fixed Transfers, Variable Utilities, Type-Reporting Setting

We consider the case where the valuation function is known, we are in a type-reporting setting and given a non-truthful

mechanism, we wish to obtain a truthful mechanism that implements the same choice function and maintains the

transfers paid to the agent, but can differ in the utility the agent obtains.

With fixed transfers and variable utilities in a type-reporting setting, it makes no difference whether we know the

valuation function.

Theorem 6.2. In the type-reporting setting the RP holds with known valuations, fixed transfers, and variable utilities iff the

FTVU condition holds.

Proof.

FTVU condition holds =⇒ RP holds

By Theorem 5.9, the FTVU condition implies that the RP holds for all possible valuation functions, so it will continue to

hold for a specific valuation function.

FTVU condition not holding =⇒ RP does not hold

Let a , b ∈ Θ and x ,y ∈ Θ violate the FTVU condition. Thus:

bx < ∞, and ab − aa < ax − ay

Since we are in the type-reporting setting, we note that aa is zero. Additionally, since ay is always non-negative, we

also have:

bx < ∞, and ab < ax

We will show that for any set of outcomes and valuation function, we can define a non-truthful mechanism N (with an

associated optimal response RN ) that implements a choice function F that no truthful mechanism with fixed transfers

would implement. That is, H with AH = AN ◦ RN and TH = TN ◦ RN is not truthful.
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We consider the following two cases separately:

(i) bx ≤ ba or bx ≤ ax

(ii) bx > ba and bx > ax

First consider (i):

Choose an arbitrary outcome o, and let F (·) = o. Define N as follows:

AN (·) = o

TN (x) = bx + ax

TN (a) = bx

TN (θ ) = 0 for θ , x ,a

Since TN (x) −TN (a) = ax , we can have a emit truthfully and receive bx . b will emit x over b since TN (x) > bx , since

ax > ab ≥ 0. If bx ≤ ba, b will emit x over a since TN (x) > TN (a). If bx ≤ ax , we can have b still emit x over a since:

vb (o) +TN (x) − bx

= vb (o) + ax by definition of TN (x)

≥ vb (o) + bx by our assumption that bx ≤ ax

≥ vb (o) + bx − ba since signaling costs are always non-negative

= vb (o) +TN (a) − ba by definition of TN (a)

Hence N is non-truthful
36

and gives a transfer of bx + ax to b and a transfer of bx to a.

For H to have fixed transfers we need TH (b) = bx + ax and TH (a) = bx . If the revelation principle is to hold, this

mechanism must be truthful. But, by emitting b, a can obtain a utility of:

va (o) + bx + ax − ab

> va (o) + bx by FTVU condition in type-reporting setting

which is what it would get for emitting a. So the revelation principle does not hold when bx ≤ ba or bx ≤ ax .

Now consider (ii), which is that bx > ba and bx > ax :

Choose an arbitrary outcome o, and let F (·) = o. Define N as follows:

AN (·) = o

TN (x) = bx

TN (θ ) = 0 for θ , x

N is non-truthful as a will emit x over a37 sinceTN (x) = bx > ax . And sinceTN (x) = bx , we can have b emit truthfully

and receive 0 transfer.

36
The FTVU condition not holding implies x , b .

37
(ii) implies x , a.
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For H to have fixed transfers we need TH (b) = 0 and TH (a) = bx . If the revelation principle is to hold, this mechanism

must be truthful. But in fact, by emitting a, b can obtain a utility of:

vb (o) + bx − ba

> vb (o) by our assumption that bx > ba

which is what it would get for emitting b. So the revelation principle does not hold when bx > ba and bx > ax .

Since our two cases cover all the possibilities, the revelation principle does not hold. □

6.4 Known Valuations, Fixed Transfers, Variable Utilities, General Signaling Setting

We consider the case where the valuation function is known, we are in a general signaling setting and given a non-

truthful mechanism, we wish to obtain a truthful mechanism that implements the same choice function and maintains

the transfers paid to each type, but is allowed to differ in the utilities each type obtains.

Unlike with variable transfers and fixed utilities, the condition here is not the same as in the unknown valuations case

(when we move beyond the type-reporting setting). Thus, we provide a separate condition for this case. It is not elegant,

but can be checked in polynomial time.

6.4.1 Example: Difference in Revelation Principles for Known and Unknown Valuations. We first show that the FTVU

condition is not necessary for the revelation principle to hold when we are in the signaling setting, have known

valuations, fixed transfers, and variable utilities. (It is, of course, sufficient.) Consider an instance with two types a , b

and an additional signal y. Let aa = 1, ab = 1, ay = 0, bb = 2, ba = ∞, and by = 0. We can visualize these types and

signaling costs as follows:

y

b2 ::

0

GG

∞
** a

1

jj

0

WW

1dd

The FTVU condition does not hold on this instance. If we let x = b we have:

ab − aa = 1 − 1 < 1 − 0 = ax − ay

Yet, we show with known valuations the revelation principle can still hold on this instance.

Suppose that we have just a single outcome that a and b both value at 0. When considering the design of truthful

mechanisms, we need not worry about y, because we can put a sufficiently negative transfer there. Given this, it is easy

to see that a mechanism H is truthful if and only if TH (a) ≥ TH (b). Hence, for the revelation principle to be violated,

there must exist some non-truthful mechanism N where TN (RN (b)) > TN (RN (a)). But this leads to a contradiction no

matter the choice of RN :
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– If both b and a emit y, then we cannot give them different transfers.

– If just a emits y (so b emits b), then for a to prefer emitting y to emitting b we need TN (y) ≥ TN (b) − 1. But then b

would also prefer to emit y.

– If just b emits y, if TN (y) > TN (RN (a)), then a would also prefer to emit y.

Hence the revelation principle holds for these valuations.

We now move on to the revelation principle condition for this case.

6.4.2 KFTVU Condition.

Definition 6.3 (KFTVU Condition). An instance satisfies the KFTVU condition if for all ordered doubles a , b of types and

ordered doubles x ,y of signals, there do not exist outcomes oa and ob , allocation function A : S → O , and transfer

function T : S → R such that the following hold:

va (ob ) +T (x) − ab > va (oa ) +T (y) − aa (1)

A(y) = oa (2)

A(x) = ob (3)

(∀s ∈ S) vb (ob ) +T (x) − bx ≥ vb (A(s)) +T (s) − bs (4)

(∀s ∈ S) va (oa ) +T (y) − ay ≥ va (A(s)) +T (s) − as (5)

Intuitively, this condition asks whether we can directly construct a counterexample to the revelation principle. In

particular, (1) ensures that a will always misemit to b if we try to implement our choice function truthfully.

Note that if the FTVU condition holds on a , b, and x ,y, then the KFTVU condition also holds on a,b, and x ,y. This is

because if (1) holds, then (5) does not when s = x .

Naïvely, checking this condition requires searching through all allocation functions A and transfer functions T , which

would take exponential time. However, the condition can in fact be checked efficiently.

Proposition 6.4. The KFTVU condition can be checked in polynomial time.

Proof. For each a , b and x ,y, we can efficiently check whether the KFTVU condition holds for every oa , ob , as

follows.

Set A(y) = oa , A(x) = ob , and the rest of A arbitrarily. This satisfies (2) and (3).

Any transfer function that satisfies (1), (4), and (5) also satisfies the following constraints:

va (ob ) +T (x) − ab > va (oa ) +T (y) − aa this is condition (1)

vb (ob ) +T (x) − bx ≥ vb (oa ) +T (y) − by by condition (4), setting s = y

va (oa ) +T (y) − ay ≥ va (ob ) +T (x) − ax by condition (5), setting s = x
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Furthermore, any transfer functionT that satisfies these constraints satisfies (1), and can be transformed into aT ′
which

also satisfies (4) and (5). Let T ′ = T except for x ,y where T ′ = T + L for some very large L.

Thus a transfer function that satisfies (1), (4), and (5) exists iff one exists that satisfies the constraints. And we can check

this using a simple linear feasibility program. □

Theorem 6.5. The RP holds with known valuations, fixed transfers, and variable utilities iff the KFTVU condition holds.

Proof.

KFTVU condition not holding =⇒ RP does not hold

Let a , b,x ,y,oa ,ob , A : S → O , and T : S → R be a witness for the violation of the KFTVU condition.

Consider the mechanism N defined by AN = A and TN = T . By the conditions, there exists an optimal response RN

where RN (a) = y and RN (b) = x , so that AN (RN (a)) = oa and AN (RN (b)) = ob .

But the function AH ≜ AN ◦ RN is not truthfully implementable with TH ≜ TN ◦ RN (these are both taken to be

restricted to signals in ranдe(G) here), because a would prefer to misemit to b by (1).

RP not holding =⇒ KFTVU condition does not hold

Let mechanism N with transfers TN , allocation AN , and optimal response profile RN be a witness to the violation of

the revelation principle, i.e., the mechanism H with TH ≜ TN ◦ RN and AH ≜ AN ◦ RN is not truthful.

For that to be the case, there must be some types a , b and signals x ,y such that in H , a strictly prefers emitting b to

emitting a, and in N , RN (b) = x and RN (a) = y.

(a prefers emitting to some b corresponding to a type as WLOG we can assume large negative transfers on signals

corresponding to no type in H .)

Now, let oa = AH (a), ob = AH (b), A = AN , and T = TN . Then, in the KFTVU conditions,

(1) holds because a prefers misemitting b in H ;

(2) holds because oa = AH (a) = AN (RN (a)) = A(y);

(3) holds because ob = AH (b) = AN (RN (b)) = A(x);

(4) holds because RN (b) = x ; and

(5) holds because RN (a) = y.

Hence the KFTVU condition is violated. □

6.4.3 Example: Difference in Revelation Principles for Fixed Transfers and No Transfers in Equilibrium. The following

shows that in the type-reporting, known-valuations setting, the ‘fixed transfers’ and ‘no transfers in equilibrium’

revelation principles must differ.

Consider an instance with types a, b, c , outcome o, and costs:

ab = 0

bc = 0
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aa = bb = cc = 0 (since we are in the type-reporting setting)

and all other costs are∞.

The only possible choice function for this instance is F (·) = o.

The revelation principle does not hold with fixed transfers. We can non-truthfully implement F with a mechanism

where b gets a transfer of 10 for reporting c , and a gets 0 at a. But, we cannot truthfully implement F with the same

transfers, because a would misemit to b.

On the other hand, with no transfers in equilibrium the revelation principle holds. The outcomes and payments are the

same at all signals, so no type would have any incentive to misemit.

6.5 Special Case: Known Valuations, No Transfers In Equilibrium, Variable Utilities

We consider the case where the valuation function is known, no mechanism is allowed to make transfers in equilibrium,

and given a non-truthful mechanism, we wish to obtain a truthful mechanism that implements the same choice function

but can differ in the utility the agent obtains from it.

Definition 6.6 (KNTEVU Condition). An instance satisfies the KNTEVU condition if it satisfies the modified version of the

KFTVU conditions where we only consider transfer functions T satisfying the following conditions:

(i) ∀s , T (s) = 0 or −L, where −L is a very negative number such that any type would prefer any outcome and a

transfer of zero at any (finite-cost) signal, to receiving a transfer of −L (alongside any outcome at any signal).

(ii) ∀θ , ∃s s.t. θs < ∞ and T (s) = 0.

Restriction (i) ensures that no type receives a transfer of more than 0. Restriction (ii) ensures that each type can receive

a transfer of at least 0. Note that these restrictions imply T (x) = T (y) = 0.

The KNTEVU condition differs from the KFTVU condition. Hence we must separately prove that the KNTEVU condition

can be checked in polynomial time.

Naïvely, checking this would require searching through all allocation functions A and transfer functions with T (s) ∈

{0,−L}, which would require exponential time. However, again, the condition can in fact be checked efficiently.

Proposition 6.7. The KNTEVU condition can be checked in polynomial time.

Proof. For each a , b and x ,y, we can efficiently check whether the KNTEVU condition holds for every two outcomes

oa and ob , as follows.

Since T (x) = T (y) = 0, we can directly plug in oa and ob into (1) to verify whether it holds.

So now for every oa and ob satisfying (1) we need to check that there exists a combination of outcomes and transfers

for every s , x ,y that satisfies (4), (5), (i), and (ii). (And a, y, b, and x continue to be fixed.)

First we check whether there exists a combination of outcomes for every s , x ,y that satisfies (4) and (5) whenT (s) = 0.

Whether an outcome satisfies these conditions for a single s is independent of which outcome we choose for any other
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s ′. Hence, all that needs to be checked is, for each s individually, whether there exists an outcome satisfying (4) and (5).

If this is the case, we can set T (·) = 0. Hence, (ii) holds by default, so we are done.

Otherwise, for each s which has a satisfying outcome, give it that outcome with a transfer of 0. For each s which does

not, to satisfy (4) and (5) we have no other option than to give it a transfer of −L (and an arbitrary outcome). So now we

simply check whether (ii) still holds. □

Theorem 6.8. The RP holds with known valuations, no transfers in equilibrium and variable utilities iff the KNTEVU

condition holds.

Proof.

KNTEVU condition not holding =⇒ the RP does not hold

Let a , b,x ,y,oa ,ob , A : S → O , and T : S → R be a witness for the violation of the KNTEVU condition.

Consider the mechanism N defined by AN = A and TN = T . By the conditions, there exists an optimal response RN

where RN (a) = y and RN (b) = x , so that AN (RN (a)) = oa and AN (RN (b)) = ob . Additionally we have TN (RN (θ )) = 0

for all θ by (i) and (ii).

But then the function AH ≜ AN ◦ RN is not truthfully implementable with TH ≜ TN ◦ RN (these are both taken to be

restricted to signals in ranдe(G) here), because a would prefer to misemit to b by (1).

RP not holding =⇒ KNTEVU condition does not hold

Let mechanism N with transfers TN , allocation AN , no transfers in equilibrium, and optimal response profile RN be a

witness to the violation of the revelation principle. Thus any mechanism H with AH ≜ AN ◦ RN (these are both taken

to be restricted to signals in ranдe(G) here), and no transfers in equilibrium is not truthful.

For that to be the case, there must be some types a , b and signals x ,y such that in H , a strictly prefers emitting b to

emitting a, and in N , RN (b) = x and RN (a) = y.

(a prefers emitting to some b corresponding to a type as WLOG we can assume large negative transfers on signals

corresponding to no type in H .)

Create N ′ = N except that TN ′ = −L for any signal not emitted by any type under N . Since no type would ever want

to receive a transfer of −L, RN ′ = RN . Hence N ′
has no transfers in equilibrium. And since AN ′ = AN , we have

AH = AN ′ ◦ RN ′ .

Now, let oa = AH (a), ob = AH (b), A = AN ′ , and T = TN ′ . Then, in the KNTEVU conditions,

(1) holds because a prefers misemitting b in H ;

(2) holds because oa = AH (a) = AN ′(RN ′(a)) = A(y);

(3) holds because ob = AH (b) = AN ′(RN ′(b)) = A(x);

(4) holds because RN ′(b) = x ;

(5) holds because RN ′(a) = y;

(i) holds by construction of N ′
;

(ii) holds because under N ′
each type θ can receive a transfer of 0 at RN (θ ).

Hence the KFTVU condition is violated. □
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6.5.1 Example: Difference in Revelation Principles for No Transfers in Equilibrium and No Transfers At All. The

following shows that in the type-reporting, known-valuations setting, the ‘no transfers in equilibrium’ and ‘no transfers

at all’ revelation principles must differ.

Consider an instance with types a, b, c , outcomes: o1, o2, valuations:

va (o1) = 2,va (o2) = 0

vb (o1) = vb (o2) = 1

vc (o1) = 0,vc (o2) = 2,

and costs:

ab = cb = 0

ba = bc = 1

ac = ca = 10

θθ = 0 (since we are in the type-reporting setting).

If we have no transfers at all, the revelation principle holds. In any implementation b will always report b, and a and c

will never report each other. WLOG assume a non-truthful implementation involves a (but not c) reporting b. We can

create a truthful implementation of the same choice function by putting the outcome from b at a as well, and c will still

not report a or b.

If we have no transfers in equilibrium we are allowed to put negative transfers on types no one will report. Then we

can non-truthfully implement F (a) = o2, F (b) = o2, and F (c) = o1 by having a and b report a, c report c , and putting a

large negative transfer at b. But we cannot do this truthfully, because if we put o2 at b then c will report b. Hence the

revelation principle does not hold.

6.6 Special Case: Known Valuations, No Transfers At All, Variable Utilities, Type-Reporting Setting

We consider the case where the valuation function is known, we are in a type reporting setting, no mechanism is allowed

to make transfers, and given a non-truthful mechanism, we wish to obtain a truthful mechanism that implements the

same choice function but can differ in the utility the agent obtains from it.

The condition is essentially the same as that for fixed transfers.

Definition 6.9 (KNTAAVU Condition). An instance satisfies the KNTAAVU condition if it satisfies the modified version of

the KFTVU condition where we only consider transfer functions T with T (·) = 0.

The KNTAAVU condition differs from the KFTVU condition. Hence we must separately prove that the KNTAAVU

condition can be checked in polynomial time.

Naïvely, checking this would require searching through all allocation functions A, which would require exponential

time. However, again, the condition can in fact be checked efficiently.

Proposition 6.10. The KNTAAVU condition can be checked in polynomial time.
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Proof. For each a , b and x ,y, we can efficiently check whether the KNTAAVU condition holds for every two outcomes

oa and ob , as follows.

We need to check that there exists a combination of outcomes for every s , x ,y that satisfies (4) and (5). Whether an

outcome satisfies these conditions for a single s is independent of which outcome we choose for any other s ′. Hence, all

that needs to be checked is, for each s individually, whether there exists an outcome satisfying the conditions. □

Theorem 6.11. The RP holds with known valuations, no transfers at all and variable utilities in the type-reporting setting

iff the KNTAAVU condition holds.

Proof. We carry over the proof of Theorem 6.5 unmodified except for requiring T (·) = 0 for any transfer function T .

The only reason this proof required a transfer function not fixed at zero was to put large negative transfers on unused

signals to derive a truthful mechanism. But this is unnecessary in the type-reporting case as every signal will be emitted

by some type in the truthful mechanism.

□

6.6.1 Revisiting the Running Example. We now return to the running example for the FTVU case. Recall from 5.3.4

that when the city does not care that the types all receive the same utility, and is unable to make welfare transfers, the

revelation principle does not hold for all valuation functions, for the cost function under consideration here.

However, it does hold for the specific valuation function under consideration here. This is because for the revelation

principle to be violated, there would need to be a pair of outcomes such that the difference in valuations between

them could incentivize West to travel to East or South, or South to East or West. But there exists no such pair. Thus we

only need to search through the space of truthful mechanisms to find an optimal mechanism. The following truthful

mechanism obtains the best objective value of 30.

ˆNorth ˆWest ˆEast ˆSouth

H =
A fiber vitamins vitamins vitamins

T 0 0 0 0

6.6.2 Special Case: No Transfers At All, Signaling Setting. Finding useful conditions that ensure that the RP holds in

this case is currently an open problem.

6.7 Known Valuations, Fixed Transfers, Fixed Utilities

We consider the case where the valuation function is known, and given a non-truthful mechanism, we wish to obtain a

truthful mechanism that implements the same choice function, makes the same transfers to each agent, and maintains

the utility that each type obtains.

Theorem 6.12. The RP holds with known valuations, fixed transfers, and fixed utilities iff the FTFU condition holds.
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Proof. We can carry over the proof of Theorem 5.13 unmodified. For the if direction it showed the RP holds for all

possible valuation functions, so will continue to do so for a specific one. For the only if direction we used a constant

choice function whose choice (and hence valuation) of outcome did not matter. □

7 RESULTS: REVELATION PRINCIPLE FOR FULLY SPECIFIED INSTANCES

In the previous section, we considered the case where we know the valuation function, and wish to know if the

revelation principle holds for it. All that is needed to violate the revelation principle is for there to exist some choice

function (possibly together with transfers and/or utilities) that can be non-truthfully, but not truthfully, implemented.

But this may be of little interest if we already know the precise choice function (etc.) we wish to implement.

Indeed, even if the revelation principle does not hold for all choice functions (etc.), it may yet hold for the one we care

about. We study this here. Hence, an instance is now a fully specified instance, consisting of Θ, S , c , O , and v as before,

but also F , possibly a specific transfer function T ∗
: Θ → R, and possibly a specific utility functionU ∗

: Θ → R, which

we wish to implement.

Definition 7.1 (Revelation Principle on a Fully Specified Instance). We say the RP is true for a fully specified instance

if either (1) a truthful mechanism T exists that implements the choice function (with the required utilities and/or

transfers), or (2) no (possibly non-truthful) mechanism N does.

We will show that deciding whether the RP holds on individual fully specified instances (even in the type-reporting

setting) reduces to the computational problem of deciding whether a (possibly non-truthful) implementation exists.

Lemma 7.2. Determining whether the revelation principle fails to hold on a given fully specified instance is computationally

exactly as hard as determining whether there is a (not necessarily truthful) implementation for that instance.

Proof. In each case, we can efficiently verify whether there is a truthful implementation for that instance:

– If there are no transfers, there is only one possibility for what the mechanism does for the signals in ranдe(G). But,

we must also assign outcomes to the signals outside ranдe(G) such that no type misemits to them. Whether there

exists such an outcome for a given s outside ranдe(G) is independent of which outcome we choose for any other

such s ′. Hence, all that needs to be checked is, for each s individually, whether there exists an outcome such that no

type will misemit to it.

– If there are transfers but they are fixed (or implicitly fixed because utilities are), again there is only one possibility

for what the mechanism does for signals in ranдe(G). In this case, we can always ensure that no type will misemit

outside ranдe(G), by putting a sufficiently negative transfer on those signals.

– Finally, if neither transfers nor utilities are fixed, then it is a simple linear feasibility problem to determine whether

transfers exist that implement the choice function on the signals in ranдe(G). And again, we can ensure that no

type misemits to signals outside ranдe(G) by putting sufficiently negative transfers there.

Hence, we can reduce the problem of determining whether a (not necessarily truthful) implementation exists for a fully

specified instance to the problem of checking whether the RP holds on a fully specified instance, as follows. First, check
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whether a truthful implementation exists; if so the answer is “yes.” Otherwise, there is an implementation if and only if

the revelation principle fails to hold on this instance.

Conversely, we can reduce the problem of checking whether the RP holds on a fully specified instance to the problem of

determining whether a (not necessarily truthful) implementation exists for a fully specified instance, as follows. Again,

first, check whether a truthful implementation exists; if so the answer is “yes.” Otherwise, the revelation principle holds

if and only if there is no implementation. □

Theorem 7.3. Computing whether the revelation principle holds on a given fully specified instance is coNP-complete

(whether or not transfers and/or utilities are fixed). This is true even in the type-reporting setting.

Proof. Variable Transfers

When we have variable transfers, for both variable and fixed utilities, the problem of determining whether a (not

necessarily truthful) implementation for an instance exists is NP-complete [1, 15].

Fixed Transfers, Variable Utilities

[1] showed that implementation is NP-complete in the type-reporting setting with no transfers at all and variable

utilities. In particular, for an arbitrary 3-SAT instance they show how to construct a mechanism design with partial

verification instance with choice function F , such that the 3-SAT instance is satisfiable if and only if F is implementable

with no transfers at all.

This does not necessarily imply that the case with no transfers in equilibrium is NP-complete. These cases may differ, as

it is possible that non-truthful implementation requires giving negative transfers to types not reported.

But, as it turns out, the proof that they give can also show that implementation with no transfers in equilibrium is

NP-complete. On their instance, F is implementable with no transfers at all if and only if it is implementable with no

transfers in equilibrium. The ‘only if’ is automatic as no transfers at all is a special case of no transfers in equilibrium.

For the ‘if’ to hold, we must show that allowing negative transfers to types not reported cannot cause F to become

implementable. This is equivalent to asking if forbidding certain types from being reported is helpful. For the instances

they construct, it is not. The fundamental difficulty in implementation in their instances stems from reconciling the

following two needs:

– Every clause type needs to receive an outcome of ‘true’ at some literal type in the clause.

– Every variable type needs to receive an outcome of ‘false’ at one of its two literal types.

Forbidding certain type reports will not help satisfy either of these conditions. Hence, implementability with no transfers

in equilibrium and variable utilities is NP-complete, and thus fixed transfers to the agent and variable utilities is as well.

Fixed Transfers, Fixed Utilities

Finally, [15] showed that in the partial verification case, when we have no transfers in equilibrium, the NP-completeness

of the variable utilities case implies the NP-completeness of the fixed utilities case. Hence implementability with no

transfers in equilibrium with fixed utilities is NP-complete, and thus implementability with fixed transfers to the agent

is as well.
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So, the problem of determining whether a (not necessarily truthful) implementation for an instance exists is NP-complete

in all the cases. Hence, Lemma 7.2 implies that determining whether the revelation principle fails to hold is NP-complete,

proving the theorem. □
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