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Abstract

Voting (or rank aggregation) is a general method for aggre-
gating the preferences of multiple agents. One important vot-
ing rule is theSlater rule. It selects a ranking of the alter-
natives (orcandidates) to minimize the number of pairs of
candidates such that the ranking disagrees with the pairwise
majority vote on these two candidates. The use of the Slater
rule has been hindered by a lack of techniques tocompute
Slater rankings. In this paper, we show how we can decom-
pose the Slater problem into smaller subproblems if there is a
set ofsimilar candidates. We show that this technique suffices
to compute a Slater ranking in linear time if the pairwise ma-
jority graph is hierarchically structured. For the general case,
we also give an efficient algorithm forfindinga set of similar
candidates. We provide experimental results that show that
this technique significantly (sometimes drastically) speeds up
search algorithms. Finally, we also use the technique of sim-
ilar sets to show that computing an optimal Slater ranking is
NP-hard, even in the absence of pairwise ties.

Introduction
In multiagent systems with self-interested agents, often the
agents need to arrive at a joint decision in spite of differ-
ent preferences over the available alternatives.Voting (or
rank aggregation) is a general method for doing so. In
a rank aggregation setting, each voter ranks all the differ-
ent alternatives (orcandidates), and a votingrule maps the
votes to a single ranking of all the candidates. Rank ag-
gregation has applications outside the space of preference
aggregation as well: for example, we can take the rank-
ings that different search engines provide over a set of web-
pages and produce an aggregate ranking from this. Other
applications include collaborative filtering [22] and planning
among automated agents [17; 18]. Recent work in artifi-
cial intelligence and related areas has studied the complex-
ity of executing voting rules [19; 7; 14; 12; 1]; the com-
plexity of manipulating elections [9; 16; 15]; eliciting the
votes efficiently [8]; adapting voting theory to the setting
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where the candidates vote over each other by linking to
each other (as in the context of the World Wide Web) [4;
3]; and interpreting common voting rules as maximum like-
lihood estimators of a “correct” ranking [10].

The design of voting rules has been guided by the ax-
iomatic approach: decide on a set of criteria that a good
voting rule should satisfy, and determine which (if any) vot-
ing rules satisfy all of these criteria. One well-known cri-
terion is that ofindependence of irrelevant alternatives. In
its strongest form, this criterion states that the relative rank-
ing of two candidates by a voting rule should not be affected
by the presence or absence of other candidates. That is, if
a is ranked higher thanb by a voting rule that satisfies in-
dependence of irrelevant alternatives, then the voting rule
will still rank a higher thanb after the introduction of an-
other candidatec. Arrow’s impossibility result [5] precludes
the existence of any reasonable voting rule satisfying this
criterion. Intuitively, when independence of irrelevant al-
ternatives is satisfied, whether candidatea or b is preferred
should depend only on whether more votes prefera to b than
b to a—that is, the winner of thepairwise electionshould be
ranked higher. Unfortunately, as noted by Condorcet [13],
there can be cycles in this relationship: for example, it can
be the case thata defeatsb, b defeatsc, andc defeatsa in
pairwise elections. If so, no ranking of the candidates will
be consistent with the outcomes of all pairwise elections.

The Slater voting rule is arguably the most straightfor-
ward resolution to this problem: it simply chooses a ranking
of the candidates that is inconsistent with the outcomes of as
few pairwise elections as possible. Unfortunately, as we will
discuss later in this paper, computing a Slater ranking is NP-
hard. This suggests that we need a search-based algorithm
to compute Slater rankings.1

In this paper, we introduce a powerfulpreprocessingtech-
nique that can reduce the size of instances of the Slater prob-
lem before the search is started. We say that a subset of the
candidates consists ofsimilar candidatesif for every candi-
date outside of the subset, all candidates inside the subset
achieve the same result in the pairwise election against that
candidate. Given a set of similar candidates, we can recur-

1Another approach is to look for rankings that areapproxi-
matelyoptimal in the Slater sense [1; 11]. Of course, this is not
entirely satisfactory as it is effectively changing the voting rule.



sively solve the Slater problem for that subset, and for the
original set with the entire subset replaced by a single can-
didate, to obtain a solution to the original Slater problem. In
addition, we also make the following contributions:
•We show that if the results of the pairwise elections have

a particular hierarchical structure, the preprocessing tech-
nique is sufficient to solve the Slater problem in linear time.
• For the general case, we give a polynomial-time algo-

rithm for findinga set of similar candidates (if it exists). This
algorithm is based on satisfiability techniques.
• We exhibit the power of the preprocessing technique

experimentally.
• We use the concept of a set of similar candidates to give

the first straightforward reduction (that is, not a randomized
reduction or a derandomization thereof) showing that the
Slater problem is NP-hard in the absence of pairwise ties.

Definitions
We useC to denote the set of candidates. We say that can-
didatea defeats candidateb in their pairwise election, de-
noted bya → b, if the number of votes rankinga aboveb
is greater than the number of votes rankingb abovea. The
Slater rule is defined as follows: find a rankingÂ on the
candidates that minimizes the number of ordered pairs(a, b)
such thata Â b but b defeatsa in their pairwise election.
(Equivalently, we want to maximize the number of pairs of
candidates for whichÂ is consistent with the result of the
pairwise election—we will refer to this number as theSlater
score.) We will refer to the problem of computing a Slater
ranking as theSlater problem. An instance of theSlater
problem can be represented by a “pairwise election” graph
whose vertices are the candidates, and which has a directed
edge froma to b if and only if a defeatsb in their pairwise
election. The goal, then, is to minimize the number of edges
that must be flipped in order to make the graph acyclic.

Most elections do not have any ties in pairwise elections.
For example, if the number of votes is odd, there is no pos-
sibility of a pairwise tie. (We note that in many real-world
elections, the number of voters is intentionally made odd to
prevent ties.) Hence, we will restrict our attention to elec-
tions without pairwise ties (in which case the pairwise elec-
tion graph becomes a tournament graph). For our positive
results, this is merely for simplicity—they can easily be ex-
tended to deal with ties as well. Our one negative result, the
NP-hardness of computing Slater rankings, is made stronger
by this restriction (in fact, without the restriction the hard-
ness has effectively been known for a long time).

Sets of similar candidates
We are now ready to give the formal definition of a set of
similar candidates.

Definition 1 We say that a subsetS ⊆ C consists ofsimilar
candidatesif for anys1, s2 ∈ S, for anyc ∈ C−S, s1 → c if
and only ifs2 → c (and hencec → s1 if and only ifc → s2).

We emphasize that in this definition, it isnot required that
everyvote preferss1 to c if and only if that vote preferss2 to
c. Rather, the condition only needs to hold on the aggregated

pairwise election graph, and hence it is robust to a few voters
who do not perceive the candidates as similar.

There are a few trivial sets of similar candidates: 1. the
set of all candidates, and 2. any set of at most one candidate.
We will be interested in nontrivial sets of similar candidates,
because, as will become clear shortly, the trivial sets have no
algorithmic use.

The following is the key observation of this paper:

Theorem 1 If S consists of similar candidates, then there
exists a Slater rankingÂ in which the candidates inS form
a (contiguous) block(that is, there do not exists1, s2 ∈ S
andc ∈ C − S such thats1 Â c Â s2).

Proof: Consider any rankingÂ1 of the candidates in which
the candidates inS are split intok > 1 blocks; we will show
how to transform this ranking into another rankingÂ2 with
the properties that:

• the candidates inS are split intok − 1 blocks inÂ2, and

• the Slater score ofÂ2 is at least as high as that ofÂ1.

By applying this transformation repeatedly, we can trans-
form the original ranking into an ranking in which the can-
didates inS form a single block, and that has at least as high
a Slater score as the original ranking.

Consider a subsequence ofÂ1 consisting of two blocks
of candidates inS, {s1

i } and{s2
i }, and a block of candidates

in C − S that divides them,{ci}: s1
1 Â1 s1

2 Â1 . . . Â1

s1
l1
Â1 c1 Â1 c2 Â1 . . . Â1 cl Â1 s2

1 Â1 s2
2 Â1 . . . Â1 s2

l2
.

BecauseS consists of similar candidates, a given candidate
ci has the same relationship in the pairwise election graph to
everysj

i . Hence, one of the following two cases must apply:

1. For at least half of the candidatesci, for everysj
i , ci → sj

i

2. For at least half of the candidatesci, for everysj
i , sj

i → ci.

In case 1, we can replace the subsequence by the subse-
quencec1 Â2 c2 Â2 . . . Â2 cl Â2 s1

1 Â2 s1
2 Â2 . . . Â2

s1
l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
to join the blocks without

any loss to the Slater score of the ranking. Similarly, in
case 2, we can replace the subsequence by the subsequence
s1
1 Â2 s1

2 Â2 . . . Â2 s1
l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
Â2

c1 Â2 c2 Â2 . . . Â2 cl to join the blocks without any loss to
the Slater score of the ranking.

Hence, if we know thatS consists of similar candidates,
then when we try to compute a Slater ranking, we can with-
out loss of generality restrict our attention to rankings in
which all the candidates inS form a (contiguous) block.
The optimal internal ranking of the candidates inS within
the block is independent of the rest of the ranking, and can
be computed recursively.2 Because of this, we can think of
S as a single “super-candidate” with weight|S|. RankingS
above a candidatec such thats → c for all s ∈ S, or below

2Note that ifS is a trivial set of similar candidates, there is little
use to this: if it is a set of at most one candidate, then the statement
that that candidate will form a block by itself is vacuous, and if
it is the set of all candidates, we need to recurse on the set of all
candidates.



a candidatec such thatc → s for all s ∈ S, will increase the
Slater score by|S|.

Consider the following pairwise election graph:

In this graph,{b, d} is a set of similar candidates. Thus, we
recursively solve the instance in whichb andd are aggre-
gated into a single candidate:

Some of the edges now represent multiple edges in the orig-
inal graph; this is indicated by the weights on these edges.
It is easy to see that the optimal Slater ranking for this graph
is a Â bd Â c. In addition, we need to solve theSlater
problem internally for the set of similar candidates:

The optimal Slater ranking for this graph is (of course)b Â
d. So the solution to the original problem isa Â b Â d Â c.

It is possible to have multiple disjoint setsSi, each con-
sisting of similar candidates. In this case, we can aggregate
each one of them into a single super-candidate. The follow-
ing lemma will clarify how to compute the Slater scores for
such pairs of super-candidates:

Lemma 1 If S1 and S2 are disjoint sets of similar can-
didates, then for anys1, s

′
1 ∈ S1 and anys2, s

′
2 ∈ S2,

s1 → s2 if and only if s′
1 → s′

2. (That is, the same rela-
tionship holds in the pairwise election graph for any pair of
candidates inS1 × S2.) Hence, ranking super-candidate
S1 above super-candidateS2 such thats1 → s2 for all
s1 ∈ S1, s2 ∈ S2, or below a super-candidateS2 such that
s2 → s1 for all s1 ∈ S1, s2 ∈ S2, will increase the Slater
score by|S1| · |S2|.
Proof: Omitted due to space constraint.

Similar sets that overlap cannot be simultaneously turned
into super-candidates. However, the following lemma shows
that turning one of them into a super-candidate will (in a
sense) preserve the structure of the other set: after aggregat-
ing one of the sets into a super-candidate, the other set will,
in a sense, coincide with the union of the two sets, and we
now show that this union must consist of similar candidates.

Lemma 2 If S1 andS2 each consist of similar candidates,
andS1 ∩ S2 is nonempty, thenS1 ∪ S2 consists of similar
candidates.

Proof: Omitted due to space constraint.

Hierarchical pairwise election graphs can be
solved in linear time

In this section, we show that if the pairwise election graph
has a certain hierarchical structure, then theSlater problem
can be solved efficiently using the techniques from the pre-
vious section.

Definition 2 A valid candidate treeis a tree with the follow-
ing properties:

• The leaves are each labeled with a candidate, with each
candidate appearing exactly once.

• For every internal vertexv, there is a tournament graph
→v over its children such that for any two distinct chil-
drenw1 6= w2 of v, for any descendantsd1 of w1 andd2

of w2, d1 → d2 if and only ifw1 →v w2.

Put alternatively, to find out the direction of the edge be-
tween any two candidates in the pairwise election graph, we
can simply compare the vertices directly below their least
common ancestor. There is always a trivial valid candidate
tree, which simply connects every candidate directly to the
root nodeR and uses the pairwise election graph→ as the
graph→R. This tree does not give us any insight. Instead,
we will be interested in trees whose vertices have small de-
gree (that is, each vertex has only a few children).

Figure 1 shows an example candidate tree, and Figure 2
shows the corresponding graph of pairwise elections.

Figure 1: A valid candidate tree.

Figure 2: The pairwise election graph corresponding to the
valid candidate tree.

The following observation will allow us to use the struc-
ture of the tree to solve theSlater problem efficiently:

Lemma 3 For any vertexv in a valid candidate tree, the set
Dv of candidates that are descendants ofv constitutes a set
of similar candidates.

Proof: For anyd1, d2 ∈ Dv and c ∈ C − Dv, the least
common ancestor ofd1 and c, or of d2 and c, must be a
(strict) ancestor ofv. Hence, this least common ancestor
must be the same in both cases, and moreover, so must
the child of that ancestor from whichd1 and d2 (and v)
descend. Henced1 → c if and only if d2 → c.



Hence, we can solve theSlater problem using the follow-
ing very simple algorithm:

1. For every child of the rootR, generate a super-
candidate with weight equal to the number of candidates that
descend from it.

2. Solve theSlater problem for the graph→R over these
super-candidates (using any algorithm).

3. Solve theSlater problem recursively for each subtree
rooted at a child of the rootR.

4. Order the candidates, first according to the ranking of
the super-candidates that they are in, and then according to
the recursive solutions.

Step2 may be computationally expensive, depending on
the number of super-candidates. However, if the degree
of each vertex is small, then so is the number of super-
candidates in this step. In particular, if the degree is bounded
by a constant, then step2 can be performed in constant time,
and the running time of the entire algorithm is linear.

The algorithm produces the Slater rankingf Â e Â c Â
a Â b Â d on the example given above.

An algorithm for detecting sets of similar
candidates

In general, we do not know in advance whether there is a
nontrivial set of similar candidates in a pairwise election
graph. Rather, we need an algorithm that will take as in-
put a pairwise election graph, and discover a nontrivial set
of similar candidates if it exists. In this section, we present
such an algorithm. The algorithm relies on transforming the
problem of detecting a set of similar candidates into a Horn
satisfiability problem.

Specifically, for every candidatec we generate a variable
In(c) which indicates whether the candidate is in the set of
similar candidates. Then, for every ordered triplet of can-
didatesc1, c2, c3 ∈ C, if either c1 → c3 and c3 → c2,
or c2 → c3 and c3 → c1, then we generate the clause
In(c1) ∧ In(c2) ⇒ In(c3) (or, equivalently,(¬In(c1) ∨
¬In(c2) ∨ In(c3)).

The instance described two sections earlier produces the
following clauses: In(a) ∧ In(b) ⇒ In(c), In(a) ∧
In(c) ⇒ In(b) ∧ In(d), In(a) ∧ In(d) ⇒ In(b) ∧ In(c),
In(b) ∧ In(c) ⇒ In(a) ∧ In(d), In(c) ∧ In(d) ⇒ In(a).
Theorem 2 A setting of the variablesIn(c) satisfies all the
clauses if and only ifS = {c ∈ C : In(c) =true} consists
of similar candidates.

Proof: Omitted due to space constraint.

There are some settings of the variablesIn(c) that always
satisfy all the clauses: setting everything totrue, and setting
at most one variable totrue. These settings correspond ex-
actly to the trivial sets of similar candidates discussed earlier.
Hence, our goal is to find a satisfying setting of the variables
in which at least two, but not all, variables are set totrue. In
the example above, the only such solution is to setIn(b) and
In(d) to true andIn(a) andIn(c) to false, corresponding
to the set of similar candidates that we used earlier in the pa-
per. Finding a nontrivial solution can be done in polynomial

time with the following simple algorithm: for a given pair
of candidatesc1, c2 ∈ C, setIn(c1) andIn(c2) to true, and
then follow the implications⇒ in the clauses. If this process
terminates without setting all theIn(c) variables totrue, we
have found a nontrivial set of similar candidates. Otherwise,
restart with a different pair of candidates, until we have tried
every pair of candidates. The algorithm can be improved by
keeping track of the initial pairs of candidates for which we
have failed to find a similar set, so that when another initial
pair leads to one of these pairs being set totrue, we can fail
immediately and continue to the next pair.

When we use this algorithm for finding similar sets to help
us compute a Slater ranking, after finding a similar set, we
need to compute a Slater ranking both on the instance con-
sisting of the similar set only, and on the reduced version of
the original instance where the similar set has been replaced
by a single super-candidate. Thus, we will be interested in
finding similar sets on these instances as well. It is natural
to ask whether some of the computation that we did to find
a similar set in the original instance can be reused to find
similar sets in the two new instances. It turns out that, in the
second new instance, this is indeed possible:

Lemma 4 Suppose that, in the process of detecting a simi-
lar set, we failed with the pair of initial candidatesc1, c2 ∈
C, before discovering thatS ⊆ C is a similar set. Then, in
the reduced instance whereS is replaced by a single super-
candidatecS ,

1. we will also fail on initial pairc1, c2 if c1, c2 /∈ S;
2. we will also fail on initial pairc1, cS if c1 /∈ S, c2 ∈ S.

Proof: Omitted due to space constraint.

For the first new instance consisting ofS only, such reuse
of computation is not possible, because we cannot have
failed on a pair of candidates withinS (since they were in
fact in a similar set). We only know that we will fail on the
pair starting with which we foundS, because this pair will
lead to all candidates inS being included in the similar set.

Experimental results
In this section, we experimentally evaluate the use of the
techniques described above as a preprocessing technique
that serves to reduce the sizes of the instances before a
search algorithm is called. We compare two algorithms:
a straightforward search technique, and the preprocessing
technique combined with the same search technique. The
straightforward search technique decides, at every search
node, whether a given edge in the graph should be consistent
or inconsistent with the final ranking, and then propagates
the effect of this decision to other edges (e.g.by transitivity,
if it has been decided that edges(a, b) and(b, c) will both be
consistent with the final ranking, then by transitivity so must
the edge(b, c)). As an admissible pruning heuristic, we use
the total number of edges for which it has been decided that
the final ranking will be inconsistent with them.

The preprocessing technique uses the algorithm described
in the previous section to search for a set of similar candi-
dates. If it finds one, it recursively solves the subproblems;



otherwise, the search algorithm is called to solve the remain-
ing irreducible problem instance. Each data point in the ex-
periments is an average of 30 instances (the same instances
for both algorithms).

In the first set of experiments, instances are generated as
follows. Every candidate and every voter draws a random
position in [0, 1] (this can be thought of as their stance on
one issue) and voters rank candidates by proximity to their
own position. The results are in Figure 3:
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Figure 3: 1 issue, 191 voters, 30 instances per data point.

On these instances, even straightforward search scales
reasonably well, but when the preprocessing technique is
added, all the instances solve immediately. This is not sur-
prising: the voters’ preferences in this domain aresingle-
peaked, and it is well-known that for single-peaked pref-
erences, there are no cycles in the pairwise election graph
(e.g.[21]), so that the final ranking can be read off directly
from the graph. Given this, anyk candidates in contiguous
positions in the final ranking always form a set of similar
candidates, so that the preprocessing technique can solve the
instances entirely. (No time is spent in search after the pre-
processing technique.)

Of course, we do not want to examine only trivial in-
stances. In the next experiment (Figure 4), the candidates
and voters draw random positions in[0, 1] × [0, 1]; in this
two-dimensional setup the voters’ preferences are no longer
single-peaked.
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Figure 4: 2 issues, 191 voters, 30 instances per data point.

These instances are much harder to solve, but adding the
preprocessing technique significantly speeds up the search.
We note that essentially no time is spent in the preprocessing
stage (the “preprocessing + search total” and “search after
preprocessing” curves are essentially identical), hence the
benefits of preprocessing effectively come for free.

We also considered changing the number of votes to a
small number. Figure 5 shows the results with only 3 votes.

We experimented with introducing additional structure on
the set of candidates. In the next experiment, there are 5
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Figure 5: 2 issues, 3 voters, 30 instances per data point.

parties that draw random positions in[0, 1] × [0, 1]; each
candidate randomly chooses a party, and then takes a posi-
tion that is the average of the party’s position and another
random point in[0, 1] × [0, 1]. The results did not change
significantly, as shown in Figure 6.
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Figure 6: 2 issues, 5 parties, 191 voters, 30 instances per
data point.

We also experimented with having the voters and can-
didates draw positions on an even larger number of issues
(10 issues). Perhaps surprisingly, here the preprocessing
technique once again solved all instances immediately (Fig-
ure 7).
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Figure 7: 10 issues, 191 voters, 30 instances per data point.

NP-hardness of the Slater problem
In this section, we use the technique of sets of similar can-
didates in an entirely different manner: we show that it is
useful in demonstrating the hardness of theSlater problem
when there are no pairwise ties. In the case where pair-
wise ties between candidates are possible, the hardness of
the Slater problem follows from the hardness of theMini-
mum Feedback Edge Set problem. However, as we have
already pointed out, most elections do not have pairwise ties
(for example, if the number of votes is odd, then there can-
not be any pairwise ties). So, how hard is the problem when
there are no ties? This problem is equivalent to theMini-
mum Feedback Edge Set problem on tournament graphs,



and was conjectured to be NP-hard as early as 1992 [6]. The
conjecture remained unproven until 2005, when a random-
ized reduction was given [1]. A later derandomization of
this proof finally proved the conjecture completely [2]. In-
terestingly, the observations about sets of similar candidates
made above allow us to give a more direct proof of this re-
sult (which does not rely on derandomizing a randomized
reduction).3

Theorem 3 TheSlater problem is NP-hard (even in the ab-
sence of pairwise ties).

Proof: We reduce from the NP-completeMaximum Satis-
fiability (MAXSAT) problem. We show how to reduce an ar-
bitrary MAXSAT instance, given by a set of clausesK over
a set of variablesV , and a target numbert1 of clauses to sat-
isfy, to an instance of theSlater problem and a target score
t2, such that there is an ranking with Slater score at leastt2
if and only if there is a solution to theMAXSAT instance
(that satisfies at leastt1 clauses). LetM be a sufficiently
large number (M > 6|K||V | + |K|2). For every variable
v ∈ V , let there be the following6 super-candidates, each
of sizeM (that is, representingM individual candidates):
Cv = {av,+v,−v, bv, dv, ev}.4 Let the individual candi-
dates that any given single super-candidate represents con-
stitute an acyclic pairwise election graph, so that we can or-
der them perfectly and obtain a Slater score ofM(M−1)/2.
Let the super-candidates have the following relationships to
each other in the aggregated graph:

• Fix some order> over the variables (e.g.x1 > x2 >
. . . > x|V |). Then, for any two super-candidatescv ∈
Cv, cv′ ∈ Cv′ with v > v′, cv → cv′ .

• For anyv ∈ V , for any cv ∈ {av,+v,−v} and c′
v ∈

{bv, dv, ev}, cv → c′
v.

• For anyv ∈ V , av → +v,+v → −v,−v → av; bv →
dv, bv → ev, dv → ev.

Additionally, for every clausek ∈ K, let there be a sin-
gle candidate (not a super-candidate)ck, with the following
relationships to the candidates corresponding to variables.
Assume without loss of generality that opposite literals (+v
and−v) never occur in the same clause. Then,

• If +v ∈ k, then+v → ck, dv → ck, ev → ck andck →
av, ck → −v, ck → bv.

• If −v ∈ k, then−v → ck, dv → ck, ev → ck andck →
av, ck → +v, ck → bv.

• If {+v,−v} ∩ k = ∅, thenbv → ck, dv → ck, ev → ck

andck → av, ck → +v, ck → −v.

The relationships among theck are irrelevant. Finally,
let the target Slater score bet2 = 6|V |M(M − 1)/2 +
36M2|V |(|V | − 1)/2 + 14M2|V |+ t1M .

3Interestingly, the previous reductions [1; 2] also use what is
effectively an extremely special case of the results about similar
candidates presented in this paper. That special case is, however,
not sufficient for the reduction given here.

4The letterc is skipped only to avoid confusion with the use of
c as an arbitrary candidate.

We now make some observations about theSlater prob-
lem instance that we have constructed. First, by Theorem 1,
we can restrict our attention to rankings in which the indi-
vidual candidates in any given super-candidate form a (con-
tiguous) block. Recall that within such a block, we can
order the individual candidates to obtain a Slater score of
M(M−1)/2, which will give us a total of6|V |M(M−1)/2
points. Now, if our ranking of two super-candidates is
consistent with the pairwise election graph, according to
Lemma 1 this will increase the Slater score byM2. By
contrast, the total number of Slater points that we can ob-
tain from all the edges in the pairwise election graph that
involve a candidateck corresponding to a clause is at most
|K| ·6|V |M + |K|2 < 6|K||V |M + |K|2M < M2. Hence,
it is never worth it to sacrifice an agreement on an edge in-
volving two super-candidates to obtain a better result with
regard to the remaining candidates, and therefore we can
initially restrict our attention to the super-candidates only
as these are our primary concern. It is clear that forv > v′
we should rank all the candidates inCv above all those in
Cv′ . Doing this for all variables will increase the Slater
score by36M2|V |(|V | − 1)/2. Moreover, it is clear that for
everyv we should rank all the candidates in{av,+v,−v}
above all those in{bv, dv, ev}, andbv Â dv Â ev. Do-
ing this for all variables will increase the Slater score by
(9M2 + 3M2)|V | = 12M2|V |. Finally, for everyv, any
one of the rankings+v Â −v Â av, −v Â av Â +v,
andav Â +v Â −v are equally good, leaving us a choice.
Choosing one of these for all variables increases the Slater
score by another2M2|V |.

Now, as a secondary concern, we can analyze edges
involving the ck. Agreement on an edge between ack

and one of the super-candidates will increase the Slater
score byM . By contrast, the total number of Slater points
that we can obtain fromall the edges in the pairwise
election graph that involve only candidatesck is at most
|K|(|K| − 1)/2 < |K|2 < M . Hence, it is never worth
it to sacrifice an agreement on an edge involving a super-
candidate to obtain a better result with regard to the edges
involving only candidatesck, and hence we can restrict our
attention to edges involving a super-candidate. (In fact, the
edges involving only candidatesck will turn out to have
such a minimal effect on the total score that we need not
consider them at all.) Now, we note that whether a candidate
ck is ranked beforeall the candidates inCv or afterall of
them makes no difference to the total score, because three
of these candidates will have an edge intock, and three
of them will have have an edge out ofck. Nevertheless, a
candidateck could be rankedamongthe candidatesCv for
(at most) onev ∈ V . Becausedv andev always have edges
into ck and are always ranked last among the candidates in
Cv, ranking ck after at least two of the candidates inCv

will never make a positive contribution to the Slater score.
Hence, there are only two possibilities to increase the Slater
score (by exactlyM ) for a givenck: either rankck directly
after some+v such that+v ∈ k and +v is ranked first
among theCv, or rankck directly after some−v such that
−v ∈ k and−v is ranked first among theCv. Of course, for
each variablev, we can rank at most one of+v and−v first.



(We can also rankav first, but this will never help us.) Now
we can see that this corresponds to theMAXSAT problem:
say that we setv to true if +v is ranked first, and tofalse
if −v is ranked first. Then, we can obtain an additionalM
points for a candidateck if and only if clausek is satisfied,
and hence we can increase the Slater score by an additional
t1M points if and only if we can set the variables in such a
way as to satisfy at leastt1 clauses.

Extension to Kemeny rule
The Kemenyrule [20] is another voting rule that is similar
to the Slater rule. The Kemeny rule, instead of minimizing
the number of pairwise elections that the final ranking dis-
agrees with, tries to minimize the totalweightof such pair-
wise elections—where the weight of a pairwise election is
the number of votes by which its winner defeated its loser.

The techniques presented in this paper can be extended
to apply to the Kemeny rule as well. However, to apply to
the Kemeny rule, the definition of a set of similar candidates
must be modified to state that for any fixed candidate outside
the set, all candidates inside the set must receive exactly the
same number of votes in the pairwise election against that
candidate (rather than merely obtain the same overall result).
This modified definition is much less likely to apply than the
original version.

Conclusions
Voting (or rank aggregation) is a fundamental problem in
systems of multiple self-interested agents that need to co-
ordinate their actions. One voting rule, theSlater rule, is
perhaps the most natural method to resolve Condorcet para-
doxes (in which most voters prefera to b, most voters prefer
b to c, and most voters preferc to a): it determines a ranking
that minimizes the number of pairs of candidates for which
the ranking is inconsistent with the outcome of the pairwise
election. But, computing a Slater ranking is NP-hard.

In this paper, we defined the concept of a set of similar
candidates, and showed that any set of similar candidates is
contiguous in some Slater ranking. This yields a powerful
preprocessing technique for computing Slater rankings: we
can solve the Slater problem on the set of similar candidates,
and subsequently replace the set of similar candidates in the
original instance by a single super-candidate. We showed
that this technique suffices to compute a Slater ranking in
linear time if the pairwise majority graph is hierarchically
structured. In general, we need to be able todiscovera set
of similar candidates for this technique to be useful. We gave
a polynomial-time algorithm for doing so based on tech-
niques from satisfiability. We evaluated these techniques
experimentally. On highly structured instances, the prepro-
cessing technique solves the problem immediately. On oth-
ers, it does not solve the entire problem, but still reduces
the search time significantly. Moreover, the time spent on
the preprocessing technique (including the search for sets of
similar candidates) is insignificant relative to the time spent
in search, so that the use of the preprocessing technique es-
sentially comes for free. Finally, we gave a completely dif-
ferent use of the concept of similar candidates: we used it
to help us show the NP-hardness of the Slater problem when

there are no pairwise ties. This proof is arguably more direct
than the only other known proof (which itself was discov-
ered only recently after the problem had been open for over
a decade).
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