
Chapter 3

Outcome Optimization

The more alternatives, the more difficult the choice.
Abbé D’Allanival

Perhaps surprisingly, expressive preference aggregation has only recently started to be adopted
in practice (mostly in the form of combinatorial auctions and combinatorial reverse auctions). One
of the reasons for this is that in expressive preference aggregation protocols, the problem of choosing
the best outcome once the preferences have been collected is typically computationally hard. For
instance, in combinatorial auctions, the winner determination problem is NP-complete [Rothkopf
et al., 1998] (even to approximate [Sandholm, 2002a]). The computational tools for solving such
outcome selection problems have only recently reached the maturity necessary to make some of
these protocols feasible in practice [Sandholm et al., 2006; Sandholm, 2006].

This chapter will discuss the outcome optimization problem for the domains discussed in Chap-
ter 2. While computing the aggregated ranking is easy under most voting rules, there are some voting
rules for which this is not the case [Bartholdi et al., 1989b; Hemaspaandra et al., 1997; Cohen et al.,
1999; Dwork et al., 2001; Rothe et al., 2003; Davenport and Kalagnanam, 2004; Ailon et al., 2005],
including the Kemeny and Slater rules. In Section 3.1, we introduce a powerful preprocessing tech-
nique for computing optimal rankings according to the Slater rule [Conitzer, 2006]. In Section 3.2,
we give new conditions under which the winner determination problem in combinatorial auctions
can be solved efficiently [Conitzer et al., 2004]. In Section 3.3, we study computing optimal out-
comes under the framework for negotiating over donations introduced in Section 2.3 [Conitzer and
Sandholm, 2004e]. Finally, in Section 3.4 we study computing optimal outcomes under the frame-
work for negotiating in settings with externalities introduced in Section 2.4 [Conitzer and Sandholm,
2005d].

3.1 A preprocessing technique for computing Slater rankings

This section describes work done at IBM Research, with guidance and advice from Andrew Daven-
port and Jayant Kalagnanam.

In voting, we would like our aggregate ranking to be consistent with the outcome of each pair-
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wise election: if more voters prefer a to b than vice versa, the aggregate ranking should rank a ahead
of b. Unfortunately, Condorcet cycles can prevent us from being able to achieve this consistency for
all pairs of candidates. The Slater voting rule is arguably the most straightforward resolution to this
problem: it simply chooses a ranking of the candidates that is inconsistent with the outcomes of as
few pairwise elections as possible. Unfortunately, as we will discuss later in this section, computing
a Slater ranking is NP-hard. This in stark contrast to the computational ease with which most voting
rules can be executed (most rules require only a simple computation of a score for each candidate,
or perhaps one score per candidate for every round of the rule). An exception is the related Kemeny
rule, which is also NP-hard to compute (in fact, as we will show later in this section, this hardness
is implied by the Slater rule’s hardness). The hardness of computing Slater ranking suggests using
a tree search-based algorithm to compute Slater rankings.1

In this section, we introduce a preprocessing technique that can reduce the size of an instance
of the Slater problem before the search is started. We say that a subset of the candidates consists
of similar candidates if for every candidate outside of the subset, all candidates inside the subset
achieve the same result in the pairwise election against that candidate. Given a set of similar candi-
dates, we can recursively solve the Slater problem for that subset, and for the original set with the
entire subset replaced by a single candidate, to obtain a solution to the original Slater problem. In
addition, we also make the following contributions:

• We show that if the results of the pairwise elections have a particular hierarchical structure,
the preprocessing technique is sufficient to solve the Slater problem in linear time.

• For the general case, we give a polynomial-time algorithm for finding a set of similar candi-
dates (if it exists). This algorithm is based on satisfiability techniques.

• We exhibit the power of the preprocessing technique experimentally.

• We use the concept of a set of similar candidates to give the first straightforward reduction
(that is, not a randomized reduction or a derandomization thereof) showing that the Slater
problem is NP-hard in the absence of pairwise ties.

3.1.1 Definitions

Recall that the Slater rule is defined as follows: find a ranking Â on the candidates that minimizes
the number of ordered pairs (a, b) such that a Â b but b defeats a in their pairwise election. (Equiv-
alently, we want to maximize the number of pairs of candidates for which Â is consistent with the
result of the pairwise election—we will refer to this number as the Slater score.) We will refer to the
problem of computing a Slater ranking as the Slater problem. An instance of the Slater problem
can be represented by a “pairwise election” graph whose vertices are the candidates, and which has
a directed edge from a to b if and only if a defeats b in their pairwise election. The goal, then, is to
minimize the number of edges that must be flipped in order to make the graph acyclic.

Most elections do not have any ties in pairwise elections. For example, if the number of votes is
odd, there is no possibility of a pairwise tie. (We note that in many real-world elections, the number

1Another approach is to look for rankings that are approximately optimal in the Slater sense [Ailon et al., 2005;
Coppersmith et al., 2006]. Of course, this is not entirely satisfactory as it is effectively changing the voting rule.
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of voters is intentionally made odd to prevent ties.) Hence, we will restrict our attention to elections
without pairwise ties (in which case the pairwise election graph becomes a tournament graph). For
our positive results, this is merely for simplicity—they can easily be extended to deal with ties as
well. Our one negative result, the NP-hardness of computing Slater rankings, is made stronger by
this restriction (in fact, without the restriction the hardness has effectively been known for a long
time).

3.1.2 Sets of similar candidates

We are now ready to give the formal definition of a set of similar candidates.

Definition 9 We say that a subset S ⊆ C consists of similar candidates if for any s1, s2 ∈ S, for
any c ∈ C − S, s1 → c if and only if s2 → c (and hence c→ s1 if and only if c→ s2).

We emphasize that in this definition, it is not required that every vote prefers s1 to c if and only
if that vote prefers s2 to c. Rather, the condition only needs to hold on the aggregated pairwise
election graph, and hence it is robust to a few voters who do not perceive the candidates as similar.

There are a few trivial sets of similar candidates: 1. the set of all candidates, and 2. any set of at
most one candidate. We will be interested in nontrivial sets of similar candidates, because, as will
become clear shortly, the trivial sets have no algorithmic use.

The following is the key observation of this section:

Theorem 1 If S consists of similar candidates, then there exists a Slater ranking Â in which the
candidates in S form a (contiguous) block (that is, there do not exist s1, s2 ∈ S and c ∈ C−S such
that s1 Â c Â s2).

Proof: Consider any ranking Â1 of the candidates in which the candidates in S are split into k > 1
blocks; we will show how to transform this ranking into another rankingÂ2 with the properties that:

• the candidates in S are split into k − 1 blocks in Â2, and

• the Slater score of Â2 is at least as high as that of Â1.

By applying this transformation repeatedly, we can transform the original ranking into an ranking
in which the candidates in S form a single block, and that has at least as high a Slater score as the
original ranking.

Consider a subsequence of Â1 consisting of two blocks of candidates in S, {s1
i } and {s2

i }, and
a block of candidates in C − S that divides them, {ci}: s1

1 Â1 s1
2 Â1 . . . Â1 s1

l1
Â1 c1 Â1 c2 Â1

. . . Â1 cl Â1 s2
1 Â1 s2

2 Â1 . . . Â1 s2
l2

. Because S consists of similar candidates, a given candidate
ci has the same relationship in the pairwise election graph to every sj

i . Hence, one of the following
two cases must apply:

1. For at least half of the candidates ci, for every sj
i , ci → sj

i

2. For at least half of the candidates ci, for every sj
i , sj

i → ci.
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In case 1, we can replace the subsequence by the subsequence c1 Â2 c2 Â2 . . . Â2 cl Â2 s1
1 Â2

s1
2 Â2 . . . Â2 s1

l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
to join the blocks without any loss to the Slater

score of the ranking. Similarly, in case 2, we can replace the subsequence by the subsequence
s1
1 Â2 s1

2 Â2 . . . Â2 s1
l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
Â2 c1 Â2 c2 Â2 . . . Â2 cl to join the blocks

without any loss to the Slater score of the ranking.

Hence, if we know that S consists of similar candidates, then when we try to compute a Slater
ranking, we can without loss of generality restrict our attention to rankings in which all the candi-
dates in S form a (contiguous) block. The optimal internal ranking of the candidates in S within
the block is independent of the rest of the ranking, and can be computed recursively.2 Because of
this, we can think of S as a single “super-candidate” with weight |S|. Ranking S above a candidate
c such that s → c for all s ∈ S, or below a candidate c such that c → s for all s ∈ S, will increase
the Slater score by |S|.

Consider the following pairwise election graph:

In this graph, {b, d} is a set of similar candidates. Thus, we recursively solve the instance in which
b and d are aggregated into a single candidate:

Some of the edges now represent multiple edges in the original graph; this is indicated by the
weights on these edges. It is easy to see that the optimal Slater ranking for this graph is a Â bd Â c.
In addition, we need to solve the Slater problem internally for the set of similar candidates:

2Note that if S is a trivial set of similar candidates, there is little use to this: if it is a set of at most one candidate, then
the statement that that candidate will form a block by itself is vacuous, and if it is the set of all candidates, we need to
recurse on the set of all candidates.
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The optimal Slater ranking for this graph is (of course) b Â d. So the solution to the original
problem is a Â b Â d Â c.

It is possible to have multiple disjoint sets Si, each consisting of similar candidates. In this case,
we can aggregate each one of them into a single super-candidate. The following lemma will clarify
how to compute the Slater scores for such pairs of super-candidates:

Lemma 1 If S1 and S2 are disjoint sets of similar candidates, then for any s1, s
′
1 ∈ S1 and any

s2, s
′
2 ∈ S2, s1 → s2 if and only if s′1 → s′2. (That is, the same relationship holds in the pairwise

election graph for any pair of candidates in S1 × S2.) Hence, ranking super-candidate S1 above
super-candidate S2 such that s1 → s2 for all s1 ∈ S1, s2 ∈ S2, or below a super-candidate S2 such
that s2 → s1 for all s1 ∈ S1, s2 ∈ S2, will increase the Slater score by |S1| · |S2|.

Proof: Because S1 consists of similar candidates, s1 → s2 if and only if s′1 → s2. And, because S2

consists of similar candidates, s′1 → s2 if and only if s′1 → s′2.

Similar sets that overlap cannot be simultaneously turned into super-candidates. However, the
following lemma shows that turning one of them into a super-candidate will (in a sense) preserve
the structure of the other set: after aggregating one of the sets into a super-candidate, the other set
will, in a sense, coincide with the union of the two sets, and we now show that this union must
consist of similar candidates.

Lemma 2 If S1 and S2 each consist of similar candidates, and S1 ∩ S2 is nonempty, then S1 ∪ S2

consists of similar candidates.

Proof: Let s ∈ S1 ∩ S2. For any s′, s′′ ∈ S1 ∪ S2 and any c ∈ C − (S1 ∪ S2), we have that s′ → c
if and only if s→ c, and s→ c if and only if s′′ → c.

3.1.3 Hierarchical pairwise election graphs can be solved in linear time

In this subsection, we show that if the pairwise election graph has a certain hierarchical structure,
then the Slater problem can be solved efficiently using the techniques from the previous subsection.

Definition 10 A valid candidate tree is a tree with the following properties:

• The leaves are each labeled with a candidate, with each candidate appearing exactly once.

• For every internal vertex v, there is a tournament graph →v over its children such that for
any two distinct children w1 6= w2 of v, for any descendants d1 of w1 and d2 of w2, d1 → d2

if and only if w1 →v w2.
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Put alternatively, to find out the direction of the edge between any two candidates in the pairwise
election graph, we can simply compare the vertices directly below their least common ancestor.
There is always a trivial valid candidate tree, which simply connects every candidate directly to the
root node R and uses the pairwise election graph → as the graph →R. This tree does not give us
any insight. Instead, we will be interested in trees whose vertices have small degree (that is, each
vertex has only a few children).

Figure 3.1 shows an example candidate tree, and Figure 3.2 shows the corresponding graph of
pairwise elections.

Figure 3.1: A valid candidate tree.

Figure 3.2: The pairwise election graph corresponding to the valid candidate tree.

The following observation will allow us to use the structure of the tree to solve the Slater
problem efficiently:

Lemma 3 For any vertex v in a valid candidate tree, the set Dv of candidates that are descendants
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of v constitutes a set of similar candidates.

Proof: For any d1, d2 ∈ Dv and c ∈ C−Dv, the least common ancestor of d1 and c, or of d2 and c,
must be a (strict) ancestor of v. Hence, this least common ancestor must be the same in both cases,
and moreover, so must the child of that ancestor from which d1 and d2 (and v) descend. Hence
d1 → c if and only if d2 → c.

Hence, we can solve the Slater problem using the following very simple algorithm:

1. For every child of the root R, generate a super-candidate with weight equal to the number of
candidates that descend from it.

2. Solve the Slater problem for the graph →R over these super-candidates (using any algo-
rithm).

3. Solve the Slater problem recursively for each subtree rooted at a child of the root R.

4. Order the candidates, first according to the ranking of the super-candidates that they are in,
and then according to the recursive solutions.

Step 2 may be computationally expensive, depending on the number of super-candidates. How-
ever, if the degree of each vertex is small, then so is the number of super-candidates in this step. In
particular, if the degree is bounded by a constant, then step 2 can be performed in constant time, and
the running time of the entire algorithm is linear.

The algorithm produces the Slater ranking f Â e Â c Â a Â b Â d on the example given
above.

3.1.4 An algorithm for detecting sets of similar candidates

In general, we do not know in advance whether there is a nontrivial set of similar candidates in a
pairwise election graph. Rather, we need an algorithm that will take as input a pairwise election
graph, and discover a nontrivial set of similar candidates if it exists. In this subsection, we present
such an algorithm. The algorithm relies on transforming the problem of detecting a set of similar
candidates into a Horn satisfiability problem.

Specifically, for every candidate c we generate a variable In(c) which indicates whether the
candidate is in the set of similar candidates. Then, for every ordered triplet of candidates c1, c2, c3 ∈
C, if either c1 → c3 and c3 → c2, or c2 → c3 and c3 → c1, then we generate the clause In(c1) ∧
In(c2)⇒ In(c3) (or, equivalently, (¬In(c1) ∨ ¬In(c2) ∨ In(c3)).

The instance described two subsections earlier produces the following clauses: In(a)∧In(b)⇒
In(c), In(a) ∧ In(c) ⇒ In(b) ∧ In(d), In(a) ∧ In(d) ⇒ In(b) ∧ In(c), In(b) ∧ In(c) ⇒
In(a) ∧ In(d), In(c) ∧ In(d)⇒ In(a).

Theorem 2 A setting of the variables In(c) satisfies all the clauses if and only if S = {c ∈ C :
In(c) =true} consists of similar candidates.
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Proof: First, suppose that the setting satisfies all the clauses. For any s1, s2 ∈ S and c ∈ C − S, if
there were a clause In(s1) ∧ In(s2) ⇒ In(c), it would not be satisfied. It follows that this clause
was not generated, and hence either s1 → c and s2 → c, or c → s1 and c → s2. Hence S consists
of similar candidates.

Next, suppose that the setting does not satisfy all the clauses. Then, there must be some unsat-
isfied clause In(c1) ∧ In(c2) ⇒ In(c3), which means that c1, c2 ∈ S and c3 /∈ S. Because the
clause was generated, either c1 → c3 and c3 → c2, or c2 → c3 and c3 → c1, and hence S does not
consist of similar candidates.

There are some settings of the variables In(c) that always satisfy all the clauses: setting ev-
erything to true, and setting at most one variable to true. These settings correspond exactly to the
trivial sets of similar candidates discussed earlier. Hence, our goal is to find a satisfying setting of
the variables in which at least two, but not all, variables are set to true. In the example above, the
only such solution is to set In(b) and In(d) to true and In(a) and In(c) to false, corresponding
to the set of similar candidates that we used earlier in this section. Finding a nontrivial solution
can be done in polynomial time with the following simple algorithm: for a given pair of candidates
c1, c2 ∈ C, set In(c1) and In(c2) to true, and then follow the implications⇒ in the clauses. If this
process terminates without setting all the In(c) variables to true, we have found a nontrivial set of
similar candidates. Otherwise, restart with a different pair of candidates, until we have tried every
pair of candidates. The algorithm can be improved by keeping track of the initial pairs of candidates
for which we have failed to find a similar set, so that when another initial pair leads to one of these
pairs being set to true, we can fail immediately and continue to the next pair.

When we use this algorithm for finding similar sets to help us compute a Slater ranking, after
finding a similar set, we need to compute a Slater ranking both on the instance consisting of the
similar set only, and on the reduced version of the original instance where the similar set has been
replaced by a single super-candidate. Thus, we will be interested in finding similar sets on these
instances as well. It is natural to ask whether some of the computation that we did to find a similar
set in the original instance can be reused to find similar sets in the two new instances. It turns out
that, in the second new instance, this is indeed possible:

Lemma 4 Suppose that, in the process of detecting a similar set, we failed with the pair of initial
candidates c1, c2 ∈ C, before discovering that S ⊆ C is a similar set. Then, in the reduced instance
where S is replaced by a single super-candidate cS ,

1. we will also fail on initial pair c1, c2 if c1, c2 /∈ S;

2. we will also fail on initial pair c1, cS if c1 /∈ S, c2 ∈ S.

Proof: Suppose c1, c2 (or, in the second case, c1, cS) belong to a nontrivial set S ′ of similar can-
didates in the reduced instance. Then, consider the same set in the original instance (if cS ∈ S′,
replace it with all members of S); call this set S ′′. S′′ does not include all candidates because S ′

does not include all candidates in the reduced instance. Moreover, S ′′ is a set of similar candidates,
for the following reasons. Take any s1, s2 ∈ S′′ and c ∈ C − S ′′; we must show that s1 → c
if and only if s2 → c. If s1 /∈ S and s2 /∈ S, then this follows from the fact that S ′ consists of
similar candidates (even if c ∈ S, because in that case si → c if and only if si → cS in the reduced
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instance). If exactly one of s1 and s2 is in S (without loss of generality, say s1 ∈ S), then it must
be that cS ∈ S′ ⇔ S ⊆ S′′, so that c /∈ S. Hence, s1 → c if and only if cs → c, and because S ′

consists of similar candidates this is true if and only if s2 → c. Finally, if both s1 and s2 are in S,
then c /∈ S because cS ∈ S′ ⇔ S ⊆ S′′, hence s1 → c if and only if s2 → c because S consists
of similar candidates. But if S ′′ consists of similar candidates, then we would not have failed on the
initial pair c1, c2 in the original instance. Hence we have the desired contradiction.

For the first new instance consisting of S only, such reuse of computation is not possible, be-
cause we cannot have failed on a pair of candidates within S (since they were in fact in a similar
set). We only know that we will fail on the pair starting with which we found S, because this pair
will lead to all candidates in S being included in the similar set.

3.1.5 Experimental results

In this subsection, we experimentally evaluate the use of the techniques described above as a prepro-
cessing technique that serves to reduce the sizes of the instances before a search algorithm is called.
We compare two algorithms: a straightforward search technique, and the preprocessing technique
combined with the same search technique. (Instead of the straightforward search technique, we
could also have used a more sophisticated algorithm, e.g. a commercial solver such as CPLEX. The
goal here, however, is not to show that our technique by itself outperforms any given algorithm, but
rather it is to show that using the preprocessing technique can reduce a given algorithm’s compu-
tation time. Moreover, if adding the preprocessing technique to a straightforward search algorithm
already produces a fast algorithm, that is more impressive than having to add the technique to a
solver such as CPLEX to obtain a fast algorithm.) The straightforward search technique decides, at
every search node, whether a given edge in the graph should be consistent or inconsistent with the
final ranking, and then propagates the effect of this decision to other edges (e.g. by transitivity, if it
has been decided that edges (a, b) and (b, c) will both be consistent with the final ranking, then by
transitivity so must the edge (b, c)). There is no sophisticated variable ordering heuristic: we simply
choose the first edge that has not yet been set. As an admissible pruning heuristic, we use the total
number of edges for which it has been decided that the final ranking will be inconsistent with them.

The preprocessing technique uses the algorithm described in the previous subsection to search
for a set of similar candidates. If it finds one, it recursively solves the subproblems; otherwise, the
search algorithm is called to solve the remaining irreducible problem instance. Each data point in
the experiments is an average of 30 instances (the same instances for both algorithms).

In the first set of experiments, instances are generated as follows. Every candidate and every
voter draws a random position in [0, 1] (this can be thought of as their stance on one issue) and
voters rank candidates by proximity to their own position. The results are in Figure 3.3:

On these instances, even straightforward search scales reasonably well, but when the prepro-
cessing technique is added, all the instances solve immediately. This is not surprising: the voters’
preferences in this domain are single-peaked, and it is well-known that for single-peaked prefer-
ences, there are no cycles in the pairwise election graph (e.g. [Mas-Colell et al., 1995]), so that the
final ranking can be read off directly from the graph. Given this, any k candidates in contiguous
positions in the final ranking always form a set of similar candidates, so that the preprocessing tech-
nique can solve the instances entirely. (No time is spent in search after the preprocessing technique.)
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Figure 3.3: 1 issue, 191 voters, 30 instances per data point.

Of course, we do not want to examine only trivial instances. In the next experiment (Figure 3.4),
the candidates and voters draw random positions in [0, 1]× [0, 1]; in this two-dimensional setup the
voters’ preferences are no longer single-peaked.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

tim
e 

in
 s

ec
on

ds

# candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.4: 2 issues, 191 voters, 30 instances per data point.

These instances are much harder to solve, but adding the preprocessing technique significantly
speeds up the search. We note that essentially no time is spent in the preprocessing stage (the
“preprocessing + search total” and “search after preprocessing” curves are essentially identical),
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hence the benefits of preprocessing effectively come for free.
We also considered changing the number of votes to a small number. Figure 3.5 shows the

results with only 3 votes.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

tim
e 

in
 s

ec
on

ds

# candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.5: 2 issues, 3 voters, 30 instances per data point.

We experimented with introducing additional structure on the set of candidates. In the next
experiment, there are 5 parties that draw random positions in [0, 1]×[0, 1]; each candidate randomly
chooses a party, and then takes a position that is the average of the party’s position and another
random point in [0, 1]× [0, 1]. The results did not change significantly, as shown in Figure 3.6.

We also experimented with having the voters and candidates draw positions on an even larger
number of issues (10 issues). Perhaps surprisingly, here the preprocessing technique once again
solved all instances immediately (Figure 3.7).

3.1.6 NP-hardness of the Slater problem

In this subsection, we use the technique of sets of similar candidates in an entirely different manner:
we show that it is useful in demonstrating the hardness of the Slater problem when there are no pair-
wise ties. In the case where pairwise ties between candidates are possible, the hardness of the Slater
problem follows from the hardness of the Minimum Feedback Edge Set problem. However, as
we have already pointed out, most elections do not have pairwise ties (for example, if the number
of votes is odd, then there cannot be any pairwise ties). So, how hard is the problem when there are
no ties? This problem is equivalent to the Minimum Feedback Edge Set problem on tournament
graphs, and was conjectured to be NP-hard as early as 1992 [Bang-Jensen and Thomassen, 1992].
The conjecture remained unproven until 2005, when a randomized reduction was given [Ailon et
al., 2005]. A later derandomization of this proof finally proved the conjecture completely [Alon,
2006]. Interestingly, the observations about sets of similar candidates made above allow us to give
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Figure 3.6: 2 issues, 5 parties, 191 voters, 30 instances per data point.
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Figure 3.7: 10 issues, 191 voters, 30 instances per data point.

a more direct proof of this result (which does not rely on derandomizing a randomized reduction).3

Theorem 3 The Slater problem is NP-hard (even in the absence of pairwise ties).

3Interestingly, the previous reductions [Ailon et al., 2005; Alon, 2006] also use what is effectively an extremely special
case of the results about similar candidates presented in this section. That special case is, however, not sufficient for the
reduction given here.
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Proof: We reduce from the NP-complete Maximum Satisfiability (MAXSAT) problem. We show
how to reduce an arbitrary MAXSAT instance, given by a set of clauses K over a set of variables V ,
and a target number t1 of clauses to satisfy, to an instance of the Slater problem and a target score
t2, such that there is an ranking with Slater score at least t2 if and only if there is a solution to the
MAXSAT instance (that satisfies at least t1 clauses). Let M be a sufficiently large number (M >
6|K||V | + |K|2). For every variable v ∈ V , let there be the following 6 super-candidates, each
of size M (that is, representing M individual candidates): Cv = {av, +v,−v, bv, dv, ev}.4 Let the
individual candidates that any given single super-candidate represents constitute an acyclic pairwise
election graph, so that we can order them perfectly and obtain a Slater score of M(M − 1)/2. Let
the super-candidates have the following relationships to each other in the aggregated graph:

• Fix some order > over the variables (e.g. x1 > x2 > . . . > x|V |). Then, for any two
super-candidates cv ∈ Cv, cv′ ∈ Cv′ with v > v′, cv → cv′ .

• For any v ∈ V , for any cv ∈ {av, +v,−v} and c′v ∈ {bv, dv, ev}, cv → c′v.

• For any v ∈ V , av → +v, +v → −v,−v → av; bv → dv, bv → ev, dv → ev.

Figure 3.8: Illustration of part of the reduction.

Additionally, for every clause k ∈ K, let there be a single candidate (not a super-candidate) ck,
with the following relationships to the candidates corresponding to variables. Assume without loss
of generality that opposite literals (+v and −v) never occur in the same clause. Then,

• If +v ∈ k, then +v → ck, dv → ck, ev → ck and ck → av, ck → −v, ck → bv.

• If −v ∈ k, then −v → ck, dv → ck, ev → ck and ck → av, ck → +v, ck → bv.

• If {+v,−v} ∩ k = ∅, then bv → ck, dv → ck, ev → ck and ck → av, ck → +v, ck → −v.

The relationships among the ck are irrelevant. Finally, let the target Slater score be t2 = 6|V |M(M−
1)/2 + 36M2|V |(|V | − 1)/2 + 14M 2|V |+ t1M .

We now make some observations about the Slater problem instance that we have constructed.
First, by Theorem 1, we can restrict our attention to rankings in which the individual candidates
in any given super-candidate form a (contiguous) block. Recall that within such a block, we can
order the individual candidates to obtain a Slater score of M(M − 1)/2, which will give us a
total of 6|V |M(M − 1)/2 points. Now, if our ranking of two super-candidates is consistent with
the pairwise election graph, according to Lemma 1 this will increase the Slater score by M 2. By
contrast, the total number of Slater points that we can obtain from all the edges in the pairwise

4The letter c is skipped only to avoid confusion with the use of c as an arbitrary candidate.



56 CHAPTER 3. OUTCOME OPTIMIZATION

election graph that involve a candidate ck corresponding to a clause is at most |K| ·6|V |M + |K|2 <
6|K||V |M + |K|2M < M2. Hence, it is never worth it to sacrifice an agreement on an edge
involving two super-candidates to obtain a better result with regard to the remaining candidates,
and therefore we can initially restrict our attention to the super-candidates only as these are our
primary concern. It is clear that for v > v′ we should rank all the candidates in Cv above all
those in Cv′ . Doing this for all variables will increase the Slater score by 36M 2|V |(|V | − 1)/2.
Moreover, it is clear that for every v we should rank all the candidates in {av, +v,−v} above all
those in {bv, dv, ev}, and bv Â dv Â ev. Doing this for all variables will increase the Slater score
by (9M2 + 3M2)|V | = 12M2|V |. Finally, for every v, any one of the rankings +v Â −v Â av,
−v Â av Â +v, and av Â +v Â −v are equally good, leaving us a choice. Choosing one of these
for all variables increases the Slater score by another 2M 2|V |.

Now, as a secondary concern, we can analyze edges involving the ck. Agreement on an edge
between a ck and one of the super-candidates will increase the Slater score by M . By contrast, the
total number of Slater points that we can obtain from all the edges in the pairwise election graph
that involve only candidates ck is at most |K|(|K| − 1)/2 < |K|2 < M . Hence, it is never worth it
to sacrifice an agreement on an edge involving a super-candidate to obtain a better result with regard
to the edges involving only candidates ck, and hence we can restrict our attention to edges involving
a super-candidate. (In fact, the edges involving only candidates ck will turn out to have such a
minimal effect on the total score that we need not consider them at all.) Now, we note that whether
a candidate ck is ranked before all the candidates in Cv or after all of them makes no difference to
the total score, because three of these candidates will have an edge into ck, and three of them will
have have an edge out of ck. Nevertheless, a candidate ck could be ranked among the candidates Cv

for (at most) one v ∈ V . Because dv and ev always have edges into ck and are always ranked last
among the candidates in Cv, ranking ck after at least two of the candidates in Cv will never make a
positive contribution to the Slater score. Hence, there are only two possibilities to increase the Slater
score (by exactly M ) for a given ck: either rank ck directly after some +v such that +v ∈ k and +v

is ranked first among the Cv, or rank ck directly after some −v such that −v ∈ k and −v is ranked
first among the Cv. Of course, for each variable v, we can rank at most one of +v and −v first.
(We can also rank av first, but this will never help us.) Now we can see that this corresponds to the
MAXSAT problem: say that we set v to true if +v is ranked first, and to false if −v is ranked first.
Then, we can obtain an additional M points for a candidate ck if and only if clause k is satisfied,
and hence we can increase the Slater score by an additional t1M points if and only if we can set the
variables in such a way as to satisfy at least t1 clauses.

3.1.7 Extension to the Kemeny rule

The Kemeny rule [Kemeny, 1959] has significant similarities to the Slater rule. One definition of the
Kemeny rule that makes this clear is the following. Instead of minimizing the number of pairwise
elections that the final ranking disagrees with, the Kemeny rule tries to minimize the total weight of
such pairwise elections—where the weight of a pairwise election is the number of votes by which
its winner defeated its loser. This also shows that the Kemeny ranking problem is more general than
the Slater ranking problem, because it is easy to create votes that make all weights equal to each
other. (For example, adding the votes c1 Â c2 Â . . . Â cm and cm Â cm−1 Â . . . Â c3 Â c1 Â c2



3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 57

gives c1 two extra votes in its pairwise election against c2, but has a neutral effect on every other
pairwise election.)

The Kemeny rule has an important interpretation as a maximum likelihood estimator of the
“correct” ranking. Condorcet, an early social choice theorist, modeled elections as follows: there
is a correct ranking of the candidates, but every voter only has a noisy perception of this correct
ranking. Specifically, for every pair of candidates, any voter ranks the better candidate higher with
probability p > 1/2, independently.5 Given this noise model, the problem of finding the maximum
likelihood estimate of the correct outcome, given the votes, is well-defined. Condorcet solved this
problem for the cases of 2 and 3 candidates [de Caritat (Marquis de Condorcet), 1785]. Over two
centuries later, Young [1995] observed that the Kemeny rule is in fact the solution to Condorcet’s
problem for arbitrary numbers of candidates. Because of this, the Kemeny rule is sometimes also
referred to as the Kemeny-Young rule. We recently showed that some, but not all, of the other
well-known voting rules can also be interpreted as maximum likelihood estimators, under different
(more complex) noise models [Conitzer and Sandholm, 2005a].

The techniques presented in this section can be extended to apply to the Kemeny rule as well.
However, to apply to the Kemeny rule, the definition of a set of similar candidates must be modified
to state that for any fixed candidate outside the set, all candidates inside the set must receive exactly
the same number of votes in the pairwise election against that candidate (rather than merely obtain
the same overall result). This modified definition is much less likely to apply than the original
version.

This concludes the part of this dissertation studying the complexity of executing voting rules;
we will return to voting, specifically to the hardness of manipulating elections, in a few chapters, in
Section 8.2. In the next section, we study the complexity of the winner determination problem in
combinatorial auctions.

3.2 Combinatorial auctions with structured item graphs

This section describes work that we did jointly with Jonathan Derryberry (CMU).

As we mentioned at the beginning of this chapter, the winner determination problem in a general
combinatorial auction (CA) is NP-complete [Rothkopf et al., 1998]. Three main approaches have
been pursued to address this: 1) designing optimal search algorithms that are often fast (e.g., [Sand-
holm, 2002a; Sandholm et al., 2005c; Gonen and Lehmann, 2000; Fujishima et al., 1999; Boutilier,
2002]), but require exponential time in the worst case (unless P = NP), 2) designing approxima-
tion algorithms (e.g., [Hoos and Boutilier, 2000; Zurel and Nisan, 2001; van Hoesel and Müller,
2001])—but unfortunately no polytime algorithm can guarantee an approximation (unless ZPP =
NP) [Sandholm, 2002a], and 3) designing optimal polytime algorithms for restricted classes of CAs
(e.g., [Rothkopf et al., 1998; Tennenholtz, 2000; Penn and Tennenholtz, 2000; Sandholm and Suri,
2003]).

5Of course, the rankings of pairs of candidates cannot actually be completely independent, because if a is preferred to
b, and b to c, then a must be preferred to c. Nevertheless, all rankings receive some probability under this model, which
is all that is necessary for the maximum likelihood approach.
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This section falls roughly within the third approach: we present hardness and easiness results
for natural classes of CAs. However, we also develop a problem instance parameter (treewidth
of the item graph, described below), such that any CA instance falls within our framework, and
winner determination complexity is exponential in the parameter only. Like almost all of the work
on polynomial-time solvable combinatorial auctions, we restrict our attention to the case where any
two bids on disjoint subsets can be simultaneously accepted—that is, no XOR-constraints between
bids are allowed. (This can be circumvented by adding dummy items that encode these constraints,
as discussed in Section 2.2. However, the additional dummy items may significantly increase the
time required to solve the instance.)

Consider graphs with the auction’s items as vertices, which have the property that for any bid,
the items occurring in it constitute a connected set in the graph. (For instance, the fully connected
graph (with an edge between every pair of items) always has this property.) Such graphs can have
potentially useful structure (for example, the graph may be a tree). For any type of structure, one
can ask the following two questions: 1) how hard is the clearing problem when we are given a valid
item graph with the desired structure? 2) if the graph is not given beforehand, how hard is it to
construct a valid item graph with this structure (if it exists)? We will investigate both questions. 1)
was previously solved for the special case where the graph is a tree or a cycle [Sandholm and Suri,
2003]; 2) was previously solved for the special case where the graph is a line (as pointed out by
Sandholm and Suri [2003], using a result by Korte and Mohring [1989]) or a cycle (as pointed out
by Sandholm and Suri [2003], using a result by Eschen and Spinrad [1993]). In each of these cases,
a low-order polynomial algorithm was presented.

One practical use of such polynomially detectable and solvable special cases is to incorporate
them into optimal search algorithms [Sandholm and Suri, 2003]. At every node of the search tree,
we can detect whether the remaining problem is polynomially solvable, and if it is, we use the
polynomial special-purpose algorithm for solving it. Otherwise the search will continue into the
subtree.

Also, there are two pure uses for graph structures which make questions 1 and 2 easy. First, the
auctioneer can decide on the graph beforehand, and allow only bids on connected sets of items. (In
this case, 1 is most important, but 2 may also be useful if the auctioneer wants to make sure that bids
on certain bundles are allowed.) Second, the auctioneer can allow bids on any bundle; then, once the
bids have been submitted, attempt to construct an item graph that is valid for these bids; and finally,
clear the auction using this graph. Clearly, the second approach is only practical if real instances are
likely to have item graphs with some structure. To a lesser extent, this is also important for the first
approach: if bidders must bid on bundles too different from their desired bundles, economic value
will be lost.

Fortunately, real-world instances are likely to have graphs that are not fully connected. For
instance, an item may receive only isolated bids that do not involve any other items; or an item
may always co-occur with the same other item in bids. As a more detailed example, consider a
combinatorial auction for tourist activities in the Bay Area. One item for sale may be a ticket to
Alcatraz (in San Francisco). Another may be a ticket to the Children’s Discovery Museum (in San
Jose). A third item may be a Caltrain ticket to get back and forth between the two cities.6 Supposing

6The reason that this example focuses on the Bay Area is that we published the corresponding paper in the proceedings
of the AAAI-04 conference, which was held in San Jose.
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(for now) that there is no alternative transportation between the two cities, the only bundle that is
unlikely to receive a bid is {Alcatraz, Children’s Discovery Museum}, because the bidder will need
transportation (no matter which city she is based out of for the duration of her visit). Thus, a valid
graph for this auction is the line graph in Figure 3.9 (because its only disconnected set is the one we
just ruled out).

Caltrain Children’s
Museum

Alcatraz

Figure 3.9: A valid item graph.

To extend the example, suppose that there are alternative modes of transportation which are also
included in the auction: a Rental Car, and a Bus ticket. Now the following bundles are unlikely
to receive a bid: {Alcatraz, Children’s Discovery Museum} (because the bidder requires a form of
transportation) and any bundle containing more than one mode of transportation. Thus, the graph
in Figure 3.10 is a valid item graph (because we just ruled out all its disconnected sets). This graph

Children’s
Museum

Alcatraz Rental Car

Bus

Caltrain

Figure 3.10: Another valid item graph.

does not fall under any of the previously studied structures (it is not a line, tree, or cycle). Still, it
has interesting structure: for instance, it has a treewidth of 2.

The rest of this section is organized as follows. We first show that given an item graph with
bounded treewidth, the clearing problem can be solved in polynomial time. Next, we show how to
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construct an item tree (treewidth = 1), if it exists, in polynomial time. This answers the proposed
open question of whether this can be done [Sandholm and Suri, 2003]. (We leave open the question
of whether an item graph with small treewidth (say, 2) can be constructed if it exists.) We show that
constructing the item graph with the fewest edges is NP-complete (even when a graph of treewidth
2 is easy to construct). Finally, we study a variant where a bid is allowed to consist of k connected
sets, rather than just one. We show that the clearing problem is NP-complete even for line graphs
with k = 2, and the graph construction problem is NP-complete for line graphs with k = 5.

3.2.1 Item graphs

We first formally define item graphs.

Definition 11 Given a combinatorial auction clearing problem instance, the graph G = (I, E),
whose vertices correspond to the items in the instance, is a (valid) item graph if for every bid, the
set of items in that bid constitutes a connected set in G.

We emphasize that an item graph, in our definition, does not need to have an edge connecting
every pair of items that occurs in a bid. Rather, each pair only needs to be connected via a path
consisting only of items in the bid. In other words, the subgraph consisting of each bid must form
only one connected component, but it needs not be a clique.

3.2.2 Clearing with bounded treewidth item graphs

In this subsection, we show that combinatorial auctions can be cleared in polynomial time when an
item graph with bounded treewidth is given. This generalizes a result by Sandholm and Suri [Sand-
holm and Suri, 2003] which shows polynomial time clearability when the item graph is a tree
(treewidth = 1).7 Linear-time approximation algorithms for clearing when the item graph has
bounded treewidth have also been given, where the approximation ratio is the treewidth, plus
one [Akcoglu et al., 2002]. In contrast, we will clear the auction optimally.

First we will give a very brief review of treewidth.

Definition 12 A tree decomposition T of a graph G = (I, E) is a tree with the following properties.

1. Each v ∈ T has an associated set Iv of vertices in G.

2.
⋃

v∈T Iv = I (each vertex of G occurs somewhere in T ).

3. For each (i1, i2) ∈ E, there is some v ∈ T with i1, i2 ∈ Iv (each edge of G is contained
within some vertex of T ).

4. For each i ∈ I , {v ∈ T : i ∈ Iv} is connected in T .

We say that the width of the tree is maxv∈T |Iv| − 1.

7The special case of a tree can also be solved in polynomial time using algorithms for perfect constraint matrices [de
Vries and Vohra, 2003], but those algorithms are slower in practice.
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While the general problem of finding a tree decomposition of a graph with minimum width is
NP-complete, when the treewidth is bounded, the tree decomposition can be constructed in polyno-
mial time [Areborg et al., 1987]. Because we are only interested in the case where the treewidth of
the item graph is bounded, we may assume that the tree decomposition is given to us as well as the
graph itself.

The following (known) lemma will be useful in our proof.

Lemma 5 If X ⊆ I is a connected set in G, then {v ∈ T : Iv ∩X 6= {}} is connected in T .

We are now ready to present our first result.

Theorem 4 Suppose we are given a combinatorial auction problem instance, together with a tree
decomposition T with width tw of an item graph G. Then the optimal allocation can be determined
in O(|T |2(|B| + 1)tw+1) using dynamic programming, where B is the set of bids. (Both with and
without free disposal.)

Proof: Fix a root in T (the “top” of the tree). At every vertex v ∈ T with items Iv, consider all
functions f : Iv → B ∪ {0}, indicating possible assignments of the items to the bids. (f(i) = 0
indicates no commitment as to which bid item i is assigned to.) This set has size (|B| + 1)|Iv |.
Consider the subset FIv of these functions satisfying: 1. If f(i) = b, b must bid on i; 2. All bids in
the image f(Iv) include items that occur higher up in T than v; 3. If f(i) = b and b also bids on
item j ∈ Iv, then f(j) = b also.

The interpretation is that each function in FIv corresponds to a constraint from higher up in
the tree as to which bids should be accepted. We now compute, for every node v (starting from
the leaves and going up to the root), for every function f ∈ FIv , the maximum value that can be
obtained from items that occur in v and its descendant vertices (but not in any other vertices), and
that do not occur in bids in the image of f . (We observe that if v is the root node, there can be no
constraints from higher up in the tree (that is, there is only one f function), and the corresponding
value is the maximum value that can be obtained in the auction.) Denoting this value by r(v, f), we
can compute it using dynamic programming from the leaves up in the following manner:

• Consider all assignments g : {i ∈ Iv : f(i) = 0} → B ∪ {0},8 with the properties that: 1.
If g(i) = b, b must bid on i; 2. The image of g does not include any bids that include items
that occur higher in T than v. 3. If g(i) = b and b also bids on item j ∈ Iv, then f(j) = 0
and g(j) = b also. (Thus, g indicates which bids concerning the unallocated items in Iv we
are considering accepting, but only bids that we have not considered higher in the tree.)

• The value of such an assignment is
∑

b∈g(Iv) a(b)+
∑

w∈T :p(w)=v r(w, qw(f, g)), where g(Iv)
is the image of g, a(b) is the value of bid b, p(w) is the parent of w, and qw(f, g) : Iw → B
maps items occurring in a bid in the image of either f or g to that bid, and everything else to
0.

• The maximum such value over all g is r(v, f).
8In the case of no free disposal, g cannot map to 0.
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Because we need to do this computation once for each vertex v in T , the number of assignments
g is at most (|B|+ 1)|Iv | where |Iv| ≤ tw + 1, and for each assignment we need to do a lookup for
each of the children of v, this algorithm has running time O(|T |2(|B|+ 1)tw+1).

The allocation that the algorithm produces can be obtained going back down the tree, as follows:
at the root node, there is only one constraint function f mapping everything to 0 (because no bid has
items higher up the tree). Thus, consider the r-value maximizing assignment groot for the root; all
the bids in its image are accepted. Then, for each of its children, consider the r-value maximizing
assignment under the constraint imposed by groot; all the bids in the image of that assignment are
also accepted, etc.

To show that the algorithm works correctly, we need to show that no bids that are accepted high
up in the tree are “forgotten about” lower in the tree (and its items lower in the tree awarded to
other bids). Because the items in a bid constitute a connected set in the item graph G, by Lemma 5,
the vertices in T containing items from such a bid are also connected. Now, if a bid b is accepted
at the highest vertex v ∈ T containing an item in b (that is, the items in that vertex occurring in
b are awarded to b), each of v’s children must also award all its items occurring in b to b; and by
the connectedness pointed out above, for each child, either there is at least one such an item in that
child, or none of its descendants have any items occurring in b. In the former case, b is also in the
image of the child’s allocation function, and the same reasoning applies to its children, etc.; in the
latter case the fact that b has been accepted is irrelevant to this part of the tree. So, either an accepted
bid forces a constraint in a child, and the fact that the bid was accepted is propagated down the tree;
or the bid is irrelevant to all that child’s descendants as well, and can be safely forgotten about.

3.2.3 An algorithm for constructing a valid item tree

So far we discussed question 1: how to clear the auction given a valid item graph. In this subsection,
we move on to the second question of constructing the graph. We present a polynomial-time algo-
rithm that constructs an item tree (that is, an item graph without cycles), if one exists for the bids.
This closes a recognized open research problem [Sandholm and Suri, 2003], and is necessary if one
wants to use the polynomial item tree clearing algorithm as a subroutine of a search algorithm, as
discussed in the introduction.

First, we introduce some notation. In a combinatorial auction with bid set B and item set I ,
define items(b) ⊆ I to be the set of items in bid b. Also, let Tb refer to the subgraph of a tree
containing only vertices represented by items(b) and all edges among elements of items(b).

With these definitions in hand, we are now ready to present the main theorem of this subsection.
This theorem shows how to give a tree that “minimally violates” the key requirement of an item
graph (namely, that each bid bids on only one component). Thus, if it is actually possible to give a
valid item tree, such a tree will be produced by the algorithm.

Theorem 5 Given an arbitrary set of bids B for items I , a corresponding tree T that minimizes
∑

b∈B

the number of connected components in Tb

can be found in O(|B| · |I|2) time.
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Proof: Consider the algorithm MAKETREE(B, I) shown below, which returns the maximum span-
ning tree of the complete undirected weighted graph over vertices I in which each edge (i, j) has a
weight equal to the number of bids b such that i, j ∈ items(b).
MAKETREE(B, I)
1 A← An |I| × |I| matrix of 0s
2 for each b in B
3 do for each i in items(b)
4 do for each j 6= i in items(b)
5 do A(i, j)← A(i, j) + 1
6 return the maximum spanning tree of the graph A

The running time of MAKETREE(B, I) is O(|B| · |I|2) from the triply nested for loops, plus
the time needed to find the maximum spanning tree. The maximum spanning tree can be found
in O(|I|2) time [Cormen et al., 1990], so the running time of the algorithm as a whole is O(|B| ·
|I|2) + O(|I|2) = O(|B| · |I|2).

To see that MAKETREE(B, I) returns the tree T with the minimum sum of connected compo-
nents across all Tb, note that the total weight of T can be written as

∑

b∈B

the number of edges in T among items(b).

Because T is a tree, each subgraph Tb is a forest, and the number of edges in any forest equals
the number of vertices in the forest, minus the number of components in the forest. It follows that
we can rewrite the above expression as

s =
∑

b∈B

|items(b)|− the number of components in Tb.

Because
∑

b∈B |items(b)| is a constant, maximizing s is the same as minimizing the sum of the
number of connected components across all Tb.

In particular, if an item tree exists for the given bids, then in that tree, each bid bids on only one
connected component, so the summation in Theorem 5 is equal to the number of bids. Because each
term in the summation must always be greater than or equal to 1, this tree minimizes the summation.
Thus, MAKETREE will return a tree for which the summation in Theorem 5 is equal to the number
of bids as well. But this can only happen if each bid bids on only one connected component. So,
MAKETREE will return an item tree.

Corollary 1 MAKETREE will return a valid item tree if and only if one exists, in O(|B| · |I|2) time.
(And whether a tree is a valid item tree can be checked in O(|B| · |I|) time.)

Implications for bid sets without an item tree

The above result presents an algorithm for constructing a tree T from a set of bids that minimizes
the sum of the number of connected components across all Tb. Even when the tree returned is not
a valid item tree, we can still use it to help us clear the auction, as follows. Suppose MAKETREE
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was “close” to being able to construct an item tree, in the sense that only a few bids were split
into multiple components. Then, we could use brute force to determine which of these split bids
to accept (we could search over all subsets of these split bids), and solve the rest of the problem
using dynamic programming as in [Sandholm and Suri, 2003]. If the number of split bids is k,
this algorithm takes O(2k · |B| · |I|) time (so it is efficient if k is small). We note, however, that
MAKETREE(B, I) does not minimize the number of split bids (k), as would be desirable for the
proposed search technique. Rather, it minimizes the total number of components (summed over
bids). Thus, it may prefer splitting many bids into few components each, over splitting few bids into
many components each. So there may exist trees that have fewer split bids than the tree returned
by MAKETREE (and it would be interesting to try to come up with other algorithms that try to
minimize the number of split bids).

Also, MAKETREE does not solve the general problem of constructing an item graph of small
treewidth if one exists. The straightforward adaptation of the MAKETREE algorithm to finding an
item graph of treewidth 2 (where we find the maximum spanning graph of treewidth 2 in the last
step) does not always provide a valid item graph, even when a valid item graph of treewidth 2 exists.
To see why, consider an auction instance for which the graph in Figure 3.11 is the unique item graph
of treewidth 2 (for example, because for each edge, there is a bid on only its two endpoints). If there

C

D

B

A

Figure 3.11: A counterexample.

are many bids on the bundle {A, B, D}, and few other bids, the adapted algorithm will draw the
edge (A, D). As a result, it will fail to draw one of the other edges (because otherwise the graph
would have treewidth 3), and thus the graph will not be a valid item graph.

For now, we leave open the question of how to construct a valid item graph with treewidth 2 (or
3, or 4, ...) if one exists. However, in the next subsection, we solve a related question.

3.2.4 Constructing the item graph with the fewest edges is hard

The more edges an item graph has, the less structure there is in the instance. A natural question
is therefore to construct the valid item graph with the fewest edges. It should be pointed out that
this is not necessarily the best graph to work on. For example, given our algorithm, a graph of
treewidth 2 may be more desirable to work on than a graph with fewer edges of high treewidth. On
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the other hand, assuming that the items cannot be disjoint into two separate components (which is
easy to check), a tree is always a graph with the minimum number of edges (and if a tree exists, then
only trees have the minimum number of edges). So in this case, generating a graph of minimum
treewidth is the same as generating a graph with the minimum number of edges.

We next show that constructing the graph with the fewest edges is hard. Interestingly, the
question is hard already for instances with treewidth 2. (For instances of treewidth 1 (forests) it
is easy: divide the items into as many separate components (with no bids across more than one
component) as possible, and run our MAKETREE algorithm on each.) Thus, if a graph of treewidth
2 can be constructed in polynomial time (and P6=NP), the algorithm for doing so cannot be used to
get the fewest edges—unlike the case of treewidth 1.

Theorem 6 Determining whether an item tree with fewer than q edges exists is NP-complete, even
when an item graph of treewidth 2 is guaranteed to exist and each bid is on at most 5 items, and
whether or not the item tree we construct is required to be of treewidth 2.

Proof: The problem is in NP because we can nondeterministically generate a graph with the items
as vertices and at most k edges, and check whether it is valid item graph. To show that the problem
is NP-complete, we reduce an arbitrary 3SAT instance to the following set of items and bids. For
every variable v ∈ V , let there be two items i+v, i−v. Furthermore, let there be two more items,
i0 and i1. Let the set of bids be as follows. For every v ∈ V , let there be bids on the following
sets: {i0, i+v}, {i0, i−v}, {i+v, i−v}, {i+v, i−v, i1}. Finally, for every clause c ∈ C, let there be a
bid on {i+v : +v ∈ c} ∪ {i−v : −v ∈ c} ∪ {i0, i1} (the set of all items corresponding to literals
in the clause, plus the two extra items—we note that because we are reducing from 3SAT, these are
at most 5 items). Let the target number of edges be q = 4|V |. We proceed to show that the two
instances are equivalent.

First, suppose there exists a solution to the 3SAT instance. Then, let there be an edge between
any two items which constitute a bid by themselves; additionally, let there be an edge between i+v

and i1 whenever v is set to true in the SAT solution, and an edge between i−v and i1 whenever v is
set to false in the SAT solution (for a total of 4|V | edges). We observe that all the bids of the form
{i+v, i−v, i1} are now connected. Also, for any c ∈ C, because the 3SAT solution satisfied c, either
i1 is connected to some i+v with +v ∈ c, or i1 is connected to some i−v with −v ∈ c. (And all
the items besides i1 in the bid corresponding to c are clearly connected.) So all the bids constitute
connected subsets, and there exists a valid item graph with at most 4|V | edges. (Also, this is a series
parallel graph, and such graphs have treewidth 2.)

Now, suppose there exists a valid item graph with at most 4|V | edges. Of course, there must
be an edge between any two items which constitute a bid by themselves; and because of the bids
on three items, for every v ∈ V , there must be an edge either between i+v and i1, or between i−v

and i1. This already requires 4|V | edges, so there cannot be any more edges. Because each bid
corresponding to a clause c must be connected, there must be either an edge between some i+v with
+v ∈ c and i1, or between some i−v with −v ∈ c and i1. But then, it follows that if we set v to true
if there is an edge between i+v and i1, and to false if there is an edge between i−v and i1, we have
a solution to the SAT instance.

All that remains to show is that in these instances, a valid item graph of treewidth 2 always exists.
Consider the graph that has an edge between any two items which constitute a bid by themselves;
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an edge between i+v and i1 for any v ∈ V ; and an edge between i0 and i1 (for a total of 4|V | + 1
edges). This is a series parallel graph, and such graphs have treewidth 2.

3.2.5 Applications

The techniques in this section can be applied to any combinatorial auction winner determination
instance whose bids happen to be consistent with some (structured) item graph. Specifically, there
is no requirement that there is an item graph that makes sense for the items for sale a priori (before
the bids arrive), based on the inherent properties of the items. Nevertheless, it is important to identify
settings in which such a priori sensible item graphs do exist, for at least the following reasons. First,
as described in the introduction, the auctioneer may wish to guarantee that the techniques described
in this section can be applied by disallowing any bids that are not consistent with a prespecified item
graph. This prespecified item graph should be chosen to be at least approximately consistent with
bidders’ likely valuations to minimize the loss of economic value due to this restriction. Second,
especially in the case where the number of bidders is large, it is unlikely that the bids will be
consistent with any structured item graph, unless the items are fundamentally related to each other
in the manner prescribed by such an item graph.

Some settings for which a priori sensible item graphs exist have already been proposed. For
example, Sandholm and Suri propose a web shopping scenario in which webpages describing the
items for sale are structured as a tree, and bidders can, upon deciding that they wish to include the
item on a webpage in their bid, continue to browse to neighboring pages [Sandholm and Suri, 2003].

In this subsection, we lay out two new settings in which the inherent relation between the items
naturally suggests an item graph with the desired properties. In both of these settings, the “items”
for sale do not correspond exactly to the resources under consideration. In the first setting we
discuss, combinatorial renting, an item consists of the permission to use a given resource in a given
time period. In the second setting, an item consists of a given set of conditions under which a
given resource is allocated to the item’s winner. We will make this more precise in the following
subsubsections.

Combinatorial renting

In a combinatorial renting auction, we have a set of resources R and a number of time periods T over
which to rent out these resources. In this context, an “item” for sale is a resource-time period pair
(r, t) ∈ R× {1, 2, . . . , T}, and a bid consists of a subset of such pairs, representing at which times
the bidder wants to rent which resources, together with a value offered for this subset. For example,
a company renting out construction equipment may have a cement mixer, a truck, and a crane, each
of which can be rented out over the course of three periods. A construction company working
on a project may then bid (for example) ({(mixer, 1), (truck, 2), (crane, 2), (truck, 3)}, $15000),
indicating that it wants to rent the mixer in the first period, the truck and the crane in the second
period, and the truck again in the third period, for a total value of $15,000.

The constraint that we do not rent the same resource to multiple bidders at the same time cor-
responds to the constraint that we do not award the same item (r, t) to multiple bidders, and thus
the winner determination problem reduces to the standard combinatorial auction winner determi-
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nation problem. Moreover, the combinatorial renting auction winner determination problem is in
general no easier than the standard combinatorial auction winner determination problem: for ex-
ample, if T = 1, we effectively have a standard combinatorial auction in which items correspond
directly to resources. The renting setting becomes more interesting when the multitude of the items
is mostly due to the time dimension rather than the resource dimension. Thus, let us assume that
the number of resources is small, i.e. bounded by a constant k. Additionally, suppose that the bids
satisfy the following restriction: the set of time periods in which a bid demands items is connected.
That is, for a bid on bundle B, for any t1, t2, t3 ∈ {1, 2, . . . , T}, t1 < t3 < t2, r1, r2 ∈ R with
(r1, t1), (r2, t2) ∈ B, there must exist some r3 ∈ R such that (r3, t3) ∈ B. This is a sensible
restriction when each bid corresponds to a project for which resources must be rented (e.g. the
construction example above) and the project is scheduled for a particular time interval.

Under this restriction, the following is a valid item graph:
• For every t ∈ {1, 2, . . . , T}, draw a subgraph Gt whose vertex set is {(r, t) : r ∈ R}, and

make it fully connected (edges between every pair of vertices).

• Connect the subgraphs by, for every t ∈ {1, 2, . . . , T−1}, drawing an edge from every vertex
in Gt to every vertex in Gt+1.

(r1, T)

(r3, T)

(r2, T)

(r1, 2)(r1, 1)

(r3, 1)

(r2, 1)

(r3, 2)

(r2, 2)

G1 G2 GT

...

Figure 3.12: Item graph for renting three resources r1, r2, r3.

Moreover, this graph has bounded treewidth as shown by the following tree decomposition (in which
Vt is the vertex set of Gt):

V      , V V1, V2 V2, V3 V3, V4 T−1 T...

Figure 3.13: Tree decomposition in renting setting.

(In fact, because the tree decomposition is a path, this shows that the original graph has bounded
pathwidth.) The width of this decomposition is 2|R|−1. This is an a priori bound, and it is possible
that given the actual bids, an item graph with even smaller treewidth exists.

We now turn to a different setting in which our techniques can be applied.

Conditional awarding of the items

In a combinatorial conditional awarding auction, we again have a set of resources R; in addition,
we have a set of possible future states of the world S. (For now, we will only concern ourselves with
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a single point in the future, say, the beginning of the next fiscal year.) In this context, an “item” for
sale is a resource-state pair (r, s) ∈ R×S, and a bid consists of a subset of such pairs, representing
under which conditions the bidder wants to be awarded which resources. For example, there may be
three states of the world, one in which the price of oil is below $40 per barrel, one in which the price
is between $40 and $60, and one in which the price is above $60. A car dealer may have a sport
utility vehicle (SUV) and a small car for sale. Then, a bidder may bid ({(SUV, po < $40), (small
car, po < $40), (SUV, $40 ≤ po ≤ $60), (small car, po > $60)}, $30000) indicating that she wants
to receive both cars when the price of oil is low, only the SUV when the price of oil is in the middle
range, and only the small car when the price of oil is in the high range; and that this total package
is worth $30,000 to her. (In reality, the bidder may wish to make different payments depending on
which state of the world materializes; this can be incorporated into the model by using the bidder’s
expected payment.) We note that the “items” for sale are effectively securities that bidders can use
to hedge against uncertain future events.

The constraint that we do not award the same resource to multiple bidders in the same state
of the world corresponds to the constraint that we do not award the same item (r, s) to multiple
bidders, and thus the winner determination problem reduces to the standard combinatorial auction
winner determination problem. Also, in the case where |S| = 1, we effectively have a standard
combinatorial auction in which items correspond directly to resources. Thus, as in the combinatorial
renting setting, the most interesting case to look at is where R is small but S is potentially large.
One interesting setting to look at is the one in which there is a linear order on the state space S. For
example, the “price of oil” state space described above has such an order (higher vs. lower prices).
This case is technically similar to the renting problem studied in the previous subsubsection: if
the number of items is bounded by a constant k, and the states in which a bid demands items are
connected (or there are only small gaps), then we can solve the problem in polynomial time. The
connectedness property is likely to hold when the bidder is interested in a set of similar states (for
example, the bidder wishes to hedge against high and very high oil prices).

The state space may also be the cross product of multiple linear orders. For example, a state
could represent a combination of the price of oil and the exchange rate between the US dollar and
the Euro. In this case, we may expect that the set of states in which a bid demands items is connected
in a grid graph such as the following:

We can turn such a grid into a valid item graph by replacing each state with a fully connected
graph (a clique) whose vertices are all items that involve that state (one for every resource), and
drawing edges between any pair of items in adjacent cliques. The treewidth of this graph is at most
|R| times the treewidth of the grid (the graph over states), because given any tree decomposition
of the grid, we can replace each state by all the items involving that state (one for every resource)
to obtain a valid tree decomposition of the item graph. Unfortunately, grids do not have bounded
treewidth; rather, an m × n grid has treewidth Θ(min{m, n}). Of course, this is still much better
than the trivial bound of mn that would correspond to exhaustive search.

Combining both settings: conditional renting

As a third application, we may wish to combine the applications of the previous two subsubsections
and let the bidder rent the items conditionally on the state of the world at the time of the renting. For
example, the construction company described in the first subsubsection may wish to rent different
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Euro>$1.5

Euro<$1.1

$1.1<=Euro<=$1.5

oil price>$60$40<=oil price<=$60oil price<$40

Figure 3.14: State space graph based on oil price and US$/Euro exchange rate.

resources depending on the price of oil (or the weather, or anything else) at the times the resources
are to be rented. Hence, the context in which a resource is awarded now consists of a (time,state)
pair. If there is a linear order on the state space, we may expect that the set of contexts in which a
bid demands items is connected in a grid graph such as the following:

time period 2time period 1 time period 3

oil price<$40

oil price>$60

$40<=oil price<=$60

Figure 3.15: Context space graph based on time and state space (oil price).

Technically, this leads to same problem as the two-dimensional state space described in the
previous subsubsection.

3.2.6 Bids on multiple connected sets

In this subsection, we investigate what happens if we reduce the requirements on item graphs some-
what. Specifically, let the requirement be that for each bid, the items form at most k connected
components in the graph. (The case where k = 1 is the one we have studied up to this point.) So, to
see if a bid is valid given the graph, consider how many connected components the items in the bid
constitute in the graph; if (and only if) there are at most k components, the bid is valid. Figure 3.16
shows an example item tree. One bid bids on all the items encapsulated by rectangles (2 connected
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components); the other, on all the items encapsulated by ellipses (3 connected components). Thus,
if k = 2, then the first bid is valid, but the second one is not. (Equivalently, the graph is not valid
for the second bid.)

Figure 3.16: An item tree.

As we will see, both clearing when a simple graph is known, and detecting whether a simple
graph exists, become hard for k > 1.

Clearing is hard even with 2 connected sets on a line graph

Even if the item graph is a line, it is hard to clear auctions in which bidders may bundle two intervals
together. To show this, we prove the following slightly stronger theorem.

Theorem 7 If an item graph is created that consists of two disconnected line graphs, and bidders
are permitted to bundle one connected component from each line, then determining if the auction
can generate revenue r is NP-complete.

Proof: The problem is in NP because the general clearing problem is in NP. To show that it is
NP-complete, an arbitrary instance of VERTEXCOVER will be reduced to a corresponding auction
problem. In VERTEXCOVER, the goal is to determine whether there exists a set of vertices C of
size at most k in a graph G = (V, E) such that for each edge (x, y) ∈ E, either x ∈ C or y ∈ C.

To perform the reduction, given G = (V, E), create an item ui for each edge ei. Place all of the
ui items into the upper line. In addition, for each vertex vi ∈ V , create the items l

ej
vi for each edge ej

that vi is part of. For each vi, align all of its corresponding l
ej
vi items into a contiguous interval on the

lower line. Now, create the following bids: 1. A bid of price 2 for each “edge item pair” (l
ej
vi , uj).

2. A bid of price 1 for each “vertex interval bundle,” {lej
vi |for all ej for which vi is part of ej}.

We now show that there exists a vertex cover of size at most k exactly when the optimal revenue
of the corresponding auction is at least 2 · |E|+ |V | − k.

Suppose there is a vertex cover of size k for a graph G = (V, E). Then it is possible to sell all
|E| of the edge items breaking up only k of the vertex interval bundles. The resulting revenue if
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only those k intervals are rendered unsellable by matching one or more of their members with edge
items is r = 2 · |E| + |V | − k as required; the profit is 2 for each of the edge pairs of the form
(l

ej
vi , uj) that are sold, plus 1 for each of the vertex interval bundles that have not had any of their

items matched to edges.
Conversely, suppose there is a way to achieve revenue r = 2 · |E| + |V | − k. Suppose all of

the edge item pairs were sold in this case. Then, because |V | − k vertex intervals were sold, only
k were spoiled by selling some of their items with edge pairs. These k vertices can be used as a
vertex cover. On the other hand, suppose not all edge pairs were sold. Then the revenue could be
increased by selling the rest of the edge pairs even if it means spoiling additional vertex bundles
because edge pairs carry a price of 2 while vertex interval bundles only have price 1. This implies
that it is possible, by selling all of the edge item pairs, to acheive revenue r ′ = 2 · |E|+ |V |−k′ > r
so that k′ < k, where k′ represents the size of a possible vertex cover.

Corollary 2 The problem of optimally clearing bids that bundle together at most two connected
components of a line item graph is NP-hard because joining the two lines of item graphs of the form
discussed in Theorem 7 constitutes a trivially correct reduction.

Constructing a line graph is hard even with 5 connected sets

We now move on to the task of constructing a simple item graph that is valid when bids are allowed
to consist of multiple components. The graph construction question is perhaps less interesting
here because, as we just showed, clearing remains hard even if we are given an item line graph.
Nevertheless, the graph may still be helpful in reducing the clearing time: maybe the clearing time
bound can be reduced to a smaller exponential function, or maybe it can reduce the clearing time in
practice. In this subsection, we show that unfortunately, detecting whether a valid line graph exists
with multiple (5) components is also NP-complete.

Lemma 6 Suppose a bid is allowed to contain up to k connected components of items. Then, if
there are m ≥ 2k + 5 items, there exists a set of O(mk) bids such that there is exactly one line
graph (one ordering of the items, up to symmetry) consistent with these bids.

Proof: Label the items 1 through m. For any subset of k + 1 items of which at least two items
are successors (i and i + 1), let there be a bid on that set of items. We observe that there are at
most (m − 1)

(

m
k−1

)

such bids (choosing the successive pair of items first, and then the remaining
k − 1—of course we are double-counting some combinations this way, but we only want an upper
bound), which is O(mk). Ordering the items 1, 2, . . . , m (or equivalently m, m− 1, . . . , 1), we get
a valid item graph (because any two successive items are adjacent in this graph, there are at most k
components in every bid). What remains to show is that if the items are ordered differently, there
is at least one bid with k + 1 components. If the items are ordered differently, there is at least one
pair of successive (according to the original labeling) items i, i + 1 which are not adjacent in the
graph. Consider the set of these two items, plus every item that has an odd index in the ordering of
this graph (besides the ones that coincide with, or are adjacent to, the first two). This set has at least
2+(k +3)−4 = k +1 items, two of which are adjacent in the original labeling, and each of which
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is a separate component. It follows that there exists a subset of this set which constituted one of the
bids, and now has k + 1 components.

Lemma 7 Suppose each bid is allowed to contain at most k connected components, and we have
a set of bids that forces a unique ordering of the items (up to symmetry). Then suppose we replace
one item r with two new items n1 and n2, and let every bid bidding on the original item bid on
both the new items. Then the only valid orderings of the new set of items are the valid orderings for
the original set, where r is replaced by n1, n2 (where these two can be placed in any order). This
extends to replacing multiple items by pairs.

Proof: First we show that these orderings are indeed valid. Clearly, no bid that did not include r
will now have more components. Also, no bid that did include r will now have more components,
because the component including r is still intact as a single component (since the bid bids on both n1

and n2). So the new orderings are valid. Now we will show that these are the only valid orderings.
We observe that if we remove one of n1, n2 from a given valid ordering as well as from the bids,
then we must still have a valid ordering. But because now r has been replaced by a single item,
we know that the valid ordering for this is unique (up to symmetry). It follows that n1 and n2 had
taken r’s place in the unique valid ordering. The argument extends straightforwardly to replacing
multiple items by item pairs.

Theorem 8 Given the bids, detecting whether an ordering of the items (a line graph) exists such
that each bidder bids on at most 5 connected components is NP-complete.

Proof: The problem is in NP because we can nondeterministically generate an ordering of the
items, and check whether any bid is bidding on more than 5 components. To show that the problem
is NP-hard, we reduce an arbitrary 3SAT instance to the following sets of items and bids. For every
variable v ∈ V , let there be four items, i∗v, iv, i+v, i−v. Let the set of bids be as follows. First,
using Lemma 6 and Lemma 7, let there be O(m5) bids such that the only remaining valid orderings
are i∗v1

, iv1
, {i+v1

, i−v1
}, i∗v2

, iv2
, {i+v2

, i−v2
}, . . . , i∗vn

, ivn , {i+vn , i−vn}. (Here, two items are in
set notation if their relative order is not yet determined.) Finally, for every clause c ∈ C, let there
be a bid bidding on any iv with v occurring in c (whether it is +v or −v), and on any i+v with +v
occurring in c, and on any i−v with −v occurring in c. (So, 6 items in total.) We show the instances
are equivalent.

First suppose there exists a solution to the 3SAT instance. Then, whenever a variable v is set to
true, let i+v be ordered to the left of i−v; otherwise, let i+v be ordered to the right of i−v. Then, for
every clause, for some literal +v (or −v) occurring in that clause, i+v (or i−v) is adjacent to iv, and
it follows that the bid corresponding to the clause has at most 5 connected components. So, there is
a valid ordering.

Now suppose there exists a valid ordering. Because of the i∗v items, the only items in a bid
corresponding to a clause that can possibly be adjacent are an i+v and the corresponding iv, or
an i−v and the corresponding iv. This must happen at least once for every bid corresponding to a
clause (or the bid would have 6 components. But then, if we set a variable v to true if i+v and iv



3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 73

are adjacent, and to false otherwise, every clause must have at least one +v in it where v is set to
true, or at least one −v in it where v is set to false. It follows that there is a solution to the 3SAT
instance.

This concludes the part of this dissertation studying the complexity of the winner determination
problem in combinatorial auctions; we will return to combinatorial auctions and exchanges (specif-
ically, to the use of the VCG mechanism in such settings) in the chapter after the next chapter,
Section 5.1. In the next section, we study the complexity of the outcome optimization problem in
the setting of expressive preference aggregation for donations to charities.

3.3 Expressive preference aggregation for donations to charities

In this section, we study the outcome optimization problem for expressive preference aggregation
for donations to charities, as defined in Section 2.3. We will refer to this problem as the clearing
problem. The formal definition follows.

Definition 13 (DONATION-CLEARING) We are given a set of n bids (each given by a utility
function for each charity, and a payment willingness function) over charities c1, c2, . . . , cm as de-
scribed in Section 2.3. Additionally, we are given an objective function (e.g. surplus, or total
amount donated). We are asked to find an objective-maximizing valid outcome.

One aspect of the problem is not captured by this definition: if we want a decentralized solu-
tion, in which bidders donate their money to the charity directly (rather than to a center who then
redistributes it), then we also need to specify which bidder donates how much to which charity. As-
suming that we are given the centralized solution, any greedy algorithm that increases the cash flow
from any bidder who has not yet paid enough, to any charity that has not yet received enough, until
either the bidder has paid enough or the charity has received enough, will provide such a specifica-
tion. Recall, however, that we may wish to allow for bidders to state that they do not wish to donate
to certain charities. In general, checking whether a given centralized solution can be accomplished
through decentralized payments when there are such constraints can be modeled as a MAX-FLOW
problem. In the MAX-FLOW instance, there is an edge from the source node s to each bidder bj ,
with a capacity of πbj (as specified in the centralized solution); an edge from each bidder bj to each
charity ci that the bidder is willing to donate money to, with a capacity of∞; and an edge from each
charity ci to the target node t with capacity πci (as specified in the centralized solution).

In the remainder of this section, we will no longer consider the problem of decentralizing solu-
tions; rather, we focus on the DONATION-CLEARING problem. How difficult the DONATION-
CLEARING problem is depends on the types of bids used and the language in which they are
expressed. This is the topic of the next subsection.

3.3.1 Hardness of clearing the market

In this subsection, we will show that the clearing problem is completely inapproximable, even
when every bidder’s utility function is linear (with slope 0 or 1 in each charity’s payments), each
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bidder cares either about at most two charities or about all charities equally, and each bidder’s
payment willingness function is a step function. We will reduce from MAX2SAT (given a formula
in conjunctive normal form (where each clause has two literals) and a target number of satisfied
clauses T , does there exist an assignment of truth values to the variables that makes at least T
clauses true?), which is NP-complete [Garey et al., 1976].

Theorem 9 There exists a reduction from MAX2SAT instances to DONATION-CLEARING instances
such that 1. If the MAX2SAT instance has no solution, then the only valid outcome is the zero out-
come (no bidder pays anything and no charity receives anything); 2. Otherwise, there exists a
solution with positive surplus. Additionally, the DONATION-CLEARING instances that we reduce
to have the following properties: 1. Every ui

j is a line; that is, the utility that each bidder derives
from any charity is linear; 2. All the ui

j have slope either 0 or 1; 3. Every bidder either has at
most 2 charities that affect her utility (with slope 1), or all charities affect her utility (with slope 1);
4. Every bid is a threshold bid; that is, every bidder’s payment willingness function wj is a step
function.

Proof: The problem is in NP because we can nondeterministically choose the payments to be made
and received, and check the validity and objective value of this outcome.

In the following, we will represent bids as follows: ({(ck, ak)}, s, t) indicates that uk
j (πck

) =
akπck

(this function is 0 for ck not mentioned in the bid), and wj(uj) = t for uj ≥ s, wj(uj) = 0
otherwise.

To show NP-hardness, we reduce an arbitrary MAX2SAT instance, given by a set of clauses
K = {k} = {(l1k, l

2
k)} over a variable set V together with a target number of satisfied clauses T , to

the following DONATION-CLEARING instance. Let the set of charities be as follows. For every
literal l ∈ L, there is a charity cl. Then, let the set of bids be as follows. For every variable v, there is
a bid bv = ({(c+v, 1), (c−v, 1)}, 2, 1−

1
4|V |). For every literal l, there is a bid bl = ({(cl, 1)}, 2, 1).

For every clause k = {l1k, l
2
k} ∈ K, there is a bid bk = ({(cl1k

, 1), (cl2k
, 1)}, 2, 1

8|V ||K|). Finally,
there is a single bid that values all charities equally: b0 = ({(c1, 1), (c2, 1), . . . , (cm, 1)}, 2|V | +

T
8|V ||K| ,

1
4 + 1

16|V ||K|). We show the two instances are equivalent.
First, suppose there exists a solution to the MAX2SAT instance. If in this solution, l is true,

then let πcl
= 2 + T

8|V |2|K| ; otherwise πcl
= 0. Also, the only bids that are not accepted (meaning

the threshold is not met) are the bl where l is false, and the bk such that both of l1k, l
2
k are false.

First we show that no bidder whose bid is accepted pays more than she is willing to. For each
bv, either c+v or c−v receives at least 2, so this bidder’s threshold has been met. For each bl,
either l is false and the bid is not accepted, or l is true, cl receives at least 2, and the threshold
has been met. For each bk, either both of l1k, l

2
k are false and the bid is not accepted, or at least

one of them (say lik) is true (that is, k is satisfied) and clik
receives at least 2, and the threshold

has been met. Finally, because the total amount received by the charities is 2|V | + T
8|V ||K| , b0’s

threshold has also been met. The total amount that can be extracted from the accepted bids is at
least |V |(1− 1

4|V |)+ |V |+T 1
8|V ||K| +

1
4 + 1

16|V ||K|) = 2|V |+ T
8|V ||K| +

1
16|V ||K| > 2|V |+ T

8|V ||K| ,
so there is positive surplus. So there exists a solution with positive surplus to the DONATION-
CLEARING instance.
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Now suppose there exists a nonzero outcome in the DONATION-CLEARING instance. First
we show that it is not possible (for any v ∈ V ) that both b+v and b−v are accepted. For, this would
require that πc+v + πc−v ≥ 4. The bids bv, b+v, b−v cannot contribute more than 3, so we need
another 1 at least. It is easily seen that for any other v′, accepting any subset of {bv′ , b+v′ , b−v′}
would require that at least as much is given to c+v′ and c−v′ as can be extracted from these bids,
so this cannot help. Finally, all the other bids combined can contribute at most |K| 1

8|V ||K| + 1
4 +

1
16|V ||K| < 1. It follows that we can interpret the outcome in the DONATION-CLEARING instance
as a partial assignment of truth values to variables: v is set to true if b+v is accepted, and to false if
b−v is accepted. All that is left to show is that this partial assignment satisfies at least T clauses.

First we show that if a clause bid bk is accepted, then either bl1k
or bl2k

is accepted (and thus
either l1k or l2k is set to true, hence k is satisfied). If bk is accepted, at least one of cl1k

and cl2k
must

be receiving at least 1; without loss of generality, say it is cl1k
, and say l1k corresponds to variable

v1
k (that is, it is +v1

k or −v1
k). If cl1k

does not receive at least 2, bl1k
is not accepted, and it is easy

to check that the bids bv1
k
, b+v1

k
, b−v1

k
contribute (at least) 1 less than is paid to c+v1

k
and c+v1

k
. But

this is the same situation that we analyzed before, and we know it is impossible. All that remains to
show is that at least T clause bids are accepted.

We now show that b0 is accepted. Suppose it is not; then one of the bv must be accepted. (The
solution is nonzero by assumption; if only some bk are accepted, the total payment from these bids
is at most |K| 1

8|V ||K| < 1, which is not enough for any bid to be accepted; and if one of the bl is
accepted, then the threshold for the corresponding bv is also reached.) For this v, bv1

k
, b+v1

k
, b−v1

k

contribute (at least) 1
4|V | less than the total payments to c+v and c−v. Again, the other bv and bl

cannot (by themselves) help to close this gap; and the bk can contribute at most |K| 1
8|V ||K| < 1

4|V | .
It follows that b0 is accepted.

Now, in order for b0 to be accepted, a total of 2|V | + T
8|V ||K| must be donated. Because is not

possible (for any v ∈ V ) that both b+v and b−v are accepted, it follows that the total payment by the
bv and the bl can be at most 2|V | − 1

4 . Adding b0’s payment of 1
4 + 1

16|V ||K| to this, we still need
T− 1

2

8|V ||K| from the bk. But each one of them contributes at most 1
8|V ||K| , so at least T of them must be

accepted.

Corollary 3 Unless P=NP, there is no polynomial-time algorithm for approximating DONATION-
CLEARING (with either the surplus or the total amount donated as the objective) within any ratio
f(n), where f is a nonzero function of the size of the instance. This holds even if the DONATION-
CLEARING structures satisfy all the properties given in Theorem 9.

Proof: Suppose we had such a polynomial time algorithm, and applied it to the DONATION-
CLEARING instances that were reduced from MAX2SAT instances in Theorem 9. It would return
a nonzero solution when the MAX2SAT instance has a solution, and a zero solution otherwise. So
we can decide whether arbitrary MAX2SAT instances are satisfiable this way, and it would follow
that P=NP.

This should not be interpreted to mean that our approach is infeasible. First, as we will show,
there are very expressive families of bids for which the problem is solvable in polynomial time.
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Second, NP-completeness is often overcome in practice (especially when the stakes are high). For
instance, even though the problem of clearing combinatorial auctions is NP-complete [Rothkopf
et al., 1998] (even to approximate [Sandholm, 2002a]), they are typically solved to optimality in
practice [Sandholm et al., 2006; Sandholm, 2006].

3.3.2 Mixed integer programming formulation

In this subsection, we give a mixed integer programming (MIP) formulation for the general prob-
lem. We also discuss in which special cases this formulation reduces to a linear programming (LP)
formulation. In such cases, the problem is solvable in polynomial time, because linear programs
can be solved in polynomial time [Khachiyan, 1979].

The variables of the MIP defining the final outcome are the payments made to the charities,
denoted by πci , and the payments extracted from the bidders, πbj . In the case where we try to avoid
direct payments and let the bidders pay the charities directly, we add variables πci,bj indicating
how much bj pays to ci, with the constraints that for each ci, πci ≤

∑

bj

πci,bj ; and for each bj ,

πbj ≥
∑

ci

πci,bj . Additionally, there is a constraint πci,bj = 0 whenever bidder bj is unwilling to pay

charity ci. The rest of the MIP can be phrased in terms of the πci and πbj .

The objectives we have discussed earlier are both linear: surplus is given by
n
∑

j=1
πbj −

m
∑

i=1
πci ,

and total amount donated is given by
m
∑

i=1
πci (coefficients can be added to represent different weights

on the different charities in the objective).
The constraint that the outcome should be valid (no deficit) is given simply by:

n
∑

j=1
πbj ≥

m
∑

i=1
πci .

For every bidder, for every charity, we define an additional utility variable ui
j indicating the

utility that this bidder derives from the payment to this charity. The bidder’s total utility is given by
another variable uj , with the constraint that uj =

m
∑

i=1
ui

j .

Each ui
j is given as a function of πci by the (piecewise linear) function provided by the bidder.

In order to represent this function in the MIP formulation, we will merely place upper bounding
constraints on ui

j , so that it cannot exceed the given functions. The MIP solver can then push the ui
j

variables all the way up to the constraint, in order to extract as much payment from this bidder as
possible. In the case where the ui

j are concave, this is easy: if (sl, tl) and (sl+1, tl+1) are endpoints
of a finite linear segment in the function, we add the constraint that ui

j ≤ tl +
πci−sl

sl+1−sl
(tl+1 − tl).

If the final (infinite) segment starts at (sk, tk) and has slope d, we add the constraint that ui
j ≤

tk +d(πci−sk). Using the fact that the function is concave, for each value of πci , the tightest upper
bound on ui

j is the one corresponding to the segment above that value of πci , and therefore these
constraints are sufficient to force the correct value of ui

j .
When the function is not concave, we require (for the first time) some binary variables. First,

we define another point on the function: (sk+1, tk+1) = (sk +M, tk +dM), where d is the slope of
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the infinite segment and M is any upper bound on the πcj . This has the effect that we will never be
on the infinite segment again. Now, let xi,j

l be an indicator variable that should be 1 if πci is below

the lth segment of the function, and 0 otherwise. To effect this, first add a constraint
k
∑

l=0

xi,j
l = 1.

Now, we aim to represent πci as a weighted average of its two neighboring si,j
l . For 0 ≤ l ≤ k + 1,

let λi,j
l be the weight on si,j

l . We add the constraint
k+1
∑

l=0

λi,j
l = 1. Also, for 0 ≤ l ≤ k + 1, we

add the constraint λi,j
l ≤ xl−1 + xl (where x−1 and xk+1 are defined to be zero), so that indeed

only the two neighboring si,j
l have nonzero weight. Now we add the constraint πci =

k+1
∑

l=0

si,j
l λi,j

l ,

and now the λi,j
l must be set correctly. Then, we can set ui

j =
k+1
∑

l=0

ti,jl λi,j
l . (This is a standard MIP

technique [Nemhauser and Wolsey, 1999].)
Finally, each πbj is bounded by a function of uj by the (piecewise linear) function provided

by the bidder (wj). Representing this function is entirely analogous to how we represented ui
j as a

function of πci . (Again we will need binary variables only if the function is not concave.)
Because we only use binary variables when either a utility function ui

j or a payment willingness
function wj is not concave, it follows that if all of these are concave, our MIP formulation is simply
a linear program—which can be solved in polynomial time. Thus:

Theorem 10 If all functions ui
j and wj are concave (and piecewise linear), the DONATION-

CLEARING problem can be solved in polynomial time using linear programming.

Even if some of these functions are not concave, we can simply replace each such function
by the smallest upper bounding concave function, and use the linear programming formulation to
obtain an upper bound on the objective—which may be useful in a search formulation of the general
problem.

3.3.3 Why one cannot do much better than linear programming

One may wonder if, for the special cases of the DONATION-CLEARING problem that can be
solved in polynomial time with linear programming, there exist special-purpose algorithms that are
much faster than linear programming algorithms. In this subsection, we show that this is not the
case. We give a reduction from (the decision variant of) the general linear programming problem
to (the decision variant of) a special case of the DONATION-CLEARING problem (which can be
solved in polynomial time using linear programming). (The decision variant of an optimization
problem asks the binary question: “Can the objective value exceed o?”) Thus, any special-purpose
algorithm for solving the decision variant of this special case of the DONATION-CLEARING prob-
lem could be used to solve a decision question about an arbitrary linear program just as fast. (And
thus, if we are willing to call the algorithm a logarithmic number of times, we can solve the opti-
mization version of the linear program.)

We first observe that for linear programming, a decision question about the objective can simply
be phrased as another constraint in the LP (forcing the objective to exceed the given value); then, the
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original decision question coincides with asking whether the resulting linear program has a feasible
solution.

Theorem 11 The question of whether an LP (given by a set of linear constraints9) has a feasible
solution can be modeled as a DONATION-CLEARING instance with payment maximization as the
objective, with 2v charities and v + c bids (where v is the number of variables in the LP, and c
is the number of constraints). In this model, each bid bj has only linear ui

j functions, and is a

partially acceptable threshold bid (wj(u) = tj for u ≥ sj , otherwise wj(u) =
utj
sj

). The v bids
corresponding to the variables mention only two charities each; the c bids corresponding to the
constraints mention only two times the number of variables in the corresponding constraint.

Proof: For every variable xi in the LP, let there be two charities, c+xi and c−xi . Let H be some
number such that if there is a feasible solution to the LP, there is one in which every variable has
absolute value at most H .

In the following, we will represent bids as follows: ({(ck, ak)}, s, t) indicates that uk
j (πck

) =

akπck
(this function is 0 for ck not mentioned in the bid), and wj(uj) = t for uj ≥ s, wj(uj) =

ujt
s

otherwise.
For every variable xi in the LP, let there be a bid bxi = ({(c+xi , 1), (c−xi , 1)}, 2H, 2H − c

v ).
For every constraint

∑

i
rj
i xi ≤ sj in the linear program, let there be a bid bj = ({(c−xi , r

j
i )}i:rj

i >0
∪

{(c+xi ,−rj
i )}i:rj

i <0
, (
∑

i
|rj

i |)H − sj , 1). Let the target total amount donated be 2vH .

Suppose there is a feasible solution (x∗
1, x

∗
2, . . . , x

∗
v) to the LP. Without loss of generality, we

can suppose that |x∗
i | ≤ H for all i. Then, in the DONATION-CLEARING instance, for every i,

let πc+xi
= H + x∗

i , and let πc−xi
= H − x∗

i (for a total payment of 2H to these two charities).
This allows us to extract the maximum payment from the bids bxi—a total payment of 2vH − c.
Additionally, the utility of bidder bj is now

∑

i:rj
i >0

rj
i (H−x∗

i )+
∑

i:rj
i <0

−rj
i (H +x∗

i ) = (
∑

i
|rj

i |)H−

∑

i
rj
i x

∗
i ≥ (

∑

i
|rj

i |)H − sj (where the last inequality stems from the fact that constraint j must be

satisfied in the LP solution), so it follows we can extract the maximum payment from all the bidders
bj , for a total payment of c. It follows that we can extract the required 2vH payment from the
bidders, and there exists a solution to the DONATION-CLEARING instance with a total amount
donated of at least 2vH .

Now suppose there is a solution to the DONATION-CLEARING instance with a total amount
donated of at least vH . Then the maximum payment must be extracted from each bidder. From
the fact that the maximum payment must be extracted from each bidder bxi , it follows that for each
i, πc+xi

+ πc−xi
≥ 2H . Because the maximum extractable total payment is 2vH , it follows that

for each i, πc+xi
+ πc−xi

= 2H . Let x∗
i = πc+xi

− H = H − πc−xi
. Then, from the fact that

the maximum payment must be extracted from each bidder bj , it follows that (
∑

i
|rj

i |)H − sj ≤

∑

i:rj
i >0

rj
i πc−xi

+
∑

i:rj
i <0

−rj
i πc+xi

=
∑

i:rj
i >0

rj
i (H−x∗

i )+
∑

i:rj
i <0

−rj
i (H +x∗

i ) = (
∑

i
|rj

i |)H−
∑

i
rj
i x

∗
i .

9These constraints must include bounds on the variables (including nonnegativity bounds), if any.
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Equivalently,
∑

i
rj
i x

∗
i ≤ sj . It follows that the x∗

i constitute a feasible solution to the LP.

3.3.4 Quasilinear bids

Another class of bids of interest is the class of quasilinear bids. In a quasilinear bid, the bidder’s
payment willingness function is linear in utility: that is, wj = uj . (Because the units of utility are
arbitrary, we may as well let them correspond exactly to units of money—so we do not need a con-
stant multiplier.) In most cases, quasilinearity is an unreasonable assumption: for example, usually
bidders have a limited budget for donations, so that the payment willingness will stop increasing
in utility after some point (or at least increase slower in the case of a “softer” budget constraint).
Nevertheless, quasilinearity may be a reasonable assumption in the case where the bidders are large
organizations with large budgets, and the charities are a few small projects requiring relatively little
money. In this setting, once a certain small amount has been donated to a charity, a bidder will
derive no more utility from more money being donated from that charity. Thus, the bidders will
never reach a high enough utility for their budget constraint (even when it is soft) to take effect, and
thus a linear approximation of their payment willingness function is reasonable. Another reason for
studying the quasilinear setting is that it is the easiest setting for mechanism design, which we will
discuss shortly. In this subsection, we will see that the clearing problem is much easier in the case
of quasilinear bids.

First, we address the case where we are trying to maximize surplus (which is the most natural
setting for mechanism design). The key observation here is that when bids are quasilinear, the
clearing problem decomposes across charities.

Lemma 8 Suppose all bids are quasilinear, and surplus is the objective. Then we can clear the
market optimally by clearing the market for each charity individually. That is, for each bidder bj ,
let πbj =

∑

ci

πbi
j
. Then, for each charity ci, maximize (

∑

bj

πbi
j
) − πci , under the constraint that for

every bidder bj , πbi
j
≤ ui

j(πci).

Proof: The resulting solution is certainly valid: first of all, at least as much money is collected as is
given away, because

∑

bj

πbj −
∑

ci

πci =
∑

bj

∑

ci

πbi
j
−

∑

ci

πci =
∑

ci

((
∑

bj

πbi
j
)− πci)—and the terms of

this summation are the objectives of the individual optimization problems, each of which can be set
at least to 0 (by setting all the variables are set to 0), so it follows that the expression is nonnegative.
Second, no bidder bj pays more than she is willing to, because uj − πbj =

∑

ci

ui
j(πci) −

∑

ci

πbi
j

=
∑

ci

(ui
j(πci)−πbi

j
)—and the terms of this summation are nonnegative by the constraints we imposed

on the individual optimization problems.
All that remains to show is that the solution is optimal. Because in an optimal solution, we will

extract as much payment from the bidders as possible given the πci , all we need to show is that the
πci are set optimally by this approach. Let π∗

ci
be the amount paid to charity πci in some optimal

solution. If we change this amount to π′
ci

and leave everything else unchanged, this will only affect
the payment that we can extract from the bidders because of this particular charity, and the difference
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in surplus will be
∑

bj

ui
j(π

′
ci

)−ui
j(π

∗
ci

)−π′
ci

+π∗
ci

. This expression is, of course, 0 if π′
ci

= π∗
ci

. But

now notice that this expression is maximized as a function of π ′
ci

by the decomposed solution for
this charity (the terms without π′

ci
in them do not matter, and of course in the decomposed solution

we always set πbi
j

= ui
j(πci)). It follows that if we change πci to the decomposed solution, the

change in surplus will be at least 0 (and the solution will still be valid). Thus, we can change the πci

one by one to the decomposed solution without ever losing any surplus.

Theorem 12 When all bids are quasilinear and surplus is the objective, DONATION-CLEARING
can be done in linear time.

Proof: By Lemma 8, we can solve the problem separately for each charity. For charity ci, this
amounts to maximizing (

∑

bj

ui
j(πci))− πci as a function of πci . Because all its terms are piecewise

linear functions, this whole function is piecewise linear, and must be maximized at one of the points
where it is nondifferentiable. It follows that we need only check all the points at which one of the
terms is nondifferentiable.

Unfortunately, the decomposing lemma does not hold for payment maximization.

Proposition 1 When the objective is payment maximization, even when bids are quasilinear, the
solution obtained by decomposing the problem across charities is in general not optimal (even with
concave bids).

Proof: Consider a single bidder b1 placing the following quasilinear bid over two charities c1 and c2:
u1

1(πc1) = 2πci for 0 ≤ πci ≤ 1, u1
1(πc1) = 2 +

πci−1

4 otherwise; u2
1(πc2) =

πci
2 . The decomposed

solution is πc1 = 7
3 , πc2 = 0, for a total donation of 7

3 . But the solution πc1 = 1, πc2 = 2 is also
valid, for a total donation of 3 > 7

3 .

In fact, when payment maximization is the objective, DONATION-CLEARING remains (weakly)
NP-complete in general.

Theorem 13 DONATION-CLEARING is (weakly) NP-complete when payment maximization is the
objective, even when every bid is concerns only one charity (and has a step-function utility function
for this charity), and is quasilinear.

Proof: That the problem is in NP follows from the fact that the more general problem is in NP. To
show NP-hardness, we reduce an arbitrary KNAPSACK instance (given by m pairs (ki, vi)1≤i≤m,
a cost limit K, and a target value V ), to the following DONATION-CLEARING instance. Let there
be m + 1 charities, c0, c1, . . . , cm. Let there be one quasilinear bidder b0 bidding u0

0(πc0) = 0 for
0 ≤ πc0 ≤ 1, u0

0(πc0) = K + 1 otherwise. Additionally, for each 1 ≤ j ≤ m, let there be a bidder
bj bidding uj

j(πcj ) = 0 for 0 ≤ πcj < ki, uj
j(πcj ) = εvi otherwise (where ε

∑

1≤j≤m
vi < 1). Let the

target total amount donated be K + 1 + εV . We now show the two instances are equivalent.



3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 81

First, suppose there exists a solution to the KNAPSACK instance, that is, a function f :

{1, . . . , m} → {0, 1} so that
m
∑

i=1
f(i)ki ≤ K and

m
∑

i=1
f(i)vi ≥ V . Then, let πc0 = 1 + εV +

K −
m
∑

i=1
f(i)ki, and for i > 0, πci = f(i)ki, for a total donated of K + 1 + εV . Because

1 + εV + K −
m
∑

i=1
f(i)ki ≥ 1, b0’s utility is K + 1. For j > 0, bj’s utility is f(j)εvj , for a

total utility of
m
∑

j=1
f(j)εvj ≥ εV for these m bidders. It follows that the total utility is at least

the total amount donated, and the outcome is valid. So there exists a solution to the DONATION-
CLEARING instance.

Now suppose there exists a solution to the DONATION-CLEARING instance. Let f : {1, . . . , m} →
{0, 1} be given by f(i) = 0 if πci < ki, and f(i) = 1 otherwise. Because the total donated is at
least K +1+εV , and the amount that is extractable from the bidders is at most K +1+

m
∑

j=1
f(j)εvj ,

it follows that
m
∑

j=1
f(j)vj ≥ V . Also, because the total amount donated to charities 1 through m

can be at most K + ε
∑

1≤j≤m
vi < K + 1, it follows that

m
∑

j=1
f(j)ki < K + 1. Because the ki are

integers, this means
m
∑

j=1
f(j)ki ≤ K. So there exists a solution to the KNAPSACK instance.

However, when the bids are also concave, a simple greedy clearing algorithm is optimal.

Theorem 14 Given a DONATION-CLEARING instance with payment maximization as the ob-
jective where all bids are quasilinear and concave, consider the following algorithm. Start with

πci = 0 for all charities. Then, letting γci =

d
P

bj

ui
j(πci )

dπci
(at nondifferentiable points, these deriva-

tives should be taken from the right), increase πc∗i
(where c∗i ∈ arg maxci γci), until either γc∗i

is no
longer the highest (in which case, recompute c∗i and start increasing the corresponding payment),
or

∑

bj

uj =
∑

ci

πci and γc∗i
< 1. Finally, let πbj = uj .

Proof: The outcome is valid because everyone pays exactly what she is willing to, and because there
is no budget deficit:

∑

bj

πbj =
∑

bj

uj =
∑

ci

πci . To show optimality, let π∗
ci

be the amount paid to

charity ci in some optimal solution, and let π′
ci

be the amount paid to charity i in the solution given
by the greedy algorithm. We first observe that it is not possible that for any i, π∗

ci
≥ π′

ci
with at least

one of these inequalities being strict. This is because at the solution found by the greedy algorithm,

γc∗i
is less than 1; hence, using concavity, if π∗

ci
> π′

ci
, then

π∗
ci
∫

π′
ci

γcidπci < π∗
ci
− π′

ci
. In other words,

the additional payment that needs to be made to the charity is less than the additional payment
that can be collected from the bidders because of this charity. Because the surplus at the greedy
algorithm’s solution is 0, it follows that if for any i, π∗

ci
≥ π′

ci
with at least one of these inequalities

being strict, the surplus at the optimal solution woud be negative, and hence the solution would not
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be valid. Thus, either for all i, π∗
ci
≤ π′

ci
(but in this case the greedy solution has at least as large

a total payment as the optimal solution, and we are done); or there exist i, j such that π∗
ci

> π′
ci

but π∗
cj

< π′
cj

. It cannot be the case that γci(π
′
ci

) > γcj (π
∗
cj

), for then the greedy algorithm would
have increased πci beyond π′

ci
before increasing πcj beyond π∗

cj
. So, γci(π

′
ci

) ≤ γcj (π
∗
cj

). Because
π∗

ci
> π′

ci
, and using concavity, if we decrease π∗

ci
and simultaneously increase π∗

cj
by the same

amount, we will not decrease the total payment we can extract—while keeping the payment to be
made to the charities the same. It follows this cannot make the solution worse or invalid. We can
keep doing this until there is no longer a pair i, j such that π∗

ci
> π′

ci
but π∗

cj
< πcj , and by the

previous we know that for all i, π∗
ci
≤ π′

ci
—and hence the greedy solution is optimal.

(A similar greedy algorithm works when the objective is surplus and the bids are quasilinear
and concave, with as only difference that we stop increasing the payments as soon as γc∗i

< 1.)

This concludes the part of this dissertation studying the complexity of the outcome optimization
problem for expressive preference aggregation for donations to charities; we will study mechanism
design aspects of this setting in the chapter after the next chapter, Section 5.2. In the next sec-
tion, we study the complexity of the outcome optimization problem in more general settings with
externalities.

3.4 Expressive preference aggregation in settings with externalities

In this section, we study the optimization problem for expressive preference aggregation in settings
with externalities, as defined in Section 2.4. We study the following two computational problems.
(Recall that a solution is feasible if no agent prefers the default outcome (all variables set to 0) to
it.)

Definition 14 (FEASIBLE-CONCESSIONS) We are given a concessions setting (as defined in
Section 2.4). We are asked whether there exists a nontrivial feasible solution.

Definition 15 (SW-MAXIMIZING-CONCESSIONS) We are given a concessions setting (as de-
fined in Section 2.4). We are asked to find a feasible solution that maximizes social welfare (the sum
of the agents’ utilities).

The following shows that if the first problem is hard, the second problem is hard to approximate
to any ratio.

Proposition 2 Suppose that FEASIBLE-CONCESSIONS is NP-hard even under some constraints
on the instance (but no constraint that prohibits adding another agent that derives positive utility
from any nontrivial setting of the variables of the other agents). Then it is NP-hard to approximate
SW-MAXIMIZING-CONCESSIONS to any positive ratio, even under the same constraints.

Proof: We reduce an arbitrary FEASIBLE-CONCESSIONS instance to a SW-MAXIMIZING-
CONCESSIONS instance that is identical, except that a single additional agent has been added
that derives positive utility from any nontrivial setting of the variable(s) of the other agents, and
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to whose variables the other agents are completely indifferent (they cannot derive any utility from
the new agent’s variable(s)). If the original instance has no nontrivial feasible solution, then neither
does the new instance, and the maximal social welfare that can be obtained is 0. On the other hand,
if the original instance has a nontrivial feasible solution, then the new instance has a feasible solu-
tion with positive social welfare: the exact same solution is still feasible, and the new agent will get
positive utility (and the others, nonnegative utility). It follows that any algorithm that approximates
SW-MAXIMIZING-CONCESSIONS to some positive ratio will return a social welfare of 0 if there
is no solution to the FEASIBLE-CONCESSIONS problem, and positive social welfare if there is a
solution—and thus the algorithm could be used to solve an NP-hard problem.

3.4.1 Hardness with positive and negative externalities

We first show that if we do not make the assumption of only negative externalities, then finding
a feasible solution is NP-complete even when each agent controls only one variable. (In all the
problems that we study, membership in NP is straightforward, so we just give the hardness proof.)

Theorem 15 FEASIBLE-CONCESSIONS is NP-complete, even when all utility functions decom-
pose (and all the components uk

i are step functions), and each agent controls only one variable.

Proof: We reduce an arbitrary SAT instance (given by variables V and clauses C) to the following
FEASIBLE-CONCESSIONS instance. Let the set of agents be as follows. For each variable v ∈ V ,
let there be an agent av, controlling a single variable xav . Also, for every clause c ∈ C, let there
be an agent ac, controlling a single variable xac . Finally, let there be a single agent a0 controlling
xa0

. Let all the utility functions decompose, as follows: For any v ∈ V , uav
av

(xav) = −δxav≥1. For
any v ∈ V , ua0

av
(xa0

) = δxa0
≥1. For any c ∈ C, uac

ac
(xac) = (n(c)− 2|V |)δxac≥1 where n(c) is the

number of variables that occur in c in negated form. For any c ∈ C, ua0
ac

(xa0
) = (2|V | − 1)δxa0

≥1.
For any c ∈ C and v ∈ V where +v occurs in c, uav

ac
(xav) = δxav≥1. For any c ∈ C and

v ∈ V where −v occurs in c, uav
ac

(xav) = −δxav≥1. ua0
a0

(xa0
) = −|C|δxa0

≥1. For any c ∈ C,
uac

a0
(xac) = δxac≥1. All the other functions are 0 everywhere. We proceed to show that the instances

are equivalent.
First suppose there exists a solution to the SAT instance. Then, let xav = 1 if v is set to true

in the solution, and xav = 0 if v is set to false in the solution. Let xac = 1 for all c ∈ C, and let
xa0

= 1. Then, the utility of every av is at least−1+1 = 0. Also, the utility of a0 is−|C|+|C| = 0.
And, the utility of every ac is n(c)− 2|V |+ 2|V | − 1 + pt(c)− nt(c) = n(c)− 1 + pt(c)− nt(c),
where pt(c) is the number of variables that occur positively in c and are set to true, and nt(c) is
the number of variables that occur negatively in c and are set to true. Of course, pt(c) ≥ 0 and
−nt(c) ≥ −n(c); and if at least one of the variables that occur positively in c is set to true, or at
least one of the variables that occur negatively in c is set to false, then pt(c)− nt(c) ≥ −n(c) + 1,
so that the utility of ac is at least n(c) − 1 − n(c) + 1 = 0. But this is always the case, because
the assignment satisfies the clause. So there exists a solution to the FEASIBLE-CONCESSIONS
instance.

Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. If it were
the case that xa0

< 1, then for all the av we would have xav < 1 (or av would have a negative
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utility), and for all the ac we would have xac < 1 (because otherwise the highest utility possible
for ac is n(c) − 2|V | < 0, because all the xa0

are below 1). So the solution would be trivial. It
follows that xa0

≥ 1. Thus, in order for a0 to have nonnegative utility, it follows that for all c ∈ C,
xac ≥ 1. Now, let v be set to true if xav = 1, and to false if xav = 0. So the utility of every ac

is n(c) − 2|V | + 2|V | − 1 + pt(c) − nt(c) = n(c) − 1 + pt(c) − nt(c). In order for this to be
nonnegative, we must have (for any c) that either nt(c) < n(c) (at least one variable that occurs
negatively in c is set to false) or pt(c) > 0 (at least one variable that occurs positively in c is set to
true). So we have a satisfying assignment.

3.4.2 Hardness with only negative externalities

Next, we show that even if we do make the assumption of only negative externalities, then finding a
feasible solution is still NP-complete, even when each agent controls at most two variables.

Theorem 16 FEASIBLE-CONCESSIONS is NP-complete, even when there are only negative exter-
nalities, all utility functions decompose (and all the components are step functions), and each agent
controls at most two variables.

Proof: We reduce an arbitrary SAT instance to the following FEASIBLE-CONCESSIONS instance.
Let the set of agents be as follows. For each variable v ∈ V , let there be an agent av, controlling
variables x+

av
and x−

av
. Also, for every clause c ∈ C, let there be an agent ac, controlling a single

variable xac . Let all the utility functions decompose, as follows: For any v ∈ V , uav ,+
av (x+

av
) =

−|C|δx+
av≥1, and uav ,−

av (x−
av

) = −|C|δx−
av≥1. For any v ∈ V and c ∈ C, uac

av
(xac) = δxac≥1. For

any c ∈ C, uac
ac

(xac) = −δxac≥1. For any c ∈ C and v ∈ V where +v occurs in c, uav ,+
ac (x+

av
) =

δx+
av≥1; and for any c ∈ C and v ∈ V where −v occurs in c, uav ,−

ac (x−
av

) = δx−
av≥1. All the other

functions are 0 everywhere. We proceed to show that the instances are equivalent.
First suppose there exists a solution to the SAT instance. Then, let x+

av
= 1 if v is set to true in

the solution, and x+
av

= 0 otherwise; and, let x−
av

= 1 if v is set to false in the solution, and x−
av

= 0
otherwise. Let xac = 1 for all c ∈ C. Then, the utility of every av is −|C| + |C| = 0. Also, the
utility of every ac is at least −1 + 1 (because all clauses are satisfied in the solution, there is at least
one +v ∈ c with x+

av
= 1, or at least one −v ∈ c with x−

av
= 1. So there exists a solution to the

FEASIBLE-CONCESSIONS instance.
Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. At least one

of the x+
av

or at least one of the x−
av

must be set nontrivially (≥ 1), because otherwise no xac can
be set nontrivially. But this implies that for any clause c ∈ C, xac ≥ 1 (for otherwise the av

with a nontrivial setting of its variables would have negative utility). So that none of the ac have
nonnegative utility, it must be the case that for any c ∈ C, either there is at least one +v ∈ c with
x+

av
≥ 1, or at least one −v ∈ c with x−

av
≥ 1. Also, for no variable v ∈ V can it be the case that

both x+
av
≥ 1 and x−

av
≥ 1, as this would leave av with negative utility. But then, letting v be set to

true if x+
av
≥ 1, and to false otherwise must satisfy every clause. So there exists a solution to the

SAT instance.
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3.4.3 An algorithm for the case of only negative externalities and one variable per
agent

We have shown that with both positive and negative externalities, finding a feasible solution is hard
even when each agent controls only one variable; and with only negative externalities, finding a
feasible solution is hard even when each agent controls at most two variables. In this subsection
we show that these results are, in a sense, tight, by giving an algorithm for the case where there
are only negative externalities and each agent controls only one variable. Under some minimal
assumptions, this algorithm will return (or converge to) the maximal feasible solution, that is, the
solution in which the variables are set to values that are as large as possible. Although the setting
for this algorithm may appear very restricted, it still allows for the solution of interesting problems.
For example, consider governments negotiating over by how much to reduce their countries’ carbon
dioxide emissions, for the purpose of reducing global warming.

We will not require the assumption of decomposing utility functions in this subsection (except
where stated). The following claim shows the sense in which the maximal solution is well-defined
in the setting under discussion (there cannot be multiple maximal solutions, and under a continuity
assumption, a maximal solution exists).

Theorem 17 In a concessions setting with only negative externalities and in which each agent
controls only one variable, let x1, x2, . . . , xn and x′

1, x
′
2, . . . , x

′
n be two feasible solutions. Then

max{x1, x
′
1}, max{x2, x

′
2}, . . . , max{xn, x′

n} is also a feasible solution. Moreover, if all the utility
functions are continuous, then, letting Xi be the set of values for xi that occur in some feasible
solution, sup(X1), sup(X2), . . . , sup(Xn) is also a feasible solution.

Proof: For the first claim, we need to show that every agent i receives nonnegative utility in the
proposed solution. Suppose without loss of generality that xi ≥ x′

i. Then, we have ui(max{x1, x
′
1},

max{x2, x
′
2}, . . . , max{xi, x

′
i}, . . . , max{xn, x′

n}) = ui(max{x1, x
′
1}, max{x2, x

′
2}, . . . , xi, . . . ,

max{xn, x′
n}) ≥ ui(x1, x2, . . . , xi, . . . , xn), where the inequality stems from the fact that there

are only negative externalities. But the last expression is nonnegative because the first solution is
feasible.

For the second claim, we will find a sequence of feasible solutions that converges to the proposed
solution. By continuity, any agent’s utility at the limit point must be the limit of that agent’s utility
in the sequence of feasible solutions; and because these solutions are all feasible, this limit must
be nonnegative. For each agent i, let {(xi,j

1 , xi,j
2 , . . . , xi,j

n )}j∈N be a sequence of feasible solutions
with limj→∞ xi,j

i = sup(Xi). By repeated application of the first claim, we have that (for any j)
maxi{x

i,j
1 }, maxi{x

i,j
2 }, . . . , maxi{x

i,j
n } is a feasible solution, giving us a new sequence of feasible

solutions. Moreover, because this new sequence dominates every one of the original sequences, and
for each agent i there is at least one original sequence where the ith element converges to sup(Xi),
the sequence converges to the solution sup(X1), sup(X2), . . . , sup(Xn).

We are now ready to present the algorithm. First, we give an informal description. The algorithm
proceeds in stages: in each stage, for each agent, it eliminates all the values for that agent’s variable
that would result in a negative utility for that agent regardless of how the other agents set their
variables (given that they use values that have not yet been eliminated).
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ALGORITHM 1
1. for i := 1 to n {
2. X0

i := R
≥0 (alternatively, X0

i := [0, M ] where M is some upper bound) }
3. t := 0
4. repeat until ((∀i) X t

i = Xt−1
i ) {

5. t := t + 1
6. for i := 1 to n {
7. Xt

i := {xi ∈ Xt−1
i : ∃x1 ∈ Xt−1

1 , x2 ∈ Xt−1
2 , . . . , xi−1 ∈ Xt−1

i−1 , xi+1 ∈

Xt−1
i+1 , . . . , xn ∈ Xt−1

n : ui(x1, x2, . . . , xi, . . . , xn) ≥ 0} } }

The set updates in step 7 of the algorithm are simple to perform, because all the X t
i always take the

form [0, r], [0, r), or R
≥0 (because we are in a concessions setting), and in step 7 it never hurts to

choose values for x1, x2, . . . , xi−1, xi+1, . . . , xn that are as large as possible (because we have only
negative externalities). Roughly, the goal of the algorithm is for sup(X t

1), sup(Xt
2), . . . , sup(Xt

n) to
converge to the maximal feasible solution (that is, the feasible solution such that all of the variables
are set to values at least as large as in any other feasible solution). We now show that the algorithm
is sound, in the sense that it does not eliminate values of the xi that occur in feasible solutions.

Theorem 18 Suppose we are running Algorithm 1 in a concessions setting with only negative ex-
ternalities where each agent controls only one variable. If for some t, r /∈ X t

i , then there is no
feasible solution with xi set to r.

Proof: We will prove this by induction on t. For t = 0 the theorem is vacuously true. Now suppose
we have proved it true for t = k; we will prove it true for t = k + 1. By the induction assumption,
all feasible solutions lie within Xk

1 × . . .×Xk
n . But if r 6= Xk+1

i , this means exactly that there is no
feasible solution in Xk

1 × . . .×Xk
n with xi = r. It follows there is no feasible solution with xi = r

at all.

However, the algorithm is not complete, in the sense that (for some “unnatural” functions) it
does not eliminate all the values of the xi that do not occur in feasible solutions.

Proposition 3 Suppose we are running Algorithm 1 in a concessions setting with only negative
externalities where each agent controls only one variable. For some (discontinuous) utility functions
(even ones that decompose), the algorithm will terminate with nontrivial X t

i even though the only
feasible solution is the zero solution.

Proof: Consider the following symmetric example:

• u1
1(x1) = −x1 for x1 < 1, u1

1(x1) = −2 otherwise;

• u2
1(x2) = (x2)

2 for x2 < 1, u2
1(x2) = 1 otherwise;

• u1
2(x1) = (x1)

2 for x1 < 1, u1
2(x1) = 1 otherwise;

• u2
2(x2) = −x2 for x2 < 1, u2

2(x2) = −2 otherwise.
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There is no solution with x1 ≥ 1 or x2 ≥ 1, because the corresponding agent’s utility would
definitely be negative. In order for agent 1 to have nonnegative utility we must have (x2)

2 ≥ x1.
Unless they are both zero, this implies x2 > x1. Similarly, in order for agent 2 to have nonnegative
utility we must have (x1)

2 ≥ x2, and unless they are both zero, this implies x1 > x2. It follows
that the only solution is the zero solution. Unfortunately, in the algorithm, we first get X1

1 = X1
2 =

[0, 1); then also, we get X2
1 = X2

2 = [0, 1) (for any x1 < 1, we can set x2 =
√

(x1) < 1 and agent
1 will get utility 0, and similarly for agent 2). So the algorithm terminates.

However, if we make some reasonable assumptions on the utility functions (specifically, that
they are either continuous or piecewise constant), then the algorithm is complete, in the sense that
it will (eventually) remove any values of the xi that are too large to occur in any feasible solu-
tion. Thus, the algorithm converges to the solution. We will present the case of continuous utility
functions first.

Theorem 19 Suppose we are running Algorithm 1 in a concessions setting with only negative
externalities where each agent controls only one variable. Suppose that all the utility functions
are continuous. Also, suppose that all the X0

i are initialized to [0, M ]. Then, all the X t
i are

closed sets. Moreover, if the algorithm terminates after the tth iteration of the repeat loop, then
sup(Xt

1), sup(Xt
2), . . . , sup(Xt

n) is feasible, and it is the maximal solution. If the algorithm does
not terminate, then limt→∞ sup(Xt

1), limt→∞ sup(Xt
2), . . . , limt→∞ sup(Xt

n) is feasible, and it is
the maximal solution.

Proof: First we show that all the X t
i are closed sets, by induction on t. For t = 0, the claim is

true, because [0, M ] is a closed set. Now suppose they are all closed for t = k; we will show them
to be closed for t = k + 1. In the step in the algorithm in which we set Xk+1

i , in the choice of
x1, . . . , xi−1, xi+1, . . . , xn, we may as well always set each of these xj to sup(Xk

j ) (which is inside
Xk

j because Xk
j is closed by the induction assumption), because this will maximize agent i’s utility.

It follows that Xk+1
i = {xi : ui(sup(Xk

1 ), . . . , sup(Xk
i−1), xi, sup(Xk

i+1), . . . , sup(Xk
n)) ≥ 0}.

But because ui is continuous, this set must be closed by elementary results from analysis.
Now we proceed to show the second claim. Because each X t

i is closed, it follows that sup(X t
i ) ∈

Xt
i . This implies that, for every agent i, there exist x1 ∈ Xt−1

1 , x2 ∈ Xt−1
2 , . . . , xi−1 ∈ Xt−1

i−1 , xi+1 ∈

Xt−1
i+1 , . . . , xn ∈ Xt−1

n such that ui(x1, x2, . . . , sup(Xt
i ), . . . , xn) ≥ 0. Because for every agent i′,

Xt
i′ = Xt−1

i′ (the algorithm terminated), this is equivalent to saying that there exist x1 ∈ Xt
1, x2 ∈

Xt
2, . . . , xi−1 ∈ Xt

i−1, xi+1 ∈ Xt
i+1, . . . , xn ∈ Xt

n such that ui(x1, x2, . . . , sup(Xt
i ), . . . , xn) ≥ 0.

Of course, for each of these xi′ , we have xi′ ≤ sup(Xt
i′). Because there are only negative externali-

ties, it follows that ui(sup(Xt
1), sup(Xt

2), . . . , sup(Xt
i ), . . . , sup(Xt

n)) ≥ ui(x1, x2, . . . , sup(Xt
i ),

. . . , xn) ≥ 0. Thus, sup(X t
1), sup(Xt

2), . . . , sup(Xt
n) is feasible. It is also maximal by Theorem 18.

Finally, we prove the third claim. For any agent i, for any t, we have ui(sup(Xt−1
1 ), sup(Xt−1

2 ),
. . . , limt′→∞ sup(Xt′

i ), . . . , sup(Xt−1
n )) ≥ ui(sup(Xt−1

1 ), sup(Xt−1
2 ), . . . , sup(Xt

i ), . . . ,
sup(Xt−1

n )) (because the X t
i are decreasing in t, and we are in a concessions setting). The last ex-

pression evaluates to a nonnegative quantity, using the same reasoning as in the proof of the second
claim with the fact that sup(X t

i ) ∈ Xt
i . But then, by continuity, 0 ≤ limt→∞(ui(sup(Xt−1

1 ),
sup(Xt−1

2 ), . . . , limt′→∞ sup(Xt′
i ), . . . , sup(Xt−1

n ))) = ui(limt→∞ sup(Xt−1
1 ),

limt→∞ sup(Xt−1
2 ), . . . , limt′→∞ sup(Xt′

i ), . . . , limt→∞ sup(Xt−1
n )) = ui(limt→∞ sup(Xt

1),
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limt→∞ sup(Xt
2), . . . , limt→∞ sup(Xt

i ), . . . , limt→∞ sup(Xt
n). It follows that limt→∞ sup(Xt

1),
limt→∞ sup(Xt

2), . . . , limt→∞ sup(Xt
n)) is feasible. It is also maximal by Theorem 18.

We observe that piecewise constant functions are not continuous, and thus Theorem 19 does not
apply to the case where the utility functions are piecewise constant. Nevertheless, the algorithm
works on such utility functions, and we can even prove that the number of iterations is linear in
the number of pieces. There is one caveat: the way we have defined piecewise constant functions
(as linear combinations of step functions δx≥a), the maximal solution is not well defined (the set of
feasible points is never closed on the right, i.e. it does not include its least upper bound). To remedy
this, call a feasible solution quasi-maximal if there is no feasible solution that is larger (that is, all
the xi are set to values that are at least as large) and that gives some agent a different utility (so it is
maximal for all intents and purposes).

Theorem 20 Suppose we are running Algorithm 1 in a concessions setting with only negative exter-
nalities where each agent controls only one variable. If all the utility functions decompose and all
the components uk

i are piecewise constant with finitely many steps (the range of the uk
i is finite), then

the algorithm will terminate after at most T iterations of the repeat loop, where T is the total num-
ber of steps in all the self-components ui

i (i.e. the sum of the sizes of the ranges of these functions).
Moreover, if the algorithm terminates after the tth iteration of the repeat loop, then any solution
(x1, x2, . . . , xn) with for all i, xi ∈ arg maxxi∈Xt

i

∑

j 6=i

ui
j(xi), is feasible and quasi-maximal.

Proof: If for some i and t, X t
i 6= Xt−1

i , it must be the case that for some value r in the range of
ui

i, the preimage of this value is in X t−1
i − Xt

i (it has just been eliminated from consideration).
Informally, one of the steps of the function ui

i has been eliminated from consideration. Because
this must occur for at least one agent in every iteration of the repeat loop before termination,
it follows that there can be at most T iterations before termination. Now, if the algorithm ter-
minates after the tth iteration of the repeat loop, and a solution (x1, x2, . . . , xn) with for all i,
xi ∈ arg maxxi∈Xt

i

∑

j 6=i

ui
j(xi) is chosen, it follows that each agent derives as much utility from

the other agents’ variables as is possible with the sets X t
i (because of the assumption of only neg-

ative externalities, any setting of a variable that maximizes the total utility for the other agents also
maximizes the utility for each individual other agent). We know that for each agent i, there is at
least some setting of the other agents’ variables within the X t

j that will give agent i enough utility
to compensate for the setting of its own variable (by the definition of Xt

i and using the fact that
Xt

j = Xt−1
j , as the algorithm has terminated); and thus it follows that the utility maximizing setting

is also enough to make i’s utility nonnegative. So the solution is feasible. It is also quasi-maximal
by Theorem 18.

Algorithm 1 can be extended to cases where some agents control multiple variables, by inter-
preting xi in the algorithm as the vector of agent i’s variables (and initializing the X0

i as cross
products of sets). However, the next proposition shows how this extension of Algorithm 1 fails.

Proposition 4 Suppose we are running the extension of Algorithm 1 just described in a concessions
setting with only negative externalities. When some agents control more than one variable, the al-
gorithm may terminate with nontrivial X t

i even though the only feasible solution is the zero solution
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(all variables set to 0), even when all of the utility functions decompose and all of the components
uk,j

i are step functions (or continuous functions).

Proof: Let each of three agents control two variables, with utility functions as follows:

• u1,1
1 (x1

1) = −3δx1
1
≥1

• u1,2
1 (x2

1) = −3δx2
1
≥1

• u2,1
2 (x1

2) = −3δx1
2
≥1

• u2,2
2 (x2

2) = −3δx2
2
≥1

• u3,1
3 (x1

3) = −3δx1
3
≥1

• u3,2
3 (x2

3) = −3δx2
3
≥1

• u2,1
1 (x1

2) = 2δx1
2
≥1

• u3,1
1 (x1

3) = 2δx1
3
≥1

• u1,1
2 (x1

1) = 2δx1
1
≥1

• u3,2
2 (x2

3) = 2δx2
3
≥1

• u1,2
3 (x2

1) = 2δx2
1
≥1

• u2,2
3 (x2

2) = 2δx2
2
≥1

Increasing any one of the variables to a value of at least 1 will decrease the corresponding agent’s
utility by 3, and will raise only one other agent’s utility, by 2. It follows that there is no feasible
solution besides the zero solution, because any other solution will have negative social welfare (total
utility), and hence at least one agent must have negative utility.

In the algorithm, after the first iteration, it becomes clear that no agent can set both its variables
to values of at least 1 (because each agent can derive at most 4 < 6 utility from the other agents’
variables). Nevertheless, for any agent, it still appears possible at this stage to set either (but not
both) of its variables to a value of at least 1. Unfortunately, in the next iteration, this still appears
possible (because each of the other agents could set the variable that is beneficial to this agent to
a value of at least 1, leading to a utility of 4 > 3 for the agent). It follows that the algorithm gets
stuck.

These utility functions are easily made continuous, while changing neither the algorithm’s be-
havior on them nor the set of feasible solutions—for instance, by making each function linear on
the interval [0, 1].

In the next subsection, we discuss maximizing social welfare under the conditions under which
we showed Algorithm 1 to be successful in finding the maximal solution.
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3.4.4 Maximizing social welfare remains hard

In a concessions setting with only negative externalities where each agent controls only one variable,
the algorithm we provided in the previous subsection returns the maximal feasible solution, in a
linear number of rounds for utility functions that decompose into piecewise constant functions.
However, this may not be the most desirable solution. For instance, we may be interested in the
feasible solution with the highest social welfare (that is, the highest sum of the agents’ utilities).
In this subsection we show that finding this solution remains hard, even in the setting in which
Algorithm 1 finds the maximal solution fast.

Theorem 21 The decision variant of SW-MAXIMIZING-CONCESSIONS (does there exist a feasi-
ble solution with social welfare≥ K?) is NP-complete, even when there are only negative external-
ities, all utility functions decompose (and all the components uk

i are step functions), and each agent
controls only one variable.

Proof: We reduce an arbitrary EXACT-COVER-BY-3-SETS instance (given by a set S and subsets
S1, S2, . . . , Sq (|Si| = 3) to cover S with, without any overlap) to the following SW-MAXIMIZING-
CONCESSIONS instance. Let the set of agents be as follows. For every Si there is an agent aSi .
Also, for every element s ∈ S there is an agent as. Every agent a controls a single variable xa. Let
all the utility functions decompose, as follows: For any Si, u

aSi
aSi

(xaSi
) = −7δxaSi

≥1. For any Si

and for any s, uas
aSi

(xas) = 7δxas≥1. For any s, uas
as

(xas) = −δxas≥1. For any s and for any Si with
s ∈ Si, u

aSi
as (xaSi

) = 1
q(s)−1δxaSi

≥1, where q(s) is the number of sets Si with s ∈ Si. Let the target

social welfare be 7q(|S| − 1) + 7 |S|
3 . All the other functions are 0 everywhere. We proceed to show

that the two instances are equivalent. First, suppose there exists a solution to the EXACT-COVER-
BY-3-SETS instance. Then, let xaSi

= 0 if Si is in the cover, and xaSi
= 1 otherwise. For all s, let

xs = 1. Then aSi receives a utility of 7|S| if Si is in the cover, and 7(|S| − 1) otherwise. Further-
more, for all s ∈ S, as receives a utility of (q(s)−1) 1

q(s)−1 −1 = 0 (because for exactly q(s)−1 of
the q(s) subsets Si with s in it, the corresponding agent has its variable set to 1: the only exception
is the subset Si that contains s and is in the cover). It follows that all the agents receive nonnega-
tive utility, and the total utility (social welfare) is 7q(|S| − 1) + 7 |S|

3 . So there exists a solution to
the SW-MAXIMIZING-CONCESSIONS instance. Now, suppose that there exists a solution to the
SW-MAXIMIZING-CONCESSIONS instance. We first observe that if for some s ∈ S, xas < 1,
the total utility (social welfare) can be at most 7q(|S|−1)+2|S| < 7q(|S|−1)+7 |S|

3 (because each
aSi can receive at most 7(|S|−1), and each as can receive at most q(s) 1

q(s)−1 , and because q(s) ≥ 2
this can be at most 2). So it must be the case that xas ≥ 1 for all s ∈ S. It follows that, in order for
none of these as to have nonnegative utility, for every s ∈ S, there are at least q(s) − 1 subsets Si

with xaSi
≥ 1 and s ∈ Si. In other words, for every s ∈ S, there is at most one subset Si with s ∈ Si

with xaSi
< 1. In other words again, the subsets Si with s ∈ Si with xaSi

< 1 are disjoint (and so
there are at most |S|

3 of them. However, if there were only k ≤ |S|
3 − 1 subsets Si with xaSi

< 1,
then the total utility (social welfare) can be at most 7q(|S|−1)+7k+ |S|−3k (each aSi receives at
least 7(|S|−1), and they receive no more unless they are among the k, in which case they receive an
additional 7; and every as receives 0 unless it is in none of the k disjoint subsets Si, in which case it
will receive at most 1 (because q(s) ≥ 2, so 1

q(s)−1 ≤ 1)—but of course there can be at most |S|−3k
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such agents). But 7q(|S|−1)+7k+|S|−3k ≤ 7q(|S|−1)+|S|+4( |S|3 −1) = 7q(|S|−1)+7 |S|
3 −4,

which is less than the target. It follows there are exactly |S|
3 disjoint subsets Si with xaSi

< 1—an
exact cover. So there exists a solution to the EXACT-COVER-BY-3-SETS instance.

3.4.5 Hardness with only two agents

So far, we have not assumed any bound on the number of agents. A natural question to ask is whether
such a bound makes the problem easier to solve. In this subsection, we show that the problem of
finding a feasible solution in a concessions setting with only negative externalities remains NP-
complete even with only two agents (when there is no restriction on how many variables each agent
controls).

Theorem 22 FEASIBLE-CONCESSIONS is NP-complete, even when there are only two agents,
there are only negative externalities, and all utility functions decompose (and all the components
uk,j

i are step functions).

Proof: We reduce an arbitrary KNAPSACK instance (given by r pairs (ci, vi), a cost constraint C
and a value objective V ) to the following FEASIBLE-CONCESSIONS instance with two agents.
Agent 1 controls only one variable, x1

1. Agent 2 controls r variables, x1
2, x

2
2, . . . , x

r
2. Agent 1’s

utility function is u1(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = −V δx1

1
≥1 +

r
∑

j=1
vjδxj

2
≥1

. Agent 2’s utility function

is u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = Cδx1

1
≥1 −

r
∑

j=1
cjδxj

2
≥1

. We proceed to show that the instances are

equivalent.
Suppose there is a solution to the KNAPSACK instance, that is, a subset S ⊆ N such that

∑

j∈S

ci ≤ C and
∑

j∈S

vi ≥ V . Then, let x1
1 = 1, and for any 1 ≤ j ≤ r, let xj

2 = δj∈S . Then

u1(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = −V +

∑

j∈S

vj ≥ 0. Also, u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = C −

∑

j∈S

cj ≥ 0. So

there is a solution to the FEASIBLE-CONCESSIONS instance.
Now suppose there is a solution to the FEASIBLE-CONCESSIONS instance, that is, a nonzero

setting of the variables (x1
1, x

1
2, x

2
2, . . . , x

r
2) such that u1(x

1
1, x

1
2, x

2
2, . . . , x

r
2) ≥ 0 and

u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) ≥ 0. If it were the case that x1

1 < 1, then either all of agent 2’s variables are
set smaller than 1 (in which case x1

1 must be nonzero and agent 1 gets negative utility), or at least
one of agent 2’s variables is nonzero (in which case agent 2 gets negative utility because the setting
of x1

1 is worthless to it). It follows that x1
1 ≥ 1. Thus, in order for agent 1 to get nonnegative utility,

we must have
r
∑

j=1
vjδxj

2
≥1
≥ V . Let S = {j : xj

2 ≥ 1}. Then it follows that
∑

j∈S

vj ≥ V . Also,

in order for agent 2 to get nonnegative utility, we must have
∑

j∈S

cj

r
∑

j=1
cjδxj

2
≥1
≤ C. So there is a

solution to the KNAPSACK instance.
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3.4.6 A special case that can be solved to optimality using linear programming

Finally, in this subsection, we demonstrate a special case in which we can find the feasible outcome
that maximizes social welfare (or any other linear objective) in polynomial time, using linear pro-
gramming. (Linear programs can be solved in polynomial time [Khachiyan, 1979].) The special
case is the one in which all the utility functions decompose into piecewise linear, concave compo-
nents. For this result we will need no additional assumptions (no bounds on the number of agents
or variables per agent, etc.).

Theorem 23 If all of the utility functions decompose, and all of the components uk,j
i are piecewise

linear and concave, then SW-MAXIMIZING-CONCESSIONS can be solved in polynomial time us-
ing linear programming.

Proof: Let the variables of the linear program be the xj
i and the uk,j

i . We use the following linear

constraints: (1) For any i, we require
n
∑

k=1

mk
∑

j=1
uk,j

i ≥ 0; (2) For any i, k, j, for any linear function

l(xj
k) that coincides with one of the segments of the function uk,j

i (xj
k), we require uk,j

i ≤ l(xj
k).

The key observation is that for any value of xj
k, the constraints allow one to set the variable uk,j

i

to the value uk,j
i (xj

k), but no larger: because the function uk,j
i (xj

k) is concave, only the constraint
corresponding to the segment that xj

k is on is binding, and the constraints corresponding to other
segments are not violated.

For the linear program’s objective, we use
n
∑

i=1

n
∑

k=1

mk
∑

j=1
uk,j

i , which is the social welfare.

3.5 Summary

In this chapter, we studied the complexity of the outcome optimization problem for the four settings
introduced in Chapter 2. While most voting rules are easy to execute, a few are not, including the
Slater and Kemeny rules. In Section 3.1, we gave a powerful preprocessing technique for computing
Slater rankings, showing that if a subset of the candidates consists of similar candidates, this subset
can be solved recursively. We also gave an efficient algorithm for finding such a set of similar candi-
dates, and provided experimental results showing the effectiveness of this preprocessing technique.
Finally, we used the technique of similar sets to show that computing an optimal Slater ranking is
NP-hard, even in the absence of pairwise ties.

In Section 3.2, we turned to the winner determination problem in combinatorial auctions. We
studied the setting where there is a graph (with some desired property), with the items as vertices,
and every bid bids on a connected set of items. Two computational problems arise: 1) clearing
the auction when given the item graph, and 2) constructing an item graph (if one exists) with the
desired property. We showed that given an item graph with bounded treewidth, the clearing problem
can be solved in polynomial time (and every combinatorial auction instance has some treewidth;
the complexity is exponential in only that parameter). We then gave an algorithm for constructing
an item tree (treewidth 1) if such a tree exists. We showed why this algorithm does not work for
treewidth greater than 1, but left open whether item graphs of (say) treewidth 2 can be constructed
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in polynomial time (although we did show that finding the item graph with the fewest edges is NP-
complete (even when a graph of treewidth 2 exists). We showed that the problems become hard if a
bid is allowed to have more than one connected component.

In Section 3.3, we studied the outcome optimization problem for the setting of expressive ne-
gotation over donations to charities. We showed that this problem is NP-complete to approximate
to any ratio even in very restricted settings. Subsequently, we gave a mixed integer program for-
mulation of the clearing problem, and show that for concave bids, the program reduces to a linear
program. We then showed that the clearing problem for a subclass of concave bids is at least as hard
as a linear feasibility problem. Subsequently, we showed that the clearing problem is much easier
when bids are quasilinear—for surplus, the problem decomposes across charities, and for payment
maximization, a greedy approach is optimal if the bids are concave (although this latter problem is
weakly NP-complete when the bids are not concave).

Finally, in Section 3.4, we studied the outcome optimization problem for the setting of expres-
sive negotation in settings with externalities. The following table gives a summary of our results in
that domain.

Restriction Complexity
one variable per agent NP-complete to find nontrivial feasible solution
negative externalities; NP-complete to find nontrivial feasible solution
two variables per agent
negative externalities; Algorithm 1 finds maximal feasible solution (linear time for
one variable per agent utilities that decompose into piecewise constant functions);

NP-complete to find social-welfare maximizing solution
negative externalities; NP-complete to find nontrivial feasible solution
two agents
utilities decompose;
components piecewise linear programming finds social welfare maximizing solution
linear, concave

Complexity of finding solutions in concessions settings. All of the hardness results hold even if the
utility functions decompose into step functions.

One issue that we have not yet considered is that the agents will report their preferences strate-
gically, that is, they will report them truthfully if and only if it is in their best interest to do so. This
will be addressed in the deeper levels of the hierarchy, which will be the focus of the remainder of
this dissertation. To prepare us for this, the next chapter reviews some basic concepts and results
from mechanism design, which is the study of creating preference aggregation methods that are
robust to this strategic behavior.
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