Chapter 8

M echanism Design for Bounded Agents

Any fool can tell the truth, but it requires a man of some sense to know how to lie
well.
Samuel Butler

Mechanism design has traditionally taken the conservative view that agents will always choose
the actions that are in their own best interest—the assumption of perfect rationality. Specifically, the
revelation principle discussed in the previous chapter relies heavily on this assumption. However,
this may be an overly conservative assumption in that agents may not always have the computational
resources to find the action that is in their own best interest—their rationality is bounded. For
instance, bidding optimally in a reverse auction for trucking tasks may require the bidder to solve
multiple NP-complete vehicle routing problems [Sandholm and Lesser, 1997]. With this in mind,
we can ask questions such as:

e Can impossibility results in mechanism design that rely on the assumption of perfect rational-
ity be circumvented if agents have limited computational resources?

e Given that the revelation principle ceases to apply when agents’ rationality is bounded, are
there benefits to using non-truthful mechanisms (even when reasonable truthful mechanisms
exist)?!

It is impossible to answer these questions without some characterization of how the agents’ ratio-
nality is bounded. Previous work by Larson and Sandholm relies on explicitly modeling the agents’
computational choices to derive direct tradeoffs between the cost of additional computation and the
benefits of additional computation to the solution [Larson and Sandholm, 2001a, 2005]. In contrast,

"Various research has proposed the use of mechanisms that are only approximately truthful. These can be easier to
execute [Kothari et al., 2003; Archer et al., 2003], or their use can be motivated by impossiblity results that apply to
truthful mechanisms [Parkes et al., 2001; Goldberg and Hartline, 2003]. For approximately truthful mechanisms, the
idea is not that it will necessarily be computationally difficult for agents to act optimally, but rather that the incentives
for the agents to act optimally (rather than simply tell the truth) are somehow too small for the agents to respond to
them. However, if the agents do respond to these slight incentives, the desirable properties of the mechanism may unravel
completely.

177

178 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

this chapter will not require specific models of how the agents do their computation. Rather, it
relies on classic complexity-theoretic notions to determine whether it is hard for the agents to find
strategically optimal actions.

The rest of this chapter is layed out as follows. In Section 8.1, we show that there are settings
where using the optimal truthful mechanism requires the center to solve a hard computational prob-
lem; but there is another, non-truthful mechanism, under which the center does not have to solve
any hard optimization problem, but the problem of finding a beneficial manipulation is hard for one
of the agents. Moreover, if the agent manages to find the manipulation, the produced outcome is
the same as that of the best truthful mechanism; and if the agent does not manage to find it, the
produced outcome is strictly better [Conitzer and Sandholm, 2004¢]. In Section 8.2, we show that
adding a preround to voting rules can make manipulation of these voting rules computationally
much harder [Conitzer and Sandholm, 2003g]. However, those hardness results (as well as others)
rely on the number of candidates being unbounded. In Section 8.3, we show that if we consider
coalitional manipulation by weighted voters, then we can get hardness even with constant num-
bers of candidates [Conitzer and Sandholm, 2002a; Conitzer et al., 2003]. Unfortunately, all of the
above hardness results only prove hardness in the worst case (as is common in complexity theory).
In Section 8.4, we give an impossibility result that makes it appear unlikely that voting rules can be
constructed that are usually hard to manipulate [Conitzer and Sandholm, 2006f].

8.1 A failureof therevelation principle with bounded agents

As we have seen in earlier chapters, in many real-world mechanism design settings, the center faces
an intractable optimization problem in trying to execute the mechanism. In this section, we question
the focus on truthful mechanisms when the setting requires the solution of computationally hard
problems. In particular, we show that there are settings where by abandoning truthful mechanisms,
we can shift a computationally hard problem from the center to one of the agents. Additionally,
whereas not being able to cope with the issue of computational hardness would have hurt the center
in achieving its objective, if the agent is unable to cope with it, this actually helps the designer in
achieving its objective.

We first observe that dominant strategy implementation and Bayes-Nash implementation differ
only on what agents can be expected to know about each other’s types and actions. An interesting
special case is that of games where only one agent needs to choose an action. In this case, the
acting agent always knows everything there is to know about the other agents’ actions (namely,
nothing). So, both solution concepts coincide here. We prove the remaining two theorems for
this types of game, so the results hold both for dominant strategy implementation and Bayes-Nash
implementation.

Theorem 51 Suppose that the center is trying to maximize social welfare, and neither payments nor
randomization are allowed.? Then, even with only two agents (one of whom does not even report a
type, so dominant strategy implementation and Bayes-Nash implementation coincide), there exists
a family of preference aggregation settings such that:

21t is not immediately clear if this result can be extended to cases with payments or randomization; we leave this as a
question for future research.

8.1. A FAILURE OF THE REVELATION PRINCIPLE WITH BOUNDED AGENTS 179

e the execution of any optimal truthful mechanism is NP-complete for the center, and

e there exists a non-truthful mechanism which 1) requires the center to carry out only polyno-
mial computation, and 2) makes finding any beneficial insincere revelation NP-complete for
the type-reporting agent. Additionally, if the type-reporting agent manages to find a bene-
ficial insincere revelation, or no beneficial insincere revelation exists, the social welfare of
the outcome is identical to the social welfare that would be produced by any optimal truthful
mechanism. Finally, if the type-reporting agent does not manage to find a beneficial insincere
revelation where one exists, the social welfare of the outcome is strictly greater than the social
welfare that would be produced by any optimal truthful mechanism.

Put in perspective, the mechanism designer would reap two benefits from using the second,
non-truthful mechanism rather than a truthful mechanism:

e Doing so shifts the computational hardness from the center to the agent. This can also be
seen as a statement about how the social welfare that can be obtained by truthful mechanisms
compares to the social welfare that can be obtained by non-truthful mechanisms, as follows.
If it is computationally infeasible to execute the optimal truthful mechanism, the designer
might resort to another truthful mechanism which merely approximates the social welfare
obtained by the optimal truthful mechanism (this approach is often advocated in algorithmic
mechanism design).

o [f the agent cannot consistently solve instances of an NP-complete problem, then, even if the
agent is trying to act strategically, using the second mechanism improves social welfare in
some cases (and never decreases it).

Hence, (by the argument under the second bullet) the non-truthful mechanism—which is com-
putationally feasible to execute—outperforms the optimal truthful mechanism, which (by the argu-
ment under the first bullet) in turn outperforms any computationally feasible truthful mechanism.

We emphasize that we do not require that agents will never be able to solve an NP-complete
problem. Our result is more cautious than that: if agents do solve the NP-complete problem, nothing
is lost; whereas if they do not solve it, something is gained.

Another point is that individual rationality is still maintained under this approach, by making
sure that telling the truth still guarantees an agent nonnegative utility (even if telling the truth is not
strategically optimal).

We are now ready to give the proof.

Proof: We are given a graph G = (V, E) (with at least some edges); the outcome space is the set
of all subsets of size k of the vertices, {X C V : |X| = k}. The type-reporting agent (agent 1)
has the following type set ©. For each X C V with |X| = k, there is a type 6 x which occurs with
probability 1/((}) ++1). The utility function for these types is as follows: u;(fx, X) = 4if X is an
independent set (that is, there are no edges within X); u1(6x, X) = 3 if X is not an independent
set; u1(fx,Y) = 1if X # Y and Y is an independent set; and u1(fx,Y) = 0if X # Y and
Y is not an independent set. Additionally, there is a single additional type 6y which occurs with
probability 1/((}) + 1), and the utility function for it is given as follows: u1 (6, X) = 1if X is an
independent set; and uq(6p, X) = 0 if X is not an independent set. Agent 2, who does not report a

180 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

type, has the following utility function: us(X) = 2 if X is not an independent set; and u2(X) = 0
if X is an independent set. Now let us consider creating a mechanism for such a setting that uses
neither payments nor randomization.

First, we claim that all optimal truthful mechanisms are of the following form.

e If agent 1 reports a type 6 x, then choose outcome X;

e If agent 1 reports type 6, then 1) if there exists an independent set X C V with | X| = &k,
choose such an independent set; or 2) if no independent set exists, choose any X C V with
| X| = k.

It is straightforward to verify that mechanisms of this form act in agent 1’s best interest, that is, they
always choose one of the outcomes that are optimal for agent 1 given its type. Hence, agent 1 never
has any incentive to misreport its type, so these mechanisms are truthful. All that remains to show
is that all other truthful mechanisms have strictly less expected social welfare than these. We first
observe that the only case in which we get less than the optimal social welfare with the mechanisms
of the given form is when agent 1 has type 6y, and an independent set of size k exists. In this case,
the mechanisms of the given form choose an independent set as the outcome, leading to a social
welfare of 1; whereas a social welfare of 2 could have been obtained by choosing a set that is not
independent. It follows that the expected social welfare that we get from one of the mechanisms
of the given form is at most ﬁ below the maximal expected social welfare that we could have
obtained if the agents did notkplay strategically. Now consider an alternative truthful mechanism
that, for some X C V with | X| = k, does not choose X when agent 1 reports 6 x. In this case, this
mechanism can obtain a social welfare of at most 2, whereas the optimal social welfare in this case
is at least 4. It follows that the expected social welfare that we get from this mechanism is at least

ﬁ below the maximal expected social welfare that we could have obtained if the agents did not
k
play strategically. Hence, all optimal truthful mechanisms always choose X when agent 1 reports

Ox. But then, if an independent set exists in (&, an optimal truthful mechanism must choose such
an independent set in the case where agent 1 reports 6p: because if it does not, then when agent 1
has this type, it would benefit from misreporting its type as a type corresponding to the independent
set—and the mechanism would no longer be truthful. Thus, we have established that all optimal
truthful mechanisms are of the given form. We observe that executing such a mechanism requires
solving an NP-complete problem, because we have to construct an independent set if it exists, which
is NP-complete.
Now consider the following mechanism:

e If agent 1 reports a type 0 x, then choose outcome X;

e If agent 1 reports type 6, then choose some X C V with | X | = k that is not an independent
set.

We observe that this mechanism is computationally easy to execute. Also, this mechanism is not
truthful if there is an independent set, because in this case, if agent 1 has type 6y, it would be better
off reporting the type corresponding to the independent set. However, there are no other beneficial
insincere revelations. Thus, it is straightforward to verify that if agent 1 always reports the type

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 181

that is strategically optimal for it, the outcome of this mechanism is always identical to that of one
of the optimal truthful mechanisms. Of course, in order for agent 1 to always report the type that
is strategically optimal for it, agent 1 needs to construct an independent set (if possible) when it
has type 6. Because this problem is NP-complete, it is reasonable to suspect that agent 1 will
not always be able to construct such a set even when it exists. If agent 1 indeed fails to construct
an independent set in this case, the outcome will be some X C V with |X| = k that is not an
independent set. This outcome actually has a social welfare of 2, as opposed to the social welfare of
1 that would have been obtained if agent 1 had managed to construct an independent set. Hence the
social welfare is strictly greater than in the case where agent 1 has unlimited computational power;
and hence it is also a greater than it would have been with an optimal truthful mechanism. m

Given this example setting in which the revelation principle “fails” in the sense that non-truthful
mechanisms can outperform truthful ones,? one may wonder whether similar phenomena occur in
other, more standard settings. In the remainder of this chapter, we will study whether this is so for
voting settings.

8.2 Tweaking voting protocolsto make manipulation hard

Early, seminal work on the complexity of manipulating elections demonstrated that several voting
rules are hard to manipulate, including the second-order Copeland rule [Bartholdi et al., 1989a] and
the STV rule [Bartholdi and Orlin, 1991]. In this section we take the next step of designing new
protocols that are especially hard to manipulate. Rather than designing these protocols from scratch,
we show how to tweak existing voting protocols to make manipulation computationally much more
difficult, while leaving much of the original nature of the protocol intact, for the following reasons:

e Results on the computational complexity induced by a tweak typically apply to a large family
of protocols.

e Some of the original protocol’s nice theoretical properties are preserved by the tweak. For
example, if a protocol satisfies the Condorcet criterion (a candidate that wins all its pairwise
elections always wins the election), the tweak will preserve this property.

¢ In practice, it will be much easier to replace a currently used protocol with a tweaked version
of it, than with an altogether new protocol.

The type of tweak we introduce is the following. All the candidates are paired in a preround; of
each pair of candidates, only the winner of their pairwise election survives. (Recall that the winner
of the pairwise election between two candidates is the candidate that is ranked above the other more
often in the votes.) After the preround, the original protocol is executed on the remaining candidates.
The schedule of the preround (i.e., who faces who) can be determined before the votes are collected;
after the votes are collected; or while the votes are collected (the processes are interleaved). We
study these three cases in Subsections 8.2.2, 8.2.3, and 8.2.4, respectively.

30f course, the principle does not fail in the sense that the formal statements of it are wrong; it is merely that the
preconditions of the theorem fail to hold when agents are computationally bounded.

182 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

8.2.1 Definitions
\oting protocols

For the purposes of this section, a deterministic protocol is a protocol of the type that we have
considered earlier in this dissertation, that is, a function from the set of all combinations of votes to
C. (We will only be interested in the winner of the election in this section, not in an entire ranking
of candidates.) A randomized protocol is a function from the set of all combinations of votes to
probability distributions over C. An interleaved protocol is a procedure for alternating between
collecting (eliciting) parts of the voters’ votes (e.9g. whether they prefer candidate a to candidate
b) and drawing and publishing random variables (such as parts of the schedule for an election),
together with a function from the set of all combinations of votes and random variables to C.

Preround

The tweaks we study in this section all involve the addition of a preround. We will now define how
this works.

Definition 37 Given a protocol P, the new protocol obtained by adding a preround to it proceeds
as follows:

1. The candidates are paired. If there is an odd number of candidates, one candidate gets a bye.

2. In each pairing of two candidates, the candidate losing the pairwise election between the two
is eliminated. A candidate with a bye is never eliminated.

3. On the remaining candidates, P is executed to produce a winner. For this, the implicit votes
over the remaining candidates are used. (For example, if avoter voted a = b > ¢ > d > e,
and b and c were eliminated, the voter’s implicit vote isa > d > e.)

The pairing of the candidates is also known as the schedule for the preround. If the schedule is
decided and published before the votes are collected, we have a deterministic preround (DPRFE),
and the resulting protocol is called DPRE + P. If the schedule is drawn completely randomly
after the votes are collected, we have a randomized preround (RPRFE), and the resulting protocol
is called RPRE + P. Finally, if the votes are elicited incrementally, and this elicitation process
is interleaved with the scheduling-and-publishing process (which is again done randomly), as de-
scribed in detail in Subsection 8.2.4, we have an interleaved preround (I PRE), and the resulting
protocol is called TPRE + P.

Manipulation

We now define the computational problem of manipulation that we study in this section. Other
definitions of manipulation are possible: in the next section, we will give a more thorough analysis
of the different variants of the manipulation problem, and study some of the other variants.

Definition 38 (CONSTRUCTIVE-MANIPULATION) We are given a protocol P, a candidate
set ', a preferred candidate p, and a set of votes S corresponding to all the other voters’ votes.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 183

The manipulator has yet to decide on its vote, and wants to make p win. Then the constructive
manipulation question is:

e (For deterministic protocols) Can the manipulator cast its vote to make p win under P?

e (For randomized protocols) Can the manipulator cast its vote to make the probability of p
winning under P at least some given k € [0, 1]?

o (For interleaved protocols) Given the initial random choices (if any) by the protocol, is there
a contingency plan (based on the random decisions the protocol takes between eliciting parts
of the votes) for the manipulator to answer the queries to make the probability of p winning
under P at least some given k € [0,1]?

8.2.2 NP-hardness when scheduling precedes voting

In this subsection, we examine the complexity induced by the preround when the voters know the
schedule before they vote.

A sufficient condition for NP-hardness

We present a sufficient condition under which adding a preround with a preannounced schedule
makes manipulation NP-hard. The condition can be thought of as an NP-hardness reduction tem-
plate. If it is possible to reduce an arbitrary SAT instance to a set of votes satisfying certain proper-
ties under the given voting protocol, that protocol—with a preround—is NP-hard to manipulate.

Theorem 52 Given a voting protocol P, suppose that it is possible, for any Boolean formula ¢ in
conjunctive normal form (i.e., a SAT instance), to construct in polynomial time a set of votes over
a candidate set containing at least {p} U C, where C, = {¢; : | € L} (L is the set of literals
{+v :v € V}U{—v : v € V}, where V is the set of variables used in ¢), with the following
properties:

e (Property 1a) If we remove, for each v € V, one of ¢, and ¢_,, p would win an election
under protocol P against the remaining candidates if and only if for every clause k € K
(where K is the set of clauses in ¢), there is some [€ L such that ¢; has not been removed,
and [occurs in k. This should hold even if a single arbitrary vote is added.

e (Property 1b) Forany v € V, ¢, and c_, are tied in their pairwise election after these votes.

Then CONSTRUCTIVE-MANIPULATION in DPRE + P is NP-hard (and NP-complete if P is
deterministic and can be executed in polynomial time).

Proof: Consider the following election under DPRE + P. Let the candidate set be the set of all
candidates occurring in the votes constructed from ¢ (the “original candidates”), plus one dummy
candidate for each of the original candidates besides those in C'z,. To each of the constructed votes,
add all the dummy candidates at the bottom; let the resulting set of votes be the set of the nonma-
nipulators’ votes. A single manipulator’s vote is yet to be added. Let the schedule for the preround

184 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

be as follows: for each v, c4, and c_, face each other in the preround; and every other original
candidate faces (and, because of the dummy candidates’ position in the votes, defeats) a dummy
candidate. Thus, the set of candidates that make it through the preround consists of, foreach v € V,
one of cy, and c_,; and all the other original candidates. The manipulator’s vote will decide the
winner of every cy, vs. c_, match-up, because by property 1b, all these pairwise elections are
currently tied. Moreover, it is easy to see that the manipulator can decide the winner of each of
these match-ups independently of how it decides the winners of the other match-ups. Thus, we can
think of this as the manipulator giving the variables truth-values: v is set to true if c, survives,
and to false if ¢_,, survives. By property 1a it then follows that p wins if and only if the manip-
ulator’s assignment satisfies all the clauses, i.e. is a solution to the SAT instance. Hence there is
a successful constructive manipulation if and only if there is a solution to the SAT instance, and it
follows that CONSTRUCTIVE-MANIPULATION in DPRE + P is NP-hard. (It is also in NP if
P is deterministic and can be executed in polynomial time, because in this case, given a vote for the
manipulator, it can be verified in polynomial time whether this vote makes p win). =

Examples

We now show how to apply Theorem 52 to the well-known protocols we discussed, thus showing
that each of these protocols—with a preround—is NP-hard to manipulate.

Theorem 53 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
plurality rule.

When it does not matter for our proofs whether a given voteisa > b > ¢ or b > a > ¢, we
write {a, b} > c.
Proof: Given the formula ¢, let the candidate set be the minimally required candidates {p} U C,
plus a set of candidates corresponding to the set of clauses K of ¢, Cx = {ci : k € K}. Then,
let the set of votes be as follows: 4|K| + 2 votes ranking the candidates p > C, > Ck; for each
k € K, 4|K| votes ranking the candidates ¢, > {cq € Ck : ¢l # k} > CL > p; and for each
k € K, 4 votes ranking the candidates {¢c; € C : l € k} = ¢ > {cg € Cp : 1l ¢ k} > {cq €
Ck : cl # k} >~ p. Additionally, we require that these votes are such that after counting them, for
each v € V, ¢4, and c_, are tied in their pairwise election, so that property 1b is satisfied. (This
is possible because the total number of votes is even, and the majority of the votes do not yet have
any restrictions on the order of the Cr.) We now show property 1la is satisfied. We first observe
that regardless of which of the candidates corresponding to literals are removed, p will get 4| K| + 2
votes. Now, if for some k € K, all the candidates ¢; with [€ L,l € k are removed, then c; will
get at least 4| K| + 4 votes and p will not win. On the other hand, if for each k € K, at least one
candidate ¢; with [€ k remains, then each of the c; will get precisely 4| K | votes. Because each
remaining ¢; can get at most 4| K| votes as well, p will win. In both cases there is a “margin” of at
least 2, so a single additional vote will not change this. Thus, property la is satisfied. =

Theorem 54 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
Borda rule.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 185

Proof: Given the formula ¢, let the candidate set be the minimally required candidates {p} U C'.;
plus a set of candidates corresponding to the set of clauses K of ¢, Cx = {cx : k € K}, which
we order in some arbitrary way to get {ci,...,¢|k|}. Let M be the total number of candidates
this defines. Then, let the set of votes be as follows: for every ¢; € Cg, 4M votes ranking the
candidates ¢i11 = Cit2 = ... = Cg| = p = c1 = c2 = ... = ¢ci1 = {q € CL 1 € ¢} »
¢i = {c € L:1 ¢ c¢;}; (here, the slight abuse of notation [€ ¢; means that [occurs in the clause
corresponding to c;;) 4M votes ranking the candidates ¢y > co > ... > K| = P > C',; one vote
1= c2 = Q| - Cr, > p; one vote CIK| ™ CK|—1 > -+ > C1 = C1, >~ p; and finally,
4| K| M votes ranking the candidates p > ¢ > ¢2 > ... > ¢, = Cr, and 4| K| M votes ranking the
candidates ¢, > ¢p—1 > ...c1 = p > (. Additionally, we require that these votes are such that
after counting them, foreachv € V, ¢, and c_,, are tied in their pairwise election, so that property
1b is satisfied. (This is possible because the total number of votes is even, and the majority of the
votes do not yet have any restrictions on the order of the c¢;.) We now show property 1a is satisfied.
It is easy to see that none of the ¢; can win, regardless of which of them are removed. Thus, we only
need to consider the ¢; and p. The last 8| K| M votes will have no net effect on the relative scores
of these candidates, so we need not consider these here. After the first 4(| K| + 1)M votes, any ¢k
for which all the ¢; with [€ k have been removed will be tied with p, and any other c; will be at
least 4M points behind p. Finally, from the last remaining two votes, any ¢y (k € K) will gain
2M —2|V| — | K| — 1 points on p. It follows that p wins if and only if for every clause k& € K, there
is some [€ L with [€ k such that ¢; has not been removed. In both cases there is a "margin” of at
least M — |V| points, so a single additional vote will not change this. Thus, property 1a is satisfied.
(]

Theorem 55 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
maximin rule.

Proof: Given the formula ¢, let the candidate set be the minimally required candidates {p} U C',,
plus a set of candidates corresponding to the set of clauses K of ¢, Cx = {cx : k € K}. Then,
let the set of votes be as follows: 8|K| votes ranking the candidates p > Cp > Cg, 8 K| votes
ranking the candidates C', = C'x > p, and 8| K| votes ranking the candidates Cx >~ p > Cpr; 4| K|
votes ranking the candidates C', > p = Cg, 4| K| votes ranking the candidates Cx >~ Cr, > p,
and, for each k € K, 4 votes ranking the candidates p > {cqy € Cx : cl #k} = {g € Cp : 1 €
k} = cp = {c € Cp : 1 ¢ k}; and finally, 2 votes ranking the candidates p > Cx > Cf, and
2 votes ranking the candidates C'xr > p > Cr. Additionally, we require that these votes are such
that after counting them, for each v € V, ¢4, and c_, are tied in their pairwise election, so that
property 1b is satisfied. (This is possible because the total number of votes is even, and the majority
of the votes do not yet have any restrictions on the order of the c;.) We now show property 1a is
satisfied. Regardless of which of the candidates corresponding to literals are removed, p’s worst
score in a pairwise election is against any of the ¢, namely 16| K| + 2. Any ¢ for which all the
¢; with [€ k have been removed will get its worst pairwise election score against any of the C'r,,
namely 16| K| + 4. Finally, any other ¢, will get its worst pairwise election score against one of the
¢; with [€ k, namely, 16|K|. It follows that p wins if and only if for every clause k € K, there is
some [€ k such that ¢; has not been removed. In both cases there is a "margin” of at least 2, so a

186 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

single additional vote will not change this. Thus, property la is satisfied. =

Theorem 56 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
STV rule.

Proof: Given the formula ¢, let the candidate set be the minimally required candidates {p} U C,
plus a set of candidates corresponding to the set of clauses K of ¢, {cy : ¢l € K}, which we
order in some arbitrary way to get {c1, ..., c|g|}; plus 4| K| additional candidates cq,, . . . s Cag|-
Then, let the set of votes be as follows: for each k € K, 4 votes ranking the candidates {¢; € C[, :
leky=c ={qeCp:1¢&k} = p»={cg}; foreach c,,;, 2 votes ranking the candidates
Ca; = C1 = C1 = ... =g| = p > CL = {cq; : j # i}; and finally, 4 votes ranking the candidates
p = Cxg = Cp = {cq;}. Additionally, we require that these votes are such that after counting
them, for each v € V, cy,, and c_,, are tied in their pairwise election, so that property 1b is satisfied.
(This is possible because the total number of votes is even, and the majority of the votes do not yet
have any restrictions on the order of the Cr.) We now show property la is satisfied. Regardless
of which of the candidates corresponding to literals are removed, p will have 4 votes initially, and
every c,; will have 2 votes initially. Any cy (k € K) for which all the ¢; (I € L) with [€ k have
been removed will have 4 votes initially. Any other ¢ will have 0 votes initially, and hence drop
out in the first round. Then, before p or any more ¢j drop out, all the ¢,; will drop out, because
they have only 2 votes initially and no votes will transfer to them. All the 8| K| votes that the c,,
have initially will transfer either to the c¢; that has the lowest index ¢ among the remaining c,;, or, if
there are no remaining ¢, to p. Because these 8| K| votes are the majority of votes in the election,
it follows that the candidate to which all of these votes transfer will win the election. It follows that
p wins if and only if for every clause & € K, there is some [€ L with | € k such that ¢; has not
been removed. In both cases there is a margin” of at least 2 in every round, so a single additional
vote will not change this. Thus, property 1a is satisfied. m

Theorem 57 Inany of DPRE+plurality, DPRE+ Borda, DPRE+maximin,and DPRE+
STV*, CONSTRUCTIVE-MANIPULATION is NP-complete.

Proof: NP-hardness is immediate from the previous theorems. The problem is in NP because these
protocols can be executed in polynomial time. =

In the next subsections, we will raise the bar and bring the problem of manipulating elections to
higher complexity classes by abandoning the assumption that the schedule for the preround should
be known in advance.

*The NP-completeness of manipulating DPRE + STV is, in itself, not that interesting, because STV is already
NP-hard to manipulate without the preround as we discussed. Nevertheless, our method highlights a different aspect
of the NP-hardness of manipulating DPRE + STV . We build on this reduction later to prove PSPACE-hardness of
manipulating STV with a preround when the scheduling of the preround is interleaved with the vote elicitation.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 187

8.2.3 #P-hardness when voting precedes scheduling

In this subsection, we will examine the complexity induced by the preround when the schedule is
drawn completely (uniformly) randomly after all the votes have been collected.

A sufficient condition for #P-hardness

We present a sufficient condition for a voting protocol to become #P-hard® to manipulate in this
setting. Again, this condition can be thought of as a reduction template. If it is possible to reduce
an arbitrary PERMANENT instance to a set of votes satisfying certain properties under the given
voting protocol, that protocol is #P-hard to manipulate when a randomized preround is added to it.
(In the PERMANENT problem, we are given a bipartite graph B with the same number of vertices
k in both parts, and are asked how many matchings there are. This problem is #P-complete [Valiant,
1979].)

Theorem 58 Given a voting protocol P, suppose that it is possible, for any bipartite graph B with
the same number of vertices & in both parts (labeled 1 to % in one part, k£ + 1 to 2k in the other),
to construct in polynomial time a set of votes over the candidate set {ci,...,cor, p} (Where ¢;
corresponds to vertex 4 in B) with the following properties:

e (Property 2a) If we remove k of the ¢;, p would win an election under protocol P against the
remaining c; if and only if the removed ¢; are exactly all the ¢; with k + 1 < ¢ < 2k;

e (Property 2b) p loses its pairwise election against all ¢; with k£ + 1 < i < 2k;

e (Property 2c) Forany 1 <i < kand k + 1 < j < 2k, ¢; defeats ¢; in their pairwise election
if and only if in B, there is an edge between vertices 7 and j.

o (Property 2d) All the previous properties still hold with any additional single vote.

Then CONSTRUCTIVE-MANIPULATION in RPRE + P is #P-hard.

Proof: Given the set of votes constructed on the basis of an arbitrary B, let us compute the prob-
ability that p wins under the protocol RPRFE + P with only these votes. In the preround, there
are k£ matches and one bye. By property 2a, p will win the election if and only if the k£ candidates
eliminated in this preround are precisely all the ¢; with k + 1 < ¢ < 2k. By property 2b, p could
not win a preround match against any of these, so p will win the election if and only if it gets the
bye, and each of the c¢; with k + 1 < j < 2k faces one of the ¢; with 1 < i < k that defeats
it in the preround. Then, by property 2c, it follows that p wins if and only if the preround pair-
ing corresponds to a matching in B. Thus the probability of p winning is %, where mp
is the number of matchings in B and e(2k, 2k + 1) is the number of different ways to pair 2k of
the 2k + 1 candidates in the preround (which is straightforward to compute). Thus, evaluating p’s
chances of winning in this election is at least as hard as counting the number of matchings in an
arbitrary B, which is #P-hard. Moreover, because we can compute p’s chances of winning solely

4P is the class of problems where the task is to count the number of solutions to a problem in NP.

188 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

on the basis of properties 2a, 2b, and 2c, and by property 2d, these properties are maintained for
any single additional vote, it follows that a manipulator cannot affect p’s chances of winning. Thus,
CONSTRUCTIVE-MANIPULATION in this case simply comes down to computing p’s chances of
winning, which is #P-hard as demonstrated. =

A broadly applicable reduction

In this subsubsection we present a single broadly applicable reduction which will satisfy the pre-
condistions of Theorem 58 for many voting protocols, thus proving them #P-hard to manipulate
when the voting precedes the preround scheduling.

Definition 39 We label the following reduction R,. Given a bipartite graph B with the same num-
ber of vertices & in both parts (labeled 1 to & in one part, k£ + 1 to 2k in the other), we construct the
following set of 12k3 + 2k votes:

e 6k3 votes that rank the candidates cj 1 = Crpyo = ... = Cop =P = C1 = C2 = ... > Ck;
e 3k? votes that rank the candidates p = cp = cp_1 = ... = C1 = Cop = Cop—1 > -+ . > Chi1}

e Gk® — 3k? votes that rank the candidates c;, > cx_1 > ... > ¢1 > Cop > Cofl > ... >
Ck+1 = D;

e Foreachedge (i,7)in B (1 <i <k, k+1<j<2k), one vote that ranks the candidates
Ci>=CjrpP>=C »>C > ... >Ci—17>Ciyl > oo Ck > Clyl > Ckt2 > ... 7 Cj—1 »
Cj+1 > ... > co, and another one that ranks them cop, > cop—1 > ... > cj41 > ¢cj—1 >
Ce > Chgl = Cl > Cl—1 > ... = Cigl = Cim1 = ... = €1 = D > ¢; = ¢; (i.e., the inverse of
the former vote, apart from c; and c; which have maintained their order);

e For each pair ¢, j without an edge between themin B (1 < i < k, k+ 1 < j < 2k), one
vote that ranks the candidates c; >~ ¢; = p > ¢c1 > ¢c2 > ... = Ci—1 > Cit1 > ... >
Ck > Ch1l > Chq2 ™ ... > Cj—1 > Cj41 > ... = Cax, and another one that ranks them
Cofg > Cofg—1 7 -+ > Cjql > Cj—1 > «o. > Cky1 > Ck > Cl—1 > ... > Ciy1 » Ci—1 »
... =c1 = p > cj = ¢ (e, the inverse of the former vote, apart from c; and ¢; which have
maintained their order).

We now have to show that this reduction satisfies the preconditions of Theorem 58. We start
with the properties that are protocol-independent.

Theorem 59 R; satisfies properties 2b and 2c of Theorem 58 (under any protocol P, because these
properties are independent of P), even with a single additional arbitrary vote.

Proof: In the pairwise election between p and any one of the ¢; with k + 1 < i < 2k, p is ranked
higher in only 4k? votes, and thus loses the pairwise election. So property 2b is satisfied. For a
pairwise election between some ¢; and ¢; (1 <@ < kand k + 1 < j < 2k), the first 12k3 votes’
net contribution to the outcome in this pairwise election is 0. Additionally, the two votes associated

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 189

with any pair ¢,7 (1 < ¢ < kand kK + 1 < r < 2k) also have a net contribution of 0, if either
q # i orr # j. The only remaining votes are the two associated with the pair 4, j, so ¢; wins the
pairwise election by 2 votes if there is an edge (4, j) in B, and c; wins the pairwise election by 2
votes otherwise. So property 2c is satisfied. Because both are satisfied with a "margin” of at least
2, a single additional vote will not change this. =

Finally, because property 2a is protocol-dependent, we need to prove it for our reduction on a
per-protocol basis. This is what the following four theorems achieve.

Theorem 60 R; satisfies property 2a of Theorem 58 under the plurality rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ¢; with & + 1 < ¢ < 2k is not removed, p can get at most 5k2 votes,
whereas the lowest-indexed remaining candidate among the c¢; with k + 1 < ¢ < 2k will get at least
6k3 votes, so p does not win. On the other hand, if all the ¢; with k£ + 1 < ¢ < 2k are removed, p
will get at least 6k3 + 3k votes, which is more than half the votes, so p wins. In both cases there is
a “margin” of at least 2, so a single additional vote will not change this. =

Theorem 61 R; satisfies property 2a of Theorem 58 under the Borda rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ¢; with k + 1 < ¢ < 2k is not removed, consider the highest-indexed
remaining candidate among the ¢; with k + 1 < i < 2k; call it h. The first 12k3 votes will put h
at least 9% — 3k? points ahead of p. (12k3 — 3k? of them rank h above p, and the 3k2 others can
give p an advantage of at most k each.) The 2k? remaining votes can contribute an advantage to
p of at most k each, and it follows that 4 will still have at least 7k% — 3k2 more points than p. So
p does not win. On the other hand, if all the ¢; with k£ + 1 < ¢ < 2k are removed, then there are
two groups of 6% — 3k? among the first 12k> votes which (over the remaining candidates) are each
other’s exact inverses and hence have no net effect on the scores. Also, the last 2k2 votes, which
are organized in pairs, have no net effect on the score because (over the remaining candidates) the
votes in each pair are each other’s exact inverse. The remaining votes all rank p highest among the
remaining candidates, so p wins. In both cases the “margin” is big enough that a single additional
vote will not change this. =

Theorem 62 R; satisfies property 2a of Theorem 58 under the maximin rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ¢; with k+1 < i < 2k is not removed, then in any pairwise election be-
tween such a candidate and p, p will get at most 5k2 votes. However, the lowest-indexed remaining
candidate among the ¢; with k + 1 < i < 2k will get at least 6k> votes in every one of its pairwise
elections. So p does not win. On the other hand, if all the ¢; with k + 1 < 4 < 2k are removed, p
will get at least 6k + 3k2 votes in every one of its pairwise elections, which is more than half the
votes; so p wins. In both cases there is a “margin” of at least 2, so a single additional vote will not
change this. =

190 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Theorem 63 R; satisfies property 2a of Theorem 58 under the STV rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ¢; with k 4+ 1 < 7 < 2k is not removed, consider the lowest-indexed
remaining candidate among the ¢; with &k + 1 < ¢ < 2k; call it [. [will hold at least 6k3 votes
as long as it is not eliminated, and p can hold at most 5k votes as long as [is not eliminated. It
follows that p will be eliminated before [, so p does not win. On the other hand, if all the the ¢; with
k +1 < i < 2k are removed, p will hold at least 6k + 3k? votes throughout, which is more than
half the votes; so p cannot be eliminated and wins. In both cases there is a ”margin” of at least 2, so
a single additional vote will not change this. =

Theorem 64 Inany of RPRE + plurality, RPRE + Borda, RPRFE +maximin,and RPRE +
STV, CONSTRUCTIVE-MANIPULATION is #P-hard.

Proof: Immediate from the previous theorems. =

8.2.4 PSPACE-hardness when scheduling and voting are interleaved

In this subsection, we increase the complexity of manipulation one more notch, to PSPACE-hardness,
by interleaving the scheduling and vote elicitation processes.

We first discuss the precise method of interleaving required for our result. The method is detailed
and quite complicated. Nevertheless, this does not mean that the interleaving should always take
place in this particular way in order to have the desired hardness. If the interleaving method used for
a particular election is (say, randomly) chosen from a wider (and possibly more naturally expressed)
class of interleaving methods containing this one, our hardness result still goes through, as hardness
carries over from the specific to the general. Thus, our goal is to find the most specific method of
interleaving for which the hardness still occurs, because this gives us the most information about
more general methods. We only define the method for the case where the number of candidates is a
multiple of 4 because this is the case that we will reduce to (so it does not matter how we generalize
the protocol to cases where the number of candidates is not a multiple of 4).

Definition 40 I PRFE proceeds as follows:

1. Label the matchups (a matchup is a space in the preround in which two candidates can face

each other; at this point they do not yet have candidates assigned to them) 1 through @;

2. For each matchup 4, assign one of the candidates to play in it, and denote this candidate by
c(i,1). Thus, one of the candidates in each matchup is known.

3. For some & which is a multiple of 4, for each ¢ with 1 < i < k, assign the second candidate
to play in matchup ¢, and denote this candidate c(i,2). Thus, we have k fully scheduled
matchups.

SPSPACE is the class of problems solvable in polynomial space.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 191

4. For each pair of matchups (2i — 1,2¢) with ¢ > % assign two more candidates to face the

candidates already in these two matchups, and denote them ¢((2: — 1,2i),1) and ¢((2i —
1,21),2). (Thus, at this point, all that still needs to be scheduled is, for each ¢, which of these
two faces ¢(2i — 1, 1) and which ¢(2i,1).)

5. Fori =% 4 1t0 19
e Randomly decide which of ¢((2i — 1,2¢),1) and ¢((2i — 1, 21),2) faces ¢(2¢ — 1, 1), and
which faces ¢(2i, 1). Denote the former ¢(2i — 1, 2), the latter ¢(2i, 2),

e Ask all the voters whether they prefer c¢(i — %, 1) ore(i — %, 2). (We observe that, even if
the number of already scheduled matchups is & = 0, the elicitation process trails behind the
scheduling process by a factor 2.)

6. Elicit the remainder of all the votes.

One important property of this elicitation process is that the voters are treated symmetrically:
when a query is made, it is made to all of the voters in parallel. Thus, no voter gets an unfair
advantage with regard to knowledge about the schedule. Another important property is that the
elicitation and scheduling process at no point depends on how the voters have answered earlier
queries. Thus, voters cannot make inferences about what other voters replied to previous queries on
the basis of the current query or the current knowledge about the schedule. These two properties
guarantee that many issues of strategic voting that may occur with vote elicitation [Conitzer and
Sandholm, 2002c] in fact do not occur here.

We are now ready to present our result.

Theorem 65 Given a voting protocol P, suppose that it is possible, for any Boolean formula ¢
in conjunctive normal form (i.e., a SAT instance) over variables V' = X U Y with | X| = |Y|
(and corresponding literals L), to construct in polynomial time a set of votes over a candidate set
containing at least {p} U C U {c; : y € Y'} with the following properties:

e (Property 3a) If we remove, for each v € V, one of c¢,, and c_,, p would win an election
under protocol P against the remaining candidates if and only if for every clause k& € K
(where K is the set of clauses in ¢), there is some | € L such that ¢; has not been removed,
and [occurs in k. This should hold even if a single arbitrary vote is added.

e (Property 3b) For any =z € X, ¢, and c_,, are tied in their pairwise election after these votes.

e (Property 3c) Forany y € Y, ¢, and c_,, are both losing their pairwise elections against cl;
by at least 2 votes (so that they will lose them regardless of a single additional vote).

Then CONSTRUCTIVE-MANIPULATION in IPRE + P is PSPACE-hard (and PSPACE-complete
if P can be executed in polynomial space).

Proof: Consider the following election under IPRFE + P. Let the candidate set be the set of all
candidates occurring in the votes constructed from ¢ (the “original candidates”), plus one dummy
candidate for each of the original candidates besides the c, and c_,. To each of the constructed

192 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

votes, add all the dummy candidates at the bottom; let the resulting set of votes be the set of the non-
manipulators’ votes, according to which they will answer the queries posed to them. The manipula-
tor has yet to decide on its strategy for answering queries. After step 4 (according to Definition 40)
of IPRE + P (up to which point the manipulator will not have had to make any decisions), let the
situation be as follows:

e The number of already fully scheduled matchups is k = ‘%' —2|Y|. In matchup i (1 < i <
| X), ¢4, faces c_g,. In the remaining fully scheduled matchups, candidates not correspond-
ing to a literal face a dummy candidate.

e Matchups k+ 2i —1and k +2i (1 < i < |Y|) already have candidates ¢, and C—y, in them,
respectively. The other two candidates to be assigned to these rounds are c ~and a dummy
candidate.

Thus, what will happen from this point on is the following. For i ranging from 1 to | X|, first
the protocol will schedule which of ¢, and c_,, face which of cy and the dummy candidate. The
c; facing the dummy will move on, and the other will be defeated by c , by property 3c. Second,
everyone will be asked which of ¢y, and c_,, is preferred, and because the nonmanipulators will
leave this pairwise election tied by property 3b, the manipulator’s vote will be decisive. Thus,
we can think of this as nature and the manipulator alternatingly giving the variables in Y and X
respectively truth-values: v is set to true if ¢4, survives, and to false if c_,, survives. By property
3a it then follows that p wins if and only if the resulting assignment satisfies all the clauses, i.e. is
a solution to the SAT instance. Thus, the manipulator’s strategy for setting variables should aim to
maximize the chance of the SAT instance being satisfied eventually. But this is exactly the problem
STOCHASTIC-SAT, which is PSPACE-complete [Papadimitriou, 1985].

If P can be executed in polynomial space, the manipulator can enumerate all possible outcomes
for all possible strategies in polynomial space, so the problem is also in PSPACE. =

Because the preconditions of Theorem 65 are similar to those of Theorem 52, we can build on
our previous reductions to apply this theorem to the well-known protocols.

Theorem 66 For each of plurality, Borda, maximin, and STV, there exists a reduction that
satisfies properties 3a, 3b and 3c of Theorem 65. Thus, In any of TPRFE + plurality, IPRE +
Borda, IPRE+mazimin,and IPRE+ STV, CONSTRUCTIVE-MANIPULATION is PSPACE-
complete.

Proof: We can modify the reductions from Subsection 8.2.2 to satisfy the preconditions of Theo-
rem 65. This is done by adding in the czl/ in such a way as to achieve property 3c (ranking them
just above their corresponding c, and c_, in slightly more than half the votes), while preserving
property 3a (by ranking them as low as possible elsewhere). =

This concludes the part of this dissertation studying how to tweak voting protocols to make them
harder to manipulate. In the next section, we focus on existing, untweaked voting rules: although
these rules are easy to manipulate in the sense described in this section (with the exception of STV),
it turns out that there are other manipulation problems that are difficult even for these rules, even
with few candidates.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 193

8.3 Hardness of manipulating elections with few candidates

We did some of the work in this subsection jointly with Jérdbme Lang (IRIT, France).

The hardness results that we proved in the previous section (as well as similar hardness results
proven by others [Bartholdi et al., 1989a; Bartholdi and Orlin, 1991; Elkind and Lipmaa, 2005a])
assume that not only the number of voters but also the number of candidates is unbounded. Such
hardness results lose relevance when the number of candidates is small, because manipulation al-
gorithms that are exponential only in the number of candidates (and only slightly so) might be
available. In this section, we first give such an algorithm for an individual agent to manipulate the
Single Transferable Vote (STV) rule, which has been shown hard to manipulate in the above sense.
The algorithm applies whether or not the voters are weighted.

This motivates the core of this section, which studies the complexity of manipulating elections
where the number of candidates is a small constant. Restricting the number of candidates to a con-
stant reduces the number of possible votes for a single voter to a constant. If the voters all have equal
weight in the election, the number of de facto possible combinations of votes that even a coalition
can submit is polynomial in the number of voters in the coalition (since the voters have equal weight,
it does not matter which agent in the coalition submitted which vote; only the multiplicities of the
votes from the coalition matter). We thus get the following straightforward result.

Proposition 9 Let there be a constant number of candidates, and suppose that evaluating the result
of a particular combination of votes by a coalition is in P. If there is only one voter in the coalition,
or if the voters are unweighted, the manipulation problem is in P. (This holds for all the different
variants of the manipulation problem, discussed later.)

Proof: The manipulators (an individual agent or a coalition) can simply enumerate and evaluate all
possibilities for their votes (there is a polynomial number of them). Specifically, when there are n
voters in the coalition and 7 candidates, then there are at most (n 4 1)™ possibilities, because for
every one of the m! possible orderings of the candidates there must be between 0 and n voters in
the coalition voting according to this ordering (and, because the voters are unweighted, it does not
matter which voters they are). This expression is polynomial inn. =

In particular, in the complete-information manipulation problem in which the votes of the non-
colluders are known, evaluating the result of a (coalitional) vote is roughly as easy as determining
the winner of an election.” This leaves open two avenues for deriving high complexity results
with few candidates. First, we may investigate the complete-information coalitional manipulation
problem when voters have different weights. While many human elections are unweighted, the in-
troduction of weights generalizes the usability of voting schemes, and can be particularly important
in multiagent systems settings with very heterogenous agents. As a second avenue, we may ask
whether there are reasonable settings where evaluating a manipulation is NP-hard. For instance, if

"Recall from Chapter 3 that there exist voting rules where determining the winner is computationally hard [Bartholdi
et al., 1989b; Hemaspaandra et al., 1997; Cohen et al., 1999; Dwork et al., 2001; Rothe et al., 2003; Davenport and
Kalagnanam, 2004; Ailon et al., 2005], including the Slater and Kemeny rules—but this is only so for large numbers of
candidates.

194 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

we merely have probability distributions on the non-colluders’ votes, how does the complexity of
determining the probability that a given candidate wins change?

We devote most of this section to studying the first avenue. We study both constructive ma-
nipulation (making a given candidate win) and destructive manipulation (making a given candidate
not win). We characterize the exact number of candidates for which manipulation becomes hard for
plurality, Borda, STV, Copeland, maximin, veto, plurality with runoff, regular cup, and randomized
cup rules. It turns out that the voting rules under study become hard to manipulate at 3 candidates,
4 candidates, 7 candidates, or never. The remainder of this section is devoted to the second avenue,
by showing that hardness results from the complete-information coalitional weighted manipulation
problem imply similar hardness results in the incomplete-information setting, even without the as-
sumptions of multiple manipulators and weighted votes.

8.3.1 Manipulating an election

Due to Proposition 9, we cannot hope to obtain hardness of manipulation in the sense of Section 8.2.
Hence, we will introduce more general manipulation problems. To do so, we first discuss the differ-
ent dimensions of the election manipulation problem:

1. What information do the manipulators have about the nonmanipulators’ votes? In the incom-
plete information setting, the manipulators are uncertain about the nonmanipulators’ votes.
This uncertainty could be represented in a number of ways, for example, as a joint proba-
bility distribution over the nonmanipulators’ votes. In the complete information setting, the
manipulators know the nonmanipulators’ votes exactly. We (initially) focus on the complete
information case for the following reasons: la. It is a special case of any uncertainty model.
Therefore, our hardness results directly imply hardness for the incomplete information set-
ting. 1b. As we will demonstrate later in this section, hardness results for manipulation by
coalitions in the complete information setting also imply hardness of manipulation by indi-
viduals in the incomplete information setting. 2. Results in the complete information setting
measure only the inherent complexity of manipulation rather than any potential complexity
introduced by the model of uncertainty.

2. Who is manipulating: an individual voter or a coalition of voters? Both of these are important
variants, but we focus on coalitional manipulation for the following reasons: 1. In elections
with many voters it is perhaps unlikely that an individual voter can affect the outcome—even
with unlimited computational power. 2. For any constant number of candidates (even with
an unbounded number of voters), manipulation by individuals in the complete information
setting is computationally easy because the manipulator can enumerate and evaluate all its
possible votes (rankings of candidates) in polynomial time, as we pointed out in the Introduc-
tion.® 3. Again, as we will demonstrate later in this section, hardness results for manipulation
by coalitions in the complete information setting also imply hardness of manipulation by in-
dividuals in the incomplete information setting.

8This assumes that the voting rule is easy to execute—as most rules are (including all the ones under study in this
section).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 195

3. Are the voters weighted or unweighted? Both of these are important variants, but we focus on
weighted voters for the following reasons: 1. In the unweighted case, for any constant num-
ber of candidates (even with an unbounded number of voters), manipulation by a coalition in
the complete information setting is computationally easy because the coalition can enumerate
and evaluate all its effectively different vote vectors, as we pointed out earlier. (We recall that
the number of effectively different vote vectors is polynomial due to the interchangeability of
the different equiweighted voters, see Proposition 9.) 2. As we will demonstrate later in this
section, hardness results for manipulation by weighted coalitions in the complete information
setting also imply hardness of evaluating the probabilities of different outcomes in the in-
complete information setting with unweighted (but correlated) voters. 3. In many real-world
elections, voters are in fact weighted, for example, by their ownership share in the company,
by seniority, or by how many other individuals they represent.

4. What is the goal of manipulation? We study two alternative goals: trying to make a given
candidate win (we call this constructive manipulation), and trying to make a given candidate
not win (we call this destructive manipulation). Besides these goals being elegantly crisp,
there are fundamental theoretical reasons to focus on these goals.

First, hardness results for these goals imply hardness of manipulation under any game-theoretic
notion of manipulation, because our manipulation goals are always special cases. (This holds
both for deterministic and randomized voting rules.) At one extreme, consider the setting
where there is one candidate that would give utility 1 to each of the manipulators, and all
other candidates would give utility O to each of the manipulators. In this case the only sen-
sible game-theoretic goal for the manipulators is to make the preferred candidate win. This
is exactly our notion of constructive manipulation. At the other extreme, consider the setting
where there is one candidate that would give utility O to each of the manipulators, and all
other candidates would give utility 1 to each of the manipulators. In this case the only sensi-
ble game-theoretic goal for the manipulators is to make the disliked candidate not win. This
is exactly our notion of destructive manipulation.

Second, at least for deterministic voting rules in the complete information setting, the easi-
ness results transfer from constructive manipulation to any game-theoretic definitions of ma-
nipulation that would come down to determining whether the manipulators can make some
candidate from a subset of candidates win. For example, one can consider a manipulation
successful if it causes some candidate to win that is preferred by each one of the manipulators
to the candidate who would win if the manipulators voted truthfully. As another example,
one can consider a manipulation successful if it causes some candidate to win that gives a
higher sum of utilities to the manipulators than the candidate who would win if the manipu-
lators voted truthfully. (This definition is especially pertinent if the manipulators can use side
payments or some other form of restitution to divide the gains among themselves.) Now, we
can solve the problem of determining whether some candidate in a given subset can be made
to win simply by determining, for each candidate in the subset in turn, whether that candidate
can be made to win. So the complexity exceeds that of constructive manipulation by at most
a factor equal to the number of candidates (i.e., a constant).

Third, the complexity of destructive manipulation is directly related to the complexity of de-

196 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

termining whether enough votes have been elicited to determine the outcome of the election.
Specifically, enough votes have been elicited if there is no way to make the conjectured winner
not win by casting the yet unknown votes [Conitzer and Sandholm, 2002c].

In summary, we focus on coalitional weighted manipulation (CW-MANIPULATION), in the com-
plete information setting. We study both constructive and destructive manipulation. Formally:

Definition 41 (CONSTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION) We are given
a set of weighted votes S (the nonmanipulators’ votes), the weights for a set of votes 7" which are
still open (the manipulators’ votes), and a preferred candidate p. For deterministic rules, we are
asked whether there is a way to cast the votes in 1" so that p wins the election. For randomized
rules, we are additionally given a distribution over instantiations of the voting rule, and a number
r, where 0 < r < 1. We are asked whether there is a way to cast the votes in 1" so that p wins with
probability greater than r.

Definition 42 (DESTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION) We are given a
set of weighted votes S (the nonmanipulators’ votes), the weights for a set of votes 7" which are still
open (the manipulators’ votes), and a disliked candidate k. For deterministic rules, we are asked
whether there is a way to cast the votes in 1" so that h does not win the election. For randomized
rules, we are additionally given a distribution over instantiations of the voting rule, and a number
r, where 0 < r < 1. We are asked whether there is a way to cast the votes in 1" so that h wins with
probability less than r.

For deterministic rules, we do not consider a manipulation successful if it leaves candidate p
or h tied for the win.® One way of viewing this is as follows. If ties are broken randomly, then
technically, we are dealing with a randomized rule. Then, we can set r so that a tie for the win does
not give p enough probability of winning (for example, » = 2/3), or so that a tie gives h too much
probability of winning (for example, r = 1/(m + 1)).

Before we start studying these problems, we first complete our justification for requiring hard-
ness even with few candidates. We do so by giving an algorithm for an individual voter to manipulate
the STV rule that is exponential only in the number of candidates, and scales to reasonably large
numbers of candidates. This is the subject of the next subsection (which can be skipped without
affecting the reader’s ability to comprehend the rest of this section).

8.3.2 Algorithm for individually manipulating the STV rule

When the number of candidates is unbounded, the STV rule is known to be NP-complete to con-
structively manipulate, even by a single manipulator when the votes are not weighted [Bartholdi and
Orlin, 1991]. In this subsection we present an algorithm for manipulating STV as a single voter,
when the votes of the others are known. Votes may be weighted.

To study the complexity fundamental to manipulating STV, rather than complexities introduced
by tie-breaking rules, for this algorithm we make the following assumption. We assume that the STV
rule uses some deterministic method for breaking ties (when choosing the loser to be eliminated at

Our proofs do not depend on this specification, with the exception of Theorem 74.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 197

the end of a round), where the tie-breaking does not depend on aspects of the votes that the STV
rule has not considered so far (such as who has been ranked lowest by the largest number of voters).
However, the tie-breaking can depend on the number of the round, candidates still in the running,
etc. In the algorithm, the tie-breaking rule is used in the arg min function.

The algorithm simulates the various ways in which the elimination of candidates may proceed
given various votes by the manipulator. It follows the principle of least commitment in deciding
which manipulative votes to consider. It returns the set of candidates that win for some vote by
the manipulator. (It is easy to extend the algorithm so that it also provides a vote to effect such
a victory.) Again, let there be n voters, where we index the manipulator n. Let C' be the set of
remaining candidates. Let v; be the vote of voter 7 (1 < 7 < n) and let w; be the weight of voter
1 (1 <4 < n). Let s; be the weight of the voters that rank candidate j first among the remaining
candidates.

Some stages of the simulation can be reached only if the manipulator has a certain candidate
f ranked first among the remaining candidates. At such stages, we will know precisely how the
elimination will proceed, until f is eliminated and the manipulator’s vote is freed up again. We say
that f = 0 when there is no constraint on how the manipulator ranks the remaining candidates in
the current stage of the simulation.

The function TRANSFERVOTES takes as input a candidate ¢, the remaining set of candidates
C, the vector (s1,...,Sm), and the votes and weights. It returns what would be the new vector
(81, ..., 8m) if c were eliminated in this round.

Now, we are ready to present the manipulation algorithm, which, when called with the original
set of candidates C and f = 0, returns the set of all candidates that will win for some vote by the
manipulator.

198 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

MANIPULATE(C, (s1, ..., 8m), (U1, -, Un—1), (W1, ..., wy), f)
if C' = {c}
/I we have eliminated all but a single candidate
return {c}
else if (f # 0)
// the manipulator’s vote is already committed to a candidate at this stage
¢ «— arg minjec(s;)
(t1,...,tm) < TRANSFERVOTES (¢, C, (51, -, 8m), (V1,. .., Upn-1),
(Wi, ..., wy))
ifc=1f
// the manipulator’s vote is freed up
return MANIPULATE(C — {c}, (t1,...,tm), (V1,...,Un—1),
(w1, ...,wy),0)
else
// the manipulator’s vote remains committed
return MANIPULATE(C — {c}, (t1,...,tm), (V1,...,0n—1),
(wi,...,wy), f)
else
// the manipulator’s vote is not committed at this stage
¢« argminjec(s;)
// which candidate is losing before the manipulator assigns his vote?
Sep < Se; Wy
co < argminjec(s;)
// which candidate loses if the manipulator supports c;?
(t1,...,tm) < TRANSFERVOTES(c1,C, (S1,. .-, 8m), (U1, .-, Un—1),
(w1, ..., wy))
ifci =
// the manipulator cannot rescue c; at this stage
return MANIPULATE(C — {c1}, (t1, ..., tm), (U1, ..., Un—1),
(w1, ...,wy),0)
else
// the manipulator can choose to rescue c; at this stage
S1 < MANIPULATE(C — {c1}, (t1, .-, tm), (V1, ..., Un—1),

(wi,...,wy),0)

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 199

// case I: do not rescue ¢
(t1,...,tm) < TRANSFERVOTES (c2, C, (81, -, 8m), (U1, -+, Un—1),

(wi,...,wy))
SQ — MANIPULATE(C - {CQ}, (tl, ce ,tm>, (’Ul, ce ,’l}n_l),
(wi,...,wp),c1)

// case II: do rescue ¢
return S; U S

We now analyze how many recursive calls we will make to this algorithm. Let 7'(k) be the
maximal number of calls we need for a set of remaining candidates of size k. Let T((k) be the
maximal number of calls we need when the first call has f # 0. Then we have the following
recurrences:

T(k) < 14+T(k—1)+To(k—1) (8.1)
To(k) < 14+T(k-1) (8.2)

Combining the two we get
Tk)<2+Tk-1)+T(k—-2) (8.3)

The asymptotic bound that we derive from this recurrence is indeed tight for the running time
of MANIPULATE, as the following example shows. In the example, candidates are eliminated
sequentially, but the manipulator can postpone the elimination of any candidate for exactly one
round. Let the candidates be (cy, .. ., ¢y,). For candidate i, let there be exactly ¢ voters that rank it

m
first, for a total of > ¢ = W voters other than the manipulator, of weight 1 each. All the voters

i=1
other than the manipulator that do not rank candidate m first, rank it second. The manipulator has

weight 1 + €.19 We claim that the arguments passed to MANIPULATE always satisfy one of the
following two properties:

e ()C =Ac,cit1,...,cm}and f = 0.
e 2)C ={ci,ciy2,¢Ci13,...,cm}and f = c;.

The initial call is of type (1). If the current call is of type (1), this will lead to two recursive calls:
one of type (1) (the manipulator does not rescue candidate c;), and one of type (2) (the manipulator
does rescue ¢;). (The exception is when ¢ > m — 1 but this is irrelevant to the asymptotic analysis.)
This makes the recurrence in Equation 8.1 tight. If the current call is of type (2), this will lead to
one recursive call of type (1) because c; gets eliminated in spite of the fact that the manipulator
is ranking it first. This makes the recurrence in Equation 8.2 tight. Because the recurrences in
Equations 8.1 and 8.2 are tight, the recurrence in Equation 8.3 is tight.

10 Alternatively, we can assume unweighted votes and a tie-breaking mechanism that always breaks ties towards lower-
indexed candidates, that is, it breaks a tie between c; and ¢;+1 in favor of ¢;.

200 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

The solution to the recurrence is O((H—z\/g)k) Observing that one call to MANIPULATE (not
counting the recursive calls to MANIPULATE, but counting the calls to TRANSFERVOTES) can
be done in O(n) time (assuming that (s1, ..., s;,) can be stored in an array), we have the following
result.

Theorem 67 The algorithm MANIPULATE runs in time O(n(HT\/g)m), where m is the number of
candidates and n is the number of voters.

So, MANIPULATE runs in O(n - 1.62™) time. While this function is exponential in m (which
is to be expected given that the problem is NP-complete), it is nevertheless not exceedingly large for
realistic numbers of candidates. For instance, with 10 candidates, (#)10 < 123. Furthermore,
on most instances, the algorithm is likely to terminate much faster than this, since we make two
recursive calls only when the manipulator can rescue a candidate from elimination in a given round.
In large elections where the manipulator’s weight is relatively insignificant, it is unlikely that this
would happen even more than once.

8.3.3 Complexity of weighted coalitional manipulation with few candidates

We are now ready to present our results on the hardness of coalitional manipulation when there are
few candidates and the votes are weighted. We will study not only whether any given rule is hard to
manipulate with a constant number of candidates, but also how many candidates are needed for the
hardness to occur. This number is important for evaluating the relative manipulability of different
voting rules (the lower this number, the less manipulable the rule). For each rule that we show is
hard to manipulate with some constant number of candidates, we show this for the smallest number
of candidates for which the hardness occurs, and we show that manipulation becomes easy if we
reduce the number of candidates by one. (Once we have identified this transition point, it is easy to
see that the manipulation problem remains hard for any greater number of candidates, and remains
easy for any smaller number of candidates, for example by adding “dummy” candidates.)

Constructive Manipulation

We first present our results for constructive manipulation.

We begin by laying out some cases where constructive manipulation can be done in polynomial
time. We start with some rules that are easy to manipulate constructively regardless of the number
of candidates. For the plurality rule, showing this is straightforward:

Theorem 68 For the plurality rule, CONSTRUCTIVE CW-MANIPULATION can be solved in polyno-
mial time (for any number of candidates).

Proof: The manipulators can simply check if p will win if all the manipulators vote for p. If not,
they cannot make p win. =

For the cup rule, the proof is a little more involved:

Theorem 69 For the cup rule (given the assignment of candidates to leaves), CONSTRUCTIVE CW-
MANIPULATION can be solved in polynomial time (for any number of candidates).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 201

Proof: We demonstrate a method for finding all the potential winners of the election. In the binary
tree representing the schedule, we can consider each node to be a subelection, and compute the set of
potential winners for each subelection. (In such a subelection, we may say that the voters only order
the candidates in that subelection since the place of the other candidates in the order is irrelevant.)
Say a candidate can obtain a particular result in the election if it does so for some coalitional vote.
The key claim to the proof, then, is the following: a candidate can win a subelection if and only if
it can win one of its children, and it can defeat one of the potential winners of the sibling child in
a pairwise election. It is easy to see that the condition is necessary. To show that it is sufficient, let
p be a candidate satisfying the condition by being able to defeat h, a potential winner of the other
child (or half). Consider a coalitional vote that makes p win its half, and another one that makes
h win its half. We now let each coalitional voter vote as follows: it ranks all the candidates in p’s
half above all those in A’s half; the rest of the order is the same as in the votes that make p and h
win their halves. Clearly, this will make p and h the finalists. Also, p will win the pairwise election
against h since it is always ranked above h by the colluders; and as we know that there is some
coalitional vote that makes p defeat h pairwise, this one must have the same result. The obvious
recursive algorithm has running time O(m?n) according to the Master Theorem [Cormen et al.,
1990]. =

The remaining easiness results that we show in this subsubsection only show easiness up to
a certain number of candidates. For each of these results, we later show that adding one more
candidate causes the problem to become NP-complete.

As a first observation, when there are only two candidates, all the rules are equivalent to the
plurality rule, and hence both types of manipulation (constructive and destructive) are in P for all
of the rules. However, some rules are still easy to manipulate constructively with more than 2
candidates. In each of the following cases, we prove easiness of manipulation by demonstrating
that if there exists a successful manipulation, there also exists one where all the manipulators vote
the same way. All such ways of voting can be easily enumerated: because the number of candidates
is constant, the number of different orderings of the candidates is constant. Also, each way of voting
is easy to evaluate in these rules.

Theorem 70 If the Copeland rule with 3 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.
Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.

Proof: Let the 3 candidates be p, a, and b. We are given the nonmanipulators’ votes S, and the
weights for the manipulators’ votes 7. Let the total vote weight in 7" be K.

For a set of weighted votes V' and two candidates x, y, we denote by Ny (z,y) the cumulated
weights of the votes in V' ranking x prior to y, and we let Dy (z,y) = Ny (z,y) — Ny (y, z). Let
us consider the following four cases which cover all possible situations:

Case 1: K > Dg(a,p) and K > Dg(b,p).

In this case, any configuration of votes for 7" such that p is ranked first for all votes makes p win
the election.

Case 2: K > Dg(a,p) and K = Dg(b, p).

202 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

It can easily be shown that it is harmless to assume that all votes in 7" rank p first. Therefore,
what remains to be done in order to have p win is to find who in 7" should vote (p, a,b) and who
should vote (p, b, a). What we know so far (before knowing how the votes in 7" will split between
these two profiles) is: (1) Dgur(p,a) = K — Dg(p,a) > 0 and (2) Dsur(p,b) = K — Dg(p,b) =
0. (1) makes p get +1 and a get —1 while (2) makes both p and b get 0. Therefore, the partial
Copeland scores (not taking account of the a vs. b pairwise election), are +1 for p (which will not
change after taking account of the a — b pairwise election), —1 for a and 0 for b; hence, the only way
for p to win (with certainty) is to avoid b getting a point in the pairwise election against a, i.e., to
ensure that Dgr(a, b) > 0. It can easily be shown that this is possible if and only if K > Dg(b, a).
Therefore, we have found that there exists a successful manipulation for p iff X > Dg(b,a), and in
this case a successful manipulation is the one where all voters in the coalition vote (p, a, b).

Case 3: K = Dg(a,p) and K > Dg(b,p).

This is similar to Case 2, switching the roles of a and b; the condition then is K’ > Dg(a,b) and
the successful manipulation is the one where all vote (p, b, a).

Case 4: K < Dg(a,p) or K < Dg(b,p) or (K < Dg(a,p) and K < Dg(b,p)).

Here, whatever the votes in 7', the Copeland score of p is smaller than or equal to 0 and therefore
p cannot be guaranteed to win, so there is no successful manipulation. Thus, in every case, either
there is no successful manipulation, or there is a successful manipulation where all manipulators
vote identically. =

Theorem 71 If the maximin rule with 3 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.
Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.

Proof: Let the 3 candidates be p, a, and b. We are given the nonmanipulators’ votes S, and the
weights for the manipulators’ votes T'. Let the total vote weight in 7" be K. Again, it is easy to
show that all the manipulators can rank p first without harm.

Let us denote by P k2 a vote configuration for 7" such that a subset 7 of T', whose cumulated

weight is K1, votes (p, a,b) and T» = T'\ T}, whose cumulated weight is Ko (with K + Ky = K),
votes (p,b,a). Now all that remains to show is the following: if p wins with the votes in 7" being
Pk1, K2 then either p wins with the votes in 7" being Pk o or p wins with the votes in T" being P k.
Let us consider these two cases for the outcome of the whole election (including the votes in 1):
Case 1: the uniquely worst pairwise election for a is against b, and the uniquely worst pairwise
election for b is against a. One of a and b must have got at least half the vote weight in the pairwise
election against the other (say, without loss of generality, a) and therefore have a maximin score of
at least half the vote weight. Since a did even better against p, p received less than half the vote
weight in their pairwise election and therefore p does not win.
Case 2: One of a and b (say, without loss of generality, a) does at least as badly against p as
against the other (so, a’s worst opponent is p). Then all the voters in the coalition might as well
vote (p, a,b), because this will change neither a’s score nor p’s score, and might decrease (but not
increase) b’s score. =

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 203

Theorem 72 If the randomized cup rule with 6 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.

(This holds regardless of which balanced tree is chosen.) Therefore, CONSTRUCTIVE CW-MANIPULATION
isinP.

Proof: We show how to transform a successful manipulation into a successful manipulation where
all the manipulators cast the same vote, in a number of steps. Observe that swapping two candidates
that are ranked directly after one another in a vote can only affect the outcome of their pairwise
election, and not those of the others. (Throughout the proof, when we talk about swapping two
candidates in a vote, this only means swapping two candidates ranked directly behind each other.)

If p is ranked directly behind another candidate c, the only effect that swapping them can have
is to make p the winner of their pairwise election where it was not before; clearly this can never hurt
p’s chances of winning. Repeated application of this gives us a successful manipulation where all
the manipulators rank p at the top.

We now divide the other candidates into two sets: B is the set of candidates that defeat p in
their pairwise election, G is that of candidates that are defeated by p. We now claim that when
a candidate g € G is ranked directly behind a candidate b € B, swapping them cannot hurt p’s
chances of winning. This is because of the following reason. Again, the only effect that the swap
can have is to make g the winner of its pairwise election with b, where it was not before. We show
that for any schedule (assignment of candidates to leaves), if p wins when b defeats g, then p also
wins in the case where this pairwise election is changed to make g defeat b (but nothing else is
changed). For any schedule where g and b do not meet this is obvious. If b and g face each other
in the final, p of course does not win. If b and g face each other in a semifinal, and b defeats g,
then again p cannot win because it cannot defeat b in the final. So the only case left to check is a
schedule where b and g meet in a quarterfinal (because the tree is balanced). If p wins with this
schedule when b defeats g, that means that b is defeated by some other ¢’ € G in the semifinal (if
b wins the semifinal, p could never defeat it in the final; if b loses to some b’ € B, p could never
defeat &' in the final; and p itself cannot defeat b in the semifinal either), and that p defeats this ¢’ in
the final. Then if we change the winner of the quarterfinal to g, regardless of whether g or g’ wins
the semifinal, p will win the final. Thus the claim is proven. Repeated application of this gives a
successful manipulation where all the manipulators rank p at the top, and all candidates in G above
all candidates in B.

All that remains is to get the manipulators to agree on the order of the candidates within G and
the order of the candidates within B. We will show how to do this for GG; the case of B is entirely
analogous. If there are 0 or 1 candidates in G, there is only one order for these candidates. If there
are 2 candidates in (G, then swapping them whenever the winner of their pairwise election is ranked
below the loser does not affect the outcome of their pairwise election and hence nothing at all.

If there are 3 candidates in G, that means there are only 2 in B. Say B = {b1, by }. Divide the
candidates in G into G, Gy, G}, Gy, Where a candidate in G g defeats all candidates in S
but none in B — S. We first claim that it never hurts to swap when a candidate gg € G is ranked
directly below another candidate g € G. Again we do so by showing that with any schedule where
p wins when g defeats gp, p also wins when gp defeats g (but everything else is unchanged). If ¢
and gp never meet this is obvious; if g and gp meet in a semifinal or the final, it does not matter to
p which one wins. If g defeats gp in a quarterfinal and p wins the election, then one of the three

204 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

following cases applies: 1. p defeats g in the semifinal, 2. g defeats some b € B in the semifinal
and is defeated by p in the final, 3. ¢ faces the third candidate g3 € G in the semifinal, and p
wins the final agaist the winner of this. Now, if g instead had defeated g, then in case 1 p defeats
gp in the semifinal and goes on to win the final as before; in case 2, gp defeats b as well in the
semifinal and then loses to p in the final; and in case 3, p faces either gp or g3 in the final and wins.
Repeated application of this gets all the elements in G p ranked above all the other elements in G
in all the manipulators’ votes, and this rule also allows us to get the elements in G g ordered among
themselves in the same way in all the manipulators’ votes. Similarly, we can show that we can
always swap the elements in G) downwards, so that all the elements of this set are ranked below
all other elements in (G, and ordered among themselves in a unique manner across all the votes.

Now, if indeed there is some element in GG g or G{}, then there are at most two candidates left
in G p whose order might differ across manipulators’ votes. As in the case of 2 candidates, we can
simply always swap the winner of their pairwise election up without changing anything, and we
are done. On the other hand suppose there is no element in G'p or Gy, so that all the remaining
elements are in Gy} or Gyp,,). We claim that either it does not hurt to swap all the candidates
from G,y below all those of Gyy,), or vice versa. In the case where either Gy) or Gy, is
empty, this claim is vacuous: so suppose without loss of generality that G,y has two elements
g1 and go, and G} one element, g3. Now suppose the contrary, that is, that always swapping g3
above g1 and g decreases p’s chances of winning the election, but that always swapping g3 below
g1 and go also decreases p’s chances of winning the election. It follows that always swapping g3
above g; and go causes g3 to win both pairwise elections, and that always swapping g3 below g1
and g9 causes g3 to lose both pairwise elections. (For otherwise, the manipulators cannot change
the winner of one of these pairwise elections, and because the other pairwise election must have
a winner in the current state, either always swapping g3 up or always swapping gs down will not
affect any pairwise election at all, and hence the probability of p winning would remain unchanged.)
Hence in the current state g3 must be winning exactly one of these pairwise elections (without loss
of generality, the one against g;). Now, because always swapping g3 below g; and g2 only has the
effect of making it lose against g; as well, and because this reduces the probability of p winning,
it follows that the number of schedules where p wins now is strictly greater than the number of
schedules where p wins if g3 lost to g; in its pairwise election but everything else remained the same.
Thus, the number of schedules where p wins now but would not win if g3 lost to g; in their pairwise
election (call this set of schedules L(g1)), is strictly greater than the number of schedules where p
does not win now but would win if g3 lost to g; in their pairwise election (call this set of schedules
W (g1)). Similarly we can show that the number of schedules where p wins now but would not
win if g3 defeated g2 in their pairwise election (call this set of schedules W (g2)), is strictly greater
than the number of schedules where p does not win now but would win if g3 defeated go in their
pairwise election (call this set of schedules L(g2)). So, |[W(g1)| < |L(g1)], and |W (g2)| > |L(g2)|-
We now derive the desired contradiction by showing W (g1)| > [W(g2)| and |L(g1)| < |L(g2)|-
Consider the mapping f from schedules to schedules that simply swaps the position of g; and g, in
the schedule. This mapping is one-to-one. We now claim that if o € W (g2), then f(c) € W (g1),
thereby demonstrating |WW (g1)| > |W(g2)|; the case for |L(g1)| < |L(g2)| is similar. o € W(g2)
means that p wins in ¢ now but would not win if g3 defeated g in their pairwise election. It is
straightforward to check that this only happens if go and g3 meet in a quarterfinal, and the winner

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 205

goes on to meet b; in the semifinal (whom go would defeat but g3 would not), while p goes on to the
final in the other half of the cup. Now we must show f(0) € W(g1). In f(0), g1 and g3 face each
other in a quarterfinal. The semifinal after this quarterfinal will certainly have b; in it (if b; plays
a quarterfinal before this, b; must have the same opponent in this quarterfinal as in o, because by
cannot face g; in the quarterfinal in o and still move on to the semifinal in o; hence b; will defeat its
quarterfinal opponent in f(o) as well). Also, the final will certainly have p in it (even if g; was in
p’s half, since the sets of candidates within p’s half that g; and go defeat are identical, this half will
proceed exactly as in o). Now, in the current state of the votes, gs will defeat g; in the quarterfinal,
upon which b; will defeat g3 in the semifinal and p in the final. On the other hand, if g; defeated
g3, it would defeat b; in the semifinal and p would win the final against g;, and hence win the entire
election. It follows that f(o) € W(g1), as was to be shown. So either it does not hurt to swap all
the candidates from G, below all those of Gy}, or vice versa. It remains to be shown that the
manipulators’ rankings of the candidates within G ;3 and within G,y can be made to coincide.
Given (without loss of generality) g1, g2 € Gy, itis straightforward to check that it does not matter
to p which of them would win if they faced each other in the final or semifinal. In case they face
each other in a quarterfinal, then if p is in the same half of the cup it does not matter which of g
and go wins the quarterfinal, because p (if it reaches the semifinal) would defeat either one. If p is in
the other half, the only thing that matters is whether this half’s finalist is in B or in G. Thus, if the
winner of the quarterfinal between g; and go faces the last remaining candidate from G the finalist
will certainly be in (G, so who won the quarterfinal does not matter; on the other hand, if the winner
of the quarterfinal between g; and g» faces a candidate in B, then again it does not matter who wins
the quarterfinal, because g; and go defeat the same set of candidates from B. It follows that it is
irrelevant to p’s chances of winning what the outcome of a pairwise election between candidates in
G p,} or between candidates in G (3,1 is, so we can order them among themselves in whichever way
we like. Hence we can make the manipulators’ votes coincide on the order of the 3 candidates in G.

If there are 4 candidates in GG, that means there is only one in B. Hence we can partition G
into G and Gyy. With techniques similar to the case of 3 candidates in GG, we can show that we
can always swap candidates in G above those in G}; and we can show that a vote’s order of the
candidates within G g (or G{}) is irrelevant. Hence we can make the manipulators’ votes coincide
on the order of the 4 candidates in G.

Finally, if there are 5 candidates in (G, then p defeats all other candidates in pairwise elections,
so p is guaranteed to win regardless of how the candidates in G are ranked. m

We are now ready to prove hardness results that match the bounds given by the easiness results
above. (That is, for every rule which we showed is easy to manipulate with up to [candidates, we
now show that it is hard to manipulate with [4+ 1 candidates.) In many of the proofs of NP-hardness,
we use a reduction from the PARTITION problem, which is NP-complete [Karp, 1972]:

Definition 43 PARTITION. We are given a set of integers {k;}1<i<: (possibly with multiplicities)
summing to 2k, and are asked whether a subset of these integers sums to K.

Theorem 73 For any scoring rule other than the plurality rule, CONSTRUCTIVE CW-MANIPULATION
is NP-complete for 3 candidates.

Proof: First, note that when there are only 3 candidates, a positional scoring rule is defined by

206 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

a vector of integers @ = (aq, ag, ag) such that a; > s > 3. Without loss of generality, we
can assume that az = 0 (since translating the «;’s by a constant has no effect on the outcome of
the election). We can also assume that as > 2. (If ae = 0 then the rule is either meaningless
(if ay = 0) or equivalent to the plurality rule, so we can assume as > 0. Then, we can scale
the «; appropriately, which will not affect the rule.) Showing the problem is in NP is easy. To
show NP-hardness, we reduce an arbitrary PARTITION instance to the following CONSTRUCTIVE
MANIPULATION instance. The 3 candidates are a, b, and p. In S there are (2a; — a2) K — 1 voters
voting (a, b, p) and (2 —aa) K — 1 voters voting (b, a, p). In T, for each k; there is a vote of weight
(a1 + a2)k;. Suppose there is a partition of the k;. Then, let the votes in 7" corresponding to the one
half of the partition be (p, a, b) and the votes corresponding to the other half be (p, b, a). Then the
score of p is 2(a; + az)a K while the scores of both a and b are (a1 + a2) (20 K — 1), therefore
p is the winner and there is a manipulation. Conversely, suppose there exists a manipulation. Then,
since scoring procedures satisfy monotonicity, we can assume without loss of generality that the
voters in the coalition 7" rank p first. Let x (resp. y) be the total weight of voters in 1" of the
voters who vote (p,a,b) (resp. (p,b,a)). Note that we have x + y = 2K. Then the score of p
is 2(aq + a2)an K, the score of a is (a1 + a2)((2a1 — a2) K — 1 4+ zaz), and the score of b is
(a1 +a2)((201 —ag) K — 14+ yaw). Since p is the winner, its score must be at least that of a, which
is equivalent to xao < Ko + 1. Because aip > 0, the latter condition is equivalent to z < K + 6%2,
which is equivalent to x < K (because ap > 2). Similarly, we get y < K, which together with
x 4+ y = 2K enables us to conclude that z = y = K, so there exists a partition. =

Corollary 4 For the veto and Borda rules, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 3 candidates.

(On a historical note, we actually proved Corollary 4 before we discovered its generalization to
Theorem 73; the generalization was independently discovered by us, Hemaspaandra and Hemas-
paandra [2005], and Procaccia and Rosenschein [2006].)

Theorem 74 For the Copeland rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 4
candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 4
candidates, a, b, c and p. In S there are 2K + 2 voters voting (p, a, b, ¢), 2K + 2 voting (¢, p, b, a),
K +1 voting (a, b, ¢, p), and K + 1 voting (b, a, ¢, p). In T', for every k; there is a vote of weight k;.
We show the instances are equivalent. First, every pairwise election is already determined without
T, except for the one between a and b. p defeats a and b; a and b each defeat c; ¢ defeats p. If
there is a winner in the pairwise election between a and b, that winner will tie with p. So p wins
the Copeland election if and only if a and b tie in their pairwise election. But, after the votes in .S
alone, a and b are tied. Thus, the votes in 7" maintain this tie if and only if the combined weight of
the votes in IT" preferring a to b is the same as the combined weight of the votes in " preferring b to
a. This can happen if and only if there is a partition. m

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 207

Theorem 75 For the maximin rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 4
candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 4
candidates, a, b, c and p. In S there are 7K — 1 voters voting (a, b, ¢, p), TK — 1 voting (b, ¢, a, p),
4K — 1 voting (¢, a, b, p), and 5K voting (p,c,a,b). In T, for every k; there is a vote of weight
2k;. We show the instances are equivalent. Suppose there is a partition. Then, let the votes in
T corresponding to the k; in one half of the partition vote (p, a, b, ¢), and let the other ones vote
(p, b, c,a). Then, p does equally well in each pairwise election: it always gets 9K pairwise points.
a’s worst pairwise election is against ¢, getting 9K — 1. b’s worst is against a, getting 9K — 1.
Finally ¢’s worst is against b, getting 9K — 1. Hence, p wins the election. So there is a manipulation.
Conversely, suppose there is a manipulation. Then, since moving p to the top of each vote in 7" will
never hurt p in this rule, there must exist a manipulation in which all the votes in T put p at the top,
and p thus gets 9K as its worst pairwise score. Also, the votes in 7" cannot change which each other
candidate’s worst pairwise election is: a’s worst is against ¢, b’s worst is against a, and ¢’s worst is
against b. Since c already has 9K — 1 points in its pairwise election against b, no vote in 1" can put
c ahead of b. Additionally, if any vote in 7" puts a right above ¢, swapping their positions has no
effect other than to decrease a’s final score, so we may also assume this does not occur. Similarly
we can show it safe to also assume no vote in 7" puts b right above a. Combining all of this, we may
assume that all the votes in 7" vote either (p, a, b, ¢) or (p, b, ¢, a). Since a already has 7K — 1 points
in the pairwise election against c, the votes in 1" of the first kind can have a total weight of at most
2K ; hence the corresponding k; can sum to at most /. The same holds for the k; corresponding to
the second kind of vote on the basis of b’s score. Hence, in both cases, they must sum to exactly K.
But then, this is a partition. =

Theorem 76 For the STV rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 3 candi-
dates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 3
candidates, a, b and p. In S there are 6/ — 1 voters voting (b,p, a), 4K voting (a,b,p), and
4K voting (p,a,b). In T, for every k; there is a vote of weight 2k;. We show the instances are
equivalent. Suppose there is a partition. Then, let the votes in 7' corresponding to the k; in one
half of the partition vote (a, p, b), and let the other ones vote (p, a, b). Then in the first round, b has
6K — 1 points, a has 6K, and p has 6/K. So b drops out; all its votes transfer to p, so that p wins
the final round. So there is a manipulation. Conversely, suppose there is a manipulation. Clearly, p
cannot drop out in the first round; but also, a cannot drop out in the first round, since all its votes
in S would transfer to b, and b would have at least 10/ — 1 points in the final round, enough to
guarantee it victory. So, b must drop out in the first round. Hence, from the votes in 7', both a and
c must get at least 2K weight that puts them in the top spot. The corresponding k; in either case
must thus sum to at least K. Hence, in both cases, they must sum to exactly K. But then, this is a

208 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

partition. m

This also allows us to show that constructively manipulating the plurality with runoff rule is
hard:

Theorem 77 For the plurality with runoff rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 3 candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we observe that with 3
candidates, the plurality with runoff rule coincides with the STV rule, and CONSTRUCTIVE MANIP-
ULATION for STV with 3 candidates is NP-hard. m

Theorem 78 For the randomized cup rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 7 candidates.

Proof: The problem is in NP because for any vector of votes, we can check for every one of the pos-
sible schedules for the cup whether p wins (because the number of candidates is constant, so is the
number of possible schedules). To show it is NP-hard, we reduce an arbitrary PARTITION instance to
the following CONSTRUCTIVE CW-MANIPULATION instance. There are 7 candidates, a, b, ¢, d, e, f,
and p. In T, for every k; there is a vote of weight 2k;. Let W = 4K. Let the votes in .S be as follows:
there are gW votes (d,e,c,p, f,a,b), %W votes (d,e,c,p, f,b,a), gW votes (f,d,b,p, e, c, a),
%W votes (f,d,b,p,e,a,c), %W votes (e, f,a,p,d,b,c), %W votes (e, f,a,p,d,c,b), 2W votes
(p,a,c,b,d,e, f), W votes (p, c,b,a, f,d,e), Wvotes (¢, b, a, f,d, e, p), 2W votes (b, a, c, e, f,d,p),
and 4K — 1 votes that we will specify shortly. Since it takes only S%W votes to win a pairwise elec-
tion, it follows that the outcomes of the following pairwise elections are already determined: p
defeats each of a, b, ¢ (it has 9W votes in each of these pairwise elections from the given votes);
each of d, e, f defeats p (9W in each case); d defeats e, e defeats f, f defeats d (10W in each
case); a defeats d, b defeats e, ¢ defeats f (9W in each case); d defeats b and ¢, e defeats a and c,
f defeats a and b (9W in each case). So, the only pairwise elections left to be determined are the
ones between a, b and c¢. We now specify the remaining 8 ' — 1 votes in S there are 2K — 1 votes
(¢,b,a,p,d,e, f) and 2K — 1 votes (b,a,c,p,d,e, f), and 1 vote (b, c,a,p,d,e, f). As a result,
given all the votes in S, bis 4K — 1 votes ahead of «a in their pairwise election, b is 1 vote ahead of
¢, and c is 1 vote ahead of a. We claim that the votes in 1" can be cast so as to make a defeat b, b
defeat c, and c defeat a, if and only if a partition of the k; exists. If a partition exists, let the votes
corresponding to one half of the partition be (a, b, ¢, p, d, e, f), and those corresponding to the other
halfbe (¢, a, b, p,d, e, f); this is easily verified to yield the desired result. Conversely, suppose there
is a way to cast the votes in 7 so as to yield the desired result. Then, since each vote in 7" has even
weight, all the votes in 1" rank a above b; at least half the vote weight ranks b above c; and at least
half the vote weight ranks c above a. Since, if a is ranked above b, it is impossible to have c be
ranked simultaneously both below b and above a, it follows that precisely half the vote weight ranks
b above c (and the other half, ¢ above a); and hence, we have a partition. To complete the proof
of the theorem, we claim that making a defeat b, b defeat ¢, and ¢ defeat « strictly maximizes the
probability that p wins. From this claim it follows that if we set r to a number slightly smaller than

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 209

the probability that p wins if a defeats b, b defeats ¢, and ¢ defeats a, then it is possible for the votes
in T to make p win with probability at least r, if and only if there is a partition of the k;. To prove
the claim, we do a careful case-by-case analysis on the structure of the cup.

"bye" position

Quarterfinal 1{ql) Quarterfina 2(q2) Quarterfinal 3 (q3)
Figure 8.1: The cup used in the proof.

For each situation in which two of a, b and c¢ face each other in a round, we analyze whose
winning would be most favorable to p. If p does not get the “bye” position, it can only win by
facing each of a, b and ¢ in some round, which is impossible if any two of those ever face each
other; so in this case the results of the pairwise elections between them are irrelevant as far as p’s
chances of winning are concerned. So let us assume p gets the bye position. If two of a, b and ¢
face each other in si, then the outcome of this round is irrelevant as p would defeat either one in
the final. If two of a, b and ¢ face each other in g3, then the outcome of this round is irrelevant as p
would defeat either one in so. Now suppose a and b face each other in ¢;. Then the only way for p
to make it to the final is if ¢ faces f in ¢3, so let us assume this happens. Then, d and e face each
other in gs, which confrontation d will win. If a defeats b in ¢, it will win s; against d, and p will
defeat it in the final. On the other hand, if b defeats a in ¢, it will lose s; against d, and d will defeat
p in the final.. It follows that in this case, if we want p to win, we would (strictly) prefer a to defeat
b in their pairwise election. Symmetrically, we also prefer a to defeat b if they face each other in
q2. Since we have analyzed all possibilities where a may face b, and in these is always favorable
to p for a to defeat b, sometimes strictly so; it follows that it is strictly favorable to p’s chances of
winning if a defeats b in their pairwise election. Analogously (or by symmetry), it can be shown
that it is strictly favorable to p’s chances of winning if b defeats ¢, and ¢ defeats b in their pairwise
elections. Hence achieving these pairwise results simultaneously strictly maximizes p’s chance of
winning the election. =

210 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Recall that the cup rule (without randomization) is easy to manipulate constructively for any
number of candidates. Thus, the previous result shows that randomizing over instantiations of the
rules (such as schedules of a cup) can be used to make manipulation hard.

Destructive Manipulation

We now present our results for destructive manipulation.

We begin by laying out some cases where destructive manipulation can be done in polynomial
time. It is easy to see that destructive manipulation can never be harder than constructive manipu-
lation (except by a factor m) because in order to solve the former, we may simply solve the latter
once for each candidate besides h. Thus, we immediately know that the plurality and cup rules can
be destructively manipulated in polynomial time, for any number of candidates. Interestingly, for
most of the other rules under study, destructive manipulation turns out to be drastically easier than
constructive manipulation! The following theorem shows a sufficient condition for rules to be easy
to manipulate destructively.

Theorem 79 Consider any voting rule where each candidate receives a numerical score based
on the votes, and the candidate with the highest score wins. Suppose that the score function is
monotone, that is, if voter ¢ changes its vote so that {b : a >§ld b} C{b:a > b} (here,a >; b
means that voter ¢ prefers a to b), a’s score will not decrease. Finally, assume that the winner
can be determined in polynomial time. Then for this rule, destructive manipulation can be done in
polynomial time.

Proof: Consider the following algorithm: for each candidate a besides h, we determine what the
outcome of the election would be for the following coalitional vote. All the colluders place a at the
top of their votes, h at the bottom, and order the other candidates in whichever way. We claim there
is a vote for the colluders with which h does not win if and only if & does not win in one of these
m — 1 elections. The if part is trivial. For the only if part, suppose there is a coalitional vote that
makes a # h win the election. Then, in the coalitional vote we examine where a is always placed
on top and h always at the bottom, by monotonicity, a’s score cannot be lower (because for each
manipulator 4, {b : @ >; b} is maximal) and h’s cannot be higher (because for each manipulator ¢,
{b : h >; b} is minimal) than in the successful coalitional vote. It follows that here, too, a’s score
is higher than h’s, and hence i does not win the election. The algorithm is in P since we dom — 1
winner determinations, and winner determinationisinP. =

Corollary 5 Destructive manipulation can be done in polynomial time for the veto, Borda, Copeland,
and maximin rules.

Theorem 79 does not apply to the STV and plurality with runoff rules. We now show that
destructive manipulation is in fact hard for these rules, even with only 3 candidates.

Theorem 80 For the STV rule with 3 candidates, DESTRUCTIVE CW-MANIPULATION is NP-complete.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 211

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary PAR-
TITION instance to the following DESTRUCTIVE CW-MANIPULATION instance. The 3 candidates
are a, b and h. In S there are 6K voters voting (a, h,b), 6K voters voting (b, h,a), and 8K — 1
voters voting (h, a,b). In T, for every k; there is a vote of weight 2k;. We show the instances are
equivalent.

We first observe that i will not win if and only if it gets eliminated in the first round: for if it
survives the first round, either a or b gets eliminated in the first round. Hence either all the votes in
S that ranked a at the top or all those that ranked b at the top will transfer to h, leaving i with at
least 14K — 1 votes in the final round out of a total of 24K — 1, so that h is guaranteed to win the
final round.

Now, if a partition of the k; exists, let the votes in 1" corresponding to one half of the partition
vote (a, b, h), and let the other ones vote (b, a, h). Then in the first round, a and b each have 8 K
votes, and h only has 8K — 1 votes, so that h gets eliminated. So there exists a manipulation.

On the other hand, if a manipulation exists, we know by the above that with this manipulation, i
is eliminated in the first round. Hence at least 2/ — 1 of the vote weight in 7" ranks a at the top, and
at least 2K — 1 of the vote weight in 7" ranks b at the top. Let A be the set of all the k; corresponding

to votes in 7" ranking a at the top; then »_ k; > K — %, and since the k; are integers this implies
k€A
> k; > K. If we let B be the set of all the k; corresponding to votes in 7" ranking b at the top,
k€A
then similarly, Y k; > K. Since A and B are disjoint, it follows that > k; = > k; = K. So
k;eB k€A k;eB
there exists a partition. m

This result also allows us to establish the hardness of destructive manipulation in the plurality
with runoff rule:

Theorem 81 For the plurality with runoff rule with 3 candidates, DESTRUCTIVE CW-MANIPULATION
is NP-complete.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we observe that with 3
candidates, plurality with runoff coincides with STV, and DESTRUCTIVE MANIPULATION for STV
with 3 candidates is NP-hard, as we proved in Theorem 80. m

8.3.4 Effect of uncertainty about others’ votes

So far we have discussed the complexity of coalitional manipulation when the others’ votes are
known. We now show how those results can be related to the complexity of manipulation by an
individual voter when only a distribution over the others’ votes is known. If we allow for arbitrary
distributions, we need to specify a probability for each possible combination of votes by the others,
that is, exponentially many probabilities (even with just two candidates). It is impractical to specify
so many probabilities.!! Therefore, we should acknowledge that it is likely that the language used

"Furthermore, if the input is exponential in the number of voters, an algorithm that is exponential in the number of
voters is not necessarily complex in the usual sense of input complexity.

212 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

for specifying these probabilities would not be fully expressive (or would at least not be very con-
venient for specifying complex distributions). We derive the complexity results of this subsection
for extremely restricted probability distributions, which any reasonable language should allow for.
Thus our results apply to any reasonable language. We only present results on constructive manipu-
lations, but all results apply to the destructive cases as well and the proofs are analogous. We restrict
our attention to deterministic rules.

Weighted voters

First we show that with weighted voters, in rules where coalitional manipulation is hard in the
complete-information case, even evaluating a candidate’s winning probability is hard when there is
uncertainty about the votes (even when there is no manipulator).

Definition 44 (WEIGHTED EVALUATION) \We are given a weight for each voter, a distribution over
all possible vectors of votes, a candidate p, and a number r, where 0 < r < 1. We are asked
whether the probability of p winning is greater than r.

Theorem 82 If CONSTRUCTIVE CW-MANIPULATION is NP-hard for a deterministic rule (even
with &k candidates), then WEIGHTED EVALUATION is also NP-hard for it (even with & candidates),
even if r = 0, the votes are drawn independently, and only the following types of (marginal) dis-
tributions are allowed: 1) the vote’s distribution is uniform over all possible votes, or 2) the vote’s
distribution puts all of the probability mass on a single vote.

Proof: For the reduction from CONSTRUCTIVE CW-MANIPULATION t0 WEIGHTED EVALUATION,
we use exactly the same voters, and p remains the same as well. If a voter was not a colluder in the
CONSTRUCTIVE CW-MANIPULATION instance and we were thus given its vote, in the WEIGHTED
EVALUATION instance its distribution places all of the probability mass on that vote. If the voter
was in the collusion, its distribution is now uniform. We set » = 0. Now, clearly, in the WEIGHTED
EVALUATION instance there is a chance of p winning if and only if there exists some way for the
latter votes to be cast so as to make p win - that is, if and only if there is an effective collusion in the
CONSTRUCTIVE CW-MANIPULATION problem. m

Next we show that if evaluating the winning probability is hard, individual manipulation is also
hard.

Definition 45 (CONSTRUCTIVE INDIVIDUAL WEIGHTED (IW)-MANIPULATION UNDER UNCER-
TAINTY) We are given a single manipulative voter with a weight, weights for all the other voters,
a distribution over all the others’ votes, a candidate p, and a number r, where 0 < r < 1. We are
asked whether the manipulator can cast its vote so that p wins with probability greater than r.

Theorem 83 If WEIGHTED EVALUATION is NP-hard for a rule (even with & candidates and re-
strictions on the distribution), then CONSTRUCTIVE IW-MANIPULATION UNDER UNCERTAINTY i$
also NP-hard for it (even with & candidates and the same restrictions).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 213

Proof: For the reduction from WEIGHTED EVALUATION to CONSTRUCTIVE IW-MANIPULATION
UNDER UNCERTAINTY, simply add a manipulator with weight 0. m

Combining Theorems 82 and 83, we find that with weighted voters, if in some rule coalitional
manipulation is hard in the complete-information setting, then even individual manipulation is hard
if others’ votes are uncertain. Applying this to the hardness results from Subsection 8.3.3, this
means that all of the rules of this section other than plurality and cup are hard to manipulate by
individuals in the weighted case when the manipulator is uncertain about the others’ votes.

Finally, we show that WEIGHTED EVALUATION can be hard even if CONSTRUCTIVE CW-
MANIPULATION is not. If we relax the requirement that a vote is represented by a total order
over the candidates, we can also allow for the following common voting rule:

e approval. Each voter labels each candidate as either approved or disapproved. The candidate
that is approved by the largest number of voters wins.

For the approval rule, CONSTRUCTIVE CW-MANIPULATION is trivial: the universally most po-
tent manipulation is for all of the manipulators to approve the preferred candidate p, and to disap-
prove all other candidates. However, WEIGHTED EVALUATION is hard:

Theorem 84 In the approval rule, WEIGHTED EVALUATION is NP-hard, even if » = 0, the votes
are drawn independently, and the distribution over each vote has positive probability for at most 2
of the votes.

Proof: We reduce an arbitrary PARTITION instance to the following WEIGHTED EVALUATION in-
stance. There are 3 candidates, p, a, and b. There are 2K + 1 votes approving {p}. Additionally, for
each k; in the PARTITION instance, there is a vote of weight 2k; that approves {a} with probability
%, and {b} with probability % We set r = 0. Clearly, p wins if and only if a and b are each approved
by precisely 2K of the vote weight. But this is possible (and happens with positive probability) if
and only if there is a partition. =

Unweighted voters

Finally, we study what implications can be derived for the hardness of manipulation in settings with
unweighted voters.

Definition 46 UNWEIGHTED EVALUATION is the special case of WEIGHTED EVALUATION where
all the weights are 1. CONSTRUCTIVE INDIVIDUAL UNWEIGHTED (1U)-MANIPULATION UNDER
UNCERTAINTY is the special case of CONSTRUCTIVE INDIVIDUAL WEIGHTED (IW)-MANIPULATION
UNDER UNCERTAINTY Where all the weights are 1.

First, we show that for rules for which WEIGHTED EVALUATION is hard, UNWEIGHTED EVAL-
UATION is also hard. This assumes that the language for specifying the probability distribution is
rich enough to allow for perfect correlations between votes (that is, some votes are identical with
probability one'?).

"ZRepresentation of such distributions can still be concise.

214 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Theorem 85 If WEIGHTED EVALUATION is NP-hard for a rule (even with k& candidates and re-
strictions on the distribution), then UNWEIGHTED EVALUATION is also NP-hard for it if we allow
for perfect correlations (even with k& candidates and the same restrictions—except those conflicting
with perfect correlations). (This is assuming that a group of « perfectly correlated votes can be
represented using only O(log(x)) space.)

Proof: For the reduction from WEIGHTED EVALUATION to its unweighted version, we replace
each vote of weight x with xk unweighted votes; we then make these s votes perfectly correlated.
Subsequently we pick a representative vote from each perfectly correlated group, and we impose
a joint distribution on this vote identical to the one on the corresponding vote in the WEIGHTED
EVALUATION problem. This determines a joint distribution over all votes. It is easy to see that
the distribution over outcomes is the same as in the instance from which we reduced; hence, the
decision questions are equivalent. =

We would like to have an analog of Theorem 83 here, to show that UNWEIGHTED EVALUATION
being hard also implies that CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is hard.
Unfortunately, the strategy used in the proof of Theorem 83—setting the manipulator’s weight to
0—does not work, because the weight of the manipulator must now be 1. Instead, we rely on the
following two theorems, which each require an additional precondition. The first one shows that if
the WEIGHTED EVALUATION problem is hard even in settings where there is no possibility that the
candidate p is tied for winning the election, then the CONSTRUCTIVE IU-MANIPULATION UNDER
UNCERTAINTY problem is also hard.

Theorem 86 If WEIGHTED EVALUATION is NP-hard for a rule even in settings where ties will not
occur (even with & candidates and restrictions on the distribution of the votes), then CONSTRUC-
TIVE IU-MANIPULATION UNDER UNCERTAINTY is also NP-hard (with the same r) if we allow
for perfect correlations (even with k& candidates and the same restrictions on the distribution of the
nonmanipulators’ votes—except those conflicting with perfect correlations). (This is assuming that
a group of « perfectly correlated votes can be represented using only O(log(x)) space.)

Proof: We reduce the EVALUATION instance to a MANTPULATION instance by first adding a single
manipulator. Because ties will not occur, there must exist a (rational) weight w > 0 such that if
the manipulator’s vote has this weight, then the manipulator’s vote will never affect the outcome.
Without loss of generality, we can assume that this weight can be written as w = ﬁ for some
sufficiently large integer M. Now, multiply all the weights by M so that the manipulator’s vote has
weight 1 and all the weights are integers again. Then, replace each voter of weight x by k perfectly
correlated, unweighted voters. Clearly, the manipulator will still not affect the outcome, and thus
the distribution over outcomes is the same as in the instance we reduced from; hence, the decision
questions are equivalent. =

Theorem 86 applies to most of the rules under study:

Corollary 6 For each one of the following rules, CONSTRUCTIVE IU-MANIPULATION UNDER UN-
CERTAINTY is NP-hard: Borda (even with 3 candidates), veto (even with 3 candidates), STV (even

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 215

with 3 candidates), plurality with runoff (even with 3 candidates), and maximin (even with 4 candi-
dates). This holds even if » = 0, the votes are either drawn independently or perfectly correlated,
and only the following types of (marginal) distributions are allowed: 1) the vote’s distribution is
uniform over all possible votes, or 2) the vote’s distribution puts all of the probability mass on a
single vote. (This is assuming that a group of « perfectly correlated votes can be represented using
only O(log(x)) space.)

Proof: To show that we can apply Theorem 86 to each of these rules, we first make the following
observation. For each of these rules, the reduction that we gave to show that CONSTRUCTIVE CW-
MANIPULATION is hard has the property that if there exists no successful manipulation, candidate
p cannot even be tied for winning the election (and, of course, if there is a successful manipulation,
no other candidate will tie with p for winning the election). Because of this, when we apply the
reduction from Theorem 82 to these instances, there is no chance that a tie for winning the election
between p and another candidate will occur, and we can apply Theorem 86. m

Unfortunately, for the Copeland rule, in the reduction given in Theorem 74, an unsuccessful
manipulation may still leave p tied for winning the election. To show that CONSTRUCTIVE 1U-
MANIPULATION UNDER UNCERTAINTY is hard for this rule as well, we need the following theorem:

Theorem 87 If WEIGHTED EVALUATION is NP-hard for a rule even in settings where » = 0 and
one of the voters with a uniform distribution over votes has weight 1 (even with &£ candidates and
restrictions on the distribution of the votes), then CONSTRUCTIVE TU-MANIPULATION UNDER UN-
CERTAINTY is also NP-hard even in settings where » = 0 if we allow for perfect correlations (even
with k& candidates and the same restrictions on the distribution of the honmanipulators’ votes—
except those conflicting with perfect correlations). (This is assuming that a group of « perfectly
correlated votes can be represented using only O(log(x)) space.)

Proof: We reduce the EVALUATION instance to a MANIPULATION instance by replacing the voter
with a uniform distribution over votes and weight 1 by the manipulator, and using the same dis-
tribution over the other voters’ votes as before. If there is nonzero probability of p winning in the
EVALUATION instance, then there must exists some vector of votes with nonzero probability for
which p wins with nonzero probability. Then, in the MANTPULATION instance, consider the vote in
this vote vector cast by the voter that was replaced by the manipulator. If the manipulator places
this vote, then with nonzero probability, the same vector will occur and p will win with nonzero
probability. Conversely, suppose that in the MANIPULATION instance there exists a vote for the
manipulator such that p wins with nonzero probability. Then, in the EVALUATION instance, there
is some nonzero probability that the voter replaced by the manipulator casts this vote (because that
voter’s distribution over votes is uniform). It follows that there is nonzero probability that p will
win in the EVALUATION instance. Hence, the decision questions are equivalent. =

Corollary 7 For the Copeland rule (even with 4 candidates), CONSTRUCTIVE IU-MANIPULATION
UNDER UNCERTAINTY is NP-hard . This holds even if » = 0, the votes are either drawn indepen-
dently or perfectly correlated, and only the following types of (marginal) distributions are allowed:

216 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

1) the vote’s distribution is uniform over all possible votes, or 2) the vote’s distribution puts all of
the probability mass on a single vote. (This is assuming that a group of « perfectly correlated votes
can be represented using only O(log(x)) space.)

Proof: Because PARTITION is hard even when one of the integers to be partitioned is 1, we can
assume that one of the manipulators in the proof of Theorem 74 has weight 1, which allows us to
apply Theorem 87. =

As a final remark, we observe that the manipulation questions discussed in this subsection are
not necessarily even in NP. However, when r = 0, the manipulation question can also be phrased
as saying “does there exist a manipulation that has some chance of succeeding?”’ We note that this
question is in fact in NP.

The following figure summarizes the flow of the theorems presented in this subsection.

CONSTRUCTIVE CONSTRUCTIVE CONSTRUCTIVE
CW-MANIPULATION IW-MANIPULATION IU-MANIPULATION
UNDER CERTAINTY UNDER UNCERTAINTY UNDER UNCERTAINTY

Thm. 16 Thm. 17 Thms. 20, 21
WEIGHTED UNWEIGHTED
EVALUATION 1y, 19 > EVALUATION

Figure 8.2: The flow of the theorems in this subsection.

This concludes the part of the dissertation studying worst-case hardness of manipulation. In the
next section, we move on to a more ambitious goal: voting rules that are usually hard to manipulate.

8.4 Nonexistence of usually-hard-to-manipulate voting rules

One weakness that all of the above results have in common is that they only show worst-case
hardness. That is, the results show that it is unlikely that an efficient algorithm can be designed that
finds a beneficial manipulation in all instances for which a beneficial manipulation exists. However,
this does not mean that there do not exist efficient manipulation algorithms that find a beneficial
manipulation in many instances. If such algorithms do in fact exist, then computational hardness
constitutes a leaky barrier to manipulation at best (though it is presumably still better than nothing).

A truly satisfactory solution to the problem would be to have a rule that is hard to manipulate
in all instances. However, this is too much to ask for: for example, a manipulation algorithm
could have a small database of instances with precomputed solutions, and it would merely need to
check against this database to successfully manipulate some instances. Still, we may ask whether
it is possible to make (say) 99% of instances hard to manipulate. It is generally agreed that this
would have a much greater impact on the design of voting rules in practice than merely worst-case
hardness [Conitzer et al., 2003; Elkind and Lipmaa, 2005b], but none of the multiple efforts to
achieve this objective have succeeded.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 217

In this section, we present an impossibility result that makes it seem unlikely that such an ob-
jective can be achieved by any reasonable voting rule. This is not the first such impossibility result:
a previous result [Procaccia and Rosenschein, 2006] shows that a specific subclass of voting rules
is usually easy to manipulate when the number of candidates is constant and a specific distribution
over instances is used (where the distribution is chosen to have certain properties that would appear
to make manipulation more difficult). By contrast, our result does not require any restriction on
the voting rule, number of candidates, or distribution over instances. Our result states that a voting
rule/instance distribution pair cannot simultaneously be usually hard to manipulate, and have certain
natural properties (which depend on the rule and distribution).

8.4.1 Definitions
Manipulation

As we saw in the previous section, the computational problem of manipulation has been defined
in various ways, but typical definitions are special cases of the following general problem: given
the nonmanipulators’ votes, can the manipulator(s) cast their votes in such a way that one candidate
from a given set of preferred candidates wins? In this section, we study a more difficult manipulation
problem: we require that the manipulator(s) find the set of all the candidates that they can make win
(as well as votes that will bring this about). This stronger requirement makes our impossibility result
stronger: we will show that even this more powerful type of manipulation cannot be prevented.

Definition 47 A manipulation instance is given by a voting rule R, a vector of nonmanipulator votes
v=(rPM . rNM) avector of weights v¢ = (M, ..., dY¥M) for the nonmanipulators, and a
vector of weights w® = (d, ..., d,i”) for the manipulators. A manipulation algorithm succeeds on
this instance if it produces a set of pairs {(w;,, ¢,), . .., (w;,, ¢;,)} such that 1) if the manipulators
cast the vector of votes wi;, then Ci; wins, and 2) if a candidate ¢ does not occur in this set as one

of the ¢;;, then there is no vector of manipulator votes w that makes c win.

An instance is manipulable if the manipulators can make more than one candidate win. Non-
manipulable instances are easy to solve: any algorithm that is sound (in that it does not produce
incorrect (w, ¢;;) pairs) and that returns at least one (w;, ¢;;) pair (which is easy to do, by simply
checking what the rule will produce for a given vector of votes) will succeed. Hence, we focus on
manipulable instances only.

To investigate whether voting rules are usually easy to manipulate, we also need a probability
distribution over (manipulable) instances. Our impossibility result does not require a specific distri-
bution, but in the experimental subsection of the section, we study a specific family of distributions.

Weak monotonicity

Informally, a rule is monotone if ranking a candidate higher never hurts that candidate. All the
rules mentioned before, with the exceptions of STV and plurality with runoff, are monotone. In this
subsubsection, we formally define a weak notion of monotonicity that is implied by (but does not
imply) standard notions of monotonicity. We note that we want our definition of monotonicity to be
as weak as possible so that our impossibility result will be as strong as possible. We define when an

218 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

instance is weakly monotone, so that even rules that are not (everywhere) weakly monotone can be
(and typically are) weakly monotone on most instances.

We will first define a stronger, more standard notion of monotonicity. For rules that produce
a score for every candidate, a natural definition of monotonicity is the following: if a manipulator
changes his vote so that a given candidate is ranked ahead of a larger set of candidates, then that
candidate’s score should not decrease. However, not every rule produces a score. Thus, we use
the following definition of monotonicity, which does not rely on scores. (Monotonicity as defined
above for rules that produce a score implies monotonicity in the sense of the following definition.)

Definition 48 We say that a voting rule R is monotone for manipulators with weights w® and
nonmanipulator votes v with weights v* if for every pair of candidates ¢y, co and every pair of
manipulator vote vectors wy = (ri,...,74),we = (r%,...,r2), the following condition holds: if

e ¢, wins when the manipulators vote w1, and
o for any manipulator ¢, for any candidate c such that co >,1 ¢, we have ¢ >,2 ¢, and

e for any manipulator ¢, for any candidate ¢ such that ¢ =1 c1, We have ¢ >,z c1;
then ¢; does not win when the manipulators vote ws.

Thus, given a monotone instance, if each manipulator decreases the set of candidates that he
prefers to the current winner, and increases the set of candidates that he prefers to a given other
candidate, then the latter candidate cannot become the winner due to this. (It is, however, possible
that a third candidate will win after the change, since we did not restrict how that candidate’s position
in the ranking changed.)

Now we can define our weaker notion of monotonicity:

Definition 49 We say that a voting rule R is weakly monotone for manipulators with weights w?*
and nonmanipulator votes v with weights v* if for every pair of candidates ¢, ¢, one of the follow-
ing conditions holds: 1) co does not win for any manipulator votes; or 2) if all the manipulators
rank cs first and ¢y last, then ¢; does not win.

We now show that our notion is indeed weaker:

Theorem 88 Monotonicity implies weak monotonicity.

Proof: Given a monotone rule R, consider any pair of candidates c1, co, and votes we = (r%, cee r]%)
for the manipulators in which ¢, is always ranked first and c; is always ranked last. Suppose that
there are votes w; = (r{, ... ,r,ﬁ) that make cy win. Then if the manipulators changed from w; to
wo, every manipulator would decrease the set of candidates that he prefers to co and increase the set
of candidates that he prefers to c;. Hence, by monotonicity, ¢; cannot win. =

On the other hand, weak monotonicity does not imply monotonicity. For instance, consider the
scoring rule defined (for four candidates) by (3, 1, 2, 0). Ranking a candidate second instead of third
can end up hurting that candidate, so this rule is clearly not monotone. However, under this rule, if
all the manipulators rank candidate ¢ first and ¢; last, and c; still wins, then ¢; must be at least 3k
points ahead of c2 (not counting the manipulators’ votes), so co does not win for any manipulator
votes. Hence, the rule does satisfy weak monotonicity.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 219

8.4.2 Impossibility result

We now present an algorithm that seeks to identify two candidates that can be made to win. The
algorithm is universal in that it does not depend on the voting rule used, except for the places in
which it calls the rule as a (black-box) subroutine.

Find-Two-Winners(R, C, v, v*, w®)
choose an arbitrary manipulator vote vector w1
c1 — R(C,v,v%, wy,w?)
forevery co € C,co # 1 {
choose w9 in which every vote ranks cs first and c;
last
¢ «— R(C,v,v*, we, w*)
if c1 # creturn {(w1,c1), (we,0)} }
return {(wi, c1)}

If voting rule R can be executed in polynomial time, then so can Find-Two-Winners.

Theorem 89 Find-Two-Winners will succeed on every instance that both a) is weakly monotone
and b) allows the manipulators to make either of exactly two candidates win.

Proof: Find-Two-Winners is sound in the sense that it will never output a manipulation that is
incorrect. It will certainly find one candidate that the manipulators can make win (c1). Thus, we
merely need to show that it will find the second candidate that can be made to win; let us refer to this
candidate as ¢. If the algorithm reaches the iteration of the for loop in which ¢, = ¢/, then in this
round, either ¢ # ¢y, in which case we must have ¢ = ¢’ because there are no other candidates that
can be made to win, or ¢ = ¢;. But in the latter case, we must conclude that co = ¢’ cannot be made
to win, due to weak monotonicity—which is contrary to assumption. Hence it must be that ¢ = ¢’.
If the algorithm does not reach the iteration of the for loop in which ¢y = ¢, it must have found a
manipulation that produced a winner other than c; in an earlier iteration, and (by assumption) this
other winner can only be ¢’. =

It is not possible to extend the algorithm so that it also succeeds on all weakly monotone in-
stances in which three candidates can be made to win. When three candidates can be made to win,
even under monotone rules, it is possible that one of these candidates can only win if some manip-
ulators vote differently from the other manipulators. In fact, as we saw in the previous section, the
problem of deciding whether multiple weighted manipulators can make a given candidate win is
NP-complete, even when there are only three candidates and the Borda or veto rule is used (both
of which are monotone rules). Any algorithm that does succeed on all weakly monotone instances
in which at most three candidates can be made to win would be able to solve this NP-complete
problem, and thus cannot run in polynomial time (or it would show that P = NP).

The impossibility result now follows as a corollary.

Corollary 8 For any p € [0, 1], there does not exist any combination of an efficiently executable
voting rule R and a distribution d over instances such that

220 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

1. the probability of drawing an instance that is both a) weakly monotone, and b) such that
either of exactly two candidates can be made to win, is at least p; and

2. for any computationally efficient manipulation algorithm, the probability that an instance is
drawn on which the algorithm succeeds is smaller than p.

This impossibility result is relevant only insofar as one expects a voting rule to satisfy Property 1
in the corollary (high probability of drawing a weakly monotone instance in which either of exactly
two candidates can be made to win). Before we argue why one should in fact expect this, it is helpful
to consider how a skeptic might argue that an impossibility result such as this one is irrelevant. At a
minimum, the skeptic should argue that one of the properties required by the result is not sufficiently
desirable or necessary to insist on it. The skeptic could make her case much stronger by actually
exhibiting a voting rule that satisfies all properties except for the disputed one, and that still seems
intuitively desirable. (For example, Arrow’s impossibility result [Arrow, 1963] is often criticized
on the basis that the independence of irrelevant alternatives property is unnecessarily strong, and
this is the only property that common voting rules fail to satisfy.)

Conversely, we will first argue directly for the desirability of Property 1 in Corollary 8. We will
then provide indirect evidence that it will be difficult to construct a sensible rule that does not satisfy
this property, by showing experimentally that all common rules satisfy it very strongly (that is, a
large fraction of manipulable instances are weakly monotone and such that only two candidates can
be made to win).

8.4.3 Arguing directly for Property 1

In this subsection, we argue why one should expect many manipulable instances to be both a) weakly
monotone and b) such that the manipulator(s) can make either of exactly two candidates win. We
first make a simple observation: if manipulable instances are usually weakly monotone, and they
usually allow the manipulator(s) to make either of exactly two candidates win, then a significant
fraction of manipulable instances have both of properties a) and b). More precisely:

Proposition 10 If the probability of drawing a weakly monotone instance is p, and the probability
of drawing an instance in which either of exactly two candidates can be made to win is ¢, then the
probability of drawing an instance with both properties is at least p + ¢ — 1.

Proof: The probability of drawing an instance that is not weakly monotone is 1 — p, and the prob-
ability of drawing an instance in which more than two candidates can be made to win is 1 — q.
From this, it follows that the probability of drawing an instance with both properties is at least

1-1-p)-(1-¢)=p+gqg—1. =

With this in mind, we will now argue separately for each of the two properties a) and b).

The argument for Property a)—most manipulable instances should be weakly monotone—is
easy to make. The reason is that if the manipulators rank certain candidates higher, this should, in
general, benefit those candidates. If this were not the case, then the manipulators’ votes would lose
their natural interpretation that they support certain candidates over others, and we are effectively

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 221

asking the manipulators to submit a string of bits without any inherent meaning.'® It should also be
noted that most common voting rules are in fact monotone (on all instances), and the few rules for
which nonmonotone instances can be constructed are often severely criticized because of this (even
if the rule is in fact monotone on most instances).

Arguing for Property b)—most manipulable instances should be such that the manipulators can
make either of exactly two candidates win—is somewhat more difficult. For simplicity, consider
rules that produce a score for every candidate. As the number of voters grows, typically, candi-
dates’ scores tend to separate. This is especially the case if some candidates systematically tend to
be ranked higher than others by voters, €.g. because these candidates are intrinsically better. (One
interpretation of voting that dates back at least to Condorcet is the following: everyone has a noisy
signal about the relative intrinsic quality of the candidates, and the purpose of an election is to
maximize the probability of choosing the intrinsically best candidate [de Caritat (Marquis de Con-
dorcet), 1785].) Thus, given a large number of nonmanipulators, it is unlikely that the scores of the
two leading candidates will be close enough to each other that a few manipulators can make either
one of them win; but it is significantly more unlikely that the scores of the three leading candidates
will be close enough that the manipulators can make any one of them win. So, even given that
some manipulation is possible, it is unlikely that more than two candidates can be made to win.
This argument suggests that it is likely that most common voting rules in fact satisfy Property b).
But it is also an argument for why we should require a voting rule to have this property, because,
especially when we think of voting as being a process for filtering out the noise in voters’ individual
preferences to find the intrinsically best candidate, we want the candidates’ scores to separate.

In the next subsection, we show experimentally that common voting rules in fact strongly satisfy
properties a) and b).

8.4.4 Arguing experimentally for Property 1

In this subsection, we show experimentally that for all the common voting rules, most manipulable
instances are in fact weakly monotone and such that either of exactly two candidates can be made to
win. Because most of the rules that we study are in fact monotone on all instances, this mostly comes
down to showing that at most two candidates can be made to win in most manipulable instances.
Unfortunately, for quite a few of these rules, it is NP-hard to determine whether more than two
candidates can be made to win (this follows from results in the previous section). Rather than trying
to solve these NP-hard problems, we will be content to provide a lower bound on the fraction of
manipulable instances in which either of exactly two candidates can be made to win. We obtain
these lower bounds by characterizing, for each rule that we study, an easily computable sufficient
(but not necessary) condition for an instance to be such that either of exactly two candidates can
be made to win. For at least some rules, the lower bound is probably significantly below the actual
fraction—which only strengthens the relevance of the impossibility result.

One useful property of these lower bounds is that they are independent of how the manipulators’
total weight is distributed. Because of this, only the manipulators’ total weight matters for the

Bncidentally, if this does not bother us, it is easy to design rules that are always hard to manipulate: for example,
we can count an agent’s vote only if part of its vote (represented as a string of bits) encodes the solution to (say) a hard
factoring problem. Of course, this is not a very satisfactory voting rule.

222 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

purpose of our experiments, and we can assume, without loss of generality, that each manipulator
has weight 1.

It should be noted that we can only show results for specific distributions of instances, because
we need a specific distribution to conduct an experiment. Therefore, it cannot be said with certainty
that other distributions would lead to similar results, although for reasonable distributions it appears
likely that they would. One should keep in mind that the vote aggregator typically has no control
over the distribution over voters’ preferences, so that constructing an artificial distribution for which
these results do not hold is unlikely to be helpful. We now present the specific distributions that we
study.

For a given number of candidates, number of nonmanipulators, and number of manipulators,
we generate instances as follows. (This is Condorcet’s distribution, which we discussed in Chap-
ter 3 because the maximum likelihood estimator of the correct ranking under this distribution is the
Kemeny rule [Kemeny, 1959; Young, 1995].) We assume that there is a “correct” ranking ¢ of the
candidates (reflecting the candidates’ unknown intrinsic quality), and the probability of drawing a
given vote r is proportional to p“(“t)(l — p)m(m_l)/ 2-a(rt) where a(r,t) is the number of pairs
of candidates on whose relative ranking r and ¢ agree (they agree if either ¢; >, c2 and c; > c2,
or cg >, c1 and co ¢ c1). p is a given noise parameter; if p = 1 then all voters will produce
the correct ranking, and if p = 0.5 then we are drawing every vote (independently and uniformly)
completely at random. This distribution is due to Condorcet [de Caritat (Marquis de Condorcet),
1785], and one way to interpret it is as follows. To draw a vote, for each pair of candidates cy, c2,
randomly decide whether the vote is going to agree with the correct ranking on the relative ranking
of ¢; and ¢y (with probability p), or disagee (with probability 1 — p). This may lead to cycles (such
as c1 > co = c3 > 1), if so, restart.

These distributions often produce nonmanipulable instances. Ideally, we would discard all non-
manipulable instances, but this requires us to have an algorithm for detecting whether an instance
is manipulable. If we know that the instance is weakly monotone, we can simply use algorithm
Find-Two-Winners for this purpose. However, a few of the rules that we study (STV and plurality
with runoff) are not monotone on all instances. In fact, for these rules, it is NP-hard to tell whether
the instance is manipulable (this follows from results in the previous section). For these rules, we
use simple sufficient (but not necessary) conditions to classify an instance as nonmanipulable. We
will classify each nonmanipulable instance that does not satisfy this condition as having more than
two potential winners, so that our results are still lower bounds on the actual ratio.

In the experiments below, we draw 1000 manipulable instances at random (by drawing and
discarding instances as described above), and for each voting rule, we show our lower bound on
the number of instances in which the manipulators can make either of exactly two candidates win.
For rules that are not monotone everywhere, we also show a lower bound on the number of such
instances that are also weakly monotone (indicated by “<rule> - monotone”). We also consider the
Condorcet criterion—recall that a rule satisfies the Condorcet criterion if any candidate that wins
all of its pairwise elections must win the overall election—and show a lower bound on the number
of instances for which these properties are satisfied for any rule satisfying the Condorcet criterion.

In our first experiment (Figure 8.3), we have three candidates, one manipulator, and significant
noise in the votes (p = 0.6). For all the rules under study, the fraction of instances satisfying the
property approaches 1 as the number of nonmanipulator votes grows.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 223

1000 re Surally
u | —t
Borda ---x---
vetg ---x---
Copeland &
; maximin --m-
800 Bucklin - -o -

STV -

STV - monotone ---&--

. _ plurality with runoff ----«---
plurality with runoff - monotone —<—
any rule that is Condorcet ---v---

200 s

lower bound on number of instances with property

0 50 100 150 200 250 300 350 400
number of nonmanipulators

Figure 8.3: p = 0.6, one manipulator, three candidates.

Next, we show what happens when we maximize noise (p = 0.5), so that votes are drawn com-
pletely at random (Figure 8.4). Even under such extreme noise, the fraction of instances satisfying
the property approaches 1 or at least becomes very large (> 0.7) for every one of the rules. How-
ever, it is no longer possible to say this for any rule satisfying the Condorcet criterion (although the
specific common rules that do satisfy this criterion satisfy the property for a very large fraction of
instances).

Next, we show results when there are multiple (specifically, 5) manipulators (Figure 8.5). The
results are qualitatively similar to those in Figure 8.3, although for smaller numbers of nonmanipu-
lators the fractions are lower. This makes sense: when the number of nonmanipulators is relatively
small, a large coalition is likely to be able to make any candidate win.

Finally, we experiment with an increased number of candidates (Figure 8.6).

Now, the lower bound on the fraction of instances satisfying the property approaches 1 for all
rules but STV. The lower fraction for STV is probably at least in part due to the fact that the lower
bound that we use for STV is relatively weak. For example, any instance in which the manipulators
can change the eliminated candidate in at least two rounds is counted as having more than two
candidates that the manipulators can make win. This is extremely conservative because changes in
which candidate is eliminated in a given round often do not change the winner.

8.4.5 Can the impossibility be circumvented?

One may wonder whether there are ways to circumvent the impossibility result presented in this
section. Specifically, one may still be able to construct voting rules that are usually hard to ma-

224

lower bound on number of instances with property

CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

1000

lower bound on number of instances with property

800

600

400

200

Copeland &

maximin --m--
Bucklin - - |
STV -

V - monotone - --
. _ plurality with runoff ----«---
plurality with runoff - monotone —s—

any rule that is Condorcet ---v---

0
0

100

300 400 500 600 700
number of nonmanipulators

200

Figure 8.4: p = 0.5, one manipulator, three candidates.

T T
A lurality ——
P Bordg VI
veto ---x---
Copeland &
maximin --m-
Bucklin --e-- |
STV -
STV - monotone - -
. _plurality with runoff -—-»--
plurality with runoff - monotone ——
any rule that is Condorcet ---v---

50

150 200 250 300 350 400
number of nonmanipulators

100

Figure 8.5: p = 0.6, five manipulators, three candidates.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 225

s T ™ plurality
T o —_—t
P Bordta BV
veto -«
900 K
maximin --m-
Bucklin --e -

800 cin —-o--

STV - monotone ---&--

. _ plurality with runoff ----«---
plurality with runoff - monotone —s—

any rule that is Condorcet ---v---

700

600 fi/
500 f

i 4
400 § /
300 [

200 |,

lower bound on number of instances with property

100 .

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
number of nonmanipulators

Figure 8.6: p = 0.6, one manipulator, five candidates.

nipulate by considering a larger class of voting rules, a class that contains rules that do not satisfy
the preconditions of the impossibility result. In this subsection, we discuss various approaches for
circumventing the impossibility result, and their prospects. (One approach that we will not discuss
is that of constructing distributions over voters’ preferences for which the impossibility result fails
to hold, because, as we mentioned earlier, the distribution over voters’ preferences is typically not
something that the vote aggregator has any control over.)

Allowing low-ranked candidates to sometimes win

The impossibility result is only significant if in a sizable fraction of manipulable instances, only two
candidates can be made to win. One may try to prevent this by using a voting rule that sometimes
chooses as the winner a candidate that in fact did not do well in the votes (according to whatever
criterion), thereby increasing the number of candidates that can be made to win in manipulable
instances. Of course, having such a candidate win is inherently undesirable, but if it occurs rarely,
it may be a price worth paying in order to achieve hardness of manipulation.

If we take this approach, and in addition allow for the rule to be randomized, then we can
construct reasonable voting rules that are in fact strategy-proof (that is, no beneficial manipulation
is ever possible). Consider, for example, the following voting rule:

Definition 50 The Copeland-proportional rule chooses candidate ¢ as the winner with probability
proportional to ¢’s Copeland score.

226 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

An alternative interpretation of this rule is the following: choose a pair of candidates at random;
the winner of their pairwise election wins the entire election. (If the pairwise election is tied, choose
one of the two candidates at random.)

Theorem 90 Copeland-proportional is strategy-proof.

Proof: Suppose the manipulator knows which pair of candidates is chosen. Then, any vote in which
he ranks his preferred candidate higher than the other candidate is strategically optimal. But the
manipulator can guarantee that this is the case, even without knowing the pair of candidates, simply
by voting truthfully. =

Recall Gibbard [1977]’s result that a randomized voting rule is strategy-proof only if it is a
probability mixture of unilateral and duple rules, where a rule is unilateral if only one voter af-
fects the outcome, and duple if only two candidates can win. The Copeland-proportional rule only
randomizes over duple rules (namely, pairwise elections).

Of course, the Copeland-proportional rule is still not ideal. For instance, even a Condorcet
winner has a probability of only (m — 1)/(m(m — 1)/2) = 2/m of winning under this rule.
(However, this rule will at least never choose a candidate that loses every pairwise election.) Thus,
it may be worthwhile to try to construct voting rules that are usually hard to manipulate, and that
are more likely to choose a “good” winner than Copeland-proportional.

Expanding the definition of a voting rule

The impossibility result may cease to hold when the rule can choose from a richer outcome space.
As in the previous subsubsection, this may prevent problems of manipulability completely, by al-
lowing the construction of strategy-proof rules. For example, if payments are possible and the agents
have quasilinear utility functions, then a payment scheme such as the VCG mechanism can induce
strategy-proofness. As another example that does not require these assumptions, suppose that it is
possible to exclude certain voters from the effects of the election—as an illustrative example, in
an election for a country’s president, suppose that it is possible to banish certain voters to another
country, in which it will no longer matter to those voters who won the election. (It does not matter
whether living in the other country is otherwise more or less desirable than in the original country.)
Then, we can augment any voting rule as follows:

Definition 51 For any voting rule (in the standard sense) R, the banishing rule B(R) always
chooses the same winner as R, and banishes every pivotal voter. (A voter is pivotal if, given the
other votes, he can make multiple candidates win.)

Theorem 91 For any rule R, the banishing rule B(R) is strategy-proof.

Proof: A voter who is not pivotal has no incentive to misreport, because by definition, his vote does
not affect which candidate wins, and he cannot affect whether he is pivotal. A voter who is pivotal
also has no incentive to misreport, because he cannot affect whether he is pivotal, and the winner of
the election will not matter to him because he will be banished. =

8.5. SUMMARY 227

However, this scheme also has a few drawbacks. For one, it may not always be possible to
completely exclude a voter from the effects of the election. Another strange property of this scheme
is that no voter is ever capable of affecting his own utility, so that any vote is strategically optimal.
Finally, it may be necessary to banish large numbers of voters. In fact, the following lemma shows
that for any rule, the votes may turn out to be such that more than half of the voters must be banished.

Theorem 92 For any responsive voting rule R, it is possible that more than half the voters are
simultaneously pivotal. (We say that a voting rule is responsive if there are two votes r1, o such
that everyone voting r; will produce a different winner than everyone voting r.)

Proof: Let there be n voters total. Denote by v" the vote vector where i voters vote 1, and the
remaining n — i vote 7. Because v” and v™ produce different winners under R, there must be some
i such that v* and v*+! produce different winners. Thus, in v?, all n — i voters voting 1y are pivotal,
and in v*1, all i + 1 voters voting 1 are pivotal. Since (n — i) + (i + 1) > n, at least one of n — i
and i + 1 must be greater thann/2. =

Rules that are hard to execute

The impossibility result only applies when an efficient algorithm is available for executing the rule,
because algorithm Find-Two-Winners makes calls to such an algorithm as a subroutine. Thus,
one possible way around the impossibility is to use a rule that is hard to execute. Indeed, as we
pointed out before, a number of voting rules have been shown to be NP-hard to execute [Bartholdi
et al., 1989b; Hemaspaandra et al., 1997; Cohen et al., 1999; Dwork et al., 2001; Ailon et al.,
2005]. Of course, we do actually need an algorithm for executing the rule to determine the winner
of the election; and, although we cannot expect this to be a worst-case polynomial-time algorithm,
it should at least run reasonably fast in practice for the rule to be practical. But if the algorithm does
run fast in practice, then it can also be used by the manipulators as the subroutine in Find-Two-
Winners. Therefore, this approach does not look very promising.

8.5 Summary

In this chapter, we studied mechanism design for bounded agents. Specifically, we looked at how
hard it is computationally for agents to find a best response to given opponent strategies in various
expressive preference aggregation settings.

In Section 8.1, we showed that there are settings where using the optimal (social-welfare max-
imizing) truthful mechanism requires the center to solve an NP-hard computational problem; but
there is another, non-truthful mechanism that can be executed in polynomial time, and under which
the problem of finding a beneficial manipulation is hard for one of the agents. Moreover, if the
agent manages to find the manipulation, the produced outcome is the same as that of the best truth-
ful mechanism; and if the agent does not manage to find it, the produced outcome is strictly better.

In Section 8.2, we showed how to tweak existing voting rules to make manipulation hard, while
leaving much of the original nature of the rule intact. The tweak studied in this section consists of

228 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

adding one preround to the election, where candidates face each other one against one. The surviv-
ing candidates continue to the original protocol. Surprisingly, this simple and universal tweak makes
typical rules hard to manipulate! The resulting protocols are NP-hard, #P-hard, or PSPACE-hard
to manipulate, depending on whether the schedule of the preround is determined before the votes
are collected, after the votes are collected, or the scheduling and the vote collecting are interleaved,
respectively. We proved general sufficient conditions on the rules for this tweak to introduce the
hardness, and showed that the most common voting rules satisfy those conditions. These are the
first results in voting settings where manipulation is in a higher complexity class than NP (presum-
ing PSPACE # NP).

In Section 8.3, we noted that all of the previous results on hardness of manipulation in elections
required the number of candidates to be unbounded. Such hardness results lose relevance when the
number of candidates is small, because manipulation algorithms that are exponential only in the
number of candidates (and only slightly so) might be available. We gave such an algorithm for an
individual agent to manipulate the Single Transferable Vote (STV) rule, which had been shown hard
to manipulate in the above sense. To obtain hardness-of-manipulation results in settings where the
number of candidates is a small constant, we studied coalitional manipulation by weighted voters.
(We show that for simpler manipulation problems, manipulation cannot be hard with few candi-
dates.) We studied both constructive manipulation (making a given candidate win) and destructive
manipulation (making a given candidate not win). The following tables summarize our results.

’ Number of candidates ’ 2 ’ 3 ’ 4,5,6 > ‘
Borda P | NP-complete | NP-complete | NP-complete
veto P | NP-complete | NP-complete | NP-complete
STV P | NP-complete | NP-complete | NP-complete
plurality with runoff | P | NP-complete | NP-complete | NP-complete
Copeland P|P NP-complete | NP-complete
maximin P|P NP-complete | NP-complete
randomized cup P|P P NP-complete
regular cup P|P P P
plurality P|P P P

Complexity of CONSTRUCTIVE CW-MANIPULATION

‘ Number of candidates ‘ 2 ‘ >3
STV P | NP-complete
plurality with runoff P | NP-complete
Borda P|P
veto P|P
Copeland P|P
maximin P|P
regular cup P|P
plurality P|P

Complexity of DESTRUCTIVE CW-MANIPULATION

We also showed that hardness of manipulation in this setting implies hardness of manipulation

8.5. SUMMARY 229

by an individual in unweighted settings when there is uncertainty about the others’ votes.

All of the hardness results mentioned above only show hardness in the worst case; they do not
preclude the existence of an efficient algorithm that often finds a successful manipulation (when it
exists). There have been attempts to design a rule under which finding a beneficial manipulation
is usually hard, but they have failed. To explain this failure, in Section 8.4, we showed that it is
in fact impossible to design such a rule, if the rule is also required to satisfy another property: a
large fraction of the manipulable instances are both weakly monotone, and allow the manipulators
to make either of exactly two candidates win. We argued why one should expect voting rules
to have this property, and showed experimentally that common voting rules satisfy it. We also
discussed approaches for potentially circumventing this impossibility result, some of which appear
worthwhile to investigate in future research.

The manipulation problems defined in this chapter did not involve sophisticated strategic rea-
soning: we simply assumed that the manipulator(s) knew the others’ votes (or at least a distribution
over them). Acting in a strategically optimal way becomes more difficult when this information is
not available, and the manipulator(s) must reason over how the others are likely to act. This is the
topic of the next chapter.

230 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

