
Chapter 9

Computing Game-Theoretic Solutions

In the previous chapter, we saw that in certain settings, it is computationally hard for an agent to
act in a strategically optimal way even when the agent already knows the actions of all the other
agents—that is, even the best-response problem is hard. There are also many settings in which
this is not the case, i.e. in which it is computationally easy to find a best response to specific ac-
tions of the other agents. However, there is much more to optimal strategic behavior than merely
best-responding to given actions of the other agents. In most settings, the agents (1) do not know
each other’s types, but rather only a distribution over them; and (2) must somehow deduce the other
agents’ strategies, which map types to actions, using game-theoretic analysis (such as equilibrium
reasoning). To some extent, we already discussed (1) in the previous chapter: we saw that uncer-
tainty about other agents’ votes makes the manipulation problem more difficult. But those results
assumed that the manipulator(s) somehow knew a probability distribution over the other agents’
votes. This is sweeping (2) under the rug, because to obtain such a distribution, some strategic as-
sessment needs to be made about the strategies that the other agents are likely to use. The traditional
assumption in mechanism design has been that strategic agents will play according to some solution
concept (such as Bayes-Nash equilibrium), and if this assumption is accurate, then by the revelation
principle, we can restrict our attention to truthful mechanisms. But what if such solutions are too
hard for the agents to compute? If that is the case, then the agents cannot play according to these
solutions, and the revelation principle loses its relevance.1 Thus, the complexity of computing solu-
tions according to these concepts becomes a key issue when considering how to design mechanisms
for bounded agents. This chapter investigates that issue. (An even more difficult question is how
a mechanism designer should proceed when solutions do turn out to be hard to compute, but that

1It should be emphasized here that it only loses its relevance in the sense that we may be able to achieve better re-
sults with non-truthful mechanisms (due to the agents’ computational boundedness). However, the revelation principle
still holds in the sense that using truthful mechanisms, we can achieve any result that we would have achieved under a
non-truthful mechanism if agents had acted according to game-theoretic solution concepts (even if this would have been
computationally infeasible for them). Thus, if we want to take the perspective that we want to help the agents act strate-
gically optimally, and that we do not want them to feel any regret about having failed to misreport their preferences in the
optimal way, then the revelation principle still applies and we may as well restrict our attention to truthful mechanisms—
thereby relieving the agents of the burden of acting strategically. The view taken in this dissertation, however, is that there
is nothing bad about an agent failing to manipulate the mechanism if the overall outcome is better as a result. This view
is what motivates the interest in non-truthful mechanisms in this chapter.

231



232 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

remains outside the scope of this chapter.)
Certainly, intuitively, it seems that computing an equilibrium is typically much harder than

computing a best response, and we have already seen in the previous chapter that the latter is hard
in some complex settings. This chapter will therefore focus on more basic settings: in fact, it will
focus only on normal-form games and Bayesian games that are flatly represented (all types and
actions are listed explicitly). We note that even in (say) a straightforward voting setting, the type
and action spaces are exponential in size, so that flat representation is not reasonable. (In fact, this is
why finding a best response can be computationally hard in those settings. By contrast, computing
best responses in flatly represented games is easy.) If computing game-theoretic solutions is hard
even under flat representation, this makes it seem even more unlikely that agents will be able to
compute such solutions in the richer settings that we are interested in.

If we are in fact able to compute certain game-theoretic solutions, that is of interest for other
reasons as well. It can be helpful in predicting the outcomes of non-truthful mechanisms. It also
allows us to build computer players for game-theoretically nontrivial games such as poker [Koller
and Pfeffer, 1997; Shi and Littman, 2001; Billings et al., 2003; Gilpin and Sandholm, 2006b,a]
or potentially even RoboSoccer. Finally, it can also potentially be helpful in other settings where
computer systems are interacting with other agents (human or computer) whose interests are not
aligned with the computer system, such as surveillance and fraud detection.

The rest of this chapter is layed out as follows. In Section 9.1, we characterize the complexity of
some basic computational questions about dominance and iterated dominance in both normal-form
and Bayesian games [Conitzer and Sandholm, 2005c], and in Section 9.2 we do the same for Nash
equilibrium [Conitzer and Sandholm, 2003e]. In Section 9.3 we provide a parameterized definition
of strategy eliminability that is more general than dominance, and give an algorithm for computing
whether a strategy is eliminable whose running time is exponential in only one parameter of the
definition [Conitzer and Sandholm, 2005e].

9.1 Dominance and iterated dominance

While an ever-increasing amount of research focuses on computing Nash equilibria, the arguably
simpler concept of (iterated) dominance has received much less attention. After an early short
paper on a special case [Knuth et al., 1988], the main computational study of these concepts has
taken place in a paper in the game theory community [Gilboa et al., 1993].2 Computing solutions
according to (iterated) dominance is important for at least the following reasons: 1) it can be com-
putationally easier than computing (for instance) a Nash equilibrium (and therefore it can be useful
as a preprocessing step in computing a Nash equilibrium), and 2) (iterated) dominance requires a
weaker rationality assumption on the players than (for instance) Nash equilibrium, and therefore
solutions derived according to it are more likely to occur.

In this section, we study some fundamental computational questions concerning dominance and
iterated dominance, including how hard it is to check whether a given strategy can be eliminated by
each of the variants of these notions. We study both strict and weak dominance, by both pure and
mixed strategies, in both normal-form and Bayesian games.

2This is not to say that computer scientists have ignored dominance altogether. For example, simple dominance checks
are sometimes used as a subroutine in searching for Nash equilibria [Porter et al., 2004].
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9.1.1 Dominance (not iterated)

In this subsection, we study the notion of one-shot (not iterated) dominance. When we are looking
at the dominance relations for player i, the other players (−i) can be thought of as a single player.3

Therefore, in the rest of this section, when we study one-shot (not iterated) dominance, we will
focus without loss of generality on two-player games.4 In two-player games, we will generally refer
to the players as r (row) and c (column) rather than 1 and 2.

As a first observation, checking whether a given strategy is strictly (weakly) dominated by some
pure strategy is straightforward, by checking, for every pure strategy for that player, whether the lat-
ter strategy performs strictly better against all the opponent’s pure strategies (at least as well against
all the opponent’s pure strategies, and strictly better against at least one).5 Next, we show that
checking whether a given strategy is dominated by some mixed strategy can be done in polynomial
time by solving a single linear program. (Similar linear programs have been given before [Myerson,
1991]; we present the result here for completeness, and because we will build on the linear programs
given below in Theorem 98.)

Proposition 11 Given the row player’s utilities, a subset Dr of the row player’s pure strategies Σr,
and a distinguished strategy σ∗

r for the row player, we can check in time polynomial in the size of
the game (by solving a single linear program of polynomial size) whether there exists some mixed
strategy σr, that places positive probability only on strategies in Dr and dominates σ∗

r , both for
strict and for weak dominance.

Proof: Let pdr be the probability that σr places on dr ∈ Dr. We will solve a single linear program
in each of our algorithms; linear programs can be solved in polynomial time [Khachiyan, 1979]. For
strict dominance, the question is whether the pdr can be set so that for every pure strategy for the
column player σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) > ur(σ
∗
r , σc). Because the inequality must be strict,

we cannot solve this directly by linear programming. We proceed as follows. Because the game is
finite, we may assume without loss of generality that all utilities are positive (if not, simply add a
constant to all utilities.) Solve the following linear program:

minimize
∑

dr∈Dr

pdr

such that
for all σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) ≥ ur(σ
∗
r , σc).

If σ∗
r is strictly dominated by some mixed strategy, this linear program has a solution with ob-

jective value < 1. (The dominating strategy is a feasible solution with objective value exactly 1.
Because no constraint is binding for this solution, we can reduce one of the probabilities slightly

3This player may have a very large strategy space (one pure strategy for every vector of pure strategies for the players
that are being replaced). Nevertheless, this will not result in an increase in our representation size, because the original
representation already had to specify utilities for each of these vectors.

4We note that a restriction to two-player games would not be without loss of generality for iterated dominance. This
is because for iterated dominance, we need to look at the dominated strategies of each individual player, so we cannot
merge any players.

5Recall that the assumption of a single opponent (that is, the assumption of two players) is without loss of generality
for one-shot dominance.
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without affecting feasibility, thereby obtaining a solution with objective value < 1.) Moreover, if
this linear program has a solution with objective value < 1, there is a mixed strategy strictly domi-
nating σ∗

r , which can be obtained by taking the LP solution and adding the remaining probability to
any strategy (because all the utilities are positive, this will add to the left side of any inequality, so
all inequalities will become strict). Thus, we have strict dominance if and only if the linear program
has a solution with objective value < 1.

For weak dominance, we can solve the following linear program:
maximize

∑

σc∈Σc

((
∑

dr∈Dr

pdrur(dr, σc))− ur(σ
∗
r , σc))

such that
for all σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) ≥ ur(σ
∗
r , σc);

∑

dr∈Dr

pdr = 1.

If σ∗
r is weakly dominated by some mixed strategy, then that mixed strategy is a feasible solution

to this program with objective value > 0, because for at least one strategy σc ∈ Σc we have
(

∑

dr∈Dr

pdrur(dr, σc)) − ur(σ
∗
r , σc) > 0. On the other hand, if this program has a solution with

objective value > 0, then for at least one strategy σc ∈ Σc we must have (
∑

dr∈Dr

pdrur(dr, σc)) −

ur(σ
∗
r , σc) > 0, and thus the linear program’s solution is a weakly dominating mixed strategy.

9.1.2 Iterated dominance

We now move on to iterated dominance. It is well-known that iterated strict dominance is path-
independent [Gilboa et al., 1990; Osborne and Rubinstein, 1994]—that is, if we remove dominated
strategies until no more dominated strategies remain, in the end the remaining strategies for each
player will be the same, regardless of the order in which strategies are removed. Because of this, to
see whether a given strategy can be eliminated by iterated strict dominance, all that needs to be done
is to repeatedly remove strategies that are strictly dominated, until no more dominated strategies
remain. Because we can check in polynomial time whether any given strategy is dominated (whether
or not dominance by mixed strategies is allowed, as described in Subsection 9.1.1), this whole
procedure takes only polynomial time. In the case of iterated dominance by pure strategies with two
players, Knuth et al. [1988] slightly improve on (speed up) the straightforward implementation of
this procedure by keeping track of, for each ordered pair of strategies for a player, the number of
opponent strategies that prevent the first strategy from dominating the second. Hereby the runtime
for an m× n game is reduced from O((m + n)4) to O((m + n)3). (Actually, they only study very
weak dominance (for which no strict inequalities are required), but the approach is easily extended.)

In contrast, iterated weak dominance is known to be path-dependent.6 For example, in the
following game, using iterated weak dominance we can eliminate M first, and then D, or R first,
and then U .

6There is, however, a restriction of weak dominance called nice weak dominance which is path-independent [Marx
and Swinkels, 1997, 2000]. For an overview of path-independence results, see Apt [2004].
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L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

Therefore, while the procedure of removing weakly dominated strategies until no more weakly
dominated strategies remain can certainly be executed in polynomial time, which strategies survive
in the end depends on the order in which we remove the dominated strategies. We will investigate
two questions for iterated weak dominance: whether a given strategy is eliminated in some path,
and whether there is a path to a unique solution (one pure strategy left per player). We will show
that both of these problems are computationally hard.

Definition 52 Given a game in normal form and a distinguished strategy σ∗, IWD-STRATEGY-
ELIMINATION asks whether there is some path of iterated weak dominance that eliminates σ∗.
Given a game in normal form, IWD-UNIQUE-SOLUTION asks whether there is some path of iter-
ated weak dominance that leads to a unique solution (one strategy left per player).

The following lemma shows a special case of normal-form games in which allowing for weak
dominance by mixed strategies (in addition to weak dominance by pure strategies) does not help.
We will prove the hardness results in this setting, so that they will hold whether or not dominance
by mixed strategies is allowed.

Lemma 21 Suppose that all the utilities in a game are in {0, 1}. Then every pure strategy that is
weakly dominated by a mixed strategy is also weakly dominated by a pure strategy.

Proof: Suppose pure strategy σ is weakly dominated by mixed strategy σ∗. If σ gets a utility of 1
against some opponent strategy (or vector of opponent strategies if there are more than 2 players),
then all the pure strategies that σ∗ places positive probability on must also get a utility of 1 against
that opponent strategy (or else the expected utility would be smaller than 1). Moreover, at least
one of the pure strategies that σ∗ places positive probability on must get a utility of 1 against an
opponent strategy that σ gets 0 against (or else the inequality would never be strict). It follows that
this pure strategy weakly dominates σ.

We are now ready to prove the main results of this subsection.

Theorem 93 IWD-STRATEGY-ELIMINATION is NP-complete, even with 2 players, and with 0 and
1 being the only utilities occurring in the matrix—whether or not dominance by mixed strategies is
allowed.

Proof: The problem is in NP because given a sequence of strategies to be eliminated, we can easily
check whether this is a valid sequence of eliminations (even when dominance by mixed strategies
is allowed, using Proposition 11). To show that the problem is NP-hard, we reduce an arbitrary
satisfiability instance (given by a nonempty set of clauses C over a nonempty set of variables V ,
with corresponding literals L = {+v : v ∈ V }∪{−v : v ∈ V }) to the following IWD-STRATEGY-
ELIMINATION instance. (In this instance, we will specify that certain strategies are uneliminable.
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A strategy σr can be made uneliminable, even when 0 and 1 are the only allowed utilities, by adding
another strategy σ′

r and another opponent strategy σc, so that: 1. σr and σ′
r are the only strategies

that give the row player a utility of 1 against σc. 2. σr and σ′
r always give the row player the same

utility. 3. σc is the only strategy that gives the column player a utility of 1 against σ ′
r, but otherwise

σc always gives the column player utility 0. This makes it impossible to eliminate any of these three
strategies. We will not explicitly specify the additional strategies to make the proof more legible.)

In this proof, we will denote row player strategies by s, and column player strategies by t, to
improve legibility. Let the row player’s pure strategy set be given as follows. For every variable v ∈
V , the row player has corresponding strategies s1

+v, s
2
+v, s

1
−v, s

2
−v. Additionally, the row player has

the following 2 strategies: s1
0 and s2

0, where s2
0 = σ∗

r (that is, it is the strategy we seek to eliminate).
Finally, for every clause c ∈ C, the row player has corresponding strategies s1

c (uneliminable) and
s2
c . Let the column player’s pure strategy set be given as follows. For every variable v ∈ V , the

column player has a corresponding strategy tv. For every clause c ∈ C, the column player has a
corresponding strategy tc, and additionally, for every literal l ∈ L that occurs in c, a strategy tc,l. For
every variable v ∈ V , the column player has corresponding strategies t+v, t−v (both uneliminable).
Finally, the column player has three additional strategies: t10 (uneliminable), t20, and t1.

The utility function for the row player is given as follows:

• ur(s
1
+v, tv) = 0 for all v ∈ V ;

• ur(s
2
+v, tv) = 1 for all v ∈ V ;

• ur(s
1
−v, tv) = 1 for all v ∈ V ;

• ur(s
2
−v, tv) = 0 for all v ∈ V ;

• ur(s
1
+v, t1) = 1 for all v ∈ V ;

• ur(s
2
+v, t1) = 0 for all v ∈ V ;

• ur(s
1
−v, t1) = 0 for all v ∈ V ;

• ur(s
2
−v, t1) = 1 for all v ∈ V ;

• ur(s
b
+v, t+v) = 1 for all v ∈ V and b ∈ {1, 2};

• ur(s
b
−v, t−v) = 1 for all v ∈ V and b ∈ {1, 2};

• ur(sl, t) = 0 otherwise for all l ∈ L and t ∈ S2;
• ur(s

1
0, tc) = 0 for all c ∈ C;

• ur(s
2
0, tc) = 1 for all c ∈ C;

• ur(s
b
0, t

1
0) = 1 for all b ∈ {1, 2};

• ur(s
1
0, t

2
0) = 1;

• ur(s
2
0, t

2
0) = 0;

• ur(s
b
0, t) = 0 otherwise for all b ∈ {1, 2} and t ∈ S2;

• ur(s
b
c, t) = 0 otherwise for all c ∈ C and b ∈ {1, 2};

and the row player’s utility is 0 in every other case. The utility function for the column player is
given as follows:
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• uc(s, tv) = 0 for all v ∈ V and s ∈ S1;

• uc(s, t1) = 0 for all s ∈ S1;

• uc(s
2
l , tc) = 1 for all c ∈ C and l ∈ L where l ∈ c (literal l occurs in clause c);

• uc(s
2
l2
, tc,l1) = 1 for all c ∈ C and l1, l2 ∈ L, l1 6= l2 where l2 ∈ c;

• uc(s
1
c , tc) = 1 for all c ∈ C;

• uc(s
2
c , tc) = 0 for all c ∈ C;

• uc(s
b
c, tc,l) = 1 for all c ∈ C, l ∈ L, and b ∈ {1, 2};

• uc(s2, tc) = uc(s2, tc,l) = 0 otherwise for all c ∈ C and l ∈ L;

and the column player’s utility is 0 in every other case. We now show that the two instances are
equivalent.

First, suppose there is a solution to the satisfiability instance: that is, a truth-value assignment
to the variables in V such that all clauses are satisfied. Then, consider the following sequence of
eliminations in our game: 1. For every variable v that is set to true in the assignment, eliminate tv

(which gives the column player utility 0 everywhere). 2. Then, for every variable v that is set to
true in the assignment, eliminate s2

+v using s1
+v (which is possible because tv has been eliminated,

and because t1 has not been eliminated (yet)). 3. Now eliminate t1 (which gives the column player
utility 0 everywhere). 4. Next, for every variable v that is set to false in the assignment, eliminate
s2
−v using s1

−v (which is possible because t1 has been eliminated, and because tv has not been
eliminated (yet)). 5. For every clause c which has the variable corresponding to one of its positive
literals l = +v set to true in the assignment, eliminate tc using tc,l (which is possible because s2

l

has been eliminated, and s2
c has not been eliminated (yet)). 6. For every clause c which has the

variable corresponding to one of its negative literals l = −v set to false in the assignment, eliminate
tc using tc,l (which is possible because s2

l has been eliminated, and s2
c has not been eliminated

(yet)). 7. Because the assignment satisfied the formula, all the tc have now been eliminated. Thus,
we can eliminate s2

0 = σ∗
r using s1

0. It follows that there is a solution to the IWD-STRATEGY-
ELIMINATION instance.

Now suppose there is a solution to the IWD-STRATEGY-ELIMINATION instance. By Lemma 21,
we can assume that all the dominances are by pure strategies. We first observe that only s1

0 can elim-
inate s2

0 = σ∗
r , because it is the only other strategy that gets the row player a utility of 1 against t10,

and t10 is uneliminable. However, because s2
0 performs better than s1

0 against the tc strategies, it
follows that all of the tc strategies must be eliminated. For each c ∈ C, the strategy tc can only be
eliminated by one of the strategies tc,l (with the same c), because these are the only other strategies
that get the column player a utility of 1 against s1

c , and s1
c is uneliminable. But, in order for some

tc,l to eliminate tc, s2
l must be eliminated first. Only s1

l can eliminate s2
l , because it is the only

other strategy that gets the row player a utility of 1 against tl, and tl is uneliminable. We next show
that for every v ∈ V only one of s2

+v, s
2
−v can be eliminated. This is because in order for s1

+v to
eliminate s2

+v, tv needs to have been eliminated and t1, not (so tv must be eliminated before t1); but
in order for s1

−v to eliminate s2
−v, t1 needs to have been eliminated and tv, not (so t1 must be elimi-

nated before tv). So, set v to true if s2
+v is eliminated, and to false otherwise Because by the above,

for every clause c, one of the s2
l with l ∈ c must be eliminated, it follows that this is a satisfying
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assignment to the satisfiability instance.

Using Theorem 93, it is now (relatively) easy to show that IWD-UNIQUE-SOLUTION is also
NP-complete under the same restrictions.

Theorem 94 IWD-UNIQUE-SOLUTION is NP-complete, even with 2 players, and with 0 and 1
being the only utilities occurring in the matrix—whether or not dominance by mixed strategies is
allowed.

Proof: Again, the problem is in NP because we can nondeterministically choose the sequence of
eliminations and verify whether it is correct. To show NP-hardness, we reduce an arbitrary IWD-
STRATEGY-ELIMINATION instance to the following IWD-UNIQUE-SOLUTION instance. Let
all the strategies for each player from the original instance remain part of the new instance, and let
the utilities resulting from the players playing a pair of these strategies be the same. We add three
additional strategies σ1

r , σ
2
r , σ

3
r for the row player, and three additional strategies σ1

c , σ
2
c , σ

3
c for the

column player. Let the additional utilities be as follows:

• ur(σr, σ
j
c) = 1 for all σr /∈ {σ1

r , σ
2
r , σ

3
r} and j ∈ {2, 3};

• ur(σ
i
r, σc) = 1 for all i ∈ {1, 2, 3} and σc /∈ {σ2

c , σ
3
c};

• ur(σ
i
r, σ

2
c ) = 1 for all i ∈ {2, 3};

• ur(σ
1
r , σ

3
c ) = 1;

• and the row player’s utility is 0 in all other cases involving a new strategy.
• uc(σ

3
r , σc) = 1 for all σc /∈ {σ1

c , σ
2
c , σ

3
c};

• uc(σ
∗
r , σ

j
c) = 1 for all j ∈ {2, 3} (σ∗

r is the strategy to be eliminated in the original instance);
• uc(σ

i
r, σ

1
c ) = 1 for all i ∈ {1, 2};

• ur(σ
1
r , σ

2
c ) = 1;

• ur(σ
2
r , σ

3
c ) = 1;

• and the column player’s utility is 0 in all other cases involving a new strategy.

We proceed to show that the two instances are equivalent.
First suppose there exists a solution to the original IWD-STRATEGY-ELIMINATION instance.

Then, perform the same sequence of eliminations to eliminate σ∗
r in the new IWD-UNIQUE-

SOLUTION instance. (This is possible because at any stage, any weak dominance for the row
player in the original instance is still a weak dominance in the new instance, because the two strate-
gies’ utilities for the row player are the same when the column player plays one of the new strategies;
and the same is true for the column player.) Once σ∗

r is eliminated, let σ1
c eliminate σ2

c . (It performs
better against σ2

r .) Then, let σ1
r eliminate all the other remaining strategies for the row player. (It

always performs better against either σ1
c or σ3

c .) Finally, σ1
c is the unique best response against σ1

r

among the column player’s remaining strategies, so let it eliminate all the other remaining strategies
for the column player. Thus, there exists a solution to the IWD-UNIQUE-SOLUTION instance.

Now suppose there exists a solution to the IWD-UNIQUE-SOLUTION instance. By Lemma 21,
we can assume that all the dominances are by pure strategies. We will show that none of the new
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strategies (σ1
r , σ

2
r , σ

3
r , σ

1
c , σ

2
c , σ

3
c ) can either eliminate another strategy, or be eliminated before σ∗

r

is eliminated. Thus, there must be a sequence of eliminations ending in the elimination of σ∗
r ,

which does not involve any of the new strategies, and is therefore a valid sequence of eliminations
in the original game (because all original strategies perform the same against each new strategy).
We now show that this is true by exhausting all possibilities for the first elimination before σ∗

r is
eliminated that involves a new strategy. None of the σi

r can be eliminated by a σr /∈ {σ1
r , σ

2
r , σ

3
r},

because the σi
r perform better against σ1

c . σ1
r cannot eliminate any other strategy, because it always

performs poorer against σ2
c . σ2

r and σ3
r are equivalent from the row player’s perspective (and thus

cannot eliminate each other), and cannot eliminate any other strategy because they always perform
poorer against σ3

c . None of the σj
c can be eliminated by a σc /∈ {σ1

c , σ
2
c , σ

3
c}, because the σj

c always
perform better against either σ1

r or σ2
r . σ1

c cannot eliminate any other strategy, because it always
performs poorer against either σ∗

r or σ3
r . σ2

c cannot eliminate any other strategy, because it always
performs poorer against σ2

r or σ3
r . σ3

c cannot eliminate any other strategy, because it always performs
poorer against σ1

r or σ3
r . From this, it follows that there exists a solution to the IWD-STRATEGY-

ELIMINATION instance.

A slightly weaker version of the part of Theorem 94 concerning dominance by pure strategies
only is the main result of Gilboa et al. [1993]. (Besides not proving the result for dominance by
mixed strategies, the original result was weaker because it required utilities {0, 1, 2, 3, 4, 5, 6, 7, 8}
rather than just {0, 1} (and because of this, our Lemma 21 cannot be applied to the original result
to get the result for mixed strategies, giving us an additional motivation to prove the result for the
case where utilities are in {0, 1}).)

9.1.3 (Iterated) dominance using mixed strategies with small supports

When showing that a strategy is dominated by a mixed strategy, there are several reasons to prefer
exhibiting a dominating strategy that places positive probability on as few pure strategies as possible.
First, this will reduce the number of bits required to specify the dominating strategy (and thus the
proof of dominance can be communicated quicker): if the dominating mixed strategy places positive
probability on only k strategies, then it can be specified using k real numbers for the probabilities,
plus k log m (where m is the number of strategies for the player under consideration) bits to indicate
which strategies are used. Second, the proof of dominance will be “cleaner”: for a dominating
mixed strategy, it is typically (always in the case of strict dominance) possible to spread some of
the probability onto any unused pure strategy and still have a dominating strategy, but this obscures
which pure strategies are the ones that are key in making the mixed strategy dominating. Third,
because (by the previous) the argument for eliminating the dominated strategy is simpler and easier
to understand, it is more likely to be accepted. Fourth, the level of risk neutrality required for the
argument to work is reduced, at least in the extreme case where dominance by a single pure strategy
can be exhibited (no risk neutrality is required here).

This motivates the following problem.

Definition 53 (MINIMUM-DOMINATING-SET) We are given the row player’s utilities of a
game in normal form, a distinguished strategy σ∗ for the row player, a specification of whether
the dominance should be strict or weak, and a number k (not necessarily a constant). We are asked
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whether there exists a mixed strategy σ for the row player that places positive probability on at most
k pure strategies, and dominates σ∗ in the required sense.

Unfortunately, this problem is NP-complete.

Theorem 95 MINIMUM-DOMINATING-SET is NP-complete, both for strict and for weak domi-
nance.

Proof: The problem is in NP because we can nondeterministically choose a set of at most k strate-
gies to give positive probability, and decide whether we can dominate σ∗ with these k strategies as
described in Proposition 11. To show NP-hardness, we reduce an arbitrary SET-COVER instance
(given a set S, subsets S1, S2, . . . , Sr, and a number t, can all of S be covered by at most t of the
subsets?) to the following MINIMUM-DOMINATING-SET instance. For every element s ∈ S,
there is a pure strategy σs for the column player. For every subset Si, there is a pure strategy σSi

for the row player. Finally, there is the distinguished pure strategy σ∗ for the row player. The
row player’s utilities are as follows: ur(σSi , σs) = t + 1 if s ∈ Si; ur(σSi , σs) = 0 if s /∈ Si;
ur(σ

∗, σs) = 1 for all s ∈ S. Finally, we let k = t. We now proceed to show that the two instances
are equivalent.

First suppose there exists a solution to the SET-COVER instance. Without loss of generality, we
can assume that there are exactly k subsets in the cover. Then, for every Si that is in the cover, let the
dominating strategy σ place exactly 1

k probability on the corresponding pure strategy σSi . Now, if
we let n(s) be the number of subsets in the cover containing s (we observe that that n(s) ≥ 1), then
for every strategy σs for the column player, the row player’s expected utility for playing σ when the
column player is playing σs is u(σ, σs) = n(s)

k (k + 1) ≥ k+1
k > 1 = u(σ∗, σs). So σ strictly (and

thus also weakly) dominates σ∗, and there exists a solution to the MINIMUM-DOMINATING-SET
instance.

Now suppose there exists a solution to the MINIMUM-DOMINATING-SET instance. Consider
the (at most k) pure strategies of the form σSi on which the dominating mixed strategy σ places
positive probability, and let T be the collection of the corresponding subsets Si. We claim that T is
a cover. For suppose there is some s ∈ S that is not in any of the subsets in T . Then, if the column
player plays σs, the row player (when playing σ) will always receive utility 0—as opposed to the
utility of 1 the row player would receive for playing σ∗, contradicting the fact that σ dominates σ∗

(whether this dominance is weak or strict). It follows that there exists a solution to the SET-COVER
instance.

On the other hand, if we require that the dominating strategy only places positive probability on
a very small number of pure strategies, then it once again becomes easy to check whether a strategy
is dominated. Specifically, to find out whether player i’s strategy σ∗ is dominated by a strategy that
places positive probability on only k pure strategies, we can simply check, for every subset of k of
player i’s pure strategies, whether there is a strategy that places positive probability only on these k
strategies and dominates σ∗, using Proposition 11. This requires only O(|Σi|

k) such checks. Thus,
if k is a constant, this constitutes a polynomial-time algorithm.

A natural question to ask next is whether iterated strict dominance remains computationally
easy when dominating strategies are required to place positive probability on at most k pure strate-
gies, where k is a small constant. (We have already shown in Subsection 9.1.2 that iterated weak
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dominance is hard even when k = 1, that is, only dominance by pure strategies is allowed.) Of
course, if iterated strict dominance were path-independent under this restriction, computational eas-
iness would follow as it did in Subsection 9.1.2. However, it turns out that this is not the case.

Observation 1 If we restrict the dominating strategies to place positive probability on at most two
pure strategies, iterated strict dominance becomes path-dependent.

Proof: Consider the following game:

7, 1 0, 0 0, 0
0, 0 7, 1 0, 0
3, 0 3, 0 0, 0
0, 0 0, 0 3, 1
1, 0 1, 0 1, 0

Let (i, j) denote the outcome in which the row player plays the ith row and the column player
plays the jth column. Because (1, 1), (2, 2), and (4, 3) are all Nash equilibria, none of the column
player’s pure strategies will ever be eliminated, and neither will rows 1, 2, and 4. We now observe
that randomizing uniformly over rows 1 and 2 dominates row 3, and randomizing uniformly over
rows 3 and 4 dominates row 5. However, if we eliminate row 3 first, it becomes impossible to
dominate row 5 without randomizing over at least 3 pure strategies.

Indeed, iterated strict dominance turns out to be hard even when k = 3.

Theorem 96 If we restrict the dominating strategies to place positive probability on at most three
pure strategies, it becomes NP-complete to decide whether a given strategy can be eliminated using
iterated strict dominance.

Proof: The problem is in NP because given a sequence of strategies to be eliminated, we can check
in polynomial time whether this is a valid sequence of eliminations (for any strategy to be elimi-
nated, we can check, for every subset of three other strategies, whether there is a strategy placing
positive probability on only these three strategies that dominates the strategy to be eliminated, using
Proposition 11). To show that the problem is NP-hard, we reduce an arbitrary satisfiability instance
(given by a nonempty set of clauses C over a nonempty set of variables V , with corresponding
literals L = {+v : v ∈ V } ∪ {−v : v ∈ V }) to the following two-player game.

For every variable v ∈ V , the row player has strategies s+v, s−v, s
1
v, s

2
v, s

3
v, s

4
v, and the column

player has strategies t1v, t
2
v, t

3
v, t

4
v. For every clause c ∈ C, the row player has a strategy sc, and the

column player has a strategy tc, as well as, for every literal l occurring in c, an additional strategy
tlc. The row player has two additional strategies s1 and s2. (s2 is the strategy that we are seeking to
eliminate.) Finally, the column player has one additional strategy t1.

The utility function for the row player is given as follows (where ε is some sufficiently small
number):

• ur(s+v, t
j
v) = 4 if j ∈ {1, 2}, for all v ∈ V ;
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• ur(s+v, t
j
v) = 1 if j ∈ {3, 4}, for all v ∈ V ;

• ur(s−v, t
j
v) = 1 if j ∈ {1, 2}, for all v ∈ V ;

• ur(s−v, t
j
v) = 4 if j ∈ {3, 4}, for all v ∈ V ;

• ur(s+v, t) = ur(s−v, t) = 0 for all v ∈ V and t /∈ {t1v, t
2
v, t

3
v, t

4
v};

• ur(s
i
v, t

i
v) = 13 for all v ∈ V and i ∈ {1, 2, 3, 4};

• ur(s
i
v, t) = ε for all v ∈ V , i ∈ {1, 2, 3, 4}, and t 6= tiv;

• ur(sc, tc) = 2 for all c ∈ C;
• ur(sc, t) = 0 for all c ∈ C and t 6= tc;
• ur(s1, t1) = 1 + ε;
• ur(s1, t) = ε for all t 6= t1;
• ur(s2, t1) = 1;
• ur(s2, tc) = 1 for all c ∈ C;
• ur(s2, t) = 0 for all t /∈ {t1} ∪ {tc : c ∈ C}.

The utility function for the column player is given as follows:

• uc(s
i
v, t

i
v) = 1 for all v ∈ V and i ∈ {1, 2, 3, 4};

• uc(s, t
i
v) = 0 for all v ∈ V , i ∈ {1, 2, 3, 4}, and s 6= si

v;
• uc(sc, tc) = 1 for all c ∈ C;
• uc(sl, tc) = 1 for all c ∈ C and l ∈ L occurring in c;
• uc(s, tc) = 0 for all c ∈ C and s /∈ {sc} ∪ {sl : l ∈ c};
• uc(sc, t

l
c) = 1 + ε for all c ∈ C;

• uc(sl′ , t
l
c) = 1 + ε for all c ∈ C and l′ 6= l occurring in c;

• uc(s, t
l
c) = ε for all c ∈ C and s /∈ {sc} ∪ {sl′ : l′ ∈ c, l 6= l′};

• uc(s2, t1) = 1;
• uc(s, t1) = 0 for all s 6= s2.

We now show that the two instances are equivalent. First, suppose that there is a solution to
the satisfiability instance. Then, consider the following sequence of eliminations in our game: 1.
For every variable v that is set to true in the satisfying assignment, eliminate s+v with the mixed
strategy σr that places probability 1/3 on s−v, probability 1/3 on s1

v, and probability 1/3 on s2
v.

(The expected utility of playing σr against t1v or t2v is 14/3 > 4; against t3v or t4v, it is 4/3 > 1;
and against anything else it is 2ε/3 > 0. Hence the dominance is valid.) 2. Similarly, for every
variable v that is set to false in the satisfying assignment, eliminate s−v with the mixed strategy σr

that places probability 1/3 on s+v, probability 1/3 on s3
v, and probability 1/3 on s4

v. (The expected
utility of playing σr against t1v or t2v is 4/3 > 1; against t3v or t4v, it is 14/3 > 4; and against anything
else it is 2ε/3 > 0. Hence the dominance is valid.) 3. For every c ∈ C, eliminate tc with any tlc for
which l was set to true in the satisfying assignment. (This is a valid dominance because tl

c performs
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better than tc against any strategy other than sl, and we eliminated sl in step 1 or in step 2.) 4.
Finally, eliminate s2 with s1. (This is a valid dominance because s1 performs better than s2 against
any strategy other than those in {tc : c ∈ C}, which we eliminated in step 3.) Hence, there is an
elimination path that eliminates s2.

Now, suppose that there is an elimination path that eliminates s2. The strategy that eventually
dominates s2 must place most of its probability on s1, because s1 is the only other strategy that
performs well against t1, which cannot be eliminated before s2. But, s1 performs significantly
worse than s2 against any strategy tc with c ∈ C, so it follows that all these strategies must be
eliminated first. Each strategy tc can only be eliminated by a strategy that places most of its weight
on the corresponding strategies tlc with l ∈ c, because they are the only other strategies that perform
well against sc, which cannot be eliminated before tc. But, each strategy tlc performs significantly
worse than tc against sl, so it follows that for every clause c, for one of the literals l occurring in it,
sl must be eliminated first. Now, strategies of the form tjv will never be eliminated because they are
the unique best responses to the corresponding strategies sj

v (which are, in turn, the best responses to
the corresponding tjv). As a result, if strategy s+v (respectively, s−v) is eliminated, then its opposite
strategy s−v (respectively, s+v) can no longer be eliminated, for the following reason. There is no
other pure strategy remaining that gets a significant utility against more than one of the strategies
t1v, t

2
v, t

3
v, t

4
v, but s−v (respectively, s+v) gets significant utility against all 4, and therefore cannot be

dominated by a mixed strategy placing positive probability on at most 3 strategies. It follows that
for each v ∈ V , at most one of the strategies s+v, s−v is eliminated, in such a way that for every
clause c, for one of the literals l occurring in it, sl must be eliminated. But then setting all the literals
l such that sl is eliminated to true constitutes a solution to the satisfiability instance.

In the next subsection, we return to the setting where there is no restriction on the number of
pure strategies on which a dominating mixed strategy can place positive probability.

9.1.4 (Iterated) dominance in Bayesian games

In this subsection, we study Bayesian games. Because Bayesian games have a representation that
is exponentially more concise than their normal-form representation, questions that are easy for
normal-form games can be hard for Bayesian games. In fact, it turns out that checking whether a
strategy is dominated by a pure strategy is hard in Bayesian games.

Theorem 97 In a Bayesian game, it is NP-complete to decide whether a given pure strategy σr :
Θr → Ar is dominated by some other pure strategy (both for strict and weak dominance), even
when the row player’s distribution over types is uniform.

Proof: The problem is in NP because it is easy to verify whether a candidate dominating strategy
is indeed a dominating strategy. To show that the problem is NP-hard, we reduce an arbitrary
satisfiability instance (given by a set of clauses C using variables from V ) to the following Bayesian
game. Let the row player’s action set be Ar = {t, f, 0} and let the column player’s action set be
Ac = {ac : c ∈ C}. Let the row player’s type set be Θr = {θv : v ∈ V }, with a distribution πr that
is uniform. Let the row player’s utility function be as follows:

• ur(θv, 0, ac) = 0 for all v ∈ V and c ∈ C;
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• ur(θv, b, ac) = |V | for all v ∈ V , c ∈ C, and b ∈ {t, f} such that setting v to b satisfies c;
• ur(θv, b, ac) = −1 for all v ∈ V , c ∈ C, and b ∈ {t, f} such that setting v to b does not

satisfy c.

Let the pure strategy to be dominated be the one that plays 0 for every type. We show that the
strategy is dominated by a pure strategy if and only if there is a solution to the satisfiability instance.

First, suppose there is a solution to the satisfiability instance. Then, let σd
r be given by: σd

r (θv) =
t if v is set to true in the solution to the satisfiability instance, and σd

r (θv) = f otherwise. Then,
against any action ac by the column player, there is at least one type θv such that either +v ∈ c and
σd

r (θv) = t, or −v ∈ c and σd
r (θv) = f . Thus, the row player’s expected utility against action ac is

at least |V |
|V | −

|V |−1
|V | = 1

|V | > 0. So, σd
r is a dominating strategy.

Now, suppose there is a dominating pure strategy σd
r . This dominating strategy must play t or

f for at least one type. Thus, against any ac by the column player, there must at least be some type
θv for which ur(θv, σ

d
r (θv), ac) > 0. That is, there must be at least one variable v such that setting

v to σd
r (θv) satifies c. But then, setting each v to σd

r (θv) must satisfy all the clauses. So a satisfying
assignment exists.

However, it turns out that we can modify the linear programs from Proposition 11 to obtain
a polynomial time algorithm for checking whether a strategy is dominated by a mixed strategy in
Bayesian games.

Theorem 98 In a Bayesian game, it can be decided in polynomial time whether a given (possibly
mixed) strategy σr is dominated by some other mixed strategy, using linear programming (both for
strict and weak dominance).

Proof: We can modify the linear programs presented in Proposition 11 as follows. For strict dom-
inance, again assuming without loss of generality that all the utilities in the game are positive, use
the following linear program (in which pσr

r (θr, ar) is the probability that σr, the strategy to be
dominated, places on ar for type θr):

minimize
∑

θr∈Θr

∑

ar∈Ar

pr(ar)

such that
for all ac ∈ Ac,

∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar) ≥
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar);

for all θr ∈ Θr,
∑

ar∈Ar

pr(θr, ar) ≤ 1.

Assuming that π(θr) > 0 for all θr ∈ Θr, this program will return an objective value smaller
than |Θr| if and only if σr is strictly dominated, by reasoning similar to that done in Proposition 11.

For weak dominance, use the following linear program:
maximize

∑

ac∈Ac

(
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar)−
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar))

such that
for all ac ∈ Ac,

∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar) ≥
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar);

for all θr ∈ Θr,
∑

ar∈Ar

pr(θr, ar) = 1.
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This program will return an objective value greater than 0 if and only if σr is weakly dominated,
by reasoning similar to that done in Proposition 11.

We now turn to iterated dominance in Bayesian games. Naı̈vely, one might argue that iterated
dominance in Bayesian games always requires an exponential number of steps when a significant
fraction of the game’s pure strategies can be eliminated, because there are exponentially many
pure strategies. However, this is not a very strong argument because oftentimes we can eliminate
exponentially many pure strategies in one step. For example, if for some type θr ∈ Θr we have,
for all ac ∈ Ac, that u(θr, a

1
r, ac) > u(θr, a

2
r, ac), then any pure strategy for the row player which

plays action a2
r for type θr is dominated (by the strategy that plays action a1

r for type θr instead)—
and there are exponentially many (|Ar|

|Θr|−1) such strategies. It is therefore conceivable that we
need only polynomially many eliminations of collections of a player’s strategies. However, the
following theorem shows that this is not the case, by giving an example where an exponential
number of iterations (that is, alternations between the players in eliminating strategies) is required.
(We emphasize that this is not a result about computational complexity.)

Theorem 99 Even in symmetric 3-player Bayesian games, iterated dominance by pure strategies
can require an exponential number of iterations (both for strict and weak dominance), even with
only three actions per player.

Proof: Let each player i ∈ {1, 2, 3} have n + 1 types θ1
i , θ

2
i , . . . , θ

n+1
i . Let each player i have 3

actions ai, bi, ci, and let the utility function of each player be defined as follows. (In the below, i+1
and i + 2 are shorthand for i + 1(mod 3) and i + 2(mod 3) when used as player indices. Also,
−∞ can be replaced by a sufficiently negative number. Finally, δ and ε should be chosen to be very
small (even compared to 2−(n+1)), and ε should be more than twice as large as δ.)

• ui(θ
1
i ; ai, ci+1, ci+2) = −1;

• ui(θ
1
i ; ai, si+1, si+2) = 0 for si+1 6= ci+1 or si+2 6= ci+2;

• ui(θ
1
i ; bi, si+1, si+2) = −ε for si+1 6= ai+1 and si+2 6= ai+2;

• ui(θ
1
i ; bi, si+1, si+2) = −∞ for si+1 = ai+1 or si+2 = ai+2;

• ui(θ
1
i ; ci, si+1, si+2) = −∞ for all si+1, si+2;

• ui(θ
j
i ; ai, si+1, si+2) = −∞ for all si+1, si+2 when j > 1;

• ui(θ
j
i ; bi, si+1, si+2) = −ε for all si+1, si+2 when j > 1;

• ui(θ
j
i ; ci, si+1, ci+2) = δ − ε− 1/2 for all si+1 when j > 1;

• ui(θ
j
i ; ci, si+1, si+2) = δ − ε for all si+1 and si+2 6= ci+2 when j > 1.

Let the distribution over each player’s types be given by p(θj
i ) = 2−j (with the exception that

p(θ2
i ) = 2−2 +2−(n+1)). We will be interested in eliminating strategies of the following form: play

bi for type θ1
i , and play one of bi or ci otherwise. Because the utility function is the same for any

type θj
i with j > 1, these strategies are effectively defined by the total probability that they place
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on ci,7 which is t2i (2
−2 + 2−(n+1)) +

∑n+1
j=3 tji2

−j where tji = 1 if player i plays ci for type θj
i , and

0 otherwise. This probability is different for any two different strategies of the given form, and we
have exponentially many different strategies of the given form. For any probability q which can be
expressed as t2(2

−2 + 2−(n+1)) +
∑n+1

j=3 tj2
−j (with all tj ∈ {0, 1}), let σi(q) denote the (unique)

strategy of the given form for player i which places a total probability of q on ci. Any strategy that
plays ci for type θ1

i or ai for some type θj
i with j > 1 can immediately be eliminated. We will

show that, after that, we must eliminate the strategies σi(q) with high q first, slowly working down
to those with lower q.

Claim 1: If σi+1(q
′) and σi+2(q

′) have not yet been eliminated, and q < q′, then σi(q) cannot
yet be eliminated. Proof: First, we show that no strategy σi(q

′′) can eliminate σi(q). Against
σi+1(q

′′′), σi+2(q
′′′), the utility of playing σi(p) is −ε + p · δ − p · q′′′/2. Thus, when q′′′ = 0, it is

best to set p as high as possible (and we note that σi+1(0) and σi+2(0) have not been eliminated),
but when q′′′ > 0, it is best to set p as low as possible because δ < q′′′/2. Thus, whether q > q′′ or
q < q′′, σi(q) will always do strictly better than σi(q

′′) against some remaining opponent strategies.
Hence, no strategy σi(q

′′) can eliminate σi(q). The only other pure strategies that could dominate
σi(q) are strategies that play ai for type θ1

i , and bi or ci for all other types. Let us take such a strategy
and suppose that it plays c with probability p. Against σi+1(q

′), σi+2(q
′) (which have not yet been

eliminated), the utility of playing this strategy is −(q′)2/2 − ε/2 + p · δ − p · q′/2. On the other
hand, playing σi(q) gives −ε + q · δ − q · q′/2. Because q′ > q, we have −(q′)2/2 < −q · q′/2,
and because δ and ε are small, it follows that σi(q) receives a higher utility. Therefore, no strategy
dominates σi(q), proving the claim.

Claim 2: If for all q′ > q, σi+1(q
′) and σi+2(q

′) have been eliminated, then σi(q) can be
eliminated. Proof: Consider the strategy for player i that plays ai for type θ1

i , and bi for all other
types (call this strategy σ′

i); we claim σ′
i dominates σi(q). First, if either of the other players k

plays ak for θ1
k, then σ′

i performs better than σi(q) (which receives −∞ in some cases). Because
the strategies for player k that play ck for type θ1

k, or ak for some type θj
k with j > 1, have already

been eliminated, all that remains to check is that σ′
i performs better than σi(q) whenever both of

the other two players play strategies of the following form: play bk for type θ1
k, and play one of

bk or ck otherwise. We note that among these strategies, there are none left that place probability
greater than q on ck. Letting qk denote the probability with which player k plays ck, the expected
utility of playing σ′

i is −qi+1 · qi+2/2 − ε/2. On the other hand, the utility of playing σi(q) is
−ε + q · δ − q · qi+2/2. Because qi+1 ≤ q, the difference between these two expressions is at least
ε/2− δ, which is positive. It follows that σ′

i dominates σi(q).
From Claim 2, it follows that all strategies of the form σi(q) will eventually be eliminated.

However, Claim 1 shows that we cannot go ahead and eliminate multiple such strategies for one
player, unless at least one other player simultaneously “keeps up” in the eliminated strategies: every
time a σi(q) is eliminated such that σi+1(q) and σi+2(q) have not yet been eliminated, we need to
eliminate one of the latter two strategies before any σi(q

′) with q′ > q can be eliminated—that is,
we need to alternate between players. Because there are exponentially many strategies of the form
σi(q), iterated elimination will require exponentially many iterations to complete.

7Note that the strategies are still pure strategies; the probability placed on an action by a strategy here is simply the
sum of the probabilities of the types for which the strategy chooses that action.
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It follows that an efficient algorithm for iterated dominance (strict or weak) by pure strategies in
Bayesian games, if it exists, must somehow be able to perform (at least part of) many iterations in a
single step of the algorithm (because if each step only performed a single iteration, we would need
exponentially many steps). Interestingly, Knuth et al. [1988] argue that iterated dominance appears
to be an inherently sequential problem (in light of their result that iterated very weak dominance
is P-complete, that is, apparently not efficiently parallelizable), suggesting that aggregating many
iterations may be difficult.

This concludes the part of this dissertation studying the complexity of dominance and iterated
dominance. In the next section, we study the complexity of computing Nash equilibria.

9.2 Nash equilibrium

In recent years, there has been a large amount of research on computing Nash equilibria. The
question of how hard it is to compute just a single Nash equilibrium especially drew attention,
and was dubbed “a most fundamental computational problem whose complexity is wide open”
and “together with factoring, [...] the most important concrete open question on the boundary of
P today” [Papadimitriou, 2001]. A recent breakthrough series of papers [Daskalakis et al., 2005;
Chen and Deng, 2005a; Daskalakis and Papadimitriou, 2005; Chen and Deng, 2005b] shows that the
problem is PPAD-complete, even in the two-player case. (An earlier result shows that the problem
is no easier if all utilities are required to be in {0, 1} [Abbott et al., 2005].) This suggests that the
problem is indeed hard, although not as much is known about the class PPAD as about (say) NP. The
best-known algorithm for finding a Nash equilibrium, the Lemke-Howson algorithm [Lemke and
Howson, 1964], has recently been shown to have a worst-case exponential running time [Savani and
von Stengel, 2004]. More recent algorithms for computing Nash equilibria have focused on guessing
which of the players’ pure strategies receive positive probability in the equilibrium: after this guess,
only a simple linear feasibility problem needs to be solved [Dickhaut and Kaplan, 1991; Porter
et al., 2004; Sandholm et al., 2005b]. (These algorithms clearly require exponential time in the
worst case, but are often quite fast in practice.) Also, there has been growing interest in computing
equilibria of games with special structure that allows them to be represented concisely [Kearns et
al., 2001; Leyton-Brown and Tennenholtz, 2003; Blum et al., 2003; Gottlob et al., 2003; Bhat and
Leyton-Brown, 2004; Schoenebeck and Vadhan, 2006].

In this section, we focus mostly on computing equilibria with certain properties: for example,
computing an equilibrium with maximal social welfare, or one that places probability on a given
pure strategy. We also consider the complexity of counting the number of equilibria and computing
a pure-strategy Bayes-Nash equilibirium of a Bayesian game.

9.2.1 Equilibria with certain properties in normal-form games

When one analyzes the strategic structure of a game, especially from the viewpoint of a mechanism
designer who tries to construct good rules for a game, finding a single equilibrium is far from
satisfactory. More desirable equilibria may exist: in this case the game becomes more attractive,
especially if one can coax the players into playing a desirable equilibrium. Also, less desirable
equilibria may exist: in this case the game becomes less attractive (if there is some chance that these
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equilibria will end up being played). Before we can make a definite judgment about the quality of the
game, we would like to know the answers to questions such as: What is the game’s most desirable
equilibrium? Is there a unique equilibrium? If not, how many equilibria are there? Algorithms that
tackle these questions would be useful both to players and to the mechanism designer.

Furthermore, algorithms that answer certain existence questions may pave the way to designing
algorithms that construct a Nash equilibrium. For example, if we had an algorithm that told us
whether there exists any equilibrium where a certain player plays a certain strategy, this could be
useful in eliminating possibilities in the search for a Nash equilibrium.

However, all the existence questions that we have investigated turn out to be NP-hard. These are
not the first results of this nature; most notably, Gilboa and Zemel [1989] provide some NP-hardness
results in the same spirit. We provide a single reduction which in demonstrates (sometimes stronger
versions of) most of their hardness results, and interesting new results. More significantly, as we
show in Subsection 9.2.2, our reduction shows that the problems of maximizing certain properties
of Nash equilibria are inapproximable (unless P=NP). Additionally, as we show in Subsection 9.2.3,
the reduction shows #P-hardness of counting the number of equilibria.

We now present our reduction.8

Definition 54 Let φ be a Boolean formula in conjunctive normal form. Let V be its set of variables
(with |V | = n), L the set of corresponding literals (a positive and a negative one for each variable)9,
and C its set of clauses. The function v : L→ V gives the variable corresponding to a literal, e.g.
v(x1) = v(−x1) = x1. We define Gε(φ) to be the following symmetric 2-player game in normal
form. Let Σ ≡ Σ1 = Σ2 = L ∪ V ∪ C ∪ {f}. Let the utility functions be

• u1(l
1, l2) = u2(l

2, l1) = n− 1 for all l1, l2 ∈ L with l1 6= −l2;

• u1(l,−l) = u2(−l, l) = n− 4 for all l ∈ L;

• u1(l, x) = u2(x, l) = n− 4 for all l ∈ L, x ∈ Σ− L− {f};

• u1(v, l) = u2(l, v) = n for all v ∈ V , l ∈ L with v(l) 6= v;

• u1(v, l) = u2(l, v) = 0 for all v ∈ V , l ∈ L with v(l) = v;

• u1(v, x) = u2(x, v) = n− 4 for all v ∈ V , x ∈ Σ− L− {f};

• u1(c, l) = u2(l, c) = n for all c ∈ C, l ∈ L with l /∈ c;

• u1(c, l) = u2(l, c) = 0 for all c ∈ C, l ∈ L with l ∈ c;

• u1(c, x) = u2(x, c) = n− 4 for all c ∈ C, x ∈ Σ− L− {f};

• u1(x, f) = u2(f, x) = 0 for all x ∈ Σ− {f};

• u1(f, f) = u2(f, f) = ε;

8The reduction presented here is somewhat different from the reduction given in the IJCAI version of this work. The
reason is that the new reduction presented here implies inapproximability results that the original reduction did not.

9Thus, if x1 is a variable, x1 and −x1 are literals. We make a distinction between the variable x1 and the literal x1.
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• u1(f, x) = u2(x, f) = n− 1 for all x ∈ Σ− {f}.

Theorem 100 If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ, then there is a Nash equilibrium of
Gε(φ) where both players play li with probability 1

n , with expected utility n − 1 for each player.
The only other Nash equilibrium is the one where both players play f , and receive expected utility
ε each.

Proof: We first demonstrate that these combinations of mixed strategies indeed do constitute Nash
equilibria. If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ and the other player plays li with proba-
bility 1

n , playing one of these li as well gives utility n− 1. On the other hand, playing the negation
of one of these li gives utility 1

n(n−4)+ n−1
n (n−1) < n−1. Playing some variable v gives utility

1
n(0) + n−1

n (n) = n − 1 (since one of the li that the other player sometimes plays has v(li) = v).
Playing some clause c gives utility at most 1

n(0) + n−1
n (n) = n− 1 (since at least one of the li that

the other player sometimes plays occurs in clause c, since the li satisfy φ). Finally, playing f gives
utility n − 1. It follows that playing any one of the li that the other player sometimes plays is an
optimal response, and hence that both players playing each of these li with probability 1

n is a Nash
equilibrium. Clearly, both players playing f is also a Nash equilibrium since playing anything else
when the other plays f gives utility 0.

Now we demonstrate that there are no other Nash equilibria. If the other player always plays f ,
the unique best response is to also play f since playing anything else will give utility 0. Otherwise,
given a mixed strategy for the other player, consider a player’s expected utility given that the other
player does not play f . (That is, the probability distribution over the other player’s strategies is
proportional to the probability distribution constituted by that player’s mixed strategy, except f
occurs with probability 0). If this expected utility is less than n − 1, the player is strictly better off
playing f (which gives utility n− 1 when the other player does not play f , and also performs better
than the original strategy when the other player does play f ). So this cannot occur in equilibrium.

As we pointed out, here are no Nash equilibria where one player always plays f but the other
does not, so suppose both players play f with probability less than one. Consider the expected
social welfare (E[u1 + u2]), given that neither player plays f . It is easily verified that there is no
outcome with social welfare greater than 2n − 2. Also, any outcome in which one player plays an
element of V or C has social welfare at most n−4+n < 2n−2. It follows that if either player ever
plays an element of V or C, the expected social welfare given that neither player plays f is strictly
below 2n− 2. By linearity of expectation it follows that the expected utility of at least one player is
strictly below n− 1 given that neither player plays f , and by the above reasoning, this player would
be strictly better off playing f instead of its randomization over strategies other than f . It follows
that no element of V or C is ever played in a Nash equilibrium.

So, we can assume both players only put positive probability on strategies in L ∪ {f}. Then,
if the other player puts positive probability on f , playing f is a strictly better response than any
element of L (since f does as at least as well against any strategy in L, and strictly better against
f ). It follows that the only equilibrium where f is ever played is the one where both players always
play f .

Now we can assume that both players only put positive probability on elements of L. Suppose
that for some l ∈ L, the probability that a given player plays either l or −l is less than 1

n . Then the
expected utility for the other player of playing v(l) is strictly greater than 1

n(0) + n−1
n (n) = n− 1,
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and hence this cannot be a Nash equilibrium. So we can assume that for any l ∈ L, the probability
that a given player plays either l or −l is precisely 1

n .
If there is an element of L such that player 1 puts positive probability on it and player 2 on its

negation, both players have expected utility less than n − 1 and would be better off switching to
f . So, in a Nash equilibrium, if player 1 plays l with some probability, player 2 must play l with
probability 1

n , and thus player 1 must play l with probability 1
n . Thus we can assume that for each

variable, exactly one of its corresponding literals is played with probability 1
n by both players. It

follows that in any Nash equilibrium (besides the one where both players play f ), literals that are
sometimes played indeed correspond to an assignment to the variables.

All that is left to show is that if this assignment does not satisfy φ, it does not correspond to a
Nash equilibrium. Let c ∈ C be a clause that is not satisfied by the assignment, that is, none of its
literals are ever played. Then playing c would give utility n, and both players would be better off
playing this.

Example 1 The following table shows the game Gε(φ) where φ = (x1 ∨ −x2) ∧ (−x1 ∨ x2).

x1 x2 +x1 −x1 +x2 −x2 (x1 ∨ −x2) (−x1 ∨ x2) f

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1
+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
−x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
−x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1
(x1 ∨ −x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(−x1 ∨ x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1
f 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε,ε

The only two solutions to the SAT instance defined by φ is to either set both variables to true,
or both to false. Indeed, the only equilibria of the game Gε(φ) are those where: 1. Both players
randomize uniformly over {+x1, +x2}; 2. Both players randomize uniformly over {−x1,−x2}; 3.
Both players play f . So the example is consistent with Theorem 100.

Thus, in general, there exists a Nash equilibrium in Gε(φ) where each player gets utility n−1 if
and only if φ is satisfiable; otherwise, the only equilibrium is the one where both players play f and
each of them gets ε. Suppose n−1 > ε. Then, any sensible definition of welfare optimization would
prefer the first kind of equilibrium. So, it follows that determining whether a “good” equilibrium
exists is hard for any such definition. Additionally, the first kind of equilibrium is, in various senses,
an optimal outcome for the game, even if the players were to cooperate, so even finding out whether
such an optimal equilibrium exists is hard. The corollaries below illustrate these points.

All the corollaries show NP-completeness of a problem, meaning that the problem is both NP-
hard and in NP. Technically, only the NP-hardness part is a corollary of Theorem 100 in each case.
Membership in NP follows in each case because we can nondeterministically generate strategies
for the players, and verify whether these constitute a Nash equilibrium with the desired property.
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Alternatively, for the case of two players, we can nondeterministically generate only the supports
of the players’ strategies. At this point, determining whether a Nash equilibrium with the given
supports exists is a simple linear feasibility program (see, for example, Dickhaut and Kaplan [1991];
Porter et al. [2004]), to which we can add an objective to maximize (such as, for example, social
welfare). The resulting linear program can be solved in polynomial time [Khachiyan, 1979].

Corollary 9 Even in symmetric 2-player games, it is NP-complete to determine whether there exists
a NE with expected (standard) social welfare (E[

∑

1≤i≤|A|
ui]) at least k, even when k is the maximum

social welfare that could be obtained in the game.

Proof: For any φ, in Gε(φ), the social welfare of a Nash equilibrium corresponding to any satisfying
assignment is 2(n − 1). On the other hand, the social welfare of the Nash equilibrium that always
exists is only 2ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium with a social welfare of
at least 2(n− 1) if and only if φ is satisfiable.

Corollary 10 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a NE where all players have expected utility at least k (that is, the egalitarian social welfare
is at least k), even when k is the largest number such that there exists a distribution over outcomes
of the game such that all players have expected utility at least k.

Proof: For any φ, in Gε(φ), the egalitarian social welfare of a Nash equilibrium corresponding to
any satisfying assignment is n − 1. On the other hand, the egalitarian social welfare of the Nash
equilibrium that always exists is only ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium
with an egalitarian social welfare of at least n− 1 if and only if φ is satisfiable.

Corollary 11 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a Pareto-optimal NE. (A distribution over outcomes is Pareto-optimal if there is no other
distribution over outcomes such that every player has at least equal expected utility, and at least
one player has strictly greater expected utility.)

Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying as-
signment is Pareto-optimal, whereas the Nash equilibrium that always exists is not Pareto-optimal.
Thus, a Pareto optimal Nash equilibrium exists if and only if φ is satisfiable.

Corollary 12 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a NE where player 1 has expected utility at least k.

Proof: For any φ, in Gε(φ), player 1’s utility in a Nash equilibrium corresponding to any satisfying
assignment is (n − 1). On the other hand, player 1’s utility in the Nash equilibrium that always
exists is only ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium with a utility for player 1
of at least n− 1 if and only if φ is satisfiable.

Some additional corollaries are:
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Corollary 13 Even in symmetric 2-player games, it is NP-complete to determine whether there is
more than one Nash equilibrium.

Proof: For any φ, Gε(φ) has additional Nash equilibria (besides the one that always exists) if and
only if φ is satisfiable.

Corollary 14 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1 sometimes plays a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 sometimes plays +x1 if and
only if there is a satisfying assignment to φ with x1 set to true. But determining whether this is the
case is NP-complete.

Corollary 15 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1 never plays a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 never plays f if and only if
φ is satisfiable.

Corollary 16 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1’s strategy has at least k pure strategies in its support (even when
k = 2).

Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses a
support of n strategies for player 1. On the other hand, the Nash equilibrium that always exists uses
a support of only 1 strategy for player 1. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium using a
support of at least 2 strategies for player 1 if and only if φ is satisfiable.

Corollary 17 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where the players’ strategies together have at least k pure strategies in their supports
(even when k = 3).

Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses
a support of n strategies for each player, for a total of 2n strategies. On the other hand, the Nash
equilibrium that always exists uses a support of only 1 strategy for each player, for a total of only 2
strategies. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium using at least 3 strategies in the supports
of the players if and only if φ is satisfiable.

Corollary 18 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where each player’s strategy has at least k pure strategies in its support (even when
k = 2).
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Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses a
support of n strategies for each player. On the other hand, the Nash equilibrium that always exists
uses a support of only 1 strategy for each player. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium
using at least 2 strategies in the supports of each player if and only if φ is satisfiable.

Definition 55 A strong Nash equilibrium is a vector of mixed strategies for the players so that no
nonempty subset of the players can change their strategies to make all players in the subset better
off.

Corollary 19 Even in symmetric 2-player games, it is NP-complete to determine whether a strong
Nash equilibrium exists.

Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying assign-
ment is a strong Nash equilibrium, whereas the Nash equilibrium that always exists is not strong.
Thus, a strong Nash equilibrium exists if and only if φ is satisfiable.

All of these results indicate that it is hard to obtain summary information about a game’s Nash
equilibria. (Corollaries 13, 18, and weaker10 versions of Corollaries 10, 14, and 15 were first proven
by Gilboa and Zemel [1989].)

9.2.2 Inapproximability results

Some of the corollaries of the previous subsection state that it is NP-complete to find the Nash
equilibrium that maximizes a certain property (such as social welfare). For such properties, an
important question is to ask whether they can be approximated. For instance, is it possible to
find, in polynomial time, a Nash equilibrium that has at least half as great a social welfare as the
social-welfare maximizing Nash equilibrium? Or—the same question, asked nonconstructively—
can we, in polynomial time, find a number k such that there exists a Nash equilibrium with social
welfare at least k, and there is no Nash equilibrium with social welfare greater than 2k? (The
nonconstructive question does not require constructing a Nash equilibrium, so it is perhaps possible
that there is a polynomial-time algorithm for this question even if it is hard to construct any Nash
equilibrium.) We will not give approximation algorithms in this subsection, but we will derive
certain inapproximability results from Theorem 100. In each case, we will show that even the
nonconstructive question is hard (and therefore also the constructive question).

Before presenting our results, we first make one subtle technical point, namely that it is un-
reasonable to expect an approximation algorithm to work even when the game has some negative
utilities in it. For suppose we had an approximation algorithm that approximated (say) social wel-
fare to some positive ratio, even when there are some negative utilities in the game. Then we can
“boost” its results, as follows. Suppose it returned a social welfare of 2r on a game, and suppose it
were less than the social welfare of the best Nash equilibrium. If we subtract r from all utilities in
the game, the game remains the same for all strategic purposes (it has the same set of Nash equilib-
ria). But now the result provided by the approximation algorithm on the original game corresponds

10Our results prove hardness in a slightly more restricted setting. Corollaries 14 and 15 in their full strength can in fact
also be obtained using Gilboa and Zemel’s proof technique, even though they stated the result in a weaker form.
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to a social welfare of 0, which does not satisfy the approximation ratio. It follows that running the
approximation algorithm on the transformed game must give a better result (which we can easily
transform back to the original game).

For this reason, we require our hardness results to only use reductions to games where 0 is the
lowest possible utility in the game. To do so, we will simply use the fact that Gε(φ) satisfies this
property whenever n ≥ 4. (We recall that n is the number of variables in φ.)

We are now ready to present our results. The first one is a stronger version of Corollary 9.

Corollary 20 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum social welfare obtained by a Nash equilibrium, even in symmet-
ric 2-player games. (Even if the ratio is allowed to be a function of the size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that 2ε < r(2n − 2) (here, r is the approximation ratio
that the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100,
there exists an equilibrium with social welfare 2n−2, and thus the approximation algorithm should
return a social welfare of at least r(2n−2) > 2ε. Otherwise, by Theorem 100, the only equilibrium
has social welfare 2ε, and thus the approximation algorithm should return a social welfare of at most
2ε. Thus we can use the algorithm to solve arbitrary SAT instances.

The next result is a stronger version of Corollary 10.

Corollary 21 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum egalitarian social welfare (minimum utility) obtained by a Nash
equilibrium, even in symmetric 2-player games. (Even if the ratio is allowed to be a function of the
size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that ε < r(n− 1) (here, r is the approximation ratio that
the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100, there
exists an equilibrium with egalitarian social welfare n − 1, and thus the approximation algorithm
should return an egalitarian social welfare of at least r(n − 1) > ε. Otherwise, by Theorem 100,
the only equilibrium has egalitarian social welfare ε, and thus the approximation algorithm should
return an egalitarian social welfare of at most ε. Thus we can use the algorithm to solve arbitrary
SAT instances.

The next result is a stronger version of Corollary 12.

Corollary 22 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum utility for player 1 obtained by a Nash equilibrium, even in
symmetric 2-player games. (Even if the ratio is allowed to be a function of the size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that ε < r(n − 1) (here, r is the approximation ratio
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that the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100,
there exists an equilibrium with a utility of n−1 for player 1, and thus the approximation algorithm
should return a utility of at least r(n − 1) > ε. Otherwise, by Theorem 100, the only equilibrium
has a utility of ε for player 1, and thus the approximation algorithm should return a utility of at most
ε. Thus we can use the algorithm to solve arbitrary SAT instances.

The next result is a stronger version of Corollary 16.

Corollary 23 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number of pure strategies in player 1’s support in a Nash equi-
librium, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in player 1’s support, and thus the algorithm can return a maximum support size of at most
1. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where player 1’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 1. Thus we can use the algorithm to solve arbitrary SAT instances (given
that the instances are large enough to produce large enough |Σ|).

The next result is a stronger version of Corollary 17.

Corollary 24 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number of pure strategies in the players’ strategies’ supports in
a Nash equilibrium, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in each player’s support, and thus the algorithm can return a number of strategies of at most
2. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where each player’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 2. Thus we can use the algorithm to solve arbitrary SAT instances(given
that the instances are large enough to produce large enough |Σ|).

The next result is a stronger version of Corollary 18.

Corollary 25 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number, in a Nash equilibrium, of pure strategies in the support
of the player that uses fewer pure strategies than the other, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in each player’s support, and thus the algorithm can return a number of strategies of at most
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1. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where each player’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 1. Thus we can use the algorithm to solve arbitrary SAT instances(given
that the instances are large enough to produce large enough |Σ|).

9.2.3 Counting the number of equilibria in normal-form games

Existence questions do not tell the whole story. In general, we are interested in characterizing all
the equilibria of a game. One rather weak such characterization is the number of equilibria11. We
can use Theorem 100 to show that even determining this number in a given normal-form game is
hard.

Corollary 26 Even in symmetric 2-player games, counting the number of Nash equilibria is #P-
hard.

Proof: The number of Nash equilibria in our game Gε(φ) is the number of satisfying assignments
to the variables of φ, plus one. Counting the number of satisfying assignments to a CNF formula is
#P-hard [Valiant, 1979].

It is easy to construct games where there is a continuum of Nash equilibria. In such games, it is
more meaningful to ask how many distinct continuums of equilibria there are. More formally, one
can ask how many maximal connected sets of equilibria a game has (a maximal connected set is a
connected set which is not a proper subset of a connected set).

Corollary 27 Even in symmetric 2-player games, counting the number of maximal connected sets
of Nash equilibria is #P-hard.

Proof: Every Nash equilibrium in Gε(φ) constitutes a maximal connected set by itself, so the
number of maximal connected sets is the number of satisfying assignments to the variables of φ,
plus one.

The most interesting #P-hardness results are the ones where the corresponding existence and
search questions are easy, such as counting the number of perfect bipartite matchings. In the case of
Nash equilibria, the existence question is trivial: it has been analytically shown (by Kakutani’s fixed
point theorem) that a Nash equilibrium always exists [Nash, 1950]. The complexity of the search
question remains open.

9.2.4 Pure-strategy Bayes-Nash equilibria

Equilibria in pure strategies are particularly desirable because they avoid the uncomfortable re-
quirement that players randomize over strategies among which they are indifferent [Fudenberg and

11The number of equilibria in normal-form games has been studied both in the worst case [McLennan and Park, 1999]
and in the average case [McLennan, 1999].
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Tirole, 1991]. In normal-form games with small numbers of players, it is easy to determine the ex-
istence of pure-strategy equilibria: one can simply check, for each combination of pure strategies,
whether it constitutes a Nash equilibrium.12 However, this is not feasible in Bayesian games, where
the players have private information about their own preferences (represented by types). Here, play-
ers may condition their actions on their types, so the strategy space of each player is exponential in
the number of types.

In this subsection, we show that the question of whether a pure-strategy Bayes-Nash equilibrium
exists is in fact NP-hard even in symmetric two-player games.

We study the following computational problem.

Definition 56 (PURE-STRATEGY-BNE) We are given a Bayesian game. We are asked whether
there exists a Bayes-Nash equilibrium (BNE) where all the strategies σi,θi are pure.

To show our NP-hardness result, we will reduce from the SET-COVER problem.

Definition 57 (SET-COVER) We are given a set S = {s1, . . . , sn}, subsets S1, S2, . . . , Sm of S
with

⋃

1≤i≤m Si = S, and an integer k. We are asked whether there exist Sc1 , Sc2 , . . . , Sck
such

that
⋃

1≤i≤k Sci = S.

Theorem 101 PURE-STRATEGY-BNE is NP-complete, even in symmetric 2-player games where
the priors over types are uniform.

Proof: To show membership in NP, we observe that we can nondeterministically choose a pure
strategy for each type for each player, and verify whether these constitute a BNE.

To show NP-hardness, we reduce an arbitrary SET-COVER instance to the following PURE-
STRATEGY-BNE instance. Let there be two players, with Θ ≡ Θ1 = Θ2 = {θ1, . . . , θk}. The
priors over types are uniform. Furthermore, Σ ≡ Σ1 = Σ2 = {S1, S2, . . . , Sm, s1, s2, . . . , sn}.
The utility functions we choose in fact do not depend on the types, so we omit the type argument in
their definitions. They are as follows:

• u1(Si, Sj) = u2(Sj , Si) = 1 for all Si and Sj ;

• u1(Si, sj) = u2(sj , Si) = 1 for all Si and sj /∈ Si;

• u1(Si, sj) = u2(sj , Si) = 2 for all Si and sj ∈ Si;

• u1(si, sj) = u2(sj , si) = −3k for all si and sj ;

• u1(sj , Si) = u2(Si, sj) = 3 for all Si and sj /∈ Si;

• u1(sj , Si) = u2(Si, sj) = −3k for all Si and sj ∈ Si.

12Computing pure-strategy Nash equilibria for more concise representations of normal-form games has been system-
atically studied [Gottlob et al., 2003; Schoenebeck and Vadhan, 2006].
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We now show the two instances are equivalent. First suppose there exist
Sc1 , Sc2 , . . . , Sck

such that
⋃

1≤i≤k Sci = S. Suppose both players play as follows: when their type
is θi, they play Sci . We claim that this is a BNE. For suppose the other player employs this strategy.
Then, because for any sj , there is at least one Sci such that sj ∈ Sci , we have that the expected
utility of playing sj is at most 1

k (−3k) + k−1
k 3 < 0. It follows that playing any of the Sj (which

gives utility 1) is optimal. So there is a pure-strategy BNE.
On the other hand, suppose that there is a pure-strategy BNE. We first observe that in no pure-

strategy BNE, both players play some element of S for some type: for if the other player sometimes
plays some sj , the utility of playing some si is at most 1

k (−3k) + k−1
k 3 < 0, whereas playing

some Si instead guarantees a utility of at least 1. So there is at least one player who never plays
any element of S. Now suppose the other player sometimes plays some sj . We know there is
some Si such that sj ∈ Si. If the former player plays this Si, this will give it a utility of at least
1
k2+ k−1

k 1 = 1+ 1
k . Since it must do at least this well in the equilibrium, and it never plays elements

of S, it must sometimes receive utility 2. It follows that there exist Sa and sb ∈ Sa such that the
former player sometimes plays Sa and the latter sometimes plays sb. But then, playing sb gives the
latter player a utility of at most 1

k (−3k) + k−1
k 3 < 0, and it would be better off playing some Si

instead. (Contradiction.) It follows that in no pure-strategy BNE, any element of S is ever played.
Now, in our given pure-strategy equilibrium, consider the set of all the Si that are played by

player 1 for some type. Clearly there can be at most k such sets. We claim they cover S. For if they
do not cover some element sj , the expected utility of playing sj for player 2 is 3 (because player
1 never plays any element of S). But this means that player 2 (who never plays any element of S
either) is not playing optimally. (Contradiction.) Hence, there exists a set cover.

If one allows for general mixed strategies, a Bayes-Nash equilibrium always exists [Fudenberg
and Tirole, 1991]. Computing a single mixed-strategy Bayes-Nash equilibrium is of course at least
as hard as computing a single mixed-strategy Nash equilibrium in a normal-form game (since that
is the special case where each agent has a single type).

This concludes the part of this dissertation studying the complexity of computing Nash equi-
libria. The next section introduces a parameterized strategy eliminability criterion that generalizes
both dominance and Nash equilibrium, and studies how hard it is to apply computationally.

9.3 A generalized eliminability criterion

The concept of (iterated) dominance is often too strong for the purpose of solving games: it cannot
eliminate enough strategies. But, if possible, we would like a stronger argument for eliminating
a strategy than (mixed-strategy) Nash equilibrium. Similarly, in mechanism design (where one
gets to create the game), implementation in dominant strategies is often excessively restrictive,
but implementation in (Bayes-)Nash equilibrium may not be sufficiently strong for the designer’s
purposes. Hence, it is desirable to have eliminability criteria that are between these concepts in
strength. In this section, we will introduce such a criterion. This criterion considers whether a given
strategy is eliminable relative to given dominator & eliminee subsets of the players’ strategies. The
criterion spans an entire spectrum of strength between Nash equilibrium and strict dominance (in
terms of which strategies it can eliminate), and in the extremes can be made to coincide with either
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of these two concepts, depending on how the dominator & eliminee sets are set. It can also be used
for iterated elimination of strategies. We will also study the computational complexity of applying
the new eliminability criterion, and provide a mixed integer programming approach for it.

One of the benefits of the new criterion is that when a strategy cannot be eliminated by domi-
nance (but it can be eliminated by the Nash equilibrium concept), the new criterion may provide a
stronger argument than Nash equilibrium for eliminating the strategy, by using dominator & elimi-
nee sets smaller than the entire strategy set. To get the strongest possible argument for eliminating
a strategy, the dominator & eliminee sets should be chosen to be as small as possible while still
having the strategy be eliminable relative to these sets.13 Iterated elimination of strategies using the
new criterion is also possible, and again, to get the strongest possible argument for eliminating a
strategy, the sequence of eliminations leading up to it should use dominator & eliminee sets that are
as small as possible.14

As another benefit, the algorithm that we provide for checking whether a strategy is eliminable
according to the new criterion can also be used as a subroutine in the computation of Nash equi-
libria. Specifically, any strategy that is eliminable (even using iterated elimination) according to
the criterion is guaranteed not to occur in any Nash equilibrium. Current state-of-the-art algorithms
for computing Nash equilibria already use a subroutine that eliminates (conditionally) dominated
strategies [Porter et al., 2004]. Because the new criterion can eliminate more strategies than dom-
inance, the algorithm we provide may speed up the computation of Nash equilibria. (For purposes
of speed, it is probably desirable to only apply special cases of the criterion that can be computed
fast—in particular, as we will show, eliminability according to the criterion can be computed fast
when the eliminee sets are small. Even these special cases are more powerful than dominance.)

Throughout, we focus on two-player games only. The eliminability criterion itself can be gener-
alized to more players, but the computational tools we introduce do not straightforwardly generalize
to more players. Moreover, we restrict attenton to normal-form games only.

9.3.1 A motivating example

Because the definition of the new eliminability criterion is complex, we will first illustrate it with
an example. Consider the following (partially specified) game.

σ1
c σ2

c σ3
c σ4

c

σ1
r ?, ? ?, 2 ?, 0 ?, 0

σ2
r 2, ? 2, 2 2, 0 2, 0

σ3
r 0, ? 0, 2 3, 0 0, 3

σ4
r 0, ? 0, 2 0, 3 3, 0

13There may be multiple minimal vectors of dominator & eliminee sets relative to which the strategy is eliminable;
in this dissertation, we will not attempt to settle which of these minimal vectors, if any, constitutes the most powerful
argument for eliminating the strategy.

14Here, there may also be a tradeoff with the length of the elimination path. For example, there may be a path of several
eliminations using dominator & eliminee sets that are small, as well as a single elimination using dominator & eliminee
sets that are large, both of which eliminate a given strategy. (In fact, we will always be confronted with this situation,
as Corollary 30 will show.) Again, in this dissertation, we will not attempt to settle which argument for eliminating the
strategy is stronger.
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A quick look at this game reveals that strategies σ3
r and σ4

r are both almost dominated by σ2
r—

but they perform better than σ2
r against σ3

c and σ4
c , respectively. Similarly, strategies σ3

c and σ4
c are

both almost dominated by σ2
c —but they perform better than σ2

c against σ4
r and σ3

c , respectively. So
we are unable to eliminate any strategies using (even weak) dominance.

Now consider the following reasoning. In order for it to be worthwhile for the row player to
ever play σ3

r rather than σ2
r , the column player should play σ3

c at least 2
3 of the time. (If it is exactly

2
3 , then switching from σ2

r to σ3
r will cost the row player 2 exactly 1

3 of the time, but the row player
will gain 1 exactly 2

3 of the time, so the expected benefit is 0.) But, similarly, in order for it to be
worthwhile for the column player to ever play σ3

c , the row player should play σ4
r at least 2

3 of the
time. But again, in order for it to be worthwhile for the row player to ever play σ4

r , the column
player should play σ4

c at least 2
3 of the time. Thus, if both the row and the column player accurately

assess the probabilities that the other places on these strategies, and their strategies are rational with
respect to these assessments (as would be the case in a Nash equilibrium), then, if the row player
puts positive probability on σ3

r , by the previous reasoning, the column player should be playing σ3
c

at least 2
3 of the time, and σ4

c at least 2
3 of the time. Of course, this is impossible; so, in a sense, the

row player should not play σ3
r .

It may appear that all we have shown is that σ3
r is not played in any Nash equilibrium. But, to

some extent, our argument for not playing σ3
r did not make use of the full elimination power of the

Nash equilibrium concept. Most notably, we only reasoned about a small part of the game: we never
mentioned strategies σ1

r and σ1
c , and we did not even specify most of the utilities for these strategies.

(It is easy to extend this example so that the argument only uses an arbitrarily small fraction of the
strategies and of the utilities in the matrix, for instance by adding many copies of σ1

r and σ1
c .) The

locality of the reasoning that we did is more akin to the notion of dominance, which is perhaps the
extreme case of local reasoning about eliminability—only two strategies are mentioned in it. So, in
this sense, the argument for eliminating σ3

r is somewhere between dominance and Nash equilibrium
in strength.

9.3.2 Definition of the eliminability criterion

We are now ready to give the formal definition of the generalized eliminability criterion. To make
the definition a bit simpler, we define its negation—when a strategy is not eliminable relative to
certain sets of strategies. Also, we only define when one of the row player’s strategies is eliminable,
but of course the definition is analogous for the column player.

The definition, which considers when a strategy e∗r is eliminable relative to subsets Dr, Er of
the row player’s pure strategies (with e∗r ∈ Er) and subsets Dc, Ec of the column player’s pure
strategies, can be stated informally as follows. To protect e∗r from elimination, we should be able to
specify the probabilities that the players’ mixed strategies place on the Ei sets in such a way that 1)
e∗r receives nonzero probability, and 2) for every pure strategy ei that receives nonzero probability,
for every mixed strategy di using only strategies in Di, it is conceivable that player −i’s mixed
strategy15 is completed so that ei is no worse than di.16 The formal definition follows.

15As is common in the game theory literature, −i denotes “the player other than i.”
16This description may sound similar to the concept of rationalizability. However, in two-player games (the subject of

this section), rationalizability is known to coincide with iterated strict dominance [Pearce, 1984].
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Definition 58 Given a two-player game in normal form, subsets Dr, Er of the row player’s pure
strategies Σr, subsets Dc, Ec of the column player’s pure strategies Σc, and a distinguished strategy
e∗r ∈ Er, we say that e∗r is not eliminable relative to Dr, Er, Dc, Ec, if there exist functions (partial
mixed strategies) pr : Er → [0, 1] and pc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑

er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both i ∈ {r, c}, for any ei ∈ Ei with

pi(ei) > 0, for any mixed strategy di placing positive probability only on strategies in Di, there is
some pure strategy σ−i ∈ Σ−i − E−i such that (letting p−i ¦ σ−i denote the mixed strategy that
results from placing the remaining probability 1 −

∑

e−i∈E−i

p−i(e−i) that is not used by the partial

mixed strategy p−i on σ−i), we have: ui(ei, p−i ¦ σ−i) ≥ ui(di, p−i ¦ σ−i). (If p−i already uses up
all the probability, we simply have ui(ei, p−i) ≥ ui(di, p−i)—no σ−i needs to be chosen.)17

In the example from the previous subsubsection, we can set Dr = {σ2
r}, Dc = {σ2

c}, Er =
{σ3

r , σ
4
r}, Ec = {σ3

c , σ
4
c}, and e∗r = σ3

r . Then, by the reasoning that we did, it is impossible to set
pr and pc so that the conditions are satisfied, and hence σ3

r is eliminable relative to these sets.

9.3.3 The spectrum of strength

In this subsection we show that the generalized eliminability criterion we defined in in the pre-
vious subsection spans a spectrum of strength all the way from Nash equilibrium (when the sets
Dr, Er, Dc, Ec are chosen as large as possible), to strict dominance (when the sets are chosen as
small as possible). First, we show that the criterion is monotonically increasing, in the sense that
the larger we make the sets Dr, Er, Dc, Ec, the more strategies are eliminable.

Proposition 12 If e∗r is eliminable relative to D1
r , E

1
r , D1

c , E
1
c , and D1

r ⊆ D2
r , E

1
r ⊆ E2

r , D1
c ⊆

D2
c , E

1
c ⊆ E2

c , then e∗r is eliminable relative to D2
r , E

2
r , D2

c , E
2
c .

Proof: We will prove this by showing that if e∗r is not eliminable relative to D2
r , E

2
r , D2

c , E
2
c , then

e∗r is not eliminable relative to D1
r , E

1
r , D1

c , E
1
c . It is straightforward that making the Di sets smaller

only weakens the condition on strategies ei with pi(ei) > 0 in Definition 58. Hence, if e∗r is not
eliminable relative to D2

r , E
2
r , D2

c , E
2
c , then e∗r is not eliminable relative to D1

r , E
2
r , D1

c , E
2
c . All

that remains to show is that making the Ei sets smaller will not make e∗r eliminable. To show
this, we first observe that, if in its last step Definition 58 allowed for distributing the remaining
probability arbitrarily over the strategies in Σ−i − E−i (rather than requiring a single one of these
strategies to receive all the remaining probability), this would not change the definition, because we
might as well place all the remaining probability on the strategy σ−i ∈ Σ−i − E−i that maximizes
ui(ei, σ−i)− ui(di, σ−i). Now, let pr and pc be partial mixed strategies over E2

r and E2
c that prove

that e∗r is not eliminable relative to D1
r , E

2
r , D1

c , E
2
c . Then, to show that e∗r is not eliminable relative

to D1
r , E

1
r , D1

c , E
1
c , use the partial mixed strategies p′r and p′c, which are simply the restrictions

of pr and pc to E1
r and E1

c , respectively. For any ei ∈ E1
i with p′i(ei) > 0 and for any mixed

strategy di over D1
i , we know that there exists some σ−i ∈ Σ−i−E2

−i such that ui(ei, p−i ¦σ−i) ≥
ui(di, p−i ¦ σ−i) (because the pi prove that e∗r is not eliminable relative to D1

r , E
2
r , D1

c , E
2
c ). But,

17We need to make this case explicit for the case E−i = Σ−i.
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the distribution p−i ¦ σ−i is a legitimate completion of the partial mixed strategy p′−i as well (albeit
one that distributes the remaining probability over multiple strategies), and hence the p′

i prove that
e∗r is not eliminable relative to D1

r , E
1
r , D1

c , E
1
c .

Next, we show that the Nash equilibrium concept is weaker18 than our generalized eliminabil-
ity criterion—in the sense that the generalized criterion can never eliminate a strategy that is in
some Nash equilibrium. So, if a strategy can be eliminated by the generalized criterion, it can be
eliminated by the Nash equilibrium concept.

Proposition 13 If there is some Nash equilibrium that places positive probability on pure strategy
σ∗

r , then σ∗
r is not eliminable relative to any Dr, Er, Dc, Ec.

Proof: Let σ′
r be the row player’s (mixed) strategy in the Nash equilibrium (which places positive

probability on σ∗
r ), and let σ′

c be the column player’s (mixed) strategy in the Nash equilibrium. For
any Dr, Er, Dc, Ec with σ∗

r ∈ Er, to prove that σ∗
r is not eliminable relative to these sets, simply

let pr coincide with σ′
r on Er—that is, let pr be the probabilities that the row player places on

the strategies in Er in the equilibrium. (Thus, pr(σ
∗
r ) > 0). Similarly, let pc coincide with σ′

c on
Ec. We will prove that the condition on strategies with positive probability is satisfied for the row
player; the case of the column player follows by symmetry. For any er ∈ Er with pr(er) > 0, for
any mixed strategy dr, we have ur(er, σ

′
c) − ur(dr, σ

′
c) ≥ 0, by the Nash equilibrium condition.

Now, let pure strategy σc ∈ arg maxσ∈Σc−Ec(ur(er, pc ¦ σ)− ur(dr, pc ¦ σ)). Then we must have
ur(er, pc ¦ σc)− ur(dr, pc ¦ σc) ≥ ur(er, σ

′
c)− ur(dr, σ

′
c) ≥ 0 (because pc ¦ σc and σ′

c coincide on
Ec, and for the former, the remainder of the distribution is chosen to maximize this expression). It
follows that σ∗

r is not eliminable relative to any Dr, Er, Dc, Ec.

We next show that by choosing the sets Dr, Er, Dc, Ec as large as possible, we can make the
generalized eliminability criterion coincide with the Nash equilibrium concept.19

Proposition 14 Let Dr = Er = Σr and Dc = Ec = Σc. Then e∗r is eliminable relative to these
sets if and only if there is no Nash equilibrium that places positive probability on e∗r .

Proof: The “only if” direction follows from Proposition 13. For the “if” direction, suppose e∗r is not
eliminable relative to Dr = Er = Σr and Dc = Ec = Σc. The partial distributions pr and pc with
pr(e

∗
r) > 0 that show that e∗r is not eliminable must use up all the probability (the probabilities must

sum to one), because there are no strategies outside Ec = Σc and Er = Σr to place any remaining
probability on. Hence, we must have, for any strategy er ∈ Er = Σr with pr(er) > 0, that for
any mixed strategy dr, ur(er, pc) ≥ ur(dr, pc) (and the same for the column player). But these are
precisely the conditions for pr and pc to constitute a Nash equilibrium. It follows that there is a

18When discussing elimination of strategies, it is tempting to say that the stronger criterion is the one that can eliminate
more strategies. However, when discussing solution concepts, the convention is that the stronger concept is the one that
implies the other. Therefore, the criterion that can eliminate fewer strategies is actually the stronger one. For example,
strict dominance is stronger than weak dominance, even though weak dominance can eliminate more strategies.

19Unlike Nash equilibrium, the generalized eliminability criterion does not discuss what probabilities should be placed
on strategies that are not eliminated, so it only “coincides” with Nash equilibrium in terms of what it can eliminate.
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Nash equilibrium with positive probability on e∗r .

Moving to the other side of the spectrum, we now show that the concept of strict dominance is
stronger than the generalized eliminability criterion—in the sense that the generalized eliminability
criterion can always eliminate a strictly dominated strategy (as long as the dominating strategy is in
Dr).

Proposition 15 If pure strategy σ∗
r is strictly dominated by some mixed strategy dr, then σ∗

r is
eliminable relative to any Dr, Er, Dc, Ec such that 1) σ∗

r ∈ Er, and 2) all the pure strategies on
which dr places positive probability are in Dr.

Proof: To show that σ∗
r is not eliminable relative to these sets, we must set pr(σ

∗
r ) > 0, and thus we

must demonstrate that for some pure strategy σc ∈ Σc−Ec, ur(σ
∗
r , pc ¦σc) ≥ ur(dr, pc ¦σc) (or, if

all the probability is used up, ur(σ
∗
r , pc) ≥ ur(dr, pc)), because dr only places positive probability

on strategies in Dr. But this is impossible, because by strict dominance, ur(σ
∗
r , σc) < ur(dr, σc)

for any mixed strategy σc.

Finally, we show that by choosing the sets Er, Ec as small as possible, we can make the gener-
alized eliminability criterion coincide with the strict dominance concept.

Proposition 16 Let Ec = {} and Er = {er}. Then er is eliminable relative to Dr, Er, Dc, Ec if
and only if it is strictly dominated by some mixed strategy that places positive probability only on
elements of Dr.

Proof: The “if” direction follows from Proposition 15. For the “only if” direction, suppose that
er is eliminable relative to these sets. That means that there exists a mixed strategy dr that places
positive probability only on strategies in Dr such that for any pure strategy σc ∈ Σc − Ec = Σc,
u(er, σc) < u(dr, σc) (because Ec = {} and Er = {er}, this is the only way in which an attempt
to prove that er is not eliminable could fail). But this is precisely the condition for dr to strictly
dominate er.

We are now ready to turn to computational aspects of the new eliminability criterion.

9.3.4 Applying the new eliminability criterion can be computationally hard

In this subsection, we demonstrate that applying the eliminability criterion can be computationally
hard, in the sense of worst-case complexity.20 We show that applying the eliminability criterion is
coNP-complete in two key special cases (subclasses of the problem). The first case is the one in
which the Dr, Er, Dc, Ec sets are set to be as large as possible. Here, the hardness follows directly
from Proposition 14 and a result from Section 9.2.

Theorem 102 Deciding whether a given strategy is eliminable relative to Dr = Er = Σr and
Dc = Ec = Σc is coNP-complete, even when the game is symmetric.

20Because we only show hardness in the worst case, it is possible that many (or even most) instances are in fact easy
to solve.
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Proof: By Proposition 14, this is the converse of asking whether there exists a Nash equilibrium
with positive probability on the given strategy. As we saw in Section 9.2, this is NP-complete.

While this shows that the eliminability criterion is, in general, computationally hard to apply, we
may wonder if there are special cases in which it is computationally easy to apply. Natural special
cases to look at include those in which some of the sets Dr, Er, Dc, Ec are small. The next theorem
shows that applying the eliminability criterion remains coNP-complete even when |Dr| = |Dc| = 1.

Theorem 103 Deciding whether a given strategy is eliminable relative to given Dr, Er, Dc, Ec is
coNP-complete, even when |Dr| = |Dc| = 1.

Proof: We will show later (Corollary 28) that the problem is in coNP. To show that the problem
is coNP-hard, we reduce an arbitrary KNAPSACK instance (given by m cost-value pairs (ci, vi), a
cost constraint C and a value target V ; we assume without loss of generality that C = 1 − ε, for
some ε small enough that it is impossible for a subset of the ci to sum to a value strictly between C

and 1,21 that ci > 0 for all i, and that
m
∑

i=1
vi ≤ 1) to the following eliminability question. Let the

game be as follows. The row player has m+2 distinct pure strategies: e1
r , e

2
r , . . . , e

m
r , e∗r , dr (where

Er = {e1
r , e

2
r , . . . , e

m
r , e∗r} and Dr = {dr}). The column player has m + 1 distinct pure strategies:

e1
c , e

2
c , . . . , e

m
c , dc (where Ec = {e1

c , e
2
c , . . . , e

m
c } and Dc = {dc}). Let the utilities be as follows:

• ur(e
i
r, e

j
c) = 1 for all i 6= j;

• ur(e
i
r, e

i
c) = 1− 1

vi
for all i;

• ur(e
i
r, dc) = 1 for all i;

• ur(e
∗
r , e

i
c) = 1

V − 1 for all i;

• ur(e
∗
r , dc) = −1;

• ur(dr, e
i
c) = 0 for all i;

• ur(dr, dc) = 0;

• uc(e
i
r, e

j
c) = 0 for all i 6= j;

• uc(e
i
r, e

i
c) = 1

ci
for all i;

• uc(e
i
r, dc) = 1 for all i;

• uc(e
∗
r , e

i
c) = 0 for all i;

• uc(e
∗
r , dc) = 1;

• uc(dr, e
i
c) = 0 for all i;

21Because we may assume that the ci and C are all integers divided by some number K, it is sufficient if ε < 1

K
.
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• uc(dr, dc) = 1.

Thus, the matrix is as follows:

e1
c e2

c · · · em
c dc

e1
r 1− 1

v1
, 1

c1
1, 0 · · · 1, 0 1, 1

e2
r 1, 0 1− 1

v2
, 1

c2
· · · 1, 0 1, 1

...
em
r 1, 0 1, 0 · · · 1− 1

vm
, 1

cm
1, 1

e∗r
1
V − 1, 0 1

V − 1, 0 · · · 1
V − 1, 0 −1, 1

dr 0, 0 0, 0 · · · 0, 0 0, 1

We now show that e∗r is eliminable relative to Dr, Er, Dc, Ec if and only if there is no solution
to the KNAPSACK instance.

First suppose there is a solution to the KNAPSACK instance. Then, for every i such that (ci, vi)
is included in the KNAPSACK solution, let pr(e

i
r) = ci; for every i such that (ci, vi) is not included

in the KNAPSACK solution, let pr(e
i
r) = 0. Also, let pr(e

∗
r) = 1 −

m
∑

i=1
pr(e

i
r). (We note that

m
∑

i=1
pr(e

i
r) ≤ C = 1 − ε, so that pr(e

∗
r) ≥ ε > 0.) Also, for every i such that (ci, vi) is included

in the KNAPSACK solution, let pc(e
i
c) = vi. We now show that pr and pc satisfy the conditions

of Definition 58. If the column player places the remaining probability on dc, then the utility for
the row player of playing any ei

r with pr(e
i
r) > 0 is 1 − vi

vi
= 0; the utility of playing e∗r is

−1 + 1
V

m
∑

i=1
pc(e

i
c) ≥ −1 + V

V = 0; and the utility of playing dr is also 0. Thus, the condition

is satisfied for all elements of Er that have positive probability. As for Ec, we note that all of the
row player’s probability has already been used up. The utility of playing any ei

c with pc(e
i
c) > 0 is

ci
ci

= 1, whereas the utility for playing dc is also 1. Thus, the condition is satisfied for all elements
of Ec that have positive probability. It follows that pr and pc satisfy the conditions of Definition 58
and e∗r is not eliminable relative to Dr, Er, Dc, Ec.

Now suppose that e∗r is not eliminable relative to Dr, Er, Dc, Ec. Let pr and pc be partial mixed
strategies on Er and Ec satisfying the conditions of Definition 58. We must have that pr(e

∗
r) > 0.

The utility for the row player of playing e∗r is−1+ 1
V

m
∑

i=1
pc(e

i
c), which must be at least 0 (the utility

of playing dr); hence
m
∑

i=1
pc(e

i
c) ≥ V . The utility for the column player of playing ei

c is pr(ei
r)

ci
,

which must be at least 1 (the utility of playing dc) if pc(e
i
c) > 0; hence pr(e

i
r) ≥ ci if pc(e

i
c) > 0.

Finally, the utility for the row player of playing ei
r is 1− pc(ei

c)
vi

, which must be at least 0 (the utility of
playing dr) if pr(e

i
r) > 0; hence pc(e

i
c) ≤ vi if pr(e

i
r) > 0. Because we must have pr(e

i
r) ≥ ci > 0

if pc(e
i
c) > 0, it follows that we must always have pc(e

i
c) ≤ vi. Let S = {i : pc(e

i
c) > 0}. We must

have
∑

i∈S

vi ≥
∑

i∈S

pc(e
i
c) ≥ V . Also, we must have

∑

i∈S

ci ≤
∑

i∈S

pr(e
i
r) < 1 (because we must have

pr(e
∗
r) > 0). Because it is impossible that C <

∑

i∈S

ci < 1, it follows that
∑

i∈S

ci ≤ C. But then, S

is a solution to the KNAPSACK instance.
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However, we will show later that the eliminability criterion can be applied in polynomial time
if the Ei sets are small (regardless of the size of the Di sets). To do so, we first need to introduce an
alternative version of the definition.

9.3.5 An alternative, equivalent definition of the eliminability criterion

In this subsection, we will give an alternative definition of eliminability, and we will show it is
equivalent to the one presented in Definition 58. While the alternative definition is slightly less
intuitve than the original one, it is easier to work with computationally, as we will show in the next
subsection. Informally, the alternative definition differs from the original one as follows: in the
alternative definition, the completion of player −i’s mixed strategy has to be chosen before player
i’s strategy di is chosen (but after player i’s strategy ei with pi(ei) > 0 is chosen). The formal
definition follows.

Definition 59 Given a two-player game in normal form, subsets Dr, Er of the row player’s pure
strategies Σr, subsets Dc, Ec of the column player’s pure strategies Σc, and a distinguished strategy
e∗r ∈ Er, we say that e∗r is not eliminable relative to Dr, Er, Dc, Ec, if there exist functions (partial
mixed strategies) pr : Er → [0, 1] and pc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑

er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both i ∈ {r, c}, for any ei ∈ Ei with

pi(ei) > 0, there exists some completion of the probability distribution over −i’s strategies, given
by pei

−i : Σ−i → [0, 1] (with pei
−i(e−i) = p−i(e−i) for all e−i ∈ E−i, and

∑

σ−i∈Σ−i

pei
−i(σ−i) = 1),

such that for any pure strategy di ∈ Di, we have ui(ei, p
ei
−i) ≥ ui(di, p

ei
−i).

We now show that the two definitions are equivalent.

Theorem 104 The notions of eliminability put forward in Definitions 58 and 59 are equivalent.
That is, e∗r is eliminable relative to Dr, Er, Dc, Ec according to Definition 58 if and only if e∗r is
eliminable relative to (the same) Dr, Er, Dc, Ec according to Definition 59.

Proof: The definitions are identical up to the condition that each strategy with positive probability
(each er ∈ Er with pr(er) > 0 and each ec ∈ Ec with pc(ec) > 0) must satisfy. We will show that
these conditions are equivalent across the two definitions, thereby showing that the definitions are
equivalent.

To show that the conditions are equivalent, we introduce another, zero-sum game that is a func-
tion of the original game, the sets Dr, Er, Dc, Ec, the chosen partial probability distributions pr and
pc, and the strategy ei for which we are checking whether the conditions are satisfied. (Without loss
of generality, assume that we are checking it for some strategy er ∈ Er with pr(er) > 0.)

The zero-sum game has two players, 1 and 2 (not to be confused with the row and column
players of the original game). Player 1 chooses some dr ∈ Dr, and player 2 chooses some σc ∈
Σc − Ec. The utility to player 1 is ur(dr, pc ¦ σc) − ur(er, pc ¦ σc) (and the utility to player 2 is
the negative of this). (We assume without loss of generality that pc does not already use up all the
probability, because in this case the conditions are trivially equivalent across the two definitions.)
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First, suppose that player 1 must declare her probability distribution (mixed strategy) over Dr

first, after which player 2 best-responds. Then, letting ∆(X) denote the set of probability distribu-
tions over set X , player 1 will receive maxδr∈∆(Dr) minσc∈Σc−Ec

∑

dr∈Dr

δr(dr)(ur(dr, pc ¦ σc) −

ur(er, pc ¦ σc)) = maxδr∈∆(Dr) minσc∈Σc−Ec ur(δr, pc ¦ σc)− ur(er, pc ¦ σc). This expression is
at most 0 if and only if the condition in Definition 58 is satisfied.

Second, suppose that player 2 must declare his probability distribution (mixed strategy) over
Σc − Ec first, after which player 1 best-responds. Then, player 1 will receive minδc∈∆(Σc−Ec)

maxdr∈Dr

∑

σc∈Σc−Ec

δc(σc)(ur(dr, pc ¦ σc)− ur(er, pc ¦ σc)) = minδc∈∆(Σc−Ec) maxdr∈Dr

∑

ec∈Ec

pc(ec)(ur(dr, ec)−ur(er, ec))+
∑

σc∈Σc−Ec

(1−
∑

ec∈Ec

pc(ec))δc(σc)(ur(dr, σc)−ur(er, σc)) =

minδc∈∆(Σc−Ec) maxdr∈Dr ur(dr, pc ¦ δc)−ur(er, pc ¦ δc). This expression is at most 0 if and only
if the condition in Definition 59 is satisfied.

However, by the Minimax Theorem [von Neumann, 1927], the two expressions must have the
same value, and hence the two conditions are equivalent.

Informally, the reason that Definition 59 is easier to work with computationally is that all of the
continuous variables (the values of the functions pr, pc, p

er
c , pec

r ) are set by the party that is trying to
prove that the strategy is not eliminable; whereas in Definition 58, some of the continuous variables
(the probabilities defining the mixed strategies dr, dc) are set by the party trying to refute the proof
that the strategy is not eliminable. This will become more precise in the next subsection.

9.3.6 A mixed integer programming approach

In this subsection, we show how to translate Definition 59 into a mixed integer program that deter-
mines whether a given strategy e∗r is eliminable relative to given sets Dr, Er, Dc, Ec. The variables
in the program, which are all restricted to be nonnegative, are the pi(ei) for all ei ∈ Ei; the p

e−i

i (σi)
for all e−i ∈ E−i and all σi ∈ Σi − Ei; and binary indicator variables bi(ei) for all ei ∈ Ei which
can be set to zero if and only if pi(ei) = 0. The program is the following:

maximize pr(e
∗
r) subject to

(probability constraints): for both i ∈ {r, c}, for all ei ∈ Ei,
∑

e−i∈E−i

p−i(e−i)+

∑

σ−i∈Σ−i−E−i

pei
−i(σ−i) = 1

(binary constraints): for both i ∈ {r, c}, for all ei ∈ Ei, pi(ei) ≤ bi(ei)

(main constraints): for both i ∈ {r, c}, for all ei ∈ Ei and all di ∈ Di,
∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i)−

ui(di, e−i)) +
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i)− ui(di, σ−i)) ≥ (bi(ei)− 1)Ui

In this program, the constant Ui is the maximum difference between two different utilities that
player i may receive in the game, that is, Ui = maxσr,σ′

r∈Σr,σc,σ′
c∈Σc ui(σr, σc)− ui(σ

′
r, σ

′
c).
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Theorem 105 The mixed integer program has a solution with objective value greater than zero if
and only if e∗r is not eliminable relative to Dr, Er, Dc, Ec.

Proof: For any ei ∈ Ei with pi(ei) > 0, bi(ei) must be 1, and thus the corresponding main con-
straints become: for any di ∈ Di,

∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i)− ui(di, e−i))+

∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i)−ui(di, σ−i)) ≥ 0. These are equivalent to the constraints given

on strategies ei ∈ Ei with pi(ei) > 0 in Definition 59. On the other hand, for any ei ∈ Ei

with pi(ei) = 0, bi(ei) can be set to 0, in which case the constraints become: for any di ∈ Di,
∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i) − ui(di, e−i)) +
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i) − ui(di, σ−i)) ≥

−Ui. Because the probabilities in each of these constraints must sum to one by the probability con-
straints, and Ui is the maximum difference between two different utilities that player i may receive
in the game, these constraints are vacuous. Therefore the main constraints correspond exactly to
those in Definition 59.

We obtain the following corollaries:

Corollary 28 Checking whether a given strategy can be eliminated relative to given Dr, Er, Dc, Ec

is in coNP.

Proof: To see whether the strategy can be protected from elimination, we can nondeterministically
choose the values for the binary variables br(er) and bc(ec). After this, only a linear program
remains to be solved, which can be done in polynomial time [Khachiyan, 1979].

Corollary 29 Using the mixed integer program above, the time required to check whether a given
strategy can be eliminated relative to given Dr, Er, Dc, Ec is exponential only in |Er| + |Ec| (and
not in |Dr|, |Dc|, |Σr|, or |Σc|).

Proof: Any mixed integer program whose only integer variables are binary variables can be solved
in time exponential only in its number of binary variables (for example, by searching over all settings
of its binary variables and solving the remaining linear program in each case). The number of binary
variables in this program is |Er|+ |Ec|.

9.3.7 Iterated elimination

In this subsection, we study what happens when we eliminate strategies iteratively using the new
criterion. The criterion can be iteratively applied by removing an eliminated strategy from the game,
and subsequently checking for new eliminabilities in the game with the strategy removed, etc. (as in
the more elementary, conventional notion of iterated dominance). First, we show that this procedure
is, in a sense, sound.

Theorem 106 Iterated elimination according to the generalized criterion will never remove a strat-
egy that is played with positive probability in some Nash equilibrium of the original game.
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Proof: We will prove this by induction on the elimination round (that is, the number of strategies
eliminated so far). The claim is true for the first round by Proposition 13. Now suppose it is true up
to and including round k; we must show it is true for round k + 1. Suppose that the claim is false
for round k + 1, that is, there exists some game G and some pure strategy σ such that 1) σ is played
with positive probability in some Nash equilibrium of G, and 2) using k elimination rounds, G can
be reduced to Gk+1, in which σ is eliminable. Now consider the game Gk which preceded Gk+1 in
the elimination sequence, that is, the game obtained by undoing the last elimination before Gk+1.
Also, let σ′ be the strategy removed from Gk to obtain Gk+1. Now, in Gk, σ cannot be eliminated
by the induction assumption. However, by Proposition 14, any strategy that is not played with
positive probability in any Nash equilibrium can be eliminated, so it follows that there is some Nash
equilibrium of Gk in which σ is played with positive probability. Moreover, this Nash equilibrium
cannot place positive probability on σ′ (because otherwise, by Proposition 13, we would not be able
to eliminate it). But then, this Nash equilibrium must also be a Nash equilibrium of Gk+1: it does
not place any probability on strategies that are not in Gk+1, and the set of strategies that the players
can switch to in Gk+1 is a subset of those in Gk. Hence, by Proposition 13, we cannot eliminate σ
from Gk+1, and we have achieved the desired contradiction.

Because (the single-round version of) the eliminability criterion extends all the way to Nash
equilibrium by Proposition 14, we get the following corollary.

Corollary 30 Any strategy that can be eliminated using iterated elimination can also be eliminated
in a single round (that is, without iterated application of the criterion).

Proof: By Proposition 14, all strategies that are not played with positive probability in any Nash
equilibrium can be eliminated in a single round; but by Theorem 106, this is the only type of strategy
that iterated elimination can eliminate.

Interestingly, iterated elimination is in a sense incomplete:

Proposition 17 Removing an eliminated strategy from a game sometimes decreases the set of strate-
gies that can be eliminated.

Proof: Consider the following game:

L M R

U 2, 2 0, 1 0, 5
D 1, 0 1, 1 1, 0

The unique Nash equilibrium of this game is (D, M), for the following reasons. In order for it
to be worthwhile for the row player to play U with positive probability, the column player should
play L with probability at least 1/2. But, in order for it to be worthwhile for the column player to
play L with positive probability (rather than M ), the row player should play U with probability at
least 1/2. However, if the row player plays U with probability at least 1/2, then the column player’s
unique best response is to play R. Hence, the row player must play D in any Nash equilibrium, and
the unique best response to D is M .
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Thus, by Proposition 14, all strategies besides D and M can be eliminated. In particular, R can
be eliminated. However, if we remove R from the game, the remaining game is:

L M

U 2, 2 0, 1
D 1, 0 1, 1

In this game, (U, L) is also a Nash equilibrium, and hence U and L can no longer be eliminated,
by Proposition 13.

This example highlights an interesting issue with respect to using this eliminability criterion as
a preprocessing step in the computation of Nash equilibria: it does not suffice to simply throw out
eliminated strategies and compute a Nash equilibrium for the remaining game. Rather, we need to
use the criterion more carefully: if we know that a strategy is eliminable according to the criterion
we can restrict our attention to supports for the player that do not include this strategy.

The example also directly implies that iterated elimination according to the generalized crite-
rion is path-dependent (the choice of which strategy to remove first affects which strategies can/will
be removed later). As we discussed in Section 9.1, the same phenomenon occurs with iterated
weak dominance. There is a sizeable literature on path (in)dependence for various notions of dom-
inance [Gilboa et al., 1990; Borgers, 1993; Osborne and Rubinstein, 1994; Marx and Swinkels,
1997, 2000; Apt, 2004].

In light of these results, it may appear that there is not much reason to do iterated elimination
using the new criterion, because it never increases and sometimes even decreases the set of strate-
gies that we can eliminate. However, we need to keep in mind that Theorem 106, Corollary 30,
and Proposition 17 do not pose any restrictions on the sets Dr, Er, Dc, Ec, and therefore (by Propo-
sitions 13 and 14) are effectively results about iteratively removing strategies based on whether
they are played in a Nash equilibrium. However, the new criterion is more informative and use-
ful when there are restrictions on the sets Dr, Er, Dc, Ec. Of particular interest is the restriction
|Er| + |Ec| ≤ k, because by Corollary 29 this quantity determines the (worst-case) runtime of the
mixed integer programming approach that we presented in the previous subsection. Under this re-
striction, it turns out that iterated elimination can eliminate strategies that single-round elimination
cannot.

Proposition 18 Under a restriction of the form |Er|+ |Ec| ≤ k, iterated elimination can eliminate
strategies that single-round elimination cannot (even when k = 1).

Proof: By Proposition 16, when k = 1 the eliminability criterion coincides with strict dominance
(and hence iterated application of the criterion coincides with iterated strict dominance). So, con-
sider the following game:

L R

U 1, 0 1, 1
D 0, 1 0, 0
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Strict dominance cannot eliminate L, but iterated strict dominance (which can remove D first)
can eliminate L.

Of course, even under this (or any other) restriction iterated elimination remains sound in the
sense of Theorem 106. Therefore, one sensible approach to eliminating strategies is the following.
Iteratively apply the eliminability criterion (with whatever restrictions are desired to increase the
strength of the argument, or are necessary to make it computationally manageable, such as |Er| +
|Ec| ≤ k), removing each eliminated strategy, until the process gets stuck. Then, start again with
the original game, and take a different path of iterated elimination (which may eliminate strategies
that could no longer be eliminated after the first path of elimination, as described in Proposition 17),
until the process gets stuck—etc. In the end, any strategy that was eliminated in any one of the
elimination paths can be considered “eliminated”, and this is safe by Theorem 106.22

Interestingly, here the analogy with iterated weak dominance breaks down. Because there is no
soundness theorem such as Theorem 106 for iterated weak dominance, considering all the strate-
gies that are eliminated in some iterated weak dominance elimination path to be simultaneously
“eliminated” can lead to senseless results. Consider for example the following game:

L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

U can be eliminated by removing R first, and D can be eliminated by removing M first—but
these are the row player’s only strategies, so considering both of them to be eliminated makes little
sense.

9.4 Summary

A theory of mechanism design for bounded agents cannot rest on game-theoretic solution concepts
that are too hard for agents to compute. To assess to what extent this eliminates existing solution
concepts from consideration, the first two sections of this chapter were devoted to studying how
hard it is to compute solutions according to some of these concepts.

In Section 9.1, we studied computational aspects of dominance and iterated dominance. We
showed that checking whether a given strategy is dominated (weakly or strictly) by some mixed
strategy can be done in polynomial time using a single linear program solve. We then showed that
determining whether there is some path that eliminates a given strategy is NP-complete with iterated
weak dominance. This allowed us to also show that determining whether there is a path that leads
to a unique solution is NP-complete. Both of these results hold both with and without dominance
by mixed strategies. Iterated strict dominance, on the other hand, is path-independent (both with
and without dominance by mixed strategies) and can therefore be done in polynomial time. We then
studied what happens when the dominating strategy is allowed to place positive probability on only
a few pure strategies. First, we showed that finding the dominating strategy with minimum support
size is NP-complete (both for strict and weak dominance). Then, we showed that iterated strict

22This procedure is reminiscent of iterative sampling.
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dominance becomes path-dependent when there is a limit on the support size of the dominating
strategies, and that deciding whether a given strategy can be eliminated by iterated strict dominance
under this restriction is NP-complete (even when the limit on the support size is 3). We also studied
dominance and iterated dominance in Bayesian games. We showed that, unlike in normal-form
games, deciding whether a given pure strategy is dominated by another pure strategy in a Bayesian
game is NP-complete (both with strict and weak dominance); however, deciding whether a strategy
is dominated by some mixed strategy can still be done in polynomial time with a single linear
program solve (both with strict and weak dominance). Finally, we showed that iterated dominance
using pure strategies can require an exponential number of iterations in a Bayesian game (both with
strict and weak dominance).

In Section 9.2 we provided a single reduction that demonstrates that 1) it is NP-complete to de-
termine whether Nash equilibria with certain natural properties exist, 2) more significantly, the prob-
lems of maximizing certain properties of a Nash equilibrium are inapproximable (unless P=NP),
and 3) it is #P-hard to count the Nash equilibria (or connected sets of Nash equilibria). We also
showed that determining whether a pure-strategy Bayes-Nash equilibrium exists is NP-complete.

Since these (and other) results suggest that dominance is a more tractable solution concept than
(Bayes)-Nash equilibrium, but is often too strict for mechanism design (and other) purposes, one
may wonder whether it is possible to strike a compromise between dominance and Nash equilib-
rium, obtaining intermediate solution concepts that combine good aspects of both. The last section
in this chapter, Section 9.3, did precisely that. We defined a generalized eliminability criterion for
bimatrix games that considers whether a given strategy is eliminable relative to given dominator
& eliminee subsets of the players’ strategies. We showed that this definition spans a spectrum of
eliminability criteria from strict dominance (when the subsets are as small as possible) to Nash
equilibrium (when the subsets are as large as possible). We showed that checking whether a strat-
egy is eliminable according to this criterion is coNP-complete (both when all the sets are as large
as possible and when the dominator sets each have size 1). We then gave an alternative definition
of the eliminability criterion and showed that it is equivalent using the Minimax Theorem. We
showed how this alternative definition can be translated into a mixed integer program of polynomial
size with a number of (binary) integer variables equal to the sum of the sizes of the eliminee sets,
implying that checking whether a strategy is eliminable according to the criterion can be done in
polynomial time if the eliminee sets are small. Finally, we studied using the criterion for iterated
elimination of strategies.

The results in this chapter provide an initial step towards building a theory of mechanism design
for bounded agents. For such a theory to be complete, it would also require methods for predicting
how agents will act in strategic situations where standard game-theoretic solutions are too hard for
them to compute. Ideally, these methods would not assume any detailed knowlege of the algorithms
available to the agents, but this will undoubtedly be a difficult feat to accomplish. Fortunately, we
do not have to wait for the entire theory of mechanism design for bounded agents to be developed
before we create some initial techniques for designing such mechanisms nonetheless. (The only
downside of not having the general theory is that we will not be able to evaluate how close to
optimal these techniques are.) The next chapter provides one such technique, which can in fact also
be used to generate mechanisms automatically (albeit in a very different way from that proposed in
Chapter 6).


