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ABSTRACT
Extensive-form games constitute the standard representa-
tion scheme for games with a temporal component. But do
all extensive-form games correspond to protocols that we
can implement in the real world? We often rule out games
with imperfect recall, which prescribe that an agent forget
something that she knew before. In this paper, we show
that even some games with perfect recall can be problem-
atic to implement. Specifically, we show that if the agents
have a sense of time passing (say, access to a clock), then
some extensive-form games can no longer be implemented;
no matter how we attempt to time the game, some informa-
tion will leak to the agents that they are not supposed to
have. We say such a game is not exactly timeable. We pro-
vide easy-to-check necessary and sufficient conditions for a
game to be exactly timeable. Most of the technical depth of
the paper concerns how to approximately time games, which
we show can always be done, though it may require large
amounts of time. Specifically, we show that some games
require time proportional to the power tower of height pro-
portional to the number of players, which in practice would
make them untimeable. We hope to convince the reader that
timeability should be a standard assumption, just as perfect
recall is today. Besides the conceptual contribution to game
theory, we show that timeability has implications for onion
routing protocols.

Categories and Subject Descriptors
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Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences–Economics
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1. INTRODUCTION
The extensive form is a powerful representation scheme

for games. It allows one to naturally specify how the game
unfolds over time, and what each player knows at each point
of action. This allows one to model, for example, card games
such as poker, but also real-world strategic situations with
similar aspects.

Besides asking whether all strategic situations one might
encounter in the real world can be modelled as extensive-
form games, one may also ask whether all extensive-form
games correspond to something one might encounter in the
real world. This question is important for several reasons.
One is that if the answer is “no”, then there should be some
well-motivated restricted subclasses of extensive-form games
that may be more tractable from the perspective of algorith-
mic and other theoretical analysis. Another is that if we are
interested in designing a protocol, extensive-form games give
us a natural language in which to express the protocol—but
this language may lead us astray if some of its games are
not actually implementable in the real world.

Games of imperfect recall, in which an agent sometimes
forgets something she knew before, constitute a natural ex-
ample of games that may be difficult to implement in the
real world.1 Indeed, restricting attention to perfect recall is
often useful for algorithmic and other theoretical purposes.
From a theoretical perspective, perfect recall is required [12]
for behavioral strategies to be as expressive as mixed strate-
gies. Perfect recall also allows for the use of the sequence
form [17], which allows linear optimization techniques to be
used for computing equilibria of two-person extensive-form
games [19]. The sequence form can also be used to compute
equilibrium refinements [14, 13], again requiring perfect re-
call. Without perfect recall, otherwise simple single agent
decision problems become complicated [16, 1, 2], and even
the existence of equilibria in behavior strategies becomes
NP-hard to decide [5]. Imperfect recall has proven useful for
computing approximate minimax strategies for poker [21],

1Computer poker provides some amusing anecdotes in this
regard. When comparing two poker-playing bots by let-
ting them play a sequence of hands, one way to reduce the
role of luck and thereby improve statistical significance is to
wipe clean the bots’ memory and let them play the same se-
quence of hands again, but with the bots’ roles in the hands
reversed. This is not feasible for human players, of course.
Because of this, events pitting computers against humans
have generally pitted a pair of players against one copy of
the bot each, in separate rooms. In this setup, each human-
computer pair receives the same hands, though the bot’s role
in one room is the human’s role in the other.



even though the agent following the strategy does have per-
fect recall when playing the game.

We believe that many researchers are under the impres-
sion that, given any finite extensive-form game of perfect
recall, one could in principle have agents play that game in
the real world, with the actions of the game unfolding in
the order suggested by the extensive form. In this paper,
we prove that this is not so, at least if agents have a sense
of time. If the players have a sense of time, we show that
some games cannot be implemented in actual time in a way
that respects the information sets2 of the extensive form.
The games that can be implemented in time are exactly
those that have chronologically ordered information sets, as
defined in a set of lecture notes by Weibull [23, page 91].
Weibull argues that games with this property constitute the
natural domain of sequential equilibria [10]. The concept of
sequential equilibrium is arguably the most used equilibrium
refinement for extensive-form games with imperfect informa-
tion. Kreps and Ramey [9] provided an example where the
unique sequential equilibrium requires some level of cogni-
tive dissonance from the players [22], forcing a player to best-
respond to strategies that are not consistent with her beliefs.
However, examples of this type only work because they have
no ordering of the information sets, which is Weibull’s point
in restricting attention to games with chronologically or-
dered information sets. In this paper, we argue something
stronger: we argue that extensive-form games without this
property cannot model any real world strategic situation,
since the information structure of the model cannot be en-
forced.

We emphasize that our paper is not intended as a criti-
cism of extensive-form games. Rather, the goal is to point
out a natural restriction – timeability – that is needed to
ensure that the game can be implemented as intended in
practice. Again, perfect recall is a restriction that is sim-
ilar in nature. Restricting attention to those games that
have perfect recall has been useful for many purposes, and
the notion has also been useful to understand why certain
games have odd features—namely, they have imperfect re-
call. We suspect the notion of timeability can be used sim-
ilarly. At least one paper already implicitly assumes that
all games are timeable [11], while another paper would have
been much simpler if it had assumed timeability [20]. We
hope that more applications of timeability will be found,
and we encourage game theorists (algorithmic or otherwise)
to, in contexts where they consider the restriction of perfect
recall, consider that of timeability as well.

One place where the analogy between timeability and per-
fect recall perhaps breaks down is that we have shown that
games that are not exactly timeable can nevertheless be
approximately timed, in some cases even in a reasonable
amount of time. It is not clear whether an analogous notion
of approximately perfect recall could be given.

Most of our technical work concerns whether games that
do not have an exact timing can nevertheless be approxi-
mately timed, and if so, how much time is required to do
so. This latter contribution may have important ramifica-
tions for the design of protocols that run a risk of leaking

2Recall that for extensive-form games, the information avail-
able to the players is represented using information sets.
Two nodes in a game tree belong to the same information
set if they belong to the same player, and the player has the
same information at those two nodes.

information to participants based on the times at which they
are requested to take action. While we show that all games
are at least approximately timeable, we also show that some
games require so much time that in practice they are un-
timeable.

1.1 Motivating example
Consider the following simple 2-player extensive-form game

(Figure 1(a)). In it, first a coin is tossed that determines
which player goes first. Then, each player, in turn, is asked
to guess whether she has gone first. If the player is correct,
she is paid 1 (and otherwise 0). The information sets of
the game suggest that a player cannot at all distinguish the
situation where she goes first from the one where she goes
second, and thus, she gets expected utility 1/2 no matter
her strategy.

However, now consider implementing this game in prac-
tice. Assume that the game starts at time 0. Clearly, if we
toss the coin at time 0, ask one player to bet at time 1, and
the other at time 2, a time-aware player will know exactly
whether she is being asked first or second (assuming the
timing protocol is common knowledge), and will act accord-
ingly. This implementation blatantly violates the intended
information structure of the extensive-form representation
of the game; indeed, it results in an entirely different game
(one that is much more beneficial to the players!). We say
that this protocol is not an exact timing of the game in Fig-
ure 1(a).

Of course, the general protocol of taking one action per
time unit is a perfectly fine timing of many games, including
games where every action is public (as in, say, Texas Hold’em
poker). Also, there are games where taking one action per
time unit fails to exactly time the game, but nevertheless an
exact timing is available. For example, consider the modified
game in Figure 1(b), where player 1 only plays if the coin
comes up Heads, and if so plays first. This game can be
timed by letting player 1 play at time 1 and player 2 at time
2, even if player 1 does not go first.

But what about the game in Figure 1(a)? Can it not
be timed at all? We will pose the constraint that there
must be at least one time unit between successive actions
in the extensive form. Without this constraint, we could
take the normal form of the game and let players play it
by declaring their entire strategy at once—but this scheme
violates the natural interpretation of the extensive form, and
would allow us to play games of imperfect recall just as well.
(One may argue that we should just let the players play
in parallel after the coin flip in the game in Figure 1(a)—
however, a simple modification of the game where the second
player is only offered a bet if the first player guessed correctly
(Figure 1(c)) would disallow this move.) It is easy to see
that no deterministic timing will suffice. This is because
every node within an information set would have to have
the same time associated with it; but then, the left-hand
side of the tree requires that player 1’s information set has a
time strictly before that of player 2, but the right-hand side
implies the opposite.

For games where deterministic timing cannot be done, one
might turn to randomized timing when trying to implement
the game. However, if the time at which a node is played
is to reveal no information whatsoever about which node in
the information set has been reached, then the distribution
over times at which it is played must be identical for each
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Figure 1: Three examples. The roots are Chance nodes where Chance chooses its move uniformly at random.
Dashed information sets belong to player 1 and dotted ones to player 2. The node in game (b) that forms its
own information set belongs to player 1. (b) has an exact deterministic timing, but (a) and (c) do not.

node in the information set. But this cannot be achieved in
the game in Figure 1(a), because the left-hand side of the
tree ensures that the expectation of the time distribution for
player 1’s information set must be at least 1 lower than that
for player 2’s information set, but the right-hand side implies
the opposite. Still, we may achieve something with random-
ization. For example, we may draw an integer i uniformly at
random from [N − 1] = {1, . . . , N − 1}, offer the first player
to move a bet at time i and the second player a bet at time
i+ 1. Then, if a player is offered a bet at time 1 or time N ,
the player will know exactly at which node in the extensive
form she is. On the other hand, if she is offered a bet at
any time t ∈ {2, . . . , N −1}, she obtains no additional infor-
mation at all, because the conditional probability of t being
the selected time is the same whether she is the first or the
second player to move. Hence, as long as i ∈ {2, . . . , N −2},
which happens with probability (N − 3)/(N − 1), neither
player learns anything from the timing. We say the game
is approximately timeable: we can come arbitrarily close to
timing the game by increasing N , the number of time peri-
ods used. This immediately raises the question of whether
all games are approximately timeable, and if so how large
N needs to be for a particular approximation.

1.2 Our contribution
In the next section we define exactly timeable games, give

a characterization of these games, and show that there is
a linear-time algorithm that decides whether an extensive-
form game is exactly timeable. In Section 3 we define ε-
timeability and argue that this is the correct definition. In
Section 4 we give an example of an onion routing game
that is not timeable. This shows that, due to timeability
issues, onion routing protocols can only approximately ob-
tain a certain desired property. In Section 5 we show that all
extensive-form games are ε-timeable for any ε > 0, but also
that these ε-timings can easily become too time-consuming
for this universe: for any number r, there exists a game Γr
such that for sufficiently small ε, any ε-timing of Γr will take

time at least 22...2
1
ε

where the tower has height r. In Sec-
tion 6 we ask what happens if we have some control over the
players’ perception of time. We assume that there exists a
constant c such that any player will always perceive a time
interval of length t as having length between t

c
and ct, and

otherwise we have complete control over the players’ percep-
tion of time. We show that even under these assumptions,
the lower bound from Section 5 still holds.

2. EXACTLY TIMEABLE GAMES

Definition 1. For an extensive-form game 3 Γ, a deter-
ministic timing is a labelling of the nodes in Γ with non-
negative real numbers such that the label of any node is at
least one higher than the label of its parent. A deterministic
timing is exact if any two nodes in the same information set
have the same label.

An exact deterministic timing is the same as the time func-
tion in the definition of a chronological order by Weibull [23].
Since we will also be discussing games that cannot be timed,
we need this more general definition of timings that are not
exact.

This definition allows times to be nonnegative real num-
bers rather than integers, which makes some of the proofs
cleaner. However, given a deterministic timing with real val-
ues, one can always turn it into a timing with integer values
by taking the floor function of each of the times.

The following theorem says that it is easy to check whether
a game has an exact deterministic timing, providing multiple
equivalent criteria. Criterion 2 is presumably most useful for
a human being looking at small extensive-form games, while
criterion 3 is easy for a computer to check.

Theorem 1. For an extensive-form game Γ, the follow-
ing are equivalent:

1. Γ has an exact deterministic timing.

2. The game tree Γ can be drawn in such a way that a
node always has a lower y-coordinate than its parent,
and two nodes belong to the same information set if
and only if they have the same y-coordinate.

3. Contracting each information set in the directed graph
Γ to a single node results in a graph without oriented
cycles.

3For an introduction to the game-theoretical concepts used
in this paper, see, for example, [15]
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Figure 2: Example of how to use Theorem 1 to test
if the extensive-form games (a) and (b) in Figure 1
have exact deterministic timings. The top node is
the Chance node, the left node corresponds to player
1’s information set, and the right node corresponds
to player 2’s information set.

Proof. “1 ⇒ 2:” Given an exact deterministic timing
(WLOG, with integer-valued times), we draw Γ such that
each node has y-coordinate equal to the negative of its time.
As the timing is exact, nodes in the same information set
have the same y-coordinate. To ensure that any two nodes
with the same y-coordinate are in the same information set,
we perturb each node based on its information set. This
can be done deterministically: for example, if there are q
information sets in the game, then subtract i/q from the
time of each node in the ith information set.

“2⇒ 3:” Given such a drawing, contracting each informa-
tion set results in all edges going downwards, so the resulting
graph cannot have directed cycles.

“3 ⇒ 1:” The nodes of a directed acyclic graph can be
numbered such that each edge goes from a smaller to a larger
number. This numbering can be used as a deterministic
timing.

We can use criterion 3 of Theorem 1 to test whether the
games in Figure 1(a) and 1(b) are timeable. First we draw
a node for each information set: One for the root, one for
player 1’s information set and one for player 2’s information
set. (If one of the players had more than one information
set, that player would have had more than one node in the
contracted graph.) We ignore the leaves, as they can never
form cycles. In the games in Figure 1(a) and 1(b), we can get
from the root to each of the two players’ information sets,
so we draw a directed edge from the root to each of the two
other nodes. We can also get from player 1’s information set
to player 2’s, and in the game in Figure 1(a) we can go from
player 2’s information set to player 1’s. When we draw these
directed edges (without multiplicity) we get Figure 2(a) and
Figure 2(b), respectively. We see that the graph in Figure
2(a) has a cycle, so the game in Figure 1(a) is not exactly
timeable, while graph in Figure 2(b) does not have a cycle,
so the game in Figure 1(b) is exactly timeable. The con-
tracted graph can be constructed in linear time, and given
this directed graph, we can in linear time test for cycles [3,
Section 22.4]. Thus, we can test in linear time whether a
game is exactly timeable.

3. ε-TIMEABILITY
We now move on to approximate timeability.

Definition 2. The total variation distance (also called
statistical distance) between two discrete random variables

X1 and X2 is given by

δ(X1, X2) =
∑
x

max(Pr(X1 = x)− Pr(X2 = x), 0)

where the sum is over all possible values of X1 and X2. This
measure is symmetric in X1 and X2. If δ(X1, X2) ≤ ε we
say that X1 and X2 are ε-indistinguishable.

A (randomized) timing is a discrete distribution over de-
terministic timings. For a game, a timing of the game, a
player and a node v belonging to that player, the player’s
timing information at v denoted X4v is the sequence of times
Xu for nodes u belonging to that player on the path from the
root to v (including v itself). Thus, for a fixed game, tim-
ing, player, and node, the timing information is a random
variable.

The timing is an ε-timing if for any two nodes u and v in
the same information set, δ(X4u, X4v) ≤ ε. A 0-timing is
also called an exact timing.

A game is exactly timeable if it has an exact timing, ε-
timeable if it has an ε-timing, and approximately timeable
if it is ε-timeable for all ε > 0.

The following proposition implies that Γ being exactly
timeable is equivalent to each of the three criteria in Theo-
rem 1.

Proposition 2. A game is exactly timeable if and only
if it has an exact deterministic timing.

Proof. An exact deterministic timing is a special case
of an exact randomized timing. Conversely, given an exact
randomized timing of a game, we can label each node with its
expected time to obtain an exact deterministic timing.

We will show that in fact all games are approximately
timeable.

3.1 Justification of definition
As stated in [18] and [7] the total variation distance δ(X1, X2)

can be seen as a betting advantage: Suppose you are given a
random value XI were I is uniformly distributed on {1, 2}
independently from X1 and X2. You then bet on whether
I = 1 or I = 2. If you guess correctly you get utility 1 and
otherwise you get −1. If you play this game optimally, your
expected utility is δ(X1, X2). More generally, if a player
is playing a game Γ and is in an information set with two
nodes 1 and 2 which have different optimal actions, we can
think of this as the player betting on which node she is in.
For this reason, total variation distance is a good measure
of how much a game is distorted by side information. This
is captured by the following theorem.

Theorem 3. Let Γ be an extensive-form game with per-
fect recall and utilities in [0, 1] where player i has at most m
nodes in any history, and let X be an ε-timing. If σ′i is a
player i strategy that uses the timing information,4 there is
a strategy σi that does not use timing information, such that
for any strategy for the other players σ′−i, which may also use
the timing information, we have ui(σ

′
i, σ
′
−i)− ui(σi, σ′−i) ≤

mε.
4Formally, this is a strategy in the extensive-form game Γ′

where the first move is a chance move which gives all the
randomness in X, and all the next moves are as in Γ. Two
nodes belong to the same information set in Γ′ if they belong
to the same information set in Γ and have the same timing
history.



The proof of this theorem, as well as later theorems, can
be found in the full version [8]. Conversely, an example,
also in the full version, shows that the mε cannot, for any m
and ε, be improved to something better than 1 − (1 − ε)m,
which for small ε is approximately mε. By using the above
theorem on each player in a game we get this corollary.

Corollary 4. Let Γ be a perfect recall game with utili-
ties in [0, 1] where each player has at most m nodes in any
history. If Γ′ is the game Γ with timing information X,
where X is an ε-timing, then any Nash-equilibrium σ of Γ
is an mε-approximate Nash equilibrium of Γ′.

One possible criticism of the definition of ε-timings is that
it is only about the advantage the players get on average.
Another definition would be to require that with proba-
bility 1 − ε the players learn nothing at all from the tim-
ing information. We say a timing X is ε-ex-post-perfect
if for any node u there is probability at least 1 − ε that
the timing information X4u at u takes a value x4u such
that for all v in the same information set as u we have
Pr(X4u = x4u) = Pr(X4v = x4u). The following theorem
shows that this definition would give essentially the same
results as our definition of ε-timeablility.

Theorem 5. Let Γ be an extensive-form game with per-
fect recall. If X is a ε-ex-post-perfect timing of Γ then X is
an ε-timing of Γ. Conversely, there exists a constant cΓ such
that for all ε if X is an ε-timing of Γ using time at most N
then there exists a cΓε-ex-post-perfect timing of Γ that uses
time at most 2N + 1.

The first part of the theorem is obvious from the two def-
initions. The intuition in the second part is to modify the
ε-timing X to get a cΓε-ex-post-timing X ′: We can assume
that all times in X are integers. With high probability,
the times in X ′ will just be twice the time in X. How-
ever, in cases where X gives away some probabilistic in-
formation (this could happen in all cases), X ′ will, with
small probability take an odd value instead. This is done
in such a way that given that the time is even, we have
Pr(X ′4u = x4u) = Pr(X ′4v = x4u).

Another possible criticism of the concept of timeability
is that you can always transform a not exactly timeable
extensive-form game to its normal form, that is, you ask
each player one by one to report what they would do in any
possible situation. This normal-form game can be consid-
ered to be an extensive-form game where each player only
has one move. This game is clearly timeable. However,
there are several problems in doing this. First of all you
lose the temporal information, so this transformation can
change properties of the game which depend on temporal
information or on the beliefs the players have during the
game. For example, transforming an extensive-form game
to a normal-form game will often introduce new sequential
equilibria.

A second problem in transforming to normal form, is that
conceptually simple modifications of an extensive-form game
might correspond to complicated modifications of the normal-
form version. One example is from correlated equilibria,
where the players get access to some correlated randomness
during the game. For each distribution of the randomness,
we get an extensive-form game which can be transformed to
normal form. Thus, any question about correlated equilibria

of an extensive-form game and be formulated as questions
about classes of normal form games, but this would be a dif-
ferent and more complicated question. So although all not
exactly timeable extensive-form games can be transformed
to normal-form (and hence timeable) games it is possible
that some theorems which hold for such modifications of
timeable game, do not hold for in general for similar modi-
fications of extensive-form games.

Finally, when transforming an extensive-form game to its
normal form, there will generally be an exponential blow-
up, both in the amount of communication needed to play
the game, and in the description length of the game. This
means that unless the game is a small toy example, it will not
be feasible to play the game as a normal-form game. This
also gives another example of how a theorem can hold for
all timeable games, but not necessarily for all extensive-form
games: Suppose you care about some function f defined on
extensive-form games, and f is not affected when you trans-
form a game from its extensive-form version to its normal
form. Suppose further that you have a polynomial time al-
gorithm for computing f on timeable games. Clearly, this
algorithm can be used to compute f on all extensive-form
games as well: You first transform your extensive-form game
to a normal-form, and hence timeable, game, and then you
apply the function on the transformed game. While this al-
gorithm will correctly compute f , the algorithm will not be
computable in polynomial time because of the blow-up in
description size.

We have argued that there are many reasons not to trans-
form extensive-form games to normal form, but you could
argue that some not exactly timeable games have “equiv-
alent” extensive-form games that can be timed, for some
definition of equivalent. For example, in the game in Figure
1(a) one player’s choice does not affect the other player’s
knowledge or options, so you could define an “equivalent”
game where first player 1 moves and then player 2 moves.
However, we do not see this as a weakness of the definition:
When you define the rational numbers, you do not have to
give an algorithm for checking if e.g. a fraction between two
square roots is rational, even though such an algorithm may
be useful. Similarly, in this paper we will not investigate
which games that can somehow be “simplified” to timeable
games, but we think it will be an interesting question for
future research. One of the points in this paper is to ar-
gue that when proving theorems about games that have real
world applications, you do not lose much by assuming time-
ability. This point stands: If you prove that a proposition
P holds for all timeable games and you have an equivalence
relation on all games which behave well with respect to P
(meaning that if Γ and Γ′ are equivalent then P (Γ)⇔ P (Γ′))
then P clearly holds for all games that are equivalent to a
timeable game.

4. AN ONION ROUTING EXAMPLE
Suppose four players, {0, 1, 2, 3} are sending messages to

each other. Each player i can only send envelopes to the
next player, player i+1 (modulo 4), but is only interested in
sending a message to the previous player. The player sends
these messages by using 3 nested envelopes. For example, if
player 2 wants to send a message to player 1 she will write
down the message, put it in an envelope marked“1”, put that
in an envelope marked “0”, put that in an envelope marked
“3” and hand that to player 3.
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Figure 3: The extensive form of the onion rout-
ing game. The root belongs to chance who decides
who is going to send a message. Each of the four
players has only one information set illustrated by
dashed/dotted lines. Using criterion 2 or 3 from
Theorem 1 it is clear that this game is not exactly
timeable.

We now define a game where first chance chooses one
player j. Now player j will nest three envelopes as described
above and hand it to j + 1. Each of the two players on the
way, j+1 and j+2 can choose wether to follow the protocol
of opening their envelope and passing on the envelope inside
or to obstruct the protocol by keeping the envelope. Player
i gets utility −1 if a message went from i + 2 to i + 1 and
player i gets utility 1 + ε if a message went from i + 3 to
i + 2. That is, each player want to obstruct the protocol
if they are the second person to pass on an envelope, but
wants to help if they are the first.

This defines an extensive-form game with perfect recall
as shown in Figure 3, and without any timing information
each player will collaborate in the protocol. However, using
Theorem 1 it is easy to see that the game is not exactly
timeable. One possible way to ε-time it is to let X1 be uni-
formly distributed on {1, . . . , N−1} and let the sender send
the first envelope at time X1 and and let each of the two
helpers make their move one time unit after receiving the
envelope. This way the players will follow the protocol, un-
less they receive an envelope at time N . Thus, the protocol
will fail with probability 1

N−1
.

In this example the players used envelopes because they
could not send the message directly. However, in the Tor
network [4] a similar protocol is instead used to provide
anonymity. In this protocol the concern is not so much
reliability, but how much the Tor nodes learn about your
communication. Because the onion routing game is not ex-
actly timeable, you cannot avoid giving the routers some
information about how far they are from the sender of the
message. In particular, one router might learn that it is
communicating directly with the original sender. As long as
there are only messages going one way, the routers might not
get much information if the network has been running for
years, because this means that N is large.5 However, if the
recipient wants to answer the message within a few seconds,
the routers will get more information: Now each router will
be passing on two messages within a few seconds and the
time gap between the messages will always be smallest for
the router closest to the recipient of the first message.

5If the time a user decides to send a message over the net-
work in not uniformly distributed over the day or the week,
the routers would get some information about their position
in the path. However, if it takes less than a couple of sec-
onds to send a message through the path, that will only be
a very small amount of information.

Notice that this is not a problem for the Tor network,
as it was never designed to hide this information from the
router. However, if we wanted to design an onion routing
protocol where the routers do not know how far they are
from the end-points, this would be a problem. This is why
the concept of timeability is important: you cannot just
define an extensive-form game with perfect recall and expect
that it can be implemented (even in principle), unless you
check that it is timeable.

Except for onion routing related games, we have not been
able to find games that are not exactly timeable but would
be useful to play in real life. However this only strengthens
our thesis that when you want to prove a theorem about all
extensive-form games, you do not lose much from assuming
timeability.

5. UPPER AND LOWER BOUNDS
From [7] we have the following definition and theorem.

Definition 3. Let X1, . . . , Xn be random variables over
N with some joint distribution such that we always have
X1 < X2 < · · · < Xn. We say that (X1, . . . , Xn) has ε-
indistinguishable m-subsets if for any two sets in indices
{i1, . . . , im}, {j1, . . . jm} ⊂ [n] of size m, the two random
sets {Xi1 , . . . , Xin} and {Xj1 , . . . , Xjn} are ε-indistinguish-
able. We slightly abuse notation and say that (X1, . . . , Xn)
has ε-indistinguishable subsets if for all m < n it has ε-in-
distinguishable m-subsets.

In the following exp2 denotes the function exp2(x) = 2x,

and expn2 (x) denotes iteration of exp2, so expn2 (x) = 22...
2x

where the tower contains n 2’s.

Theorem 6. For any n ∈ N and any ε > 0 there exists
a distribution of (X1, . . . , Xn) such that 1 ≤ X1 < X2 <
· · · < Xn are all integers and X has ε-indistinguishable sub-
sets. For fixed n we can ensure that Xn never take values
larger than expn−2

2

(
O
(

1
ε

))
. Conversely, for any such distri-

bution, Xn must take values of at least expn−2
2

(
Ω
(

1
ε

))
for

sufficiently small ε. This lower bound holds even if we only
require the n − 1-subsets of (X1, . . . , Xn) to be ε-indistin-
guishable.

The following gives intuition for the upper bound on N .
For n = 2 it is easy to construct (X1, X2) that has ε-
indistinguishable subsets. For example, we can takeX1 to be
uniformly distributed on [N−k] for some constants N and k
and set X2 = X1 +k. We can then use a recursive construc-
tion for higher n. If (X1, . . . , Xn) has ε-indistinguishable
subsets and consecutive Xi’s are usually not too close to
each other, we can construct (Y1, Y2 . . . , Yn+1) that has ε′-
indistinguishable subsets for some ε′. To do this, we choose
Y1 uniformly between 1 and a sufficiently large number, and
choose each gap Yi+1−Yi uniformly and independently from{

1, 2, . . . , 2Xi
}

. For a proof that this works, see [7].
The intuition about the lower bound on N is that for

n = 2 an n − 1-subset contains 1 number, and the size of
this number gives away some information about whether it
is the higher or lowest. For n = 3 an n − 1 subset con-
tains two numbers and their distance gives away some infor-
mation about whether it is the middle number or another
number that is missing from the set. For n = 4 an n − 1
subset contains 3 numbers, and now the ratios between the



two distances gives away information about which number
is missing, and so on.

We can use the construction to approximately time any
game.

Theorem 7. All games with at most m nodes in each his-
tory can be ε-timed in time expm−3

2

(
O
(

1
ε

))
. In particular,

all games are approximately timeable.

Proof. Take any game and ε > 0. We want to show
that the game is ε-timeable. First we find some distri-
bution of (X1, . . . , Xm−1) that has ε-indistinguishable sub-
sets. Now we let the time of the root be 0 and the time
of a node at depth d be given by Xd. As the Xd’s take
values in N and are increasing this gives a timing of the
game. If two nodes v and w belong to the same infor-
mation set, the player i who owns these nodes will have
the same number j − 1 of previous nodes at v and at w.
As (X1, . . . , Xm−1) has ε-indistinguishable subsets, it has
ε-indistinguishable j-subsets, so if the root does not be-
long to player i there is total variation distance at most
ε between the two nodes’ timing information. Similarly,
(X1, . . . , Xm−1) has ε-indistinguishable j − 1-subsets, so if
the root belongs to player i the total variation distance be-
tween the two nodes’ timing information is also at most
ε.

Unfortunately the above upper bound on the time needed
to ε-time is beyond astronomical even for moderate values
of m and ε. The following lower bounds shows that for any

r there are games that take time 22...
1
ε

to ε-time, where the
hight of the tower is r.

Theorem 8. Given r ≥ 1 there exists εr > 0 and a game
with 16r + 3 players and at most max(3r, 2r + 3) nodes per
player per history such that for any ε-timing of the game
with ε ≤ εr we need time at least expr2

(
ε−1
)
.

The proof has some similarities to the lower bound part of
Theorem 6, but we also need some new ideas. If extensive-
form games could have nodes that belong to more than one
player the theorem would follow from Theorem 6: We would
define a “game” Γ where the first node was a chance node
which assigned the numbers from 1 to n to the n players, and
the players do not learn this number. Then, for each such
choice, we would have a node belonging to all but the player
who was assigned the number 1, followed by a node belong-
ing to all but the player who was assigned the number 2 and
so on. Let Xi denote the time of the i’th node, and suppose
that this time is independent from the assignment of num-
bers to the players. Then a player who was assigned num-
ber i gets timing information (X1, . . . Xi−1, Xi+1, . . . , Xn).
If we have an ε-timing of this “game”, the players should not
be able to figure out their assigned number, so the n − 1-
subsets of (X1, . . . , Xn) should be ε-indistinguishable. Thus,
by Theorem 6 this “game” would take time expn−2

2

(
Ω
(

1
ε

))
to ε-time for sufficiently small ε.

However, in extensive-form games each node only belongs
to one player. To fix this problem we could split the node
belonging to many players in our“game”to many nodes each
belonging to one player to get a real game. For example, if
there where three players, we would first have a node be-
longing to player 2 then one belonging to player 3 (omitting
player 1), then one belonging to player 1 and one to player

3 (omitting player 2), and finally one belonging to player 1
and one to player 2. We will denote this game by just listing
the order of the nodes: 231312. This strategy does not work,
as this game can be ε-timed in time O(ε−1) by having the
three first nodes immediately after each other, then a gap of
variable length and then the three last nodes immediately
after each other. In this case, with just three players, this
problem can be fixed by reordering the nodes to get 233112

which takes time 2Ω(ε−1) to ε-time. A similar strategy works
for four players but this strategy does not seem to work for
more than four players.

Instead, the idea is to prove the claim by induction. You
take a game Γ that takes time expr2

(
O(ε−1)

)
to ε-time and

combine it with copies of the four-player game with node
order given by 243314412213, where the four-player games
and Γ are played by different players. The nodes from Γ and
the nodes from the four-player game are ordered in a way
that ensures that if the four-player games are ε-timed, then
the gaps between certain points in Γ will either all get larger
and larger or all get smaller and smaller (in both cases by
at least some factor greater than 1). This means that if you
take the logarithms of certain gaps between node times you
get a timing of Γ. As Γ takes time expr2

(
O(ε−1)

)
to ε-time,

this means that the new game must take expr+1
2

(
O(ε−1)

)
.

This is the idea in the proof of Theorem 8, but the actual
proof is more complicated because you need a stronger in-
duction hypothesis.

Theorem 8 as stated only shows that the players can get
some ε advantage if they have unbounded computational
power. So we might hope that we could find a timing such
that a player with bounded computational power cannot get
an ε advantage. However, we will now see that this is not
possible. The proof of Theorem 8 shows that for any r there
exists a game Γr, such that for any timing X of the game
using time at most N , there is a player i who will be able
to earn some ε amount in expectation by betting on a fair
bet. Here a fair bet means a bet about which branch of
the game that was played, such that the player would have
expectation 0 if he did not have the information from the
timing, and where the player can win or lose at most 1.

Given Γr and N we can define a new two-player game
ΓT between a player master-mind and a scheduler. Here
the player master-mind is just a useful abstraction of all
the players. To play ΓT , the player master-mind secretly
chooses one player i from Γr who is going to make a fair bet,
and a strategy which given the available timing information
chooses a fair bet. At the same time the scheduler chooses
the timing X of Γr. Now the game Γr is played and player i
gets some timing information from X. Then player i makes
a fair bet according to the strategy chosen by the player
master-mind. The player master-mind gets the utility which
the player wins from the bet, and the scheduler gets minus
this utility.

Now ΓT is a two player zero-sum game, and for a fixed
value of N there is only a finite number of pure strategies
for each player, so we can use the Minimax Theorem. Now
Theorem 8 shows that if the scheduler commits to some
randomised strategy, there is a move that gives the player
master-mind a utility of ε. By the Minimax Theorem this
implies that there is a randomised strategy for the player
master-mind which guarantees a utility of at least ε. As this
strategy is fixed, the players only need a certain amount of



computational power to follow it, no matter how compli-
cated a strategy the scheduler chooses.

6. IMPERFECT TIMEKEEPING
Previously we assumed that at any time all the players

knew the exact time. In practice, this is not a realistic
assumption. Even our model of time—that there exists
an absolute time, and that everybody’s time goes at the
same speed—has been proven wrong by relativity theory. If
the players cannot feel acceleration, one could use the twin
paradox to time games that otherwise cannot be exactly
timed [6].6 A more down-to-earth objection is that it might
be possible to affect humans’ or even computers’ perception
of time if you control their environment. The purpose of
this section it to show that our lower bounds are quite ro-
bust: even if we can determine the players’ perception of
time within some reasonable bounds, there are games that
take a long time to ε-time. We will assume each node occurs
at some “official” time, x, and that we can also decide the
players’ perception y of that time. The following definition
models a situation where a time interval of length t can be
perceived as anything between l(t) and u(t) and where the
players do not know when the game started.

Definition 4. Let l, u : R+ → R+ be weakly increasing
functions satisfying l(t) ≤ t ≤ u(t). A deterministic [l, u]-
timing of a game Γ is an assignment of a tuple (xv, yv) (two
nonnegative real numbers) to each node v such that:

1. If we label Γ with just the xv values we have a deter-
ministic timing of Γ.

2. If v and w are two nodes belonging to the same player
and v is on the path from the root to w then l(xw −
xv) ≤ yw − yv ≤ u(xw − xv).

An [l, u]-timing is a distribution over deterministic [l, u]-
timings. The timing information of player i at a node w
given an [l, u]-timing consists of the perceived times, yv, of
all nodes v belonging to that player between the root and
w. Now an (ε, [l, u])-timing is an [l, u]-timing such that for
any two nodes belonging to the same information set, the
current player’s timing information at the two nodes has
total variation distance at most ε. An [l, u]-timing is an
exact [l, u]-timing if it is a (0, [l, u])-timing.

We now show that even if we can affect the players’ clocks
by some large constant factor c, there still exist games that
cannot be ε-timed in time expr2( 1

ε
).

Theorem 9. Let c be an integer and let l, u be functions
as in Definition 4 and such that l(x) ≥ x

c
and u(x) ≤ cx.

Then for any r there exists a game Γc,r with 16(2c4 +r)+11
players such that for sufficiently small ε any (ε, [l(x), u(x)])-
timing of Γc,r has to use time at least expr2

(
1
ε

)
.

Proof sketch. This proof follows the same idea as the
induction step of the proof of Theorem 8. We start with a
game Γr that does not have an ε-timing in time less than
expr2

(
1
ε

)
. Instead of the four-player game used in the proof

of Theorem 8 we now use a 2(4c4 + 1)-player game.

6The question whether it is possible to implement a not
exactly timeable game on players who are equipped with a
perfect accelerometer is beyond the scope of this paper.

The next theorem shows that the above is the strongest
theorem we can hope for: if we can make the players’ clocks
go faster or slower by more that a constant factor, we can
implement all games.

Theorem 10. Let Γ be a game and l, u functions as in

Definition 4 with u(t)
l(t)
→ ∞ as t → ∞. Then Γ is exactly

[l, u]-timeable.

7. CONCLUSION
Not every extensive-form game can be naturally imple-

mented in the world. Games with imperfect recall constitute
a well known example of this. In this paper, we have drawn
attention to another feature that is likely to prevent the di-
rect implementation of the game in the world: games that
are not exactly timeable. We gave necessary and sufficient
conditions for a game to be exactly timeable and showed
that they are easy to check. Most of the technical contri-
bution concerned approximately timing games; we showed
that this can always be done, but can require large amounts
of time.

Future research can take a number of directions. Does
restricting attention to exactly timeable games allow one to
prove new results about these games, or develop new algo-
rithms for solving them—as is the case for perfect recall?
It is conceivable that the possibility of games that are not
exactly timeable has been an unappreciated and unneces-
sary roadblock to the development of certain theoretical or
algorithmic results. Can our techniques be applied to the
design of protocols that should not leak information to par-
ticipants by means of the time at which they receive mes-
sages? Are there natural families of games for which we can
obtain desirable bounds for the amount of time required to
approximately time them?

We have argued that not exactly timeable games can-
not be played, but you can transform such a game to a
normal-form game. This normal-form game is identical to
the original game in some regards, for example it has the
same Nash equilibria, but different in others, for example
it might have new sequential equilibria. Furthermore, the
normal-form game is typically not playable in practice be-
cause it takes exponentially more communication. Is it pos-
sible to transform a general not exactly timeable game to
an “equivalent” timeable game which only requires polyno-
mially more communication that the original? Here, one
possible definition of “equivalent” is that the two games give
the same game when transformed to normal form, but other
definitions might also be relevant. Answers to this question
for different definitions of “equivalent” would tell us in what
situations it could be useful to assume timeability for certain
algorithmic purposes.
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