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Abstract

\oting is a general method for preference aggrega-
tion in multiagent settings, but seminal results have
shown that all (nondictatorial) voting protocols are
manipulable. One could try to avoid manipula-
tion by using voting protocols where determining
a beneficial manipulation is hard computationally.
A number of recent papers study the complexity
of manipulating existing protocols. This paper is
the first work to take the next step dfsigning
new protocols that are especially hard to manip-
ulate Rather than designing these new protocols
from scratch, we instead show how tweak ex-
isting protocols to make manipulation hard, while
leaving much of the original nature of the protocol
intact. The tweak studied consists of adding one
elimination preround to the election. Surprisingly,
this extremely simple and universal tweak makes
typical protocols hard to manipulate! The proto-
cols become NP-hard, #P-hard, or PSPACE-hard
to manipulate, depending on whether the sched-
ule of the preround is determined before the votes
are collected, after the votes are collected, or the
scheduling and the vote collecting are interleaved,
respectively. We prove general sufficient condi-
tions on the protocols for this tweak to introduce
the hardness, and show that the most common vot-
ing protocols satisfy those conditions. These are
the first results in voting settings where manipula-
tion is in a higher complexity class than NP (pre-
suming PSPACE£ NP).

Introduction

of goods or resources, etc. Voting is the most general prefer-
ence aggregation scheme, and has been used in several multi-
agent decision making problems in Al, such as collaborative
filtering (e.g.[Pennoclet al., 2004) and planning among au-
tomated agents (e.fEphrati and Rosenschein, 1991; 1993

A key problem voting mechanisms are confronted with is
that of manipulationby the voters. An agent is said to vote
strategically when it does not rank the alternatives accord-
ing to its true preferences, but differently so as to manipulate
the outcome to be more favorable to the agent. For exam-
ple, if an agent prefers Nader to Gore to Bush, but knows that
Nader has too few other supporters to win, while Gore and
Bush are close to each other, the agent would be better off by
declaring Gore as its top candidate. Manipulation is an unde-
sirable phenomenon. For one, because social choice schemes
are tailored to aggregate preferences in a socially desirable
way, and if the agents reveal their preferences insincerely, a
socially undesirable candidate may be chosen.

A seminal negative result, th@ibbard-Satterthwaite theo-
rem, shows that if there are three or more candidates, then in
any nondictatorial voting scheme, there are preferences un-
der which an agent is better off voting strategic&Bibbard,
1973; Satterthwaite, 1975(A voting scheme is called dicta-
torial if one of the voters dictates the social choice no matter
how the others vote). In automated group decision making
where the voters are software agents, the manipulability of
protocols is even more problematic, for at least two reasons.
First, the algorithms they use to decide how to vote must be
coded explicitly. Given that the voting algorithm needs to be
designed only once (by an expert), and can be copied to large
numbers of agents (even ones representing unsophisticated
human voters), itis likely that rational strategic voting will in-
creasingly become an issue, unmuddied by irrationality, emo-
tions, etc. Second, software agents have more computational
power and are more likely to find effective manipulations.

Often, a group of agents has to make a common decision, Yet e take the following tack toward avoiding manipulation:
they have different preferences about which decision is madnsuring that finding a beneficial manipulation is so hard
Thus, it is of central importance to be able to aggregate theomputationally that it is unlikely that voters will be able to
preferences, that is, to make a socially desirable decision as Hanipulate So, unlike in most of computer science, here

whichcandidates chosen from a set of candidates. Such canpigh computational complexity is a desirable property. The
didates could be potential presidents, joint plans, allocationgarder it is to manipulate, the better.

*The material in this paper is based upon work supported by the Prior work on the complexity of manipulating elections
National Science Foundation under CAREER Award IRI-9703122 has focused on existing protocdlBartholdi et al, 1989;
Grant 11S-9800994, ITR 11S-0081246, and ITR 11S-0121678.

Bartholdi and Orlin, 1991; Conitzer and Sandholm, 2(G02a



This paper is the first to take the next step of designing The standard definitions of most voting protocols allow for
new protocols that are especially hard to manipulate. Rathahe possibility of ties between candidates, in which case a tie-
than designing these protocols from scratch, we show how tbreaking rule is required to fully specify the protocol. All our
tweak existing protocols to make manipulation computation+esults hold for any tie-breaking rule, so we do not need to
ally much more difficult, while leaving much of the original specify such rules here.

nature of the protocol intact, for the following reasons: In this paper we apply our technique to the most common

. o voting protocols (in these definitions, whenever points are de-
e Results on the computational complexity induced by afinedgt%e candid(ate with the most points wins):p

tweak typically apply to a large family of protocols.

e Plurality. A candidate receive$ point for every voter
that ranks it first. (Thus, the voters effectively only vote
for one candidate.)

e Many of the original protocol’s nice theoretical proper-
ties are preserved by the tweak.

e In practice, it will be much easier to replace a currently
used protocol with a tweaked version of it, than with an
altogether new protocol.

e Borda. For each voter, a candidate receives- 1 points
if it is the voter’s top choicemn — 2 if it is the second
choice, ... 0 if it is the last.

The type of tweak we study in this paper is the follow-
ing. All the candidates are paired irpeeround of each pair

of candidates, only the winner of theiairwise electiorsur-

vives. (The winner of the pairwise election between two can-

didates is the candidate that is ranked above the other more
often in the votes.) After the preround, the original protocol e Single Transferable Vote (STVhe winner determina-

is executed on the remaining candidates. 3tieeduleof the tion process proceeds in rounds. In each round, a candi-

preround (i.e., who faces who) can be determined before the date’s score is the number of voters that rank it highest

votes are collected; after the votes are collected; or while the  among the remaining candidates, and the candidate with
votes are collected (the processes are interleaved). We study the lowest score drops out. The last remaining candidate
these three cases in Sections 4, 5, and 6, respectively. wins. (A vote "transfers” from its top remaining can-
didate to the next highest remaining candidate when the
former drops out.)

e Maximin. A candidate’s score in pairwise elections
the number of voters that prefer it over the opponent. A
candidate’s number of points is the lowest score it gets
in any pairwise election.

2 Definitions

2.1 Elections and voting protocols 2.2 Preround

An electionconsists of a set of candidatés a set of voters The tweaks we study in this paper all involve the addition of
V; and a protocol for deciding on a winnerc C given all ~ a preround. We will now define how this works.

the voters’ votes. (Here, a vote is a total ordering of the candi-. .. .. : :
dates.) Adeterministicprotocol is a function from the set of Definition 1 Given a protocol?, the new protocol obtained
all combinations of votes t6'. (All our results hold even for PY 2dding a preround to it proceeds as follows:

unweighted voters, so in this paper this function will always 1. The candidates are paired. If there is an odd number of
treat the voters symmetrically.) fandomizedprotocol is a candidates, one candidate gets a bye.

function from the set of all combinations of votes to proba-
bility distributions overC'. An interleavedprotocol is a pro-
cedure for alternating between collecting parts of the voters’
votes (e.g. whether they prefer candidatéo candidate)

and drawing and publishing random variables (such as parts3. On the remaining candidate®, is executed to produce
of the schedule for an election), together with a function from a winner. For this, the implicit votes over the remaining
the set of all combinations of votes and random variables to  candidates are used. (For example, if a voter vated

C. (Collecting only parts of the voters’ preferences is also b > ¢ > d »~ e, andb andc were eliminated, the voter's
known aselicitation.) implicit vote isa > d > e.)

2. In each pairing of two candidates, the candidate losing
the pairwise election between the two is eliminated. A
candidate with a bye is never eliminated.

“The high complexity results obtained in this paper are depend N€ pairing of the candidates is also known as sbbedule
dent on the number of candidates growing. This places them ifor the preround. If the schedule is decided and published be-
line with all the early results in this ard®artholdi et al, 1989;  fore the votes are collected, we haveéeterministic preround
Bartholdi and Orlin, 199}1 but in contrast with more recent re- (DPRE), and the resulting protocol is calleB PRE + P. If
sults [Conitzer and Sandholm, 2002that show high complexity the schedule is drawn completely randomly after the votes are
of manipulation with a constant number of candidates for some procollected, we have endomized preroundiPRE), and the
tocols. Having high c_ompIeX|ty of m_anlpula_tlon occur with a con- resulting protocol is calledRPRE + P. Finally, if the votes
stant number of candidates already is certainly preferable to havmgre elicited incrementally, and this elicitation process is in-

it occur only with a growing number. On the other hand, unlike in telrleaved with the scheduling-and-publishing process (which

that paper, the results here hold even when the voters all have equa in d doml d ibed in detail in Section 6
weight, and even when manipulation is attempted by an individua/S @g&in done random y), as described in detail in Section 6,

rather than a coalition, making the results in this paper stronger i€ have arinterleaved preround/¢° RE), and the resulting
that sense, so there is a tradeoff. protocol is called PRE + P.



2.3 Manipulation (i.e., a SAT instance), to construct in polynomial time a set

We now define the computational problem of manipulation Of Votes over a candidate set containing at legs} U C
Because all our hardness results hold even when the votefd'ereCr = {c; : L € L} (L is the set of literalg{+v : v €
are unweighted, only a single voter is trying to manipulate,” } Y {—v : v € V'}, whereV’ is the set of variables used in
and all the other voters’ votes are known to the manipulator?). With the following properties:

we will only define this simple setting here. Any hardness o (Property 1a) If we remove, for each € V, one of
results in this simple setting immediately imply hardness in ¢4, andc_,,, p would win an election under protocé?

all more general settings. against the remaining candidates if and only if for every
Definition 2 (CONSTRUCTIVE-MANIPULATION) clausek € K (wherek is the set of clauses i), there
We are given a protocaP, a candidate seC, a preferred is somel € L such that, has not been removed, and
candidatep, and a set of votes' corresponding to all the occurs ink. This should hold even if a single arbitrary

other voters’ votes. The manipulator has yet to decide on  VOte is added.
its vote, and wants to make win. Then the constructive e (Property 1b) For any € V, ¢, andc_, are tied in

manipulation question is: their pairwise election after these votes.
e (For deterministic protocols) Can the manipulator cast Then CONSTRUCTIVE-MANIPULATIONIPPRE + P is
its vote to make win underP? NP-hard (and NP-complete # is deterministic and can be

e (For randomized protocols) Can the manipulator cast its €xecuted in polynomial time).

vote to make the probability gf winning underP at . ] .
least some giveh € [0,1]? Proof: Consider the following election undé?PRE + P.

Let the candidate set be the set of all candidates occurring
in the votes constructed from (the "original candidates”),
lus one dummy candidate for each of the original candidates
esides those id';,. To each of the constructed votes, add
all the dummy candidates at the bottom; let the resulting set
of votes be the set of the nonmanipulators’ votes. A single
manipulator’s vote is yet to be added. Let the schedule for
) ) . the preround be as follows: for eaeh ¢, andc_, face
3 Complexity of manipulating untweaked each other in the preround; and every other original candidate
protocols faces (and, because of the dummy candidates’ position in the
votes, defeats) a dummy candidate. Thus, the set of candi-
dates that make it through the preround consists of, for each
“v € V, one ofc,,, andc_,; and all the other original candi-
dates. The manipulator’s vote will decide the winner of every
¢4y VS. c_, match-up, because by property 1b, all these pair-
wise elections are currently tied. Moreover, it is easy to see
that the manipulator can decide the winner of each of these
match-ups independently of how it decides the winners of the
. other match-ups. Thus, we can think of this as the manipu-
4 NP-hardness when scheduling precedes lator giving the variables truth-values:is set totrue if c,.,,
voting survives, and tdalseif ¢_,, survives. By property l1a it then

follows thatp wins if and only if the manipulator’'s assign-

In this section, we examine the complexity induced by they ot sagisfies all the clauses, i.e. is a solution to the SAT
preround when the voters know the schedule before they VOl§ stance. Hence there is a successful constructive manipu-

- o ) lation if and only if there is a solution to the SAT instance,
4.1 Asufficient condition for NP-hardness and it follows that CONSTRUCTIVE-MANIPULATION in
We present a sufficient condition under which adding a preppRE + P is NP-hard. (Itis also in NP if is deterministic
round with a preannounced schedule makes manipulatiogind can be executed in polynomial time, because in this case,

NP-hard. The condition can be thought of as an NP-hardnesgiven a vote for the manipulator, it can be verified in polyno-
reduction template. Ifitis possible to reduce an arbitrary SATmjal time whether this vote makeswin). =

instance to a set of votes satisfying certain properties under
the given voting protocol, that protocol—with a preround—
is NP-hard to manipulate. 4.2 Examples

Theorem 1 Given a voting protocaP, suppose thatitis pos- Ve now show how to apply Theorem 1 to the well-known

sible, for any Boolean formula in conjunctive normal form protocols we discussed, thus showing that each of these
protocols—with a preround—is NP-hard to manipulate.

e (For interleaved protocols) Given the initial random
choices (if any) by the protocol, is there a contingency,
plan (based on the random decisions the protocol take
between eliciting parts of the votes) for the manipula-
tor to answer the queries to make the probabilitypof
winning underP at least some giveh € [0, 1]?

In this section, we briefly review the complexity of ma-
nipulating voting protocols, as a benchmark for our re
sults. CONSTRUCTIVE-MANIPULATION is in P for the
Plurality, Borda, and Maximin voting protoco[8artholdi
et al, 1989. The only voting protocol for which
CONSTRUCTIVE-MANIPULATION is known to be NP-
hard is the STV protocdBartholdi and Orlin, 199}12

2CONSTRUCTIVE-MANIPULATION is NP-hard also for the ) ) o )
Second Order Copelangrotocol [Bartholdi et al, 1989, but the ~ Theorem 2 There exists a reduction that satisfies properties
hardness is driven solely by the tie-breaking rule. la and 1b of Theorem 1 under the Plurality protocol.



When it does not matter for our proofs whether a given voteand any othee;, will be at leastd M points behing. Finally,
iSa>=b>c orb>ax>c wewrte{a,b} - c. from the last remaining two votes, any (k € K) will gain

Proof: Given the formula, let the candidate set be the min- 2 — 2|V| — [K| — 1 points onp. It follows thatp wins if
imally required candidatefp} U C, plus a set of candidates and only if for every clausé € K, there is somé < L with
corresponding to the set of claus&sof ¢, Cx = {c, : ke [ €k such that; has not been removed. In both cases there
K. Then, let the set of votes be as follom$k| + 2 votes 1S @"margin” of atleasf/ —|V| points, so a single additional
ranking the candidates>- C, > Ck; for eachk € K, 4|K| vote will not change this. Thus, property la is satisfiedm
votes ranking the candidates > {c, € Ck : ¢l # k} >

C1, ~ p; and for eachk € K, 4 votes ranking the candidates Theorem 4 There exists a reduction that satisfies properties
{e,€CL:l€eky=ck={ceCr:1l¢gk}>{ca e laand1lbof Theorem 1 underthe Maximin protocol.

Cxk : cl # k} > p. Additionally, we require that these votes i . ,
are such that after counting them, for eack V, c,.,, and _Proof: Given the forr_nulayﬁ, let the candidate set be th_e min-
c_, are tied in their pairwise election, so that property 1b isimally required candidatefp} U C'z, plus a set of candidates
satisfied. (This is possible because the total number of votegorresponding to the set of clausasof ¢, Cx = {cx :

is even, and the majority of the votes do not yet have any reb € K}. Then, let the set of votes be as follové#| votes
strictions on the order of th€,.) We now show property 1a ranking the candidates - Cp, - Ck, 8|K] votes rank-
is satisfied. We first observe that regardless of which of thé"d the candidate§’, - Cx > p, and8|K| votes ranking
candidates corresponding to literals are remoyedjll get  the candidates’s - p - Cr; 4|K| votes ranking the can-
4|K| + 2 votes. Now, if for somé € K, all the candidates didatesCy, > p - Ck, 4|K| votes ranking the candidates
e With I € L,1 € k are removed, then;, will get at least Cx = Cr = p, and, for eactk € K, 4 votes ranking the
4| K| + 4 votes and will not win. On the other hand, if for candidatep - {cc € Ck : cl # k} = {c, € Cp : | € k} -
eachk ¢ K, at least one candidatg with [ € k remains, ¢ = {a € Cr : 1 ¢ k}; and finally,2 votes ranking the can-
then each of the;, will get precisely4|K| votes. Because didatesp - Cx > Cr, and2 votes ranking the candidates
each remaining; can get at most|K | votes as wellp will ~ Cx >~ p > Cr. Additionally, we require that these votes
win. In both cases there is a "margin” of at leasso a sin-  are such that after counting them, for eacke V', ¢, and

gle additional vote will not change this. Thus, property 1a isc—v are tied in their pairwise election, so that property 1b is
satisfied. = satisfied. (This is possible because the total number of votes

is even, and the majority of the votes do not yet have any
Theorem 3 There exists a reduction that satisfies propertiesrestrictions on the order of the.) We now show property
1a and 1b of Theorem 1 under the Borda protocol. lais satisfied. Regardless of which of the candidates corre-
sponding to literals are removeds worst score in a pairwise
Proof: Given the formulap, let the candidate set be the min- election is against any of the, namely16| K| + 2. Any ¢
imally required candidate$p} U Cy; plus a set of candi- for which all thec; with [ € £ have been removed will get its

dates corresponding to the set of claugésf ¢, Cx = worst pairwise election score against any of the, namely
{ct : k € K}, which we order in some arbitrary way 16|K| + 4. Finally, any other;, will get its worst pairwise
to get{ci,...,c/x|}. Let M be the total number of can- election score against one of thewith [ € k, namely,16|K|.

didates this defines. Then, let the set of votes be as folk follows thatp wins if and only if for every clausé € K,

lows: for everyc; € Cy, 4M votes ranking the candidates there is somé € k such that; has not been removed. In both
Ciy1 ™ Cig2 = ... = Cg| = P = C1 = C3 = ... = cases there is a "margin” of at leastso a single additional
cic1={ageCr:lecgt=c={ael:l¢c} vote will not change this. Thus, property l1a is satisfiedm
(here, the slight abuse of notatidne ¢; means that oc-

curs in the clause correspondingdo) 4M votes ranking the  Theorem 5 There exists a reduction that satisfies properties
candidates:; > c2 = ... = ¢ = p = Cr; one vote laand 1b of Theorem 1 under the STV protocol.

c1 = c2 = ... = cg| = CL = p;onevotec|g| = ¢g|—1 = ) o

.= > CL - D, and f|na||y’4|K‘M votes ranking the Proof: We omit the prOOf due to limited space. m

candidate® > ¢; = ¢co > ... = ¢, > Cp, and4|K|M

votes ranking the candidates -~ ¢,y = ...c; = p>= Cr.  Theorem6 In any of DPRE + Plurality, DPRE +
Additionally, we require that these votes are such that afteBorda, DPRE + Mazimin, and DPRE + STV? |
counting them, for each € V, ¢, andc_, are tied in their CONSTRUCTIVE-MANIPULATION is NP-complete.

pairwise election, so that property 1b is satisfied. (This is o ] )

possible because the total number of votes is even, and tH&oof: NP-hardness is immediate from the previous theo-
majority of the votes do not yet have any restrictions on thdems. The problem is in NP because these protocols can be
order of thec;.) We now show property la is satisfied. It is
ehasy to see that n don_I?hOf thecan vl\/In, regardless %f Whg;h dOf itself, not that interesting, because STV is already NP-hard to ma-
them are removed. us, \_/ve only need to considet nipulate without the preround as we discussed. Nevertheless, our
p. The last8|K'|M votes will have no net effect on the rela- method highlights a different aspect of the NP-hardness of manip-
tive scores of these candidates, so we need not consider thesigting DPRE + STV. We build on this reduction later to prove
here. After the firsti(|K| + 1)M votes, anyc;, for which  PSPACE-hardness of manipulating STV with a preround when the
all the ¢; with [ € k have been removed will be tied wifh  scheduling of the preround is interleaved with the vote elicitation.

3The NP-completeness of manipulatifgP RE + STV is, in



executed in polynomial time. = 2c, it follows thatp wins if and only if the preround pairing

In the next sections, we will raise the bar and bringCOrresDOhds to a matching . Thus the probability op
, LI s . .
the problem of manipulating elections to higher complexitywInnlng 'S Sk 2k 1) wherer; is the number of matchings

classes by abandoning the assumption that the schedule 63 ande(2k, 2k +1) is the number of different ways to pair
the preround should be known in advance. 2k of the2k+1 candidates in the preround (which is straight-

forward to compute). Thus, evaluatipd chances of win-
} ; ning in this election is at least as hard as counting the num-
5 #P-hardness when voting precedes ber of matchings in an arbitrat®, which is #P-hard. More-

scheduling over, because we can compyts chances of winning solely

In this section, we will examine the complexity induced by on the basis of properties 2a, 2b, and 2c, and by property
the preround when the schedule is drawn completely (uni2d, these properties are maintained for any single additional

formly) randomly after all the votes have been collected. ~ Vote, it follows that a manipulator cannot affgcs chances
of winning. Thus, CONSTRUCTIVE-MANIPULATION in

5.1 A sufficient condition for #P-hardness this case simply comes down to computing chances of

We present a sufficient condition for a voting protocol to be-Winning, which is #P-hard as demonstrated s

come #P-hartito manipulate in this setting. Again, this con-

dition can be thought of as a reduction template. Ifitis possib.2 A broadly applicable reduction

ble to reduce an arbitrary PERMANENT instance to a set ofi, thjs subsection we present a single broadly applicable re-

votes satisfying certain properties under the given voting progction which will satisfy the precondistions of Theorem 7
tocol, that protocol is #P-hard to manipulate when a randoms, many voting protocols, including all of the protocols dis-
ized preround is added to it. (In the PERMANENT problem, ¢ ;ssed in this paper, thus proving them #P-hard to manipulate
we are given a bipartite grapB with the same number of \\hen the voting precedes the preround scheduling.
verticesk in both parts, and are asked how many matchings ] . i
there are. This problem is #P-complé¥aliant, 1979.) Definition 3 We label the following reductio®;. Given a

. . . bipartite graphB with the same number of verticksn both
Theorem 7 Given a voting protocoP’, suppose thatitis pos-  narts (labeled! to & in one part,k + 1 to 2k in the other), we
sible, for any bipartite graphB with the same number of ver- qnstruct the following set Rk + 2k2 votes:
ticesk in both parts (labeled to k in one part,k + 1 to 2k 3 ,
in the other), to construct in polynomial time a set of votes ® 6k” votesthatrank the candidateg, > cry2 > ... >~

over the candidate s€t:, ..., co, p} (Wherec; corresponds Cok =P = CLmCorm oo > Chy
to vertex: in B) with the following properties: o 3k? votes that rank the candidates> ¢, > cp_1 >
o (Property 2a) If we remové of thec;, p would win an oo €17 Cok > Cok—1 7 e > Chtls
election under protocaP against the remaining; if and e 6k — 3k? votes that rank the candidates >~ c;_1 >
only if the removed; are exactly all the:; withk +1 < s > CL > Cof = Cof—1 > .. > Chyl > D
1< 2k e Foreachedgdi,j)inB (1 <i<kk+1<j<2k),
o (Property 2b)p loses its pairwise election against all one vote that ranks the candidaigs> c¢; > p > ¢; >
withk + 1 <7 < 2k; Co > ... 7 Ci1 > Cig1 > .. 7 Ck > Ciy1 > Ckg2 >
e (Property 2c) Foranyt < i < kandk+1 < j < 2k, ¢; ... > Cj—1 > Cjy1 > ... > ca, and another one that
defeatsc; in their pairwise election if and only if i, ranks themeyy, > cop—1 > ... = ¢jp1 = €1 > ...
there is an edge between verticeand ;. Chl = C 7= Ch—1 7 oo 7 Cigd 7 Cimd 7 oo 7 €1 7
. . . . p = ¢; > ¢; (i.e., the inverse of the former vote, apart
° (Property_Zd) AI_I the previous properties still hold with from ¢; andc¢; which have maintained their order);
any additional single vote. L
_ e For each pairi, j without an edge between them ih
Then CONSTRUCTIVE-MANIPULATION RPRE + P is (1<i<kk+1<j < 2k), one vote that ranks the
#P-hard. candidates; = ¢; = p = ¢ = o = ... = g >
Proof: Given the set of votes constructed on the basis of anar- ~ Ci+1 7= =++ 7 €k 7 Chel = Chg2 7~ ... 7= Cjo1 =
bitrary B, let us compute the probability thatvins under the Cj+1 > ... = czx, @Nd another one that ranks them
Cok > C2k—1 > --+ > Cjp1 > Cj—1 > ... > Clq1 >

protocol RPRE + P with only these votes. In the preround,
there arek matches and one bye. By property 2ayill win
the election if and only if thé: candidates eliminated in this
preround are precisely all the with £ + 1 < i < 2k. By
property 2bp could not win a preround match against any of We now have to show that this reduction satisfies the pre-
these, s@ will win the election if and only if it gets the bye, conditions of Theorem 7. We start with the properties that are
and each of the; with k+1 < j < 2k faces one of the; with protocol-independent.

1 <4 < kthat defeats it in the preround. Then, by prOpertyTheorem 8 R; satisfies properties 2b and 2c of Theorem 7

“#P is the class of problems where the task is to count the numbdtinder any protocoP, because these properties are indepen-
of solutions to a problem in NP. dent of P), even with a single additional arbitrary vote.

Ck > Ck—1 > -+ > Cig1 > Ci—1 > ... = CL > D >
¢j > ¢ (i.e., the inverse of the former vote, apart from
¢; andc; which have maintained their order).



Proof: In the pairwise election betweenand any one of the Proof: If at least one of the;; with k +1 < ¢ < 2k is

c; With k +1 < i < 2Fk, pis ranked higher in onlytk? not removed, then in any pairwise election between such a
votes, and thus loses the pairwise election. So property 2bandidate ang, p will get at most5k? votes. However, the

is satisfied. For a pairwise election between saemandc; lowest-indexed remaining candidate among ¢h&vith & +

(1 <i<~kandk+1 < j < 2k), the first12k3 votes’ 1 < i < 2k will get at least6k® votes in every one of its
net contribution to the outcome in this pairwise election ispairwise elections. Sp does not win. On the other hand, if
0. Additionally, the two votes associated with any pgair  all thec; with £ +1 <4 < 2k are removedp will get at least

(1 < g < kandk+1 <r < 2k)also have a net contribution 6k3 + 3k? votes in every one of its pairwise elections, which
of 0, if eitherq # i orr # j. The only remaining votes are is more than half the votes; gowins. In both cases there is
the two associated with the pairj, soc; wins the pairwise a "margin” of at leas®, so a single additional vote will not
election by2 votes if there is an edg@, j) in B, andc; wins ~ change this. =

the pairwise election bg votes otherwise. So property 2c

is satisfied. Because both are satisfied with a "margin” of affheorem 12 R, satisfies property 2a of Theorem 7 under the
least2, a single additional vote will not change this. m STV protocol. This holds even when there is a single addi-

. . ional arbitrary vote.
Finally, because property 2a is protocol-dependent, Wéo al arbitrary vote

need to prove it for our reduction on a per-protocol basis. Thigroof: If at least one of the;; with k + 1 < i < 2k is

is what the following four theorems achieve. not removed, consider the lowest-indexed remaining candi-
53 E | date among the;, with k +1 < ¢ < 2k; call it {. [ will hold at
: xamples least6k? votes as long as it is not eliminated, amdan hold

Theorem 9 R; satisfies property 2a of Theorem 7 under theat most5k2 votes as long akis not eliminated. It follows that
Plurality protocol. This holds even when there is a singlep will be eliminated beforé, sop does not win. On the other
additional arbitrary vote. hand, if all the the;; with £ +1 < ¢ < 2k are removedp will

, . ) hold at leastk® + 3k2 votes throughout, which is more than
Proof: If at least one of the; with k + 1 < < 2kisnot  paif the votes; sp cannot be eliminated and wins. In both

2 ; : ; e
removed,p can get at mosbk~ votes, whereas the lowest- cages there is a "margin” of at leatso a single additional
indexed remaining candidate among thevith k + 1 < i < vote will not change this. =

2k will get at leasi6k? votes, s does not win. On the other

hand, if all thec; with k+1 < i < 2k are removedp willget  1haorem 13 In anv of RPRE + Plurality. RPRE
at least6k® + 3k* votes, which is more than half the votes, g, 7" RPRE JZ Mazimin +andm}g];}%1§ T STJ

sop wins. In both cases there is a "margin” of at leasso a CONSTRUCTIVE-MANIPULATION is #P-hard
single additional vote will not change this. = '

Proof: Immediate from the previous theorems.m
Theorem 10 R; satisfies property 2a of Theorem 7 under the
Borda protocol. This holds even when there is a single addi- )
tional arbitrary vote. 6 PSPACE-hardness when scheduling and

Proof: If at least one of the; with £ +1 < 7 < 2k is not voting are interleaved
removed, consider the highest-indexed remaining candidaté this section, we increase the complexity of manipulation
among the:; with k£ + 1 < i < 2k; call it h. The first12k3 one more notch, to PSPACE-hardnedsy interleaving the
votes will puth at leasVk? — 3k2 points ahead of. (12k* —  scheduling and vote elicitation processes.
3k? of them rankh abovep, and the3k? others can give an We first discuss the precise method of interleaving required
advantage of at mogt each.) The2k? remaining votes can for our result. The method is detailed and quite complicated.
contribute an advantage toof at mostk each, and it follows Nevertheless, this doe®t mean that the interleaving should
thath will still have at leasTk3 — 3k% more points thap. So  always take place in this particular way in order to have the
p does not win. On the other hand, if all thewith & + 1 < desired hardness. If the interleaving method used for a partic-
i < 2k are removed, then there are two groupstbt — ular election is (say, randomly) chosen from a wider (and pos-
3k2 among the firstl2k® votes which (over the remaining sibly more naturally expressed) class of interleaving methods
candidates) are each other's exact inverses and hence hasentaining this one, our hardness result still goes through, as
no net effect on the scores. Also, the 1as2 votes, which  hardness carries over from the specific to the general. Thus,
are organized in pairs, have no net effect on the score becauser goal is to find the most specific method of interleaving
(over the remaining candidates) the votes in each pair are eaddr which the hardness still occurs, because this gives us the
other’s exact inverse. The remaining votes all rartkighest ~ most information about more general methods. We only de-
among the remaining candidates gseins. In both cases the fine the method for the case where the number of candidates
“margin” is big enough that a single additional vote will not is a multiple of4 because this is the case that we will reduce
change this. = to (so it does not matter how we generalize the protocol to
cases where the number of candidates is not a multiplg. of
The(_)re_m 11 Ry satisfies property 2a of Theorem 7 unde_r the pefinition 4 TPRE proceeds as follows:
Maximin protocol. This holds even when there is a single
additional arbitrary vote. SPSPACE is the class of problems solvable in polynomsyzice



1. Label the matchups (a matchup is a space in the pre- e (Property 3c) For any € Y, ¢, andc_, are both losing
round in which two candidates can face each other; at their pairwise elections against by at least votes (so
this point they do not yet have candidates assigned to  that they will lose them regardless of a single additional
them)1 through <! vote).

2. For each matchup assign one of the candidates to play Then CONSTRUCTIVE-MANIPULATION IiPRE + P is
in it, and denote this candidate hyi’ 1) Thus, onhe of PSPACE-hard (and PSPACE-CompIetGPit:an be executed
the candidates in each matchup is known. in polynomial space).

3. For somek which is a multiple oft, for eachi with1 < Proof: Consider the following election undéPRE+P. Let
i < k, assign the second candidate to play in matchup the candidate set be the set of all candidates occurring in the
and denote this candidatgs, 2). Thus, we havé fully  votes constructed from (the "original candidates”), plus one
scheduled matchups. dummy candidate for each of the original candidates besides

4. For each pair of matchup@i— 1, 2i) withi > &, assign thec,, andc,'v. To each of the constructed votes, add all the
two more candidates to face the candidates already iflummy candidates at the bottom; let the resulting set of votes
these two matchups, and denote theif2i — 1,2i), 1 be the_set of the nonmanypulators’ votes, according to which
ande((2i — 1,2i),2). (Thus, at this point, all that still they will answer the queries posed to them. The manipulator

needs to be scheduled is, for eachvhich of these two Nas yet to decide on its strategy for answering queries. Af-

facesc(2i — 1,1) and whiche(2i, 1).) ter.step4.(according to Definitipn 4) of PRE + P (up to
which point the manipulator will not have had to make any
5. Fori=%+1to %: decisions), let the situation be as follows:
» Randomly decide which of(2i—1, 27), 1) andc((2i— e The number of already fully scheduled matchupk is
1,29),2) face3c(2z‘.—1, 1), and which facgs(%, 1). De- \%me. Inmatchup (1 < i < |X|), 40, facese_,..
note the former(2i — 1,2), the latterc(2i, 2), In the remaining fully scheduled matchups, candidates
e Ask all the voters whether they prefeli — g, 1) or not corresponding to a literal face a dummy candidate.
c(i — £,2). (We observe that, even if the number of al- 4 Matchupsk + 2i — 1 andk + 2i (1 < i < |Y|) already
ready scheduled matchupskis= 0, the elicitation pro- have candidates, ,, andc_,, in them, respectively. The
cess trails behind the scheduling process by a fazfpr other two candidates to be assigned to these rounds are
6. Elicit the remainder of all the votes. c,, and a dummy candidate.

. C . Thus, what will happen from this point on is the following.
One important property of this elicitation process is that theFO”- ranging from1 to | X|, first the protocol will schedule

voters are treated symmetrically: when a query is made, it i§;nich of c... andc. .. face which ofc! and the dummy
made to all of the voters in parallel. Thus, no voter gets an unéandidate.+ylihel fac?i?{g the dummy will move on. and the

fair advantage with regard to knowledge about the schedul : 1 ]
Another important property is that the elicitation and schedul?;},]hee:,vm"bgeaiekge(? ﬁﬁi?gy&fzp;zgecrtzi%g F)Srggé)rr;ga,e\éigl
ing process at no point depends on how the voters have a4 se the nonmanipulators will leave this pairwise election
swered earlier queries. Thus, voters cannot make inferences 4 by property 3b, the manipulator's vote will be decisive.
about what other voters replied to previous queries on the barp ¢ “\ve can think of this as nature and the manipulator alter-
sis of the current query or the current knowledge about the, tinély giving the variables iy and X respectively truth-
schedule. These two properties guarantee that many issues\pg

strategic voting that may occur with vote elicitatig@onitzer lues: v is set totrueif ¢y, survives, and tdalseif c_,
. survives. By property 3a it then follows thatwins if and
and Sandholm, 2002In fact do not occur here. y property A

only if the resulting assignment satisfies all the clauses, i.e. is
We are now ready to present our result. a solution to the SAT instance. Thus, the manipulator’s strat-
Theorem 14 Given a voting protocolP, suppose that it is €gy for setting variables should aim to maximize the chance
possible, for any Boolean formulain conjunctive normal of the SAT instance being satisfied eventually. But this is
form (i.e., a SAT instance) over variables= X UY with  exactly the problem STOCHASTIC-SAT, which is PSPACE-
|X| = |Y]| (and corresponding literald), to construct in ~ completelPapadimitriou, 1985
polynomial time a set of votes over a candidate set containing If P can be executed in polynomial space, the manipulator

at |eaSt{p}UCLU{C§, .y € Y} with the following properties: ~ can enumerate all possible outcomes for all possible strategies
in polynomial space, so the problem is also in PSPACE

e (Property 3a) If we remove, for each € V, one of
¢y, ande_,, p would win an election under protocét Because the preconditions of Theorem 14 are similar to
against the remaining candidates if and only if for everythose of Theorem 1, we can build on our previous reductions
clausek € K (whereK is the set of clauses i), there  to apply this theorem to the well-known protocols.

IS Some.l €L S.UCh thate; has not bgen n?moved’ .ahd Theorem 15 For each of Plurality, Borda, Maximin,
occurs ink. This should hold even if a single arbitrary 50497y, there exists a reduction that satisfies properties 3a,
vote is added. 3b and 3c of Theorem 14. Thus, In any 6t RE+ Plurality,

e (Property 3b) For anyr € X, ¢, andc_, are tied in IPRE + Borda, IPRE + Maximin,andIPRE + STV,
their pairwise election after these votes. CONSTRUCTIVE-MANIPULATION is PSPACE-complete.



Sketch of Proof We can modify the reductions from Sec- [Ephrati and Rosenschein, 199Bithan Ephrati and Jef-
tion 4 to satisfy the preconditions of Theorem 14. This is frey S Rosenschein. Multi-agent planning as a dynamic
done by adding in the}, in such a way as to achieve property  search for social consensus. IJCAI, pages 423-429, Cham-

3c (ranking them just above their correspondiggandc_, bery, France, 1993.
in slightly more than half the votes), while preserving prop-[Gibbard, 1978 A Gibbard. Manipulation of voting
erty 3a (by ranking them as low as possible elsewhereqn schemesEconometrica41:587—602, 1973.

[Papadimitriou, 1986 C Papadimitriou. Games against na-

. ture. Journal of Computer and System Scien@is288—
7 Conclusions 301, 1985,

\oting is a general method for preference aggregation in mullPennoclet al, 2004 David M Pennock, Eric Horvitz, and

tiagent systems, but seminal results have shown that all (non- C. Lee Giles. Social choice theory and recommender sys-

dictatorial) voting protocols are manipulable. One could try tems: Analysis of the axiomatic foundations of collabora-

to avoid manipulation by using voting protocols where deter- tive filtering. AAAI, pages 729-734, Austin, TX, 2000.

mining a beneficial manipulation is hard computationally. A[Satterthwaite, 1995M A Satterthwaite. Strategy-proofness

number of recent papers study the complexity of manipulat- and Arrow’s conditions: existence and correspondence

ing existing protocols. theorems for voting procedures and social welfare func-
This paper is the first work to take the next steflesign- tions. Journal of Economic Theoyy10:187-217, 1975.

ing new protocols that are especially difficult to manipulate [Valiant, 1979 Leslie Valiant. The complexity of computing

Rather than designing these new protocols from scratch, we the permaneniTheoretical Computer Sciendg&189-201,

instead showed how twveakexisting protocols to make ma- 1979.

nipulation hard, while leaving much of the original nature

of the protocol intact. The tweak studied in this paper con-

sists of adding one preround to the election, where candi-

dates face each other one against one. The surviving can-

didates continue to the original protocol. Surprisingly, this

extremely simple and universal tweak makes typical proto-

cols hard to manipulate! The protocols become NP-hard, #P-

hard, or PSPACE-hard to manipulate, depending on whether

the schedule of the preround is determined before the votes

are collected, after the votes are collected, or the schedul-

ing and the vote collecting are interleaved, respectively. We

proved general sufficient conditions on the protocols for this

tweak to introduce the hardness, and showed that the most

common voting protocols satisfy those conditions. These are

the first results in voting settings where manipulation is in a

higher complexity class than NP (presuming PSPAEHRP).
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