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Abstract In game theory, it is well known that being able to commit to a strategy before other players

move can be beneficial. In this paper, we analyze how much benefit a player can derive from commitment

in various types of games, in a quantitative sense that is similar to concepts such as the value of mediation

and the price of anarchy. Specifically, we introduce and study the value of pure commitment (the benefit

of committing to a pure strategy), the value of mixed commitment (the benefit of committing to a mixed

strategy), and the mixed vs. pure commitment ratio (how much can be gained by committing to a mixed

strategy rather than a pure one). In addition to theoretical results about how large these values are in the

extreme case in various classes of games, we also give average-case results based on randomly drawn

normal-form games.
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1 Introduction

In settings where multiple self-interested agents (or players) interact in the same domain, game theory

gives various solution concepts that prescribe how the players should act, such as Nash equilibrium,

correlated equilibrium, etc. A game is defined as a set of players, the information and actions available to

each of these players and a set of payoffs for each possible outcome. Sometimes, it is in the power of one

of the players to effectively change the structure of the game. A notable example of this is that one player

may be able to commit to a strategy (and communicate this commitment to the other players) before the

other players move. While it may initially seem unintuitive that tying one’s hands before the other players

move could be beneficial, it is well known in game theory that this is indeed so. To see how this can affect

the outcome of a game, consider the following game (which is often used as an example of this).

(1,0) (U) (0,1) (D) 
(.5,.5)  

… … 

1 

2 2 2 

(.5,.5)  (2.5,.5)  (0,0)  (2,1)  (3,0)  (1,1)  

L R 

U (1,1) (3,0) 

D (0,0) (2,1) 

Fig. 1 A normal-form game, and the extensive-form representation of its commitment version.

Example 1 (known) Consider the normal-form game in Figure 1. For the case where the players move

simultaneously (no ability to commit), the unique equilibrium is (U,L): U strictly dominates D, so that

the game is solvable by iterated strict dominance. So, player 1 (the row player) receives utility 1. However,

now suppose that player 1 has the ability to commit. Then, she is better off committing to play D, which

will incentivize player 2 to play R, resulting in a utility of 2 for player 1. The situation gets even better

for player 1 if she can commit to a mixed strategy: in this case, she can commit to the mixed strategy

(.5− ε , .5+ ε), which still incentivizes player 2 to play R, but now player 1 receives an expected utility

of 2.5−ε . (Note that there is never a reason for player 2 to randomize, since he effectively faces a single-

agent decision problem.) The game where player 1 can commit to a mixed strategy can be represented as

an extensive-form game with a continuum of actions for player 1, as illustrated in Figure 1.

It has been previously shown that, in a sense, optimal commitment to a mixed strategy never hurts a

player (relative to any Nash equilibrium or even any correlated equilibrium) [29]. (A rough intuition is

that a player can simply commit to her equilibrium strategy.) In contrast, committing to a pure strategy is

not always beneficial; for example, consider matching pennies.

An optimal strategy to commit to is usually called a Stackelberg strategy, after von Stackelberg, who

showed that in Cournot’s duopoly model [7], a firm that can commit to a production quantity has a strate-

gic advantage [28]. The computation of Stackelberg strategies has recently started to receive significant

attention. The first paper on this topic [6] appeared in EC-2006 and studied Stackelberg strategies in

normal-form and Bayesian games, and showed, among other things, that the optimal mixed strategy to
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commit to in a two-player normal-form game can be found in polynomial time using linear program-

ming,1 though this becomes NP-hard in Bayesian games or with three players (a later paper [16] proved

inapproximability results for the Bayesian case). Unfazed by the NP-hardness result, Paruchuri et al. [20]

developed a mixed-integer programming formulation for the Bayesian case, and this algorithm has been

implemented at the core of deployed security applications, specifically the strategic random placement

of checkpoints and canine units at Los Angeles International Airport [9,21]. Later work [10,12] studied

computing Stackelberg strategies in settings where the normal form has exponential size, for example,

when player 1 has to allocate multiple resources to defend multiple targets. Additional motivating do-

mains for this line of work are: the scheduling of Federal Air Marshals [27], Coast Guard patrols [26]

and airport security on a national scale [22]. Additional work investigates computing optimal strategies

to commit to in extensive-form [15] and stochastic games [17].

Real-world applications to security and law enforcement are not the only motivation for work on

studying the effects of commitment; the notion of commitment plays a key role in many game-theoretic

settings. Notably, in mechanism design (or environment design or principal-agent settings), the designer

(or center, auctioneer, principal) is assumed to be able to commit to a mechanism before the (other)

agents move. For example, if an auctioneer uses a Vickrey auction, it is generally assumed that she will

unambiguously commit to this mechanism, rather than (for example) waiting for the bids to come in,

and subsequently backtracking on her promise of a Vickrey auction and attempting to charge the winner

her own bid (the first price) after all. As a result, the notion of commitment is a key link in the strong

connection between game theory and mechanism design.

Our framework. In the literature discussed above, an advantage to committing to a strategy is often

shown; moreover, we know that if commitment to a mixed strategy is possible, then at least in two-player

games, committing to a mixed strategy never hurts [29]. However, to our knowledge, there has been no

analysis of how much commitment can benefit a player. In this paper, we define and study the “value of

commitment,” which is the ratio between player 1’s utility when she commits, and her utility when she

does not commit. In the normal form game in Example 1, we considered two possibilities: player 1 can

commit to a pure strategy, or to a mixed strategy. Without commitment, player 1 gets 1. With pure-strategy

commitment, player 1 gets 2. Hence, the value of pure commitment (VoPC) for this game is 2/1= 2. With

mixed-strategy commitment, player 1 gets 2.5. Hence, the value of mixed commitment (VoMC) for this

game is 2.5/1 = 2.5. We will also be interested in how much player 1 gains by committing to a mixed

strategy rather than a pure one—this mixed vs. pure (MvP) ratio is 2.5/2 = 1.25 for this game. In fact,

we will generally be interested in classes of games, and the largest values that these ratios can attain. We

will define these concepts formally in Section 2.

Related concepts and research. Perhaps the most closely related paper is “On the Value of Correlation”

by Ashlagi et al. [2]. In this work, the authors consider the phenomenon that in some games, there are

correlated equilibria that lead to higher welfare than any Nash equilibrium, and they study the ratio be-

tween the welfare in the best correlated equilibrium and the best Nash equilibrium. They call this ratio

the value of mediation. This is similar to our notion of value of commitment, except that we consider

player 1 (the leader)’s utility rather than the combined welfare of all the players, and are interested in the

ratio between the solution with and without commitment (according to several solution concepts) rather

than between correlated and Nash equilibrium. (Ashlagi et al. also study the ratio between the maximum

possible welfare and the maximum welfare obtained in a correlated equilibrium.)

The work by Ashlagi et al., in turn, builds upon existing work that tries to evaluate the welfare ob-

tained under certain solution concepts using certain ratios. Most notably, there is the work on the price of

anarchy [14,19]. The price of anarchy is a measure of the amount of welfare lost due to the selfishness

1As is common in this literature, the algorithm presented in this paper assumes that ties are broken in the leader’s favor. The

same algorithm appears in a GEB-2010 paper by von Stengel and Zamir [29] to compute the highest possible payoff for the leader;

they also give a linear-programming algorithm to compute the lowest possible payoff for the leader, and point out that these payoffs

must be the same in generic bimatrix games.
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of the players (relative to what a central planner could obtain). Specifically, it looks at the worst possible

ratio between the worst Nash equilibrium and the optimal social welfare obtainable from the game. Of

particular interest is the cost of selfish routing [24], which considers the ratio between the latency in Nash

equilibrium and the optimal latency. There is also a literature on Stackelberg routing [23,11]. While the

use of the word “Stackelberg” here indicates a superficial similarity to our work (in particular the routing

games that we study later in the paper), there is a fundamental difference. In the existing Stackelberg

routing literature, a benevolent central authority first routes some of the flow before the selfish players

move, and the goal of the central authority is to minimize the resulting price of anarchy (i.e., the ratio

between the cost of the resulting flow and the optimal flow). In contrast, in our setting, player 1 is not a

benevolent central authority, but rather a selfish player like any other, who is trying to minimize her own

cost (or maximize her own utility), as is usually the case in Stackelberg games; and we are interested in

the improvement in her own cost/utility that the player can obtain through commitment. One exception

showed that for single commodity markets with nonatomic players and a Stackelberg leader solely inter-

ested in minimizing the cost of the flow that she controls, the ability to commit can give an unbounded

reduction in the cost of the leader’s flow [3].

Various other, similar ratios have been studied, such as the price of stability (which considers the best

rather than the worst Nash equilibrium) [1], and analogous concepts using correlated rather than Nash

equilibria [4]. However, to our knowledge, beyond the one exception noted above none of these ratios

have considered the benefit of commitment.

Our contributions. In the rest of this paper we first formally define the VoPC, VoMC, and MvP ratios, in

Section 2. In Section 3, as a “warm-up,” we investigate these ratios in 2×2 normal-form and symmetric

normal-form games. We investigate these ratios in extensive-form and security games in Section 4. In

Section 5, we investigate these ratios in atomic selfish routing games with k-nomial costs (and in Sec-

tion 5.2 and Section 5.3 we extend these results to symmetric games and arbitrary cost functions). Figure 2

contains a summary of our results. Immediately noticeable is the unboundedness of many of these results.

In contrast, in Section 6, we look at experimental results on various distributions over games. Here, we

find that generally, the ability to commit to a mixed strategy provides only limited benefits to player 1’s

utility relative to simultaneous-move equilibrium concepts, though in some cases some of the equilibria

are significantly worse for player 1 (particularly, unsurprisingly, ones that are selected to be as bad as

possible for player 1). Commitment to a pure strategy is generally almost as beneficial to the leader as

commitment to a mixed strategy, with the exception of zero-sum games.

2 Definitions

We now define the concepts of VoPC, VoMC, and MvP formally. The main difficulty in doing so is that

we must specify which outcome materializes after player 1 commits, or when player 1 does not commit.

That is, what solution concept is used for the remaining game? In Example 1, this was unambiguous: if

player 1 commits, player 2 faces a straightforward single-agent optimization problem; if player 1 does

not commit, the game is solvable by iterated strict dominance. However, we will not be so lucky for every

game: for example, if there are at least three players then even after player 1’s commitment the game

may not be solvable by iterated strict dominance. (When there are more than two players we assume

that only player 1 is able to make a commitment.) Generally, we will have to use a solution concept that

is defined everywhere. For example, we can assume that the worst Nash equilibrium for player 1 will

result—or the best, or the worst correlated equilibrium, etc. Recall that a Nash equilibrium is a solution

concept that assumes that each player knows the equilibrium strategy of the other player, and given this

information has no incentive to change their own strategy. An action is said to be a best response if under

the information a player has available to them, the action they take maximizes their own utility.
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Game type VoP VoM MvP

Normal-form games (2×2) ∞ (ISD) ∞ (ISD) ∞ (ISD)

α-close Symmetric normal-form games (3×3) 1+3α

1−α
(ISD) 1+3α

1−α
(ISD) ∞ (ISD)

Symmetric normal-form games (3×3) ∞ (ISD) ∞ (ISD) ∞ (ISD)

Extensive-form games (3 leaves) ∞ (BI) ∞ (BI) ∞ (BI)

Security games (2×2) ∞ (Unique- ∞ (Unique- ∞ (Unique-

Correlated) Correlated) Correlated)

Atomic selfish routing

k-nomial costs (n players) nk (ISD) nk (ISD) nk (ISD)

Symmetric, k-nomial costs (2 players, directed edges) 2k (Nash) 2k (Nash) 2k (Nash)

Arbitrary costs (2 players) ∞ (ISD) ∞ (ISD) ∞ (ISD)

Fig. 2 Summary of results. In parentheses, we give the strongest solution concept for which we prove the lower bound: iterated

strict dominance (ISD), backward induction (BI), unique correlated equilibrium, or Nash equilibrium. More details appear in the

relevant sections.

Let SC denote a solution concept where both of the players best respond under some information

model (although the action they take might not look like a best response under a different information

model) and let u1(SC(G)) be the utility that player 1 receives under that solution concept in game G. This

includes, but is not limited to: Nash equilibrium (and its various refinements), correlated equilibrium,

iiterated strict dominance, and backwards induction. Of course, not all of these solution concepts make

sense for any given class (C ) of games. Let S1 (resp. Σ1) be the set of player 1’s pure (resp. mixed)

strategies. (Of course, S1 ⊆ Σ1.) Let σ1 ∈ Σ1 be a strategy for player 1; let G|σ1
be the game among the

remaining players that results after player 1 commits to σ1. Then the value of pure commitment (w.r.t. SC)

is defined as VoPCSC(C ):

VoPCSC(C ) = sup
G∈C

sups1∈S1
{u1(SC(G|s1

))}

u1(SC(G))

Similarly, we get the following definitions for the value of mixed commitment, VoMCSC(C ):

VoMCSC(C ) = sup
G∈C

supσ1∈Σ1
{u1(SC(G|σ1

)}

u1(SC(G))

and the mixed vs. pure ratio, MvPSC(C ):

MvPSC(C ) = sup
G∈C

supσ1∈Σ1
{u1(SC(G|σ1

)}

sups1∈S1
{u1(SC(G|s1

)}

Some games are more naturally modeled by cost functions ci rather than utility functions ui. In that

case, we redefine

VoPCSC(C ) = sup
G∈C

c1(SC(G))

infs1∈S1
{c1(SC(G|s1

))}

etc. We are assuming nonnegative utility and cost functions everywhere. In our results below, to simplify

the notation, we will omit C when it is clear from context.

We have the following trivial lemma:
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Lemma 1 For any SC, VoMCSC(C )≥VoPCSC(C ).

Proof The sup in the numerator of VoMC is over a larger set than the sup in the numerator of VoPC (in

the case of costs, the inf in the denominator of VoMC is over a larger set).

Any action that gives less utility than another against all opponent actions is said to be strictly dom-

inated and cannot be a part of any Nash equilibria. Iterated strict dominance (ISD) takes advantage of

this fact by removing strictly dominated strategies from the game in an iterative manner, checking to

see if new actions can be removed on each iteration until the process reaches convergence. However, for

ISD, the expressions above are not well-defined because for any game G that is not solvable by ISD,

u1(SC(G)) is not defined. Hence, when we consider VoPCISD (etc.), we require that the outer sups are

taken only over games solvable by ISD and the inner sups are taken only over strategies that result in a

game solvable by ISD. Similarly, we can consider the solution concept UniqueNash, which can be ap-

plied only when the game has a unique Nash equilibrium. Because a game solvable by ISD has a unique

correlated equilibrium, we get:

Lemma 2 For any class of games C , for any SC ∈ {BestNash, WorstNash,UniqueNash,
BestCorrelated, WorstCorrelated}, we have VoPCISD(C ) ≤ VoPCSC(C ), VoMCISD(C ) ≤ VoMCSC(C ),
and MvPISD(C )≤ MvPSC(C ).

As a result, if we can prove a high lower bound for ISD, it immediately implies a high lower bound

for these other concepts. Similarly for UniqueNash, we get:

Lemma 3 For any class of games C , for any SC ∈{BestNash, WorstNash}, we have VoPCUniqueNash(C )≤
VoPCSC(C ), VoMCUniqueNash(C )≤VoMCSC(C ), and MvPUniqueNash(C )≤ MvPSC(C ).

The game of chicken (with the payoffs illustrated in Figure 3) is an example where the value of

commitment differs drastically between different solution concepts. The best commitment strategy for

player 1 is to commit to a pure strategy of Straight, which gives her a utility of 1. If we compare this to

the best Nash equilibrium for player 1, where player 1 plays Straight and player 2 plays Dodge, we find

that VoPCBestNash = 1
1
= 1. However, if we instead compare this to the worst Nash equilibrium for player

1, where player 1 plays Dodge and player 2 plays Straight, we find that VoPCWorstNash = 1
ε

, which goes

to ∞ as ε → 0 .

Dodge Straight

Dodge (1/2,1/2) (ε ,1)

Straight (1,ε) (0,0)

Fig. 3 Chicken

L R

U (ε ,1) (1,0)

D (0,0) (1−ε ,1)

Fig. 4 VoPCISD(NF2×2) and VoMCISD(NF2×2)

L R

U (ε ,1) (1,0)

D (0,0) (2ε ,1)

Fig. 5 Game for MvPISD(NF2×2)

2.1 Close-to-Constant-Sum Games

In two-player constant-sum games, by the minimax theorem, each player has a value that she can guaran-

tee herself, and these values sum to the constant. Therefore, the players will obtain these values under any

reasonable solution concept, including Stackelberg solutions. Hence, the value of commitment is 1 in such

games. This leads to the interesting question of what happens when the game is close to constant-sum. We

say that a two-player game is α-close to a constant sum c if for all outcomes o, |u1(o)+u2(o)− c| ≤ α .

We immediately obtain the following lemma:
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Lemma 4 In families of games where one can scale all players’ utilities (simultaneously) by any constant

and add any constant to a single player’s utility function, any game with nonnegative utilities can be made

α-close to a constant sum c, for any α and c, without modifying the VoPC, VoMC, and MvP ratios.

Proof Take an arbitrary game in a family meeting the above qualifications. Let uh
i be the highest payoff

in the game for player i, and let uh = max{uh
1, . . . ,u

h
n}. Next, we modify each payoff as follows. For

each outcome o and for each player i ∈ {1, . . . ,(n)}, let u′i(o) =
c
n
+ α

n·uh ui(o). Each modified payoff is

in [ c
n
, c

n
+ α

n
], so this new game is α-close to c. We note that we have applied an affine transformation to

each player’s utility function, and hence each player’s behavior is unchanged. Additionally, for player 1,

we have only scaled every payoff by the same amount. Thus, in all three of the ratios of interest, both the

numerator and the denominator have been scaled by this value, and hence the ratio has not changed.

This result may appear to make the notion of α-closeness to a constant sum c uninteresting in this

context, because it suggests that any ratio that can be obtained can also be obtained by a game that is

α-close to a constant sum c (for any α and c). This is indeed the case for many of the families that we

study, but in one case, namely symmetric normal-form games, the family does not satisfy this condition.

We will show that the ratios that can be obtained depends on α for this family of games in Section 3.

3 Normal-Form and Symmetric Normal-Form Games

Let us start with some classes of games for which the ratios are easy to determine.

Normal-form games.

First, consider the class of 2×2 normal-form games (NF2×2). Here, we find that for NF2×2:

VoPCISD =VoMCISD = MvPISD = ∞.

Example 2 For VoPCISD = ∞, consider the game in Figure 4. In this game, U strictly dominates D, so

that the game is solvable by iterated strict dominance, resulting in a utility of ε for player 1. If player 1

commits to the pure strategy D, player 2’s best response will be R, resulting in a utility of 1−ε for player

1. Thus VoPCISD ≥ 1−ε

ε
for any ε , hence by letting ε → 0, we get VoPCISD = ∞. VoMCISD = ∞ follows

from VoPCISD = ∞ and Lemma 1.

For MvPISD = ∞, consider the game in Figure 5. The optimal pure strategy to commit to is again D,

but this time this only gives player 1 a utility of 2ε . However, if player 1 can commit to a mixed strategy,

then she can commit to 1
2
−δ U , 1

2
+δ D. Against this mixed strategy, player 2 still prefers to play R, and

this way player 1 can get an expected utility arbitrarily close to 1/2+ε . Thus MvPISD ≥ (1/2+ε)/(2ε),
hence by letting ε → 0, we get MvPISD = ∞.

Recall that although we only consider the restrictive solution concept ISD (Iterated Strict Dominance)

here, this result also provides a lower bound on VoPCSC, VoMCSC and MvPSC for SC ∈ {BestNash,
WorstNash,UniqueNash,BestCorrelated,WorstCorrelated} (Lemma 2).

We can prove a similar result even when the games are α-close to constant sum.

Corollary 1 For the the class of games NFα2×2 of 2 × 2 normal-form games that are α-close to a

constant sum of 1:

VoPCISD =VoMCISD = MvPISD = ∞.

Proof This follows from Example 2 and Lemma 4.

Symmetric Normal-Form Games.

Next, we consider what happens when we further constrain the class of games to be symmetric.



8 Joshua Letchford et al.

L C R

U ( 1−α

2
, 1−α

2
) ( 1−α

2
+ ε , 1−α

2
− ε) (1+α ,0)

M ( 1−α

2
− ε , 1−α

2
+ ε) ( 1−α

2
, 1−α

2
) ( 1+3α

2
−2ε , 1−α

2
+2ε)

D (0,1+α) ( 1−α

2
+2ε , 1+3α

2
−2ε) ( 1

2
, 1
2
)

Fig. 6 Game for VoPCISD(SNFα3×3) and VoMCISD(SNFα3×3)

L C R

U ( 1
2
, 1
2
) (0,1) (1,0)

M (1,0) ( 1
2
, 1
2
) (0,1)

D (0,1) (1,0) ( 1
2
, 1
2
)

Fig. 7 Game for MvPISD(SNFα3×3) (rock-paper-scissors)

Theorem 1 For the class of two-player symmetric normal-form games that are α-close to a constant sum

of 1 (SNFα), for any solution concept SC under which both players end up playing a best response:

VoPCSC ≤
1+3α

1−α
and VoMCSC ≤

1+3α

1−α
.

Proof First, we argue that regardless of what the other player does, each player has a response that gives

her a utility of at least 1−α

2
. For the sake of contradiction, w.l.o.g., suppose that player 1 has a strategy

for which player 2’s best response gives him a utility of less than 1−α

2
. By symmetry, this would mean

that player 2 also has a strategy for which player 1’s best response gives her a utility of less than 1−α

2
.

But then, if both players played these strategies, their combined utility would be strictly less than 1−α ,

contradicting the game’s α-closeness. This shows that the denominator for both of these ratios is at least
1−α

2
. Second, we argue that regardless of how player 1 commits, she can achieve at most 1+3α

2
. Since

player 2 is guaranteed to have a response to this commitment that gives him at least 1−α

2
and because

the sum of the two utilities can be at most 1+α , the most that player 1 can hope to achieve through

commitment is 1+α − 1−α

2
= 1+3α

2
. Thus VoPCSC ≤ 1+3α

1−α
and VoMCSC ≤ 1+3α

1−α
.

If we restrict ourselves to 3×3 symmetric normal-form games that are α-close to a constant sum of

1 for α < 1 (SNFα3×3) we can show a corresponding upper bound:

VoPCISD =VoMCISD ≥
1+3α

1−α
and MvPISD = ∞.

Example 3 For VoPCISD ≥ 1+3α

1−α
, consider the game in Figure 6. First, because α < 1, M and C are dom-

inated by U and L, respectively. After removing these, B and R are dominated by U and L, respectively.

Hence, the game is solvable by ISD, resulting in a utility of 1−α

2
for player 1. In contrast, if player 1

commits to the pure strategy M, then player 2’s best response is R, resulting in a utility of 1+3α

2
− 2ε

for player 1. Thus, VoPCISD ≥
1+3α

2 −2ε

1−α
2

for any ε > 0, hence by letting ε → 0, we get VoPCISD ≥ 1+3α

1−α
.

VoMCISD ≥ 1+3α

1−α
follows from VoPCISD ≥ 1+3α

1−α
and Lemma 1.

For MvPISD =∞, consider the constant-sum game in Figure 7 (rock-paper-scissors). Any pure strategy

that player 1 can commit to has a response by player 2 that gives player 1 a utility of 0. However, if player
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1 commits to the mixed strategy (1/3, 1/3, 1/3), then any response by player 2 results in a payoff of 1/2

for player 1. Thus MvPISD = 1/2

0
= ∞.

By letting α approach 1, we see that:

VoPCISD(SNF3×3) =VoMCISD(SNF3×3) = MvPISD(SNF3×3) = ∞.

4 Extensive-Form and Security games

In this section we will look at two additional classes of games.

Extensive-form games.

First we will consider the class PIEF of perfect-information extensive-form games. An extensive-

form game gives an explicit ordering of player actions and what information is available to each player

at each action. For extensive-form games we will be concerned with comparing with the solution concept

of backwards induction (BI). We will now show that for PIEF :

VoPCBI =VoMCBI = MvPBI = ∞

Example 4 For VoPCBI = ∞, consider the game in Figure 8. (It should be emphasized that player 1, the

player with commitment power, moves second in this game.) In this game, L dominates R for player

1. Given this, at the top level L dominates R for player 2, resulting in a utility of ε for player 1. If

player 1 commits to R, then player 2 will prefer to go right, resulting in a utility of 1− ε for player 1.

Thus VoPCBI ≥ 1−ε

ε
, hence by letting ε → 0, we get VoPCBI = ∞. As usual, VoMCBI = ∞ follows from

VoPCBI = ∞ and Lemma 1.

1 

(0,.5-ε)  (ε,1)  

(1-ε, 1-ε)  

2 

Fig. 8 Game for VoPCBI(PIEF) and VoMCBI(PIEF)

1 

(2ε,1-ε)  (1,0)  

2 

(0,.5-ε)  

Fig. 9 Game for MvPBI(PIEF)

For MvPBI = ∞, consider the game in Figure 9. The optimal strategy to commit to is L, leading to a

utility of 2ε for player 1. If player 1 commits to a mixed strategy of 1
2

R, 1
2

L, then player 2 will still prefer

to go right. In this case player 1’s expected utility is 1−ε

2
. Thus MvPBI ≥ ((1− ε)/2)/ε , hence by letting

ε → 0, we get MvPBI = ∞.

We also have the following corollary for when the game is restricted to be α-close.

Corollary 2 For perfect-information extensive-form games that are α-close to constant sum (PIEFα):

VoPCBI =VoMCBI = MvPBI = ∞.
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Proof This follows from Example 4 and Lemma 4.

Security games.

Motivated by the various applications of computing optimal mixed strategies to commit to in security

domains (as discussed in the introduction), we now consider a small subclass of the class of security

games defined by Kiekintveld et al. [10]. We will call this class simple security games (SSG). In a simple

security game, there is a set of targets T . The defender (player 1) chooses a target to defend; the attacker

(player 2) chooses a target to attack. Each player’s utility depends on two things: (1) which target the

attacker attacks, and (2) whether the defender has chosen to defend that target. Thus, uc
1(t) (resp., uc

2(t))
is the defender’s (resp., attacker’s) utility when target t is attacked and it is defended, and uu

1(t) (resp.,

uu
2(t)) is the defender’s (resp., attacker’s) utility when target t is attacked and it is not defended. We require

that for any t, uc
1(t)> uu

1(t) and uc
2(t)< uu

2(t).

T1 T2

T1 (ε ,0) ( 1
2
,1)

T2 (0,1) (1,0)

Fig. 10 Game for VoPCUniqueCorrelated(SSG2×2) and

VoMCUniqueCorrelated(SSG2×2)

T1 T2

T1 (1,0) (0,1)

T2 (0,1) (1,0)

Fig. 11 Game for MvPUniqueCorrelated(SSG2×2) (matching

pennies)

We will now show that for 2×2 simple security games (SSG2×2):

VoPCUniqueCorrelated =VoMCUniqueCorrelated = MvPUniqueCorrelated = ∞.

Example 5 For VoPCUniqueCorrelated = ∞, consider the game in Figure 10. Consider the following profile

of mixed strategies: player 1 plays 1
2

T1 and 1
2

T2; player 2 plays ( 1
1+2ε

) T1, 2ε

1+2ε
T2 for player 2). It is not

hard to see that this is the unique Nash equilibrium of the game; we will now prove the stronger claim

that it is even the unique correlated equilibrium of the game. Let pi j (for i, j ∈ {1,2}) be the probability

that player 1 plays Ti and player 2 plays Tj. Then, the correlated equilibrium constraints are

– p21 ≥ p11 (when player 2 is recommended to play T1)

– p12 ≥ p22 (when player 2 is recommended to play T2)

– ε p11 +(1/2)p12 ≥ p12 ⇔ 2ε p11 ≥ p12 (when player 1 is recommended to play T1)

– p22 ≥ ε p21 +(1/2)p22 ⇔ p22 ≥ 2ε p21 (when player 1 is recommended to play T2)

From this, we obtain p22 ≥ 2ε p21 ≥ 2ε p11 ≥ p12 ≥ p22, so it follows that these four quantities must all

be the same. Combined with the constraint that the probabilities sum to 1, we obtain the unique solution

p11 = p21 =
1

2(1+2ε) and p12 = p22 =
2ε

2(1+2ε) , which is consistent with the mixed strategies above. This

equilibrium leads to an expected utility for player 1 of 2ε

1+2ε
< 2ε .

On the other hand, if player 1 commits to the pure strategy T1, player 2’s best response is T2, so

that player 1’s utility is 1
2
. Thus, VoPCUniqueCorrelated ≥ (1/2)/(2ε), hence by letting ε → 0, we get

VoPCUniqueCorrelated = ∞. VoMCUniqueCorrelated = ∞ follows from VoPCUniqueCorrelated = ∞ and Lemma 1.

For MvPUniqueCorrelated = ∞, consider the game in Figure 11 (matching pennies). Any pure strategy

that player 1 can commit to has a response by player 2 that gives player 1 a utility of 0. However, if player

1 commits to the mixed strategy (1/2, 1/2), then any response by player 2 results in a payoff of 1/2 for

player 1. Thus MvPUniqueCorrelated = ∞.
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Korzhyk et al. [13] show that in security games (satisfying a minor assumption2), the optimal mixed

strategy to commit to for the defender is always a Nash equilibrium strategy as well. This may seem to

contradict our result that commitment can be of value in these games, but in fact there is no contradiction.

The optimal thing to do when committing to a mixed strategy is to commit to a strategy that is very

close to the equilibrium strategy, but incentivizes the attacker to play a response that is much better

for the defender than the attacker equilibrium strategy. Also, in that paper the attacker breaks ties in

the defender’s favor, so that the optimal mixed strategy to commit to is actually exactly the defender’s

equilibrium strategy.

Again, we have a matching corollary for α-close simple security games.

Corollary 3 For 2×2 α-close simple security games (SSGα2×2):

VoPCUniqueCorrelated =VoMCUniqueCorrelated = MvPUniqueCorrelated = ∞.

Proof This follows from Example 5 and Lemma 4.

5 Routing games

In this section, we present our technically most interesting results. We will consider what are known as

atomic selfish routing games [8]. In an atomic selfish routing game, each player has a pair of nodes, a

source node and a target node, and is interested in routing a given amount of indivisible flow from the

former to the latter. The cost incurred by each player depends both on the path chosen and the paths that

the other players choose. Since a follower will never reuse an edge in any undominated solution, we can

prove finite upper bounds on the amount of utility that can be gained by using commitment to manipulate

the follower(s) in many of our routing settings.

ɛ ɛ

ɛ 1

2 4+ 2 ɛ
3_

S

T

S

1

2

A
B

=T21 =T

Fig. 12 2-player LAR routing game for VoPC and

VoMC
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Fig. 13 3-player LAR routing game for VoPC and

VoMC

2They assume that every subset of a valid schedule is also a valid schedule.
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5.1 k-nomial Atomic Routing on Arbitrary Graphs

We first focus on the case where each player controls an indivisible unit amount of traffic, the edges

are undirected, and for every edge, the cost of using that edge scales as a general monomial, xk, with the

number of players using that edge. That is, each edge e has a coefficient ce, and if ne players use that edge,

each of them incurs a cost of cenk
e. We refer to this class of games as kAR (k-nomial Atomic Routing). We

use the cost-based versions of the definitions of VoPC, VoMC, and MvP.

Theorem 2 For k-nomial Atomic Routing with n players (kARn player):

VoPCSC ≤ nk, VoMCSC ≤ nk, and MvPSC ≤ nk

for any solution concept SC where player 1 maximises her utility under the information available to her

and the other players do not play dominated strategies.

Proof For any given routing game G, we can remove all the players but player 1 to obtain a game G1.

In this game, player 1 will just choose the lowest-cost path. That same path is still an option in G; in

the worst case, each of the other n− 1 players uses all the edges on that path (but each of them will use

each edge at most once, because using an edge more than once is a dominated strategy). Because player

1 best-responds under SC, she must do at least that well; hence, we have c1(SC(G)) ≤ nkc1(SC(G1)).
Moreover, no matter which strategy σ1 player 1 commits to, she can do no better than c1(SC(G1)); hence,

c1(SC(G|σ1
))≥ c1(SC(G1)). It follows that for any game nkc1(SC(G|σ1

))≥ c1(SC(G)), hence VoMCSC ≤
nk and VoPCSC ≤ nk. (The preceding discussion assumes that SC can be used to solve G and G|σ1

, which

may not be the case if, for example, SC = ISD, but this does not affect upper bounds on the ratio.) In fact,

from this we can also conclude that MvPSC ≤ nk: under commitment to a pure strategy, at the very least

player 1 can commit to the path s1 she would choose in G1, so that c1(SC(G|s1
))≤ nkc1(SC(G1)). Then,

for any σ1, nkc1(SC(G|σ1
))≥ nkc1(SC(G1))≥ c1(SC(G|s1

)), so MvPSC ≤ nk.

We next consider a pair of games that give some insight in how the construction of the proof of the

upper bound will proceed. To keep things simple, for now we will assume that that the cost of using an

edge scales linearly with the number of players using routing flow over it (k = 1). We will refer to this

as a Linear Atomic Routing (LAR) game. We start with a two-player game that gives the desired VoPC

value of 2.

Example 6 For Linear Atomic Routing with two players (LAR2 player), the game depicted in Figure 12 has

VoPCISD ≥ 2.

Without commitment, this routing game is solvable by ISD, as follows. First of all, it is easy to see

that any strategy that visits the same vertex twice is dominated, so we can remove such strategies. After

that, it is a dominant strategy for player 1 to take the path S1 → B → T . Given this path for player 1, the

best-response strategy for player 2 is to take the path S2 → A → B → T (at a cost of 4+ ε). This ISD

solution gives player 1 a cost of 2+ ε .

When we consider pure-strategy commitment, if player 1 commits to the path S1 → A → B → T , then

player 2’s best response to is to take the alternate path directly from S2 → T (because other paths cost at

least 4+2ε). This results in a cost of only 1+2ε for player 1. It follows that VoPCISD ≥ 2+ε

1+2ε
, hence by

letting ε → 0, we get VoPCISD ≥ 2.

As with the examples in the previous sections, the leader is able to commit to a dominated strategy

to influence the choice of route by the follower. Not surprisingly, it turns out that she can gain the most

utility when paying a cost of ε is sufficient to discourage the follower from using any of the edges she

wishes to use. Next, let us consider how we might add a third player while still achieving the desired

VoPC value of 3.
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Example 7 For Linear Atomic Routing with three players (LAR3 player), the game depicted in Figure 13

has VoPCISD ≥ 3.

Again, after removing the strategies that visit a node more than once, player 1 has a dominant strategy,

namely S1 →B→C → T1. Once we fix this strategy for player 1, player 3 has a dominant strategy, namely

S3 → F → D → C → B → T3 (i.e., this is optimal regardless of what player 2 does; it will always cost

player 3 at most 9+ 2ε to use this path. In contrast, it will cost player 3’s at least 9+ 5
2
ε on any path

through E). Once we fix this strategy, player 2 has a best response of S2 → E → A → B →C → T2. This

ISD solution gives player 1 a cost of 3+2ε .

When we consider pure strategy commitment, if player 1 commits to the path S1 → A → B → C →
D → T1, then player 2 has a dominant strategy S2 → F → D → T2 (i.e., this is optimal regardless of

what player 3 does; it will always cost player 2 at most 8+ 5
2
ε to use this path. In contrast, it will cost

player 2 at least 8+3ε on any path through E). Once we fix this strategy, player 3 has a best response of

S3 → E → A → T3. This results in a cost of 1+4ε for player 1. It follows that VoPCISD ≥ 3+2ε

1+4ε
, hence by

letting ε → 0, we get VoPCISD ≥ 3.

Note that in this construction player 1 is again paying a minimal cost, in this case to influence player

2, and in addition player 2’s response has a cascading effect of also influencing player 3 to change routes

as well. We will now leverage this technique to prove the following lower bound:

Theorem 3 For k-nomial Atomic Routing with n players:

VoPCISD(kARn player)≥ nk, VoMCISD(kARn player)≥ nk, and MvPISD(kARn player)≥ nk.

Proof We will start by proving that VoPCISD(kARn player)≥ nk (which immediately implies

VoMCISD(kARn player)≥ nk by Lemma 1).

First, let us start by relaxing the requirement that k = 1 from the three-player case discussed in Ex-

ample 7. This will result in the following changes to the construction. First, we need to increase the costs

of the edges between the upper and lower sections, to at least 3k − 1. Second, we also need to make

some corresponding adjustments to the coefficients in the lower section to obtain similar strategic effects.

Figure 14 gives the updated construction for the three-player (two-follower) case for general k.

We now use this game to show that VoPCISD(kAR3 player) ≥ 3k. Again, after removing the obviously

dominated strategies that visit a node more than once, player 1 has a dominant strategy of S1 → B →C →
T1. Once we fix this strategy for player 1, player 3 has a dominant strategy, namely S3 → F → D →C →
B → T3. Once we fix this, player 2 has a best response of S2 → E → A → B →C → T2. This ISD solution

gives player 1 a cost of 3k +2ε .

When we consider pure strategy commitment, if player 1 commits to the path S1 → A → B → C →
D → T1, then player 2 has a dominant strategy of S2 → F → D → T2. This leads to player 3 hav-

ing a best response of S3 → E → A → T3, and results in a cost of 1+ 4ε for player 1. It follows that

VoPCISD(kAR3player)≥
3k+2ε

1+4ε
for any ε , hence by letting ε → 0, we get VoPCISD(kAR3 player)≥ 3k.

The game for the four-player case for VoPCISD(kAR4 player) is pictured in Figure 15. Without commit-

ment, the ISD solution is as follows: it is dominant for player 1 to choose S1 → B → E → T1, then for

player 4 to choose S4 → G →C → B → E → T4, then for player 3 to choose S3 → J → D → E → B → T3,

and finally for player 2 to choose S2 → H → A → B → E → T2. As a result, player 1’s cost is 4k +2ε . On

the other hand, if player 1 can commit to a pure strategy, then she can commit to the path S1 → A → B →
C → S1 → B → E → T1. it then becomes dominant for player 2 to choose S2 → J → D → T2, then for

player 3 to choose S3 → G →C → T3, and finally for player 4 to choose S4 → I → F → T4. As a result,

player 1’s cost is 1+5ε . We can conclude that VoPCISD(kAR4 player)≥ 4k.

The case of general n continues this pattern (note that a n-player game has n− 1 followers). The

construction can be broken into two sections, an upper section that contains the path for player 1 and the

targets of the followers, and a bottom section that contains the sources of the followers.
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Let us first describe the structure of the upper section. We start with the source S1 and target T1 nodes

for player 1. These two nodes are connected by a path of length 3, with edges of weight ε , 1 and ε (for

example, the path S1 → B→ E → T1 in Figure 15). Let us call the two additional nodes on this path uS and

uT , with uS being the node adjacent to S1. Next, for each odd-numbered follower, we add a pair of nodes,

one connected to S1 and uS by edges of cost ε , the other connected to T1 and uT (for example, nodes A

and D in Figure 15). Let us refer to these nodes by the number of the (odd-numbered) follower that we

add them for—for example, the two nodes added for follower 1 would be u1 and u2, with u1 adjacent to

S1; the ones added for follower 3 would be u3 and u4, etc. Finally, for each follower i besides the last, we

add a target node Ti+1, connected by edges of cost ε to ui+1 and uS if i is even, otherwise to ui+1 and uT .

For the last follower n− 1, we add a target node Tn. If there are an even number of followers, then we

connect this node to u1 and uS, otherwise to un and uT .

Next, let us describe the structure of the lower section. For the first follower, we add three nodes.

The first of these nodes is the source for the first follower, S2. We add two additional nodes connected

to S2, which we call l1 and l2. The edge between l1 and S2 has a cost of (2k − 1)(nk − 1), and the edge

between l2 and S2 has a cost of nk + 3
2
ε . For each follower i from 2 to n−2, we add two nodes, namely

the follower’s source Si+1, and li+1. We also add two edges, one between li and Si+1 with a cost of nk, and

the other between li+1 and Si+1, with a cost of nk +(n− i+1)k. If there are an odd number of followers,

then for the (n− 1)th follower we follow a similar pattern, adding two nodes Sn and ln. Again, we also

add two edges, one between ln−1 and Sn with a cost of nk, and one between ln and Sn with an edge cost of

4k +2k + 3
2
ε . If instead we have an even number of followers, then we only add one node, Sn. However,

we still add two edges, one between ln−1 and Sn with a cost of nk, and one between ln and Sn, with an

edge cost of 4k +2k + 3
2
ε . Finally, we connect the upper and lower sections with edges between each pair

(l j,u j), with an edge cost of nk −1.

The upper section is designed so that player 1 has a dominant strategy, namely taking the path S1 →
uS → uT → T1. If we fix this path for player 1, then player n will have a dominant strategy that involves

going through the edge between uS and uT ; fixing that, the same becomes true for player n−1; etc. This

results in a cost of nk + 2ε for player 1. However, the upper section also allows player 1 to commit to a
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pure strategy that involves adding u1 and un to her path (visiting S1 and uS twice if there an odd number of

followers). If we fix this path for player 1, then player 2 will have a dominant strategy that avoids going

through the edge between uS and uT ; fixing that, the same becomes true for player 3, etc. This results in a

cost of 1+4ε or 1+5ε (depending on whether there are an even or an odd number of followers) for player

1. It follows that VoPCISD(kARn player)≥
nk+2ε

1+5ε
, hence by letting ε → 0, we get VoPCISD(kARn player)≥ nk.

Again, VoMCISD(kARn player)≥ nk follows from VoPCISD(kARn player)≥ nk and Lemma 1.

Finally, we need to show MvPISD(kARn player)≥ nk. The construction for MvPISD(kARn player) is sim-

ilar to the one for VoPCISD(kARn player); to illustrate what needs to be modified, we highlight the dif-

ferences with the three-player (two-follower) case. Let us consider the game in Figure 16. This game is

identical to the one in Figure 14, except for some changes to the edge costs. The major change is in the

upper section of the graph, where all of the coefficients of ε have been replaced with coefficients of 3k−1
2

,

with the exception of the ones on the most direct path for player 1. Second, there are minor adjustments to

the coefficients in the bottom section, to compensate for the changes in the top section and ensure similar

comparisons as in the original version.

The effect of the changes is that commitment to a pure strategy is unable to help player 1 relative

to taking the direct path (which results in a cost of 3k + 2ε). For example, if player 1 commits to the

path S1 → A → B → C → D → T1, then players 2 and 3 will not take the edge B → C, but this leaves

player 1 with a cost of 2 · 3k − 1. She can also commit to the path S1 → A → B → C → T1, in which

case player 2 will not take the edge B → C, but player 3 will, so that player 1 ends up with a cost of

3k +2k + ε −1. In contrast, if player 1 can commit to a mixed strategy, she can randomize between using

the path extended on the left side (S1 → A → B →C → T1) 2ε of the time, the path extended on the right

side (S1 → B → C → D → T1) 2ε of the time, and the shortest path (S1 → B → C → T1) the rest of the

time. This is enough to incentivize both of the followers to not use the edge between B and C, causing the

expected cost for player 1 to be 4ε(3k + ε)+ (1− 4ε)(1+ 2ε) = 1+(4 · 3k − 2)ε − 4ε2. Letting ε → 0,

we obtain MvPISD(kAR3 player) ≥ 3k. This modification can be generalized to the VoPCISD(kARn player)
construction for any n, giving us MvPISD(kARn player)≥ nk.
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Fig. 17 Gadget for directed edges

Let us next consider the case where we have directed rather than undirected edges. The upper bound

in Theorem 2 still holds (the proof did not rely on edges being undirected). On the other hand, the proof
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of the lower bound in Theorem 3 did rely on the players of the game being able to cross an edge in both

directions, so it is not immediately obvious that this lower bound still holds. It turns out, however, that we

can simulate an undirected edge using a small number of directed edges.

Lemma 5 For k-nomial Atomic Routing, it is possible with only a linear (in the number of edges) increase

in the number of nodes and edges to transform any undirected graph into a corresponding directed graph

with the same VoPC, VoMC and MvP values.

Proof To perform this transformation we will use the gadget given in Figure 17 to replace each undirected

edge. Nodes A and B correspond to the two endpoints of the original undirected edge, and the directed

edge from C to D is assigned the cost of the original undirected edge. It is straightforward to check that all

traffic across the gadget from A to B as well as from B to A must cross the edge from C to D, thus each of

these players incurs the same cost as in the undirected case. As we add 2 nodes and 5 directed edges for

each undirected edge in the initial game, this increases the number of nodes and edges by a linear factor.

We can immediately conclude that the same bounds from above hold when we have directed edges.

kARD (k-nomial Atomic Routing with Directed edges).

Theorem 4 For k-nomial Atomic Routing with Directed edges and n players (kARDn player):

VoPCSC ≤ nk, VoMCSC ≤ nk, and MvPSC ≤ nk

for any solution concept SC where player 1 maximises her utility under the information available to her

and the other players do not play dominated strategies.

Theorem 5 For k-nomial Atomic Routing with Directed edges and n players (kARDn player):

VoPCISD ≥ nk, VoMCISD ≥ nk, and MvPISD ≥ nk.

5.2 Symmetric Routing Games

Let us consider what happens if we restrict ourselves to symmetric games, where all players share the

same source and target nodes. We consider both the directed and undirected cases here. We will first look

at problem that we will call SkARD (Symmetric k-nomial Atomic Routing with Directed edges) in the

two-player (one follower) setting.

Theorem 6 For Symmetric k-nomial Atomic Routing with Directed edges and 2 players (SkARD2 player):

VoPCSC =VoMCSC = MvPSC ≤ 2k

for any solution concept SC where player 1 maximises her utility under the information available to her

and the other player does not play dominated strategies.

Proof Because SkARD is a special case of kARD, upper bounds from the latter still hold, giving us

VoMCSC ≤ 2k, VoPCSC ≤ 2k, and MvPSC ≤ 2k.

We now turn to the more difficult part: proving that VoPCSC ≥ 2k (which immediately implies VoMCSC ≥
2k by Lemma 1). For this bound, let us consider the game in Figure 18.

First, let us consider this game without commitment. It is easy to see that any strategy that visits

the same vertex twice is dominated and hence will not be played under SC, so we can remove such

strategies from consideration. Then, at least one of the paths S → A → C and S → B → C will be used

with probability at most 1/2 by player 1. Thus, player 2 always has a strategy that includes the edge
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C → T and that shares the path between S and C with player 1 with probability at most 1/2, for a total

cost of at most 2k + (1/2)2ε + (1/2)2k+1ε = 2k + (2k + 1)ε . Player 2 will prefer this strategy to the

alternate direct edge between S and T , and as a result player 1 will share the C → T edge with player 2,

resulting in a cost of at least 2k for player 1.

When we consider pure-strategy commitment, if player 1 commits to the path S → A → C → S →
B → C → T , then the path S → T becomes the unique best response for player 2 (because either path

involving the C → T edge will cost him 2k +2k+1ε). This is to the benefit of player 1, who no longer has

to share the C → T edge with player 2 and hence has a cost of only 1+5ε . It follows that VoPCSC ≥ 2k

1+5ε
,

and hence by letting ε → 0, we get VoPCSC = 2k. Again, VoMCSC = 2k follows from VoPCSC ≥ 2k and

Lemma 1.
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Finally, we need to show that MvPSC ≥ 2k. For this proof we will use the game in Figure 19.

Let us first consider the best pure strategy commitment for player 1. The best pure-strategy commit-

ments player 1 has are the path S → A →C → T and the path S → B →C → T . (Unlike in the previous

example, there is no edge back from C → S, so player 1 cannot commit to use both of the paths between S

and C.) In response, player 2 will take the other one of these two paths (which results in a cost of 2k +2ε),

and thus player 1’s cost will also be 2k +2ε . However, if player 1 is able to commit to a mixed strategy,

she can commit to the following: 50% S → A → C → T and 50% S → B → C → T . Then, player 2’s

expected cost for either of the top two paths is 2k +(1/2)2ε +(1/2)2k+1ε = 2k +(2k +1)ε , and player 2

will prefer to take the direct path S → T . This results in a cost for player 1 of 1+2ε . Letting ε approach

0, we obtain MvPSC = 2k.

Let us now consider symmetric atomic routing games with undirected edges, which we will refer to as

SkAR (Symmetric k-nomial Atomic Routing). Below is our result in the two-player (one follower) setting.

Our results for VoPC and VoMC closely resemble the corresponding results for SkARD, but at this time

we can only show a weaker lower bound of 1+2k

2
for MvP.

Theorem 7 For Symmetric k-nomial Atomic Routing with 2 players (SkAR2 player):

VoPCSC =VoMCSC = 2k and
1+2k

2
≤ MvPSC ≤ 2k

for any solution concept SC where player 1 maximises her utility under the information available to her

and the other player does not play dominated strategies.

Proof As with the previous proof, because SkAR is a special case of kAR, upper bounds from the latter

still hold, giving us VoMCSC ≤ 2k, VoPCSC ≤ 2k, and MvPSC ≤ 2k.

Proving that VoPCSC ≥ 2k (which immediately implies VoMCSC ≥ 2k by Lemma 1) is again the more

difficult part. Consider the game in Figure 20.

With similar logic as the previous proof, we conclude that there are three possible paths for player 1

(S → A →C, S → B →C and A →C) and one of the paths will be used with probability at most 1/3 by
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player 1. Thus, we can only guarentee that player 2 shares the path between S and C with player 1 with

probability at most 1/3, for a total cost of at most 2k +(2/3)2ε +(1/3)2k+1ε = 2k + 2(2k+2)
3

ε . Player 2

will again prefer this strategy to the alternate direct edge between S and T , and as a result player 1 will

share the C → T edge with player 2, resulting in a cost of at least 2k for player 1.

If player 1 commits to the path S → A → C → S → B → C → T , then the path S → T becomes the

unique best response for player 2 (because any path involving the C → T edge will cost him 2k +2k+1ε).

This causes player 1’s cost with commitment to be 1+6ε . It follows that VoPCSC ≥ 2k

1+6ε
, hence by letting

ε → 0, we get VoPCSC = 2k. Again, VoMCSC = 2k follows from VoPCSC = 2k and Lemma 1.

S

B

T
1

ɛ

ɛ

2 +
k

A

C
ɛ

ɛ
ɛ

ɛ(2 +1)
k

2

Fig. 20 2-player SkAR game for VoPC and VoMC
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Fig. 21 2-player SkAR game for MvP

Finally, we need to show MvPBestNash ≥ 1+2k

2
. Consider the game in Figure 21. As we have undirected

edges, we are forced to use significantly larger edge costs on the edges between S, A, B, and C compared

to Figure 19.

The best pure-strategy commitments player 1 has are the path S → A → C → T and the path S →
B → C → T . (Unlike in the previous example, there is an even number of paths between S and C, so

player 1 cannot commit to use both of the paths between S and C without using one of the paths twice.)

In response, player 2 will take the other out of these two paths, resulting in a cost of 2k + 1 for both of

the players. However, if player 1 is able to commit to a mixed strategy, she can commit to the following:

50% S → A →C → T and 50% S → B →C → T . Then, player 2’s expected cost for either of the top two

paths is 2k +(1/2)+ (1/2)2k = 2k + 2k+1
2

, and player 2 will prefer to take the direct path S → T . This

results in a cost for player 1 of 2. Letting ε approach 0, we obtain MvPSC ≥ 1+2k

2
.

5.3 Routing Games with Arbitrary Cost Functions

Let us consider the case where each edge has an arbitrary monotonically increasing cost based on the

number of players using the edge. We will refer to this class of games as AAR (Arbitrary Atomic Routing).

Here, we get arbitrarily large ratios even with two players.

Theorem 8 For Arbitrary Atomic Routing with 2 players (AAR2 player):

VoPCISD =VoMCISD = MvPISD = ∞.

Proof First, let us prove that VoPCISD = ∞. Consider the game in Figure 22, where all edges but the edge

between B → T have linear costs (indicated with a coefficient as before), and B → T has a cost of ε if one

person uses it, but a cost of 1 if both players use it.

Again, after removing the obvously dominated strategies that visit a node more than once, player 1

has a dominant strategy of S1 → B → T . Given this path for player 1, the best-response strategy for player

2 is to take the path S2 → A → B → T . This ISD solution gives player 1 a cost of 1+ ε .
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When we consider pure strategy commitment, if player 1 commits to the path S1 → A → B → T , then

player 2’s best response to is to take the alternate direct path S2 → T . This results in a cost of 1+2ε for

player 1. It follows that VoPCISD ≥ 1+ε

2ε
, hence by letting ε → 0, we get VoPCISD ≥ ∞. VoMCISD ≥ ∞

follows from VoPCISD ≥ ∞ and Lemma 1.
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Fig. 22 2-player AAR2 player game for VoPC and
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Fig. 23 2-player AAR2 player game for MvP

Let us now prove MvPISD =∞. We will use the game in Figure 23, which is a slightly modified version

of the game in Figure 22. Again, this construction causes commitment to a pure strategy to hardly help

player 1 at all. player 1’s best pure-strategy commitment is still the path S1 → A → B → T , which will

be enough to incentivize player 2 to not use the edge B → T , but leaves player 1 with a cost of 1+ ε . In

contrast, if player 1 can commit to a mixed strategy, she can randomize between S1 → A → B → T ε of

the time, and the shortest path (S1 → B → T ) the rest of the time. This is enough to incentivize player 2 to

not use the edge between B and T , causing the expected cost for player 1 to be ε(1+ ε)+(1− ε)(2ε) =
3ε − ε2. Letting ε → 0, we obtain MvPISD = ∞.

6 Experimental Results

Our theoretical results up to this point demonstrate that in many classes of games, there exist games with

high values of commitment. However, this is merely a bound on how high these values might grow for a

given class of games and does not say anything about what the expected value of commitment might be

or show how typical such games are. It is not unreasonable to expect that even when a class has a instance

with an unbounded value of commitment there might exist subclasses where at most a small number of

outliers have a high value of commitment, but most games in the subclass have much smaller values.

Below we focus on commonly studied subclasses of normal-form games, and show experimentally that

there do exist subclasses where commitment is valuable and others where it adds no value to the leader.

For this experimental evaluation, we randomly generated two-player games using the GAMUT software

package [18], which is the standard package to use for such experiments.

We generated random games from 16 families: bidirectional local-effect games (LEG), covariant

games, dispersion games, grab the dollar, guess two thirds of the average, location games, majority voting,

minimum effort games, polymatrix games, random games, random graphical games, random local-effect

games, random zero-sum, traveler’s dilemma, uniform LEG, and war of attrition. For each game family,
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we kept the number of actions available to player 1 equal to the number of actions available to player 2

and we varied the normal-form game size from 5× 5 to 40× 40 with step size 5. Note that some of the

game families that we consider here may have versions with continuous action spaces. In the GAMUT

package, the action spaces of such games are always discretized. For example, in grab the dollar games,

rather than allowing each player to grab the prize at any time, each player is presented with a set of times

at which she can attempt to grab the prize. In each game, the utilities are normalized to be from 0 to 1.

We left any other parameters at their default values. For each game size and game family, we generated

50 game instances. For each game instance, we computed the following solutions:

1. an optimal mixed strategy to commit to for player 1,

2. an optimal pure strategy to commit to for player 1,

3. a Nash equilibrium with maximum utility for player 1,

4. a Nash equilibrium with minimum utility for player 1,

5. a Nash equilibrium with maximum social welfare,

6. a correlated equilibrium with maximum utility for player 1,

7. a correlated equilibrium with minimum utility for player 1,

8. a correlated equilibrium with maximum social welfare.

The first solution was computed using an LP [5], the second using a brute force search, 3-5 were computed

using a MIP [25], and 6-8 using the standard correlated equilibrium LP. The plots in Figures 24–39 show

the utility for player 1 for each game family, game size, and solution concept, averaged over 50 game

instances. We used the CPLEX 12.4 solver for the MIPs and LPs. For each game family, we split the

eight plots into three subfigures:

(a) the utility for player 1 from committing to an optimal mixed (solid red line) or pure (dashed black

line) strategy;

(b) the maximum (solid red line) and minimum (dotted blue line) Nash equilibrium utilities for player 1,

and the utility for player 1 in a welfare-maximizing NE (dashed black line);

(c) the maximum (solid red line) and minimum (dotted blue line) correlated equilibrium utilities for

player 1, and the utility for player 1 in a welfare-maximizing CE (dashed black line).

The family of random games has a special place among the 16 families. It includes all two-player

normal-form simultaneous-move games with finite action sets for both players, with the utilities drawn

from a uniform distribution. Each of the other 15 game families imposes its own restrictions on the

player’s utilities. Thus, the family of random games is a superset of all 16 families. We would like to

use the experimental results for the random games as an example to demonstrate how the questions

that we want to answer in this section are different from the theoretical results obtained in the earlier

sections: while it follows from Corollary 1 that the value of both pure and mixed commitment is infinite

for this family of games, we can see (Figure 33) that both the expected utility of commitment for the

leader and the maximum NE utility for player 1 approach 1 as the game size approaches infinity. Thus,

the expected value of both pure and mixed commitment is 1 for random games. As another example of

how the expected value of commitment is different from the maximum value of commitment, consider

random zero-sum games (Figure 36). It follows from Theorem 1 that the value of both pure and mixed

commitment is equal to 1 in constant-sum games. However, for large random zero-sum games, the leader

is likely to get only a very small utility from committing to any pure strategy, and thus the expected value

of pure commitment approaches 0 as the game size approaches infinity. We will discuss the experimental

results for this and other game families in more detail below.

There are two game families in which all the eight lines in the corresponding subfigures (a)-(c) co-

incide: guess two thirds of the average games and location games. In these games, the optimal mixed

strategy to commit to for player 1 is a pure strategy which is also part of a pure-strategy Nash equilibrium

of the game. Moreover, both players’ utilities are constant across all CE of each game. We will explain

why this happens in guess two thirds of the average. In this game, each player chooses a number from the
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given set of n numbers. If the two players choose different numbers, the player whose number is closer

to the 2/3 of the average of the two numbers gets a utility of 1 and the other player gets 0. If the players

choose the same number, each gets a utility of 0.5. In the unique NE of this game, both players choose the

smallest of the given numbers, which results in a utility of 0.5 for each player. The same strategy profile

is also the unique CE of the game.

In three game families, all the plots coincide except the minimum utility for player 1 in NE and CE:

dispersion games, minimum effort games, random LEG. Similarly to the game families discusses in the

previous paragraph, the utility for player 1 in Stackelberg games (with commitment to either pure or

mixed strategies) is the same as in leader-utility-maximizing NE or CE. The difference is that there exists

an NE with a low utility for player 1. Consider the minimum effort games. In this game, each player

chooses a level of effort from a given set. The player’s utility is equal to the minimum effort level among

the two players minus a fraction of the player’s own effort level. There is a set of pure NE in this game in

which both players choose the same effort level. Both players’ utilities are the highest when both players

choose the highest effort level. The leader can guarantee herself the highest utility by committing to the

highest effort level, which is also the strategy played by both players in the welfare-maximizing and

leader-utility-maximizing NE and CE. However, since there exists an NE in which both players get a low

utility (namely, the NE in which both players choose a low effort level), the dotted lines in subfigures (b)

and (c) stand out from the solid and dashed lines in subfigures (a)-(c) of Figure 31.

We will now discuss the remaining 11 game families.

Commitment vs. Nash equilibrium. Since a Stackelberg strategy maximizes the leader’s utility,

we will compare the utility for player 1 in the NE which maximizes player 1’s utility to the leader’s

utility of committing to a mixed strategy. In the plots, that corresponds to comparing the solid red line

in each subfigure (a) to the solid red line in the corresponding subfigure (b). We can see that the leader

can benefit from commitment in covariant games, majority voting, polymatrix games, random games,

random graphical games, and traveler’s dilemma. The value of commitment is especially high in traveler’s

dilemma games. Both players get utilities close to 1/n in the unique NE in these games, while the leader’s

utility from committing to a mixed strategy is close to 1 in n× n games. In this variant of traveler’s

dilemma, each player can choose from one of n price levels, and the player who declares the lower price

gets a utility equal to that price plus a small reward. The Stackelberg strategy is to declare the highest

price, while in NE both players declare the lowest price. Thus, the value of commitment approaches

infinity in such games.3

Even in cases when the leader’s highest NE utility is equal to the leader’s Stackelberg utility, commit-

ment may still be valuable. In such games, the ability to commit lets the leader choose the NE with the

highest utility for the leader instead of the other NE with lower utilities. We can see that the leader can

benefit from choosing the NE in all games except guess two thirds of the average, location games, and

random zero-sum.

Commitment vs. correlated equilibrium. Next, we compare the utility for player 1 in the CE which

maximizes player 1’s utility to the leader’s utility of playing a Stackelberg strategy. This corresponds to

comparing the solid red lines in subfigures (a) and (c). Since every NE is also a CE, there are fewer game

families in which the leader clearly benefits from commitment than we found when comparing Stack-

elberg and NE: covariant games, majority voting, polymatrix games, random games, random graphical

games, and traveler’s dilemma. Note that a strictly dominated strategy is never played in a correlated equi-

librium. Thus, in order to construct an example in which player 1 gets a higher utility from commitment

than she gets in any CE, it is enough to construct a game in which the optimal strategy to commit to is

dominated.

3Due to numerical issues, our MIP-based Nash solver computes a higher NE utility for player 1 in some traveler’s dilemma

games. This happens because there is an epsilon-NE with extremely small epsilon in which each player randomizes over several

strategies. We think this also says something interesting about this game, namely that extremely small deviations from rationality

are sufficient to completely change the game-theoretic prediction and thereby the point this game is intended to make.



22 Joshua Letchford et al.

Commitment to mixed strategies vs. commitment to pure strategies. This corresponds to compar-

ing the two lines in each subfigure (a). We can see that there are a number of games in which the leader

gets the same utility from committing to a pure strategy as she gets from committing to a mixed strategy.

For example, consider grab the dollar games. Each player’s action set is the set of times when the player

can grab the prize. If the two players both grab the prize at the same time, it will be torn, and each player

will get a utility of 0. Otherwise, the first player to grab the dollar gets to keep it. Player 1’s optimal

mixed strategy to commit to is to declare that she is going to grab the dollar at the earliest opportunity.

The follower will then choose a later time, and the leader get the utility of 1. Since the optimal mixed

strategy is actually a pure strategy, the two lines coincide.

The biggest difference between committing to a mixed strategy vs. committing to a pure strategy is in

random zero-sum games. In this games family, the two lines diverge: as the game size grows, the leader’s

utility from committing to a mixed strategy approaches 0.5, while the leader’s utility from committing to

a pure strategy approaches 0. We can provide an intuition as to why this happens as follows. In zero-sum

games, every Stackelberg strategy is also an NE strategy, and each player gets the same utility across all

NE profiles. Since the distribution from which we generate random zero-sum games is symmetric with

respect to the two players, the expected utility that player 1 gets in an NE must be equal to the expected

utility that player 2 gets in an NE. The sum of the expected utilities that the players get in NE is 1, thus

each player’s expected utility in an NE is 0.5, which is also the expected utility from committing to a

Stackelberg strategy for any player. In the pure commitment case, the leader’s utility approaches 0 as n

grows. We can show that for any fixed number x, the expected number of rows to which the leader can

commit and get the utility of at least x approaches 0 as n grows. We will think of each row as a point

in [0,1]n. The subspace of rows Sx ⊂ [0,1]n in which every element is greater than or equal to x has

volume (1− x)n. As n grows, the volume of Sx shrinks exponentially while the number of rows available

to the leader to choose from grows only linearly. Thus the expected number of leader’s strategies in Sx

approaches 0 as n grows, which implies that the probability of there being a row with all elements greater

than or equal to x also approaches 0.

While we performed our experimental results on GAMUT games because this is the standard for the

field, GAMUT does not provide game generators for all of the classes of games that we studied in the

theoretical part of the paper. Future research could be devoted to creating new generators for these classes

of games and extending our experimental results to them.

7 Conclusion

On the one hand, the notion of the value of commitment studied in this paper fits well among various

other notions that aim to quantify strategic effects in games, including the price of anarchy, the price of

stability, the value of mediation, etc. On the other hand, to our knowledge, this concept is unique among

these concepts in the sense that it focuses on the benefit of a strategic tool—commitment—to a specific

player, rather than the cost of strategic behavior to welfare in general. (It should be noted that the value of

mediation also considers the benefit of a strategic tool—correlated strategies—to social welfare, though

this is a somewhat different type of strategic tool, one that is used by the players collectively rather than

by an individual player.) Additionally, we evaluated the value of commitment experimentally. While we

performed our experimental results on GAMUT games because this is the standard for the field, GAMUT

does not provide game generators for all of the classes of games that we studied in the theoretical part

of the paper. Future research could be devoted to creating new generators for these classes of games and

extending our experimental results to them. One additional obvious direction for future research concerns

what happens in symmetric routing games with more than 2 players. We believe that there are many other

directions for future research, including investigating the value of commitment more generally, as well as

investigating the value of other strategic tools.
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Fig. 24 Bidirectional local-effect games (LEG).
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Fig. 25 Covariant games.
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Fig. 26 Dispersion games.
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Fig. 27 Grab the dollar games.
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Fig. 28 Guess two thirds of the average games.

5 10 20 30 40

0.
54

0.
58

(a)
#actions

U
1

5 10 20 30 40

0.
54

0.
58

(b)
#actions

U
1

5 10 20 30 40

0.
54

0.
58

(c)
#actions

U
1

Fig. 29 Location games.
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Fig. 30 Majority voting games.
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Fig. 31 Minimum effort games.
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Fig. 32 Polymatrix games.
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Fig. 33 Random games.
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Fig. 34 Random graphical games.
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Fig. 35 Random LEG.
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Fig. 36 Random zero-sum games.
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Fig. 37 Traveler’s dilemma games.
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Fig. 38 Uniform Local-Effect games.
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Fig. 39 War of attrition games.
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for security: An efficient exact algorithm for solving Bayesian Stackelberg games. In Proceedings of the Seventh International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 895–902, Estoril, Portugal, 2008.
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24. Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259, 2002.

25. Tuomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-integer programming methods for finding Nash equilibria.

In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 495–501, Pittsburgh, PA, USA, 2005.

26. Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo, Ben Maule, and Garrett Meyer. PROTECT:

A deployed game theoretic system to protect the ports of the United States. In Proceedings of the Eleventh International Joint

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Valencia, Spain, 2012.



On the Value of Commitment 29

27. Jason Tsai, Shyamsunder Rathi, Christopher Kiekintveld, Fernando Ordonez, and Milind Tambe. IRIS - a tool for strategic

security allocation in transportation networks. In Proceedings of the Eighth International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 37–44, Budapest, Hungary, 2009.

28. Heinrich von Stackelberg. Marktform und Gleichgewicht, pages 58–70. Springer, Vienna, 1934.

29. Bernhard von Stengel and Shmuel Zamir. Leadership games with convex strategy sets. Games and Economic Behavior,

69:446–457, 2010.


