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ABSTRACT

The VCG mechanism is the canonical method for motivat-
ing bidders in combinatorial auctions and exchanges to bid
truthfully. We study two related problems concerning the
VCG mechanism: the problem of revenue guarantees, and
that of collusion. The existence of these problems even in
one-item settings is well-known; in this paper, we lay out
their full extent in multi-item settings. We study four set-
tings: combinatorial forward auctions with free disposal,
combinatorial reverse auctions with free disposal, combina-
torial forward (or reverse) auctions without free disposal,
and combinatorial exchanges. In each setting, we give an
example of how additional bidders (colluders) can make the
outcome much worse (less revenue or higher cost) under the
VCG mechanism (but not under a first price mechanism);
derive necessary and sufficient conditions for such an effec-
tive collusion to be possible under the VCG mechanism;
and (when nontrivial) study the computational complexity
of deciding whether these conditions hold.
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1. INTRODUCTION

Combinatorial markets are important mechanisms for al-
locating tasks and resources in multiagent systems. In a
combinatorial auction, there are multiple items for sale, and
bidders are allowed to place a bid on a bundle of these
items rather than just on the individual items. A rapidly
growing body of literature is devoted to the study of com-
binatorial auctions, and, to a lesser extent, variations of it,
such as combinatorial reverse auctions (where the auction-
eer seeks to procure certain items) and combinatorial ex-
changes (where bidders can offer goods for sale as well as
express demand for goods—even within the same bid). One
important problem is the winner determination problem [16,
6, 19], which is to label bids as accepted or rejected to max-
imize the total value of the bids accepted (or, in the case of
a reverse auction, to minimize their total value), under the
constraint that the corresponding allocation of items does
not require more items than are available (or, in the case of
a reverse auction, under the constraint that all the desired
items are procured).

Another key problem in auctions and exchanges (combina-
torial or not) is that in general, the bidders may not bid their
true valuations for the goods. The problem with untruth-
ful bidding is that the winner determination algorithm can
only base the final allocation of the goods on the reported
valuations, and thus the final allocation may not be optimal
relative to the bidders’ true valuations. Thus, economic effi-
ciency may be lost. However, by changing the payment rule,
it is possible to motivate bidders to bid their true valuations.
The best-known such payment rule is the Vickrey-Clarke-
Groves (VCG) mechanism [20, 5, 9]. If the setting is general
enough, given certain requirements, the VCG mechanism
(or its generalization to Groves mechanisms) is in fact the
only mechanism promoting truthful bidding [8, 15, 10, 21].*
Because of this, the VCG mechanism constitutes the stan-
dard approach to promoting truthful bidding, and variations
such as anytime VCG mechanisms [13] as well as distributed
computation of VCG mechanisms [14] have been proposed.

Unfortunately, there are also many problems with the

Tt should be noted, however, that when the agents’ valu-
ations are more restricted, the characterization of truthful
mechanisms becomes less stringent [1, 11, 12, 10, 17, 4].



VCG mechanism [18, 3]. We will focus on two related prob-
lems: the VCG mechanism is vulnerable to collusion, and
may lead to low revenue/high payment for the auctioneer.
It is well-known that these problems occur even in single-
item auctions (where the VCG mechanism specializes to the
Vickrey or second-price sealed-bid auction). However, in the
single-item setting, these problems are not as severe. For ex-
ample, in a Vickrey auction, it is not possible for colluders
to obtain the item at a price less than the bid of any other
bidder. Additionally, in a Vickrey auction, various types of
revenue equivalence with (for example) first-price sealed-bid
auctions hold. As we will show, in the multi-item setting
these properties do not hold and can be violated to an ar-
bitrary extent. Some isolated examples of such problems
with the VCG mechanism in multi-item settings have al-
ready been noted in the literature [3, 22, 2] (these will be
discussed later in the paper). In contrast, our goal in this
paper is to give a comprehensive characterization of how se-
vere these problems can be and when these severe problems
can occur. For the various variants of combinatorial auc-
tions and exchanges, we study the following single problem
that relates both issues under consideration: Given some of
the bids, how bad can the remaining bidders make the out-
come? Informally, “bad” here means that the remaining
bidders are paid an inordinately large amount, or pay an in-
ordinately small amount, relative to the goods they receive
and/or provide. This is closely related to the problem of
making revenue guarantees to the auctioneer. But it is also
the collusion problem, if we conceive of the remaining bid-
ders as colluders. (The collusion problem can become more
difficult if the collusion is required to be self-enforcing. A
collusion is self-enforcing when none of the colluders have an
incentive to unilaterally deviate from the collusion. We will
also study how this extra requirement affects our results.)

As it turns out, our fundamental problem is often compu-
tationally hard. Computational hardness here is a double-
edged sword. On the one hand, if the problem is hard,
collusion may not occur (or to a lesser extent) because the
colluders cannot find a beneficial collusion. On the other
hand, if the problem is hard, it is difficult to make strong
revenue guarantees to the auctioneer. Of course, in either
case, the computational hardness may be overcome in prac-
tice if the stakes are high enough.

2. THE VCG MECHANISM—REVIEW

All the results in this paper hold even when all bidders
are single-minded, that is, they bid only on a single bundle
of items. (Hence, we do not need to discuss bidding lan-
guages.) The VCG mechanism proceeds as follows. First,
solve the winner determination problem to maximize the
sum of the agents’ utilities before payments (the sum of
the values of the accepted bids, or, in the case of a reverse
auction, the negative thereof). Call this sum of utilities a.
Then, to determine winning bidder ¢’s payment, remove that
bidder’s bid, and see what the maximum sum of the utilities
before payments would have been with only the remaining
bids. Call this sum of utilities b;. Winning bidder ¢ must
pay b; — a + v; where v; is the value of winning bidder i’s
bid. Effectively, it is the externality the bidder imposed
on the other bidders (before payments). We observe that
this payment is negative if the bidder’s presence makes the
other bidders better off (before payments)—for example, in
reverse auctions.

3. COMBINATORIAL (FORWARD)
AUCTIONS

In a combinatorial auction, there is a set of items I =
{s1,82,...,8m} for sale. A bid takes the form b = (B,v),
where B C I and v € R. The winner determination problem
is to label bids as accepted or rejected, to maximize the sum
of the values of the accepted bids, under the constraint that
no item occurs in more than one accepted bid. (This is
assuming free disposal: items do not have to be allocated to
anyone.)

3.1 Motivating example

(A similar example to the one described in this subsection
has been given before [3], and examples of vulnerability to
false-name bidding in combinatorial auctions [22] can in fact
also be used to demonstrate the basic point. We include
this subsection for completeness.) Consider an auction with
two items, s; and s2. Suppose we have collected two bids
(from different bidders), both ({s1, s2}, N). If these are the
only two bids, one of the bidders will be awarded both the
items and, under the VCG mechanism, will have to pay N.
However, suppose two more bids (by different bidders) come
in: ({s1}, N+1) and ({s2}, N+1). Then these bids will win.
Moreover, neither winning bidder will have to pay anything!
(This is because a winning bidder’s item would simply be
thrown away if that winning bidder were removed.)

This example demonstrates a number of issues. First, the
addition of more bidders can actually decrease the auction-
eer’s revenue from an arbitrary amount to 0. Second, the
VCG mechanism is not revenue-equivalent to the sealed-bid
first-price mechanism in combinatorial auctions, even when
all bidders’ true valuations are common knowledge®>—unlike
in the single-item case. Third, even when the other bidders
by themselves would generate nonnegative revenue for the
auctioneer under the VCG mechanism, it is possible that
two colluders can bid so as to receive all the items without
paying anything.

The following sums up the properties of this example.

PROPOSITION 1. In a forward auction (even with only 2
items), the following can hold simultaneously: 1. The win-
ning bidders pay nothing under the VCG mechanism; 2. If
the winning bids are removed, the remaining bids generate
revenue N under the VCG mechanism; 3. If these bids were

2Consider the above example with N > 9 and suppose that
the four bids reflect the bidders’ true valuations—since bid-
ding truthfully is a weakly dominant strategy in the VCG
mechanism. Running a first-price sealed bid auction in this
setting, when all bidders’ valuations are common knowledge,
will not generate expected revenue less than %. For suppose
the expected revenue is less than this. Then the probabil-

ity that the revenue is at least % must be less than % by

Markov’s inequality. So, bidding ({4, B}, §) will win any
bidder both items with probability at least %, leading to an
expected utility of at least 3(N — &) = %. Because at
most one of the three bidders with valuations ({A}, N + 1)
or ({A, B}, N) can win its desired bundle, it follows that at
least one of these bidders has a probability of at most % of
winning its desired bundle, and thus has an expected utility
of at most % Because N > 9, % > %, so this bidder
would be better off bidding ({A, B}, & )—contradicting the

assumption that we are in equilibrium.



truthful (as we would expect under VCG), then if we had
run a first-price sealed-bid auction instead (and the bidders’
valuations were common knowledge), any equilibrium would
have generated revenue O(N).

3.2 Characterization

We now characterize the settings where, given the non-
colluders’ bids, the colluders can receive all the items for
free.

LEMMA 1. If the colluders receive all the items at cost
0, then for any positive bid on a bundle B of items by a
noncolluder, at least two of the colluders receive an item

from B.

PROOF. Suppose that for some positive bid b on a bundle
B by a noncolluder i, one of the colluders c receives all the
items in B (and possibly others). Then, in the auction where
we remove that colluder’s bids, one possible allocation gives
every remaining bidder all the goods that bidder received in
the original auction; additionally, it gives ¢ all the items in
bundle B; and it disposes of all the other items ¢ received
in the original auction. With this allocation, the total value
of the accepted bids by bidders other than c is at least v(b)
more than in the original auction. Because the total value
obtained in the new auction is at least the value of this
particular allocation, it follows that ¢ imposes a negative
externality of at least v(b) on the other bidders, and will
pay at least v(b). [

LEMMA 2. Suppose all the items in the auction can be
divided among the colluders in such a way that, for any pos-
itive bid on a bundle of items B by a noncolluder, at least
two of the colluders receive an item from B. Then the col-
luders can receive all the items at cost 0.

ProoOF. For the given partition of items among the non-
colluders, let each colluder place a bid with an extremely
large value on the bundle consisting of the items assigned to
him in the partition. (For instance, twice the sum of the val-
ues of all noncolluders’ bids.) Then, the auction will clear
awarding each colluder the items assigned to him by the
partition. Moreover, if we remove the bids of one of the col-
luders, all the remaining colluders’ bids will still win—and
thus none of the noncolluders’ bids will win, because each
such bid requires items assigned to at least two colluders by
the partition (and at least one of them is still in the auction
and wins these items). Thus, each colluder (individually)
imposes no externality on the other bidders. [

Combining these two lemmas, we get:

THEOREM 1. The colluders can receive all the items at
cost 0 if and only if it is possible to divide the items among
the colluders in such a way that, for any positive bid B by a
noncolluder, at least two colluders receive an item from B.

3.3 Self-enforcing collusion

It turns out that requiring that the collusion is self-
enforcing (i.e., no colluder has an incentive to unilaterally
deviate) is no harder for the colluders:

THEOREM 2. Whenever the colluders can receive all the
items for free, they can also receive them all for free in a
self-enforcing way.

ProOOF. Let each colluder bid on the same bundle as be-
fore; but, increase the bid value of each colluder by an
amount that exceeds the utility that any colluder can get
from any bundle of items. The colluders will continue to
receive all the items at a cost of 0. Now, the only rea-
son that a colluder may wish to deviate from this is that
the colluder wishes to obtain items outside of the colluder’s
assigned bundle. However, doing so would prevent one of
the other bundles from being awarded to its designated col-
luder. This would cause a decrease in the total value of bids
awarded to bidders other than the deviating colluder that
exceeds the utility of the deviating colluder for any bundle,
and the deviating colluder would have to pay for this de-
crease under the VCG mechanism. Therefore, there is no
incentive for the colluder to deviate. [

3.4 Complexity

In order to collude in the manner described above, the n
colluders must solve the following computational problem.

DErFINITION 1 (DIVIDE-SUBSETS). Suppose we are
given a set I, as well as a collection R = {S1,...,5¢} of
subsets of it. We are asked whether I can be partitioned into
n parts Ti,Ts, ..., Ty, so that no subset S; € R is contained
in one of these parts.

THEOREM 3. DIVIDE-SUBSETS is NP-complete, even
when n = 2.

PrOOF. The problem is technically identical to
HYPERGRAPH-2-COLORABILITY, which is known to be
NP-complete [7]. [

This hardness result only states that it is hard to identify
the most beneficial collusion, and one may wonder whether it
is perhaps easier to find some beneficial collusion. It turns
out that the hardness of the former problem implies the
hardness of the latter problem: the utility functions of the
colluders can always be such that only the most beneficial
collusion actually benefits them, in which case the two prob-
lems are the same. This observation can also be applied to
hardness results presented later in the paper.

4. COMBINATORIAL REVERSE
AUCTIONS

In a combinatorial reverse auction, there is a set of items
I = {s1,82,...,8m} to be procured. A bid takes the form
b= (B,v), where B C I and v € R. (Here, v represents the
value that the bidder must be compensated by in order to
provide the goods B.) The winner determination problem
is to label bids as accepted or rejected, to minimize the
sum of the values of the accepted bids, under the constraint
that each item occurs in at least one accepted bid. (This is
assuming free disposal.)

4.1 Motivating example

Consider a reverse auction with m items, si1,S2,...,Sm.
Suppose we have collected two bids (from different bidders),
both ({s1,$2,...,8m}, N). If these are the only two bids,
one of the bidders will be chosen to provide all the goods,
and, under the VCG mechanism, will be paid N. How-
ever, suppose m more bids (by different bidders) come in:
({s1},0),({s2},0),...,({sm},0). Then, these m bids will



win. Moreover, each bidder will be paid N under the VCG
mechanism. (This is because without this bidder, we would
have had to accept one of the original bids.) Thus, the total
payment that needs to be made is mN.3

Again, this example demonstrates a number of issues.
First, the addition of more bidders may actually increase
the total amount that the auctioneer needs to pay. Second,
the VCG mechanism requires much larger payments than a
first-price auction in the case where all bidders’ valuations
are common knowledge. (The first-price mechanism will not
require a total payment of more than N for these valuations
in any pure-strategy equilibrium.?®) Third, even when the
other bidders by themselves would allow the auctioneer to
procure the items at a low cost under the VCG mechanism,
it is possible for m colluders to get paid m times as much
for all the items.

The following sums up the properties of this example.

PROPOSITION 2. In a reverse auction, the following can
hold simultaneously: 1. The winning bidders are paid mN
under the VCG mechanism; 2. If the winning bids are re-
moved, the remaining bids allow the auctioneer to procure
everything at a cost of only N under the VCG mechanism;
3. If these bids were truthful (as we would expect under
VCG), then if we had run a first-price sealed-bid reverse
auction instead (and the bidders’ valuations were common
knowledge), any equilibrium in pure strategies would have
required total payment of at most N. (However, there are
also mixed-strategy equilibria with arbitrarily large expected
total payment.)

4.2 Characterization

Letting N be the sum of the values of the accepted bids
when all the colluders’ bids are taken out, it is clear that no
colluder can be paid more than N. (With the colluder’s bid,
the sum of the values of others’ accepted bids is still at least

3Similar examples have been discovered in the context of
purchasing paths in a graph [2]. However, in that setting,
the buyer does not seek to procure all of the items, and hence
the examples cannot be applied directly to combinatorial
reverse auctions.

4Consider the above example and suppose that the n+2 bids
reflect the bidders’ true valuations—since bidding truthfully
is a weakly dominant strategy in the VCG mechanism. Sup-
posing that a pure-strategy equilibrium is being played, let
the total payment to be made in this equilibrium be 7. (We
observe that the final allocation can still be uncertain, e.g. if
there is a random tie-breaking rule.) Suppose m > N. Then,
the expected utility for either one of the bidders interested
in providing the whole bundle can never exceed m — N (be-
cause the bidder will be paid 0 whenever none of its bids
are accepted, and providing any items at all will cost it
N). Moreover, it is not possible for both of these bidders
to simultaneously have an expected utility of 7 — N (as this
would mean that both are paid m with certainty, contrary
to the fact that the total payment is 7). It follows at least
one has an expected utility of m — N — € for some € > 0. But
then this bidder would be better off bidding = — § for the
whole bundle, which would be accepted with certainty and

give an expected utility of m — N — 5. Tt follows that the
total payment in a pure-strategy equilibrium cannot exceed

SPerhaps surprisingly, the first-price combinatorial reverse
auction for this example (with commonly known true valu-
ations corresponding to the given bids) actually has mixed-
strategy equilibria with arbitrarily high expected payments.
We omit the proof because of space constraint.

0; without it, it can be at most N, because in the worst case
the auctioneer can accept the bids that would be accepted if
none of the colluders are present.) In this subsection, we will
identify a necessary and sufficient condition for the colluders
to be able to each receive N.

LEMMA 3. If a colluder receives N, then the items that it
has to provide cannot be covered by a subset of the noncol-
luders’ bids with cost less than N.

PrOOF. If they could be covered by such a set, we could
simply accept this set of bids (including those that were ac-
cepted already) rather than the colluder’s bid, and increase
the total cost by less than N. Thus, the colluder’'s VCG
payment is less than N. [

Thus, in order for each of the n colluders to be able to
receive IV, it is necessary that there exist n disjoint subsets
of the items, each of which cannot be covered with a subset
of the noncolluders’ bids with total value less than N. The
next lemma shows that this condition is also sufficient.

LEMMA 4. Ifthere are n disjoint sets of items R, ..., Ry,
each of which cannot be covered by a subset of the noncol-
luders’ bids with cost less than N, then n colluders can be
paid N each.

PROOF. Let colluder ¢ (for ¢ < n) bid (R;,0), and let
colluder n bid (R, U (S —J, R:),0). Then the total cost of
all accepted bids with all the colluders is 0; but when one
colluder is omitted, the items it won cannot be covered at a
cost less than N (because its bid contained one of the R;).
Thus, each colluder’s VCG payment is N. []

The next lemma shows that the necessary and sufficient
condition above is equivalent to being able to partition all
the items into n sets, so that no element of the partition can
be covered by a subset of the noncolluders’ bids with total
value less than N. That is, we can restrict our attention to
the case where the subsets exhaust all the items.

LEMMA 5. The condition of Lemma 4 is satisfied if and
only if it is possible to partition the items into Ti,...,T,
such that no T; can be covered by a subset of the noncollud-
ers’ bids with cost less than N.

ProOF. The “if” part is trivial: given T; that satisfy the
condition of this lemma, simply let R; = T;. For the “only
if” part, given R; that satisfy the condition of Lemma 4, let
T; = R; for i <n, and T, = R, U (S — |J; Ri). We observe
that this last set can also not be covered at a cost of less
than N because it contains R,,. [

Combining all the lemmas, we get:

THEOREM 4. The n colluders can receive a payment of N
each (simultaneously), where N is the sum of the values of
the accepted bids when all the colluders’ bids are removed, if
and only if it is possible to partition the items into T1, ..., T,
such that no T; can be covered by a subset of the noncollud-
ers’ bids with cost less than N.

4.3 Self-enforcing collusion

Unlike the case of combinatorial forward auctions, in re-
verse auctions, a stronger condition is required if the collu-
sion is also required to be self-enforcing.



THEOREM 5. The n colluders can receive a payment of N
each (simultaneously), where N is the sum of the values of
the accepted bids when all the colluders’ bids are removed, if
and only if it is possible to partition the items into T1, ..., Ty
such that 1) no T; can be covered by a subset of the noncol-
luders’ bids with cost less than N, 2) for no colluder i, the
following holds: there exists a subset T; C T; such that T}
can be covered by a set of noncolluders’ bids with total cost
less than v;(T;) — vi(T; —T}) (the marginal savings to agent
i of not having to provide T} ).

PrOOF. Omitted due to space constraint. []

4.4 Complexity

In order to collude in the manner described above, the n
colluders must solve the following computational problem.

DEFINITION 2 (CRITICAL-PARTITION). We are
given a set of items I, a collection of bids (S;,v;) where
S; C I and v; € R, and a number n. Say that the cost of a
subset of these bids is the sum of their v;; and that the cost
c(T) of a subset T C I is the lowest cost of any subset of the
bids whose S; cover T'. We are asked whether there exists
a partition of I into n disjoint subsets Th,Ts, ..., Ty, such
that for any 1 < i <n, c¢(T;) = c(I).

THEOREM 6. Even when the bids are so that a partition
Ti,...,Tn is a solution if and only if no set I — T; covers
all items in a bid, CRITICAL-PARTITION is NP-complete
(even with n = 2).

PRroOOF. The problem is in NP in this case because given
a partition Ti,...,T,, it is easy to check if any set I — T;
covers all items in a bid.

To show NP-hardness, we reduce an arbitrary NAESAT®
instance (given by a set of clauses C over a set of variables V,
with each variable occurring at most once in any clause) to
the following CRITICAL-PARTITION instance with n = 2
(where we are trying to partition into 77 and 7T%). Let I be
as follows. For every variable v € V, there are two items
labeled sy, and s—_,. Let the bids be as follows. For every
variable v € V there is a bid ({$4v,S—v},2). For every
clause ¢ € C' , there are two bids ({s; : I € ¢},2m. — 1) and
({s1 : =1 € ¢},2m. — 1) where m. is the number of literals
occurring in c.

First we show that this instance satisfies the condition
that a partition 7i,...,7T, is a solution if and only if no
set I — T; covers all items in a bid. First, we observe that
c(I) = |I| (we can use all the bids of the form ({$4v,5-v},2),
getting a per-item cost of 1; no other bid gives a lower per-
item cost).

Now, if some set I —T; covers all the items in a bid of the
form ({s4v,8—v},2), then ¢(T;) < 2|I| — 2 (because we can
simply omit this bid from the solution for all the items). If
some set I —T; covers all the items in a bid of the form ({s; :
l € c¢},2m.—1), then ¢(T;) = |I|—1. (This is because we can
now accept the “complement” bid ({s; : =l € ¢},2m. — 1),
and we will have covered all the items s, and s_,, in T; such
that v occurs in ¢ (precisely 2m. items, because variables
do not reoccur within a clause); for any other item si, or
S—v, we can accept the bid ({s4v,s—v},2), and we need to

5The goal in NAESAT is to assign truth values to all vari-
ables in such a way that there is no clause with all its literals
set to true, and no clause with all its literals set to false.

accept at most |V| —m. such bids, leading to a total cost of
2me — 14+ 2(|V|—=me) = |I] - 1.)

On the other hand, suppose there is no set I — T; that
covers all the items in a bid. Then, either T; must include
at precisely one of s, and s_,. (Otherwise one T; would
include neither and I — T; would cover all items in the bid
({84v,8-v},2).) Thus, when we are trying to cover T;, cov-
ering items in it with bids of the form ({s+v, s—v}, 2) would
result in a per-item cost of 2. On the other hand, cover-
ing items in it with bids of the form ({s; : [ € ¢},2m. — 1)
or ({s; : =l € ¢},2m. — 1) would result in a per-item cost
of at least % > 2 (because at most m. — 1 of the me.
items in the bid can be in T;, otherwise T; would cover all
the items in the bid; but 7; = I — T5_; which by assump-
tion does not cover all the items in any bid). It follows that
C(T;) =2|V| = |I| = c(]).

Now we show that the two instances are equivalent. First
suppose there exists a solution to the NAESAT instance.
Then partition the elements as T = {s; : [ =true} and T =
{s1 : I =false}, according to this solution. Clearly neither of
I—T, =Ts_; covers a bid of the form ({s4v,5-v},2). Also,
because no clause has all its literals set to the same value
(we have a NAESAT solution), the items in a corresponding
bid ({s; : L € ¢},2mc—1) or ({s; : =l € c},2m. — 1) are not
all in the same set. By the previously proved property, it
follows that this partition is a solution to the CRITICAL-
PARTITION instance.

On the other hand, suppose that there exists a solution
to the CRITICAL-PARTITION instance. Then label a lit-
eral true if s; € Ty, and false otherwise. By the previously
proved property, because ({S4v,S—v},2) is a bid, only one
of sy, and s_, can be in 71 = I — T», so this provides
a consistent setting of the literals. Additionally, because
({si : L € ¢},2m. — 1) is a bid, not all the s; in that bid can
be in Ty = I — T5. It follows that some of the literals [l € ¢
are set to false. Similarly, not all the s; in that bid can be
in To = I — T3, so some of the literals [ € ¢ are set to true.
It follows that this assignment of truth values to variables
is a solution to the NAESAT instance. []

5. COMBINATORIAL FORWARD (OR
REVERSE) AUCTIONS WITHOUT FREE
DISPOSAL

A combinatorial forward auction without free disposal is
exactly the same as one with free disposal, with the ex-
ception that every item must be allocated to some bidder.
Here, bids with a negative value may still be useful, as they
allow us to remove some of the items—which may allow us
to accept better bids for the remaining items.

Similarly, a combinatorial reverse auction without free dis-
posal is exactly the same as one with free disposal, with the
exception that no additional items can be procured. Here,
bids with a negative value may occur—the (nondisposable)
item may be a liability to the bidder.

In both cases, we seek to identify a subset of the bids that
constitutes an exact cover of the items (no item covered
more than once), and to maximize the bidders’ total utility
under this constraint. Therefore, the settings are technically
identical, and in the rest of this section, we can restrict our
attention to forward auctions without free disposal.



5.1 Motivating example

Consider a forward auction with two nondisposable items,
s1 and s2. Suppose we have collected two bids (from dif-
ferent bidders), both ({s1,s2},N). If these are the only
two bids, one of the bidders will be awarded both the items
and, under the VCG mechanism, will have to pay N. How-
ever, suppose two more bids (by different bidders) come in:
({s1}, N+ M) and ({s2}, N+ M), with M > 0. Then these
bids will win. Moreover, because without free disposal, we
cannot accept either of these bids without the other, each
of these bidders will be paid M under the VCG mechanism!

Again, this example demonstrates a number of issues.
First, additional bidders may change the auctioneer’s rev-
enue from an arbitrarily large positive amount to an ar-
bitrarily large negative amount (an arbitrarily large cost).
Second, the VCG mechanism may require arbitrarily large
payments from the auctioneer even in cases where a first-
price auction would actually generate revenue for the auc-
tioneer, in the case where all bidders’ valuations are com-
mon knowledge. (The first-price mechanism will generate
a revenue of at least N for these valuations in any pure-
strategy equilibrium.”®) Third, even when the other bid-
ders by themselves would generate positive revenue for the
auctioneer under the VCG mechanism, it is possible that
two colluders can make the auctioneer pay each of them an
arbitrarily large amount.

The following sums up the properties of this example.

PROPOSITION 3. In a forward auction without free dis-
posal (even with only two items), the following can hold si-
multaneously: 1. FEach winning bidder is paid an arbitrary
amount M under the VCG mechanism (where M depends
only on the winners’ bids); 2. If the winning bids are re-
moved, the remaining bids actually generate revenue N to
the auctioneer under the VCG mechanism; 3. If these bids
were truthful (as we would expect under VCG), then if we
had run a first-price sealed-bid auction instead (and the bid-
ders’ valuations were common knowledge), any equilibrium
in pure strategies would have generated revenue N. (How-
ever, there are mized-strategy equilibria with arbitrarily large
cost to the auctioneer.)

"Consider the above example and suppose that the four bids
reflect the bidders’ true valuations—since bidding truthfully
is a weakly dominant strategy in the VCG mechanism. Sup-
posing that a pure-strategy equilibrium is being played, let
the total revenue to the auctioneer be p, where p is possi-
bly negative. (We observe that the final allocation can still
be uncertain, e.g. if there is a random tie-breaking rule.)
Suppose p < N. Then the expected utility for either of the
bidders interested in providing the whole bundle is at most
N — p. (If the bidder receives a singleton item, its utility
is —oo; if it receives nothing, its utility is 0; if it receives
both items, its utility is N — p.) Moreover, it is not possible
for both of these bidders to both have an expected utility
of N — p, as this would mean they both receive both items
with probability 1. It follows that at least one of them has
an expected utility of N — p — € where ¢ > 0. But then
this bidder would be better off bidding p + 5, as this bid
would be accepted with certainty and give an expected util-
ity of N — p — 5. It follows that the expected revenue in a
pure-strategy equilibrium cannot be less than N.
8Similarly to the case of the combinatorial reverse auction
with free disposal, there are mixed-strategy equilibria in the
first-price auction where the auctioneer is forced to make
arbitrarily large payments—we omit the proof because of
space constraint.

5.2 Characterization

In this subsection, we will identify a necessary and suffi-
cient condition for the colluders to be able to each receive
an arbitrary amount. Let v(b) denote the value of bid b.

LEMMA 6. If each colluder receives a payment of more
than 23" |v(bq)| (where d ranges over the noncolluders), then
d

for each colluder c, the set of all items awarded to either
that colluder or a noncolluder (that is, sc U Ud Sd4, where sp
is the set of items awarded to bidder b and d ranges over the
noncolluders) cannot be covered exactly with bids from the
noncolluders.

PROOF. Say that the sum of the values of accepted non-
colluder bids is D (which may be negative). Suppose that
for one colluder c, the set of all items awarded to either her
or a noncolluder (that is, sc UJ, sa) can be covered by a
set of noncolluder bids of combined value C' (which may be
negative). Then removing colluder ¢ can make the alloca-
tion at most D — C worse to the other bidders (relative to
their reported valuations), because we could simply accept
the bids of combined value C' and no longer accept the bids
of combined value D, and keep the rest of the allocation the
same. Thus, under VCG, that colluder should be rewarded
at most D — C <23 |v(ba)]. O

d

Thus, in order for each colluder to be able to receive an
arbitrarily large payment, it is necessary that there are n
disjoint subsets of the items such that no such subset taken
together with the remaining items can be covered exactly by
the noncolluders’ bids. Also, the set of remaining items must
be exactly coverable by the noncolluders’ bids (otherwise
we cannot accept all the colluders’ bids). The next lemma
shows that this condition is also sufficient.

LEMMA 7. If it is possible to partition the items into
Ri,..., Ry, Rog1 such that for no 1 < i < n, R URny41
can be covered exactly with bids from the noncolluders; and
such that Rn41 can be covered eractly with bids from the
noncolluders; then for any M > 0, n colluders can place
additional bids such that each of them receives at least M.

PROOF. Let colluder ¢ place a bid (Ri;, M + 3% |v(ba)|)
d

(where d ranges over the noncolluders). All these bids will be

accepted, because it is possible to do so by also accepting the

noncolluder bids that cover R,11 exactly; and these noncol-

luder bids will have a combined value of at least — Y |v(bq)],
d

so that the sum of the values of all accepted bids is at least
(3n — 1) > |v(bg)| + nM. (We observe that if we do not
d

accept all of the colluder bids, the sum of the values of all
accepted bids is at most (3(n—1)+1) > |v(bg)|+(n—1)M =
d

(B3n—2)>" |v(ba)|+ (n—1)M, which is less.) Now, if the bid
d

of colluder i is removed, it is no longer possible to accept all
the remaining n — 1 colluder bids, because R; U Ry,1 cannot
be covered exactly with noncolluder bids. It follows that the
total value of all accepted bids when i’s bid is removed can
be at most (3(n —2) + 1) |v(ba)| + (n —2)M. When 4’s

d

bid is not omitted, the sum of the values of all accepted bids

other than ¢’s is at least (3(n—1) —1) > |v(ba)| + (n—1)M.
d

Subtracting the former quantity from this, we get that the
VCG payment to ¢ is at least Y |v(bq)| + M. [
d



The next lemma shows that the necessary and sufficient
condition above is equivalent to being able to partition all
the items into n sets, so that no element of the partition
can be covered exactly by a subset of the noncolluders’ bids.
That is, we can restrict our attention to the case where
RnJrl - @

LEMMA 8. The condition of Lemma 7 is satisfied if and
only if the items can be partitioned into T4, ..., T, such that
no T; can be covered exactly with bids from the noncolluders.

ProOOF. For the “if” part: given T; that satisfy the con-
dition of this lemma, let R; = T} for i < n, and R,11 = 0.
Then no R; U Ry4+1 = T; can be covered exactly with bids
from the noncolluders, and R,+1 = () can trivially be cov-
ered exactly with noncolluder bids. For the “only if” part:
given R; that satisfy the condition of Lemma 7, let T; = R;
for ¢ < n, and let T;, = R, U Ry,+1. That T, cannot be cov-
ered exactly by noncolluder bids now follows directly from
the conditions of Lemma 7. But also, no T; with ¢ < n can
be covered exactly: because if it could, then we could cover
RiURp+1 = T; U R, 41 using the bids that cover T; exactly
together with the bids that cover R,4+1 exactly (which exist
by the conditions of Lemma 7). [J

Combining all the lemmas, we get:

THEOREM 7. The n colluders can receive a payment of
at least M each (simultaneously), where M is an arbitrarily
large number, if and only if it is possible to partition the
items into 11, ..., T, such that no T; can be covered exactly
with bids from the noncolluders.

5.3 Self-enforcing collusion

Again, a stronger condition is required if the collusion is
also required to be self-enforcing.

THEOREM 8. The n colluders can receive a payment of
at least M each (simultaneously), where M is an arbitrar-
ily large number, if and only if it is possible to partition the
items into T, ..., T, such that 1) no T; can be covered ex-
actly with noncolluder bids, 2) for no colluder i, the follow-
ing holds: there exists a subset T, C T; such that T} can be
covered by a set of noncolluders’ bids with total value greater
than v;(T;) — vi(T; — T}) (the marginal value to agent i of
receiving T; ).

PrOOF. Omitted due to space constraint. []

5.4 Complexity

In order to collude in the manner described above, the n
colluders must solve the following computational problem.

DEFINITION 3 (COVERLESS-PARTITION). We are
giwen a set I and a collection of subsets S1,S2,...,5¢ C I.
We are asked whether there is a partition of I into subsets
Ty, Ta,...Tn C I such that no T; can be covered exactly by
some of the S;.

THEOREM 9. Even if there is a singleton S; for all but two
elements a and b, and n = 2, COVERLESS-PARTITION is
NP-complete.

PrOOF. Omitted due to space constraint. []

5.5 An easier collusion problem

So far in this section, we have formulated the collusion
problem so that each colluder should receive M, where M
is an arbitrary amount. An easier problem for the colluders
is to make sure that together, they receive M, where M is
an arbitrary amount. Such a collusion may be less stable
(because some of the colluders may be receiving very lit-
tle). Nevertheless, as we will show, this type of collusion
is possible whenever a weak (and easily verified, given the
noncolluders’ bids) condition holds: at least one item has
no singleton bid on it. (A singleton bid is a bid on only one
item.) We first show that this condition is necessary.

LEMMA 9. If at least one colluder receives a payment of
more than Y |v(ba)| (where d Tanges over the noncolluders),
d

then there is at least one item s on which no noncolluder
places a singleton bid.

Proor. If each item has a singleton noncolluder bid placed
on it, then when we remove a colluder’s bid, we can simply
cover all the items in it with singleton bids (with a com-
bined value of at least — > |v(ba)|), and leave the rest of the

d

allocation unchanged. It follows that the VCG payment to
the colluder can be at most >_ |v(bq)|). O
d

We now show that the condition is sufficient.

LEMMA 10. If there is at least one item s on which no

noncolluder places a singleton bid, then if one colluder bids
({s},0), and the other colluder bids (I—{s}, M+2>" |v(ba)|)
d

(for M > 0), then the total payment to the colluders is at
least M.

PRrROOF. The colluders’ bids will be the only accepted ones
(because colluder 2’s bid has a greater value than all other
bids combined). If we removed colluder 2’s bid, the total
value of the accepted bids would be at most Y |v(b4)|), so

d

colluder 2 will pay at most this much under the VCG mech-
anism. If we removed colluder 1’s bid, colluder 2’s bid could
no longer be accepted (because {s} cannot be covered by
itself), and thus the total value of the accepted bids could
be at most > |v(bg)]). It follows that colluder 1 is paid at

d
least M + " |v(bg)|). So the total payment to the colluders
d
is at least M [

Combining the two lemmas, we get the desired result:

THEOREM 10. Two (or more) colluders can receive a to-
tal payment of M, where M is an arbitrarily large number,
if and only if there is at least one item that has no singleton
bid placed on it by a noncolluder.

6. COMBINATORIAL EXCHANGES

In a combinatorial exchange, there is a set of items I =
{s1,82,...,8m} that can be traded. A bid takes the form
b= (A1,...,Am,v), where A1,..., Am,v € R (possibly nega-
tive). (Each A; is the number of units of the ith item that
the bidder seeks to procure, and v is how much the bidder
is willing to pay.) The winner determination problem is to
label bids as accepted or rejected, under the constraint that
the sum of the accepted vectors has its first m entries < 0, to



maximize the last entry of the sum of the accepted vectors.
(This is assuming free disposal.) We will also use the nota-
tion ({(siy5Xiy), (Sia, Aia), -« - (Sif, Aig )}, v) for representing
a bid in which )\ij units of item si; are demanded (and 0
units of each item that is not mentioned).

6.1 Characterization

In a combinatorial exchange with at least two items s;
and sz, let q1 (respectively, gz2) be the total number of units
of s1 (respectively, s2) offered for sale in bids so far (by
noncolluders). Now consider the following two bids (by col-
luders): ({(s1, 1 + 1), (52, —a — 1)}, M + ¥ [o(ba)]) and

d

({(s1,—q1 — 1), (s2,g2 + 1)}, M + Xd: [v(bq)]), where M > 0

and d ranges over the original (noncolluding) bids. Both

these bids will be accepted (for otherwise, the total value

of the accepted bids could be at most M + 23" |v(bg)| <
d

2(M + 3" |v(ba)])). Moreover, if we remove one of these two
d

bids, the other cannot be accepted (because its demand can-

not be met), so the total value of the accepted bids can be at

most Y |v(bg)|). It follows that the VCG payment to each
d

of these two bidders is at least M. This proves the following:

THEOREM 11. In a combinatorial exchange with at least
two items, for any set of bids by noncolluders, two colluders
can place bids so that each of them will receive at least M,
where M is an arbitrary amount. Moreover, each one re-
ceives exactly the items that the other provides, so that their
net contribution in terms of items is nothing.

7. CONCLUSIONS

The VCG mechanism is the canonical mechanism for mo-
tivating the bidders to bid truthfully in combinatorial auc-
tions and exchanges; if the setting is general enough, under
some requirements, it is the only one. Unfortunately, it also
introduces many problems. In this paper, we focused on the
related problems of revenue guarantees and bidder collusion.
We showed that these problems can be much worse in com-
binatorial auctions and exchanges than in single-item set-
tings. We gave necessary and sufficient conditions for when
these highly undesirable scenarios can occur, and showed
how computationally hard it is to verify these conditions.
One direction for future research is to characterize when sim-
ilar but less severe failures of the VCG mechanism can occur.
A more interesting (and difficult) direction is to find (possi-
bly untruthful) mechanisms (perhaps for restricted settings)
that do not suffer from these problems.
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