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Abstract

The recent past has witnessed a predominance of robust empirical methods in natural language
structure prediction, but mostly through the analysis of syntax. Wide-coverage analysis of the under-
lying meaning or semantics of natural language utterances still remains a major obstacle for language
understanding. A primary bottleneck lies in the scarcity of high-quality and large amounts of an-
notated data that provide complete information about the semantic structure of natural language
expressions. In this thesis proposal, we study structured probabilistic models tailored to solve prob-
lems in computational semantics, with a focus on modeling structure that is not visible in annotated
text data.

First, we investigate the problem of paraphrase identification, which attempts to recognize
whether two sentences convey the same meaning. Our approach towards solving this problem
systematically blends natural language syntax and lexical semantics within a probabilistic frame-
work, and achieves state-of-the-art accuracy on a standard corpus, when trained on a set of true and
false sentential paraphrases (Das and Smith, 2009). Given a pair of sentences, the presented model
recognizes the paraphrase relationship by predicting the structure of one sentence given the other,
allowing loose syntactic transformation and lexical semantic alteration at the level of aligned words.

Second, we focus on the problem of frame-semantic parsing. Frame semantics offers deep lin-
guistic analysis that exploits the use of lexical semantic properties and relationships among semantic
frames and roles. We describe probabilistic models for analyzing a sentence to produce a full frame-
semantic parse. Our models leverage the FrameNet (Fillmore et al., 2003) and WordNet (Fellbaum,
1998) lexica, a small corpus containing full text annotations of natural language sentences, syntactic
representations from which we derive features, and results in significant improvements over previ-
ously published results on the same corpus (Das et al., 2010a).

Unfortunately, the datasets used to train our paraphrase and frame-semantic models are too
small to lead to robust performance. Therefore, to obviate this problem, a common trait in our meth-
ods is the hypothesis of hidden structure in the data. To this end, we employ conditional log-linear
models over structures, that are firstly capable of incorporating a wide variety of features gathered
from the data as well as various lexica, and secondly use latent variables to model missing informa-
tion in annotated data. For the paraphrase problem, our model assumes the presence of hidden
alignments between the syntactic structures of the sentence pair, which while unknown during the
training and testing phases, produce meaningful correpondence between the two sentences’ syntax
at inference time, as a by-product. For frame-semantic parsing, we face the challenge of identifying
semantic frames for previously unseen lexical items. To generalize our model to these new lexical
items, we adopt a stochastic process that assumes that a given semantic frame generates a latent
lexical item, and the lexical item in turn generates the unseen item through a lexical semantic trans-
formation process.

Continuing with the theme of hypothesizing hidden structure in data for modeling of natural
language semantics, we propose to leverage large volumes of unlabeled data to improve upon the
aforementioned tasks. As an attempt to harvest raw data to boost semantic structure prediction, we
intend to gather categorical and topical word clusters from a large corpus using standard cluster-
ing techniques that look at lexical and syntactic contexts around a given word. Inspired by recent
advances in syntactic parsing (Koo et al., 2008) and information extraction (Miller et al., 2004; Lin
and Wu, 2009), we propose to incorporate features based on these clusters in our existing models for
paraphrase identification and frame-semantic parsing, hoping to resolve data sparsity to some extent
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and in turn help improve the performance of our models in the tasks’ respective evaluation metrics.
For the task of frame-semantic parsing, we next propose to use phrasal paraphrases to improve the
subtask of argument identification of semantic frames. The miniscule size of the annotated corpus
for this subtask offers very few labeled phrases as examples for each frame element (or semantic
role) in the FrameNet lexicon. We propose to use phrasal paraphrases extracted from unlabeled cor-
pora through state-of-the-art methods (Callison-Burch, 2008) to alleviate this problem, and improve
argument identification by incorporating paraphrase information as features in our models. The
two tasks of modeling paraphrase and frame-semantic parsing shed light on two different parts of
the bigger challenge of modeling semantics; however, using similar methods and features for both
problems will help us move toward a more unified representation.

Finally, we propose to investigate semi-supervised learning techniques to improve frame-
semantic parsing. Recent work on semi-supervised learning for language processing has focused
on various techniques, often resulting in significant improvements over supervised methods. Two
examples are semi-supervised structured conditional models (Suzuki and Isozaki, 2008; Suzuki et al.,
2009) and entropy minimization (Jiao et al., 2006; Smith and Eisner, 2007, inter alia). The former ex-
tends a standard set of features whose weights are estimated from labeled data, with another feature
set induced from unlabeled data, and is trained by alternating parameter estimation on the anno-
tated data and the unlabeled data till convergence. Bootstrapping feature rich probabilistic models
with the latter is another avenue for leveraging unlabeled data, and has exhibited improvements for
sequence labeling tasks and dependency parsing. Frame-semantic parsing naturally fits into either
semi-supervised learning framework because available annotated data is scarce, and our modeling
techniques are amenable to semi-supervised extensions.

This dissertation will empirically demonstrate that unannotated text corpora contain consider-
able semantic information that can be incorporated into structured models for semantics, to signifi-
cant benefit over the current state of the art.
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Chapter 1

Introduction

Wide-coverage semantic analysis of text is currently an obstacle for robust natural language
understanding. Broadly, semantic analysis of text thus far has considered the conversion
of text into logical forms using training corpora belonging to a narrow domain (Ge and
Mooney, 2005; Zettlemoyer and Collins, 2005), or semantic role labeling that investigates
predicate-argument structures of verbs and nominal items producing shallow symbolic out-
put (Palmer et al., 2005). While the former suffers from the lack of coverage because the
supervised training methods are limited to very small corpora, the latter assumes a limited
set of shallow tags to gather sufficient amount of training data, resulting in inconsistency
across different semantic frames (Yi et al., 2007). Word sense diambiguation is another
popular task (Brown et al., 1991; Yarowsky, 1995) whose goal is to identify the correct mean-
ing of a word given its context. However, disambiguating word meaning does not result in
predicate argument structures, which can prove to be useful semantic representations.

Among various other attempts to model natural language semantics, one major goal has
been to discover semantic relationships between sentence-pairs, mostly investigated via
the problem of recognizing textual entailment (Dagan et al., 2005; Bar-Haim et al., 2006; Gi-
ampiccolo et al., 2007). Most research in this area have either resorted to the use of shallow
bag-of-words based classifiers that leads to robustness but fails to model structural corre-
spondences between sentence pairs that govern a semantic relationship (Corley and Mihal-
cea, 2005; Glickman et al., 2005), or have modeled these sentential relationships using brittle
forms of logical inference that do not generalize to varied domains of text (Bos and Markert,
2005; MacCartney and Manning, 2007) either because these models are trained on restricted
domain corpora or use inference mechanisms that do not capture complex natural language
phenomena.

In this dissertation proposal, we investigate structured probabilistic models for natural
language semantics: specifically we focus on recognizing the paraphrase relationship be-
tween two sentences and semantic analysis of text in the form of frame-semantic parsing.
We hypothesize that the semantic analysis of a natural language utterance is closely related
to its syntax, and exploit useful syntactic representations to this end. We also leverage lexical
resources in our models, to incorporate expert knowledge in our methods. In all our models,
we apply a probabilistic framework as it suits our needs with respect to model combination
and the ease of building feature-rich models.

A common bottleneck across all semantic analysis tasks is the absence of richly anno-
tated corpora. To cite a few examples, lexical resources used to assist semantic analysis are
often scarce, word aligned corpora for sentence-pair relationships are few and large corpora
of sentences annotated with semantic structures are limited. To sidestep the dearth of an-
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2 CHAPTER 1. INTRODUCTION

notated data, we model latent structure in data for both the tasks in consideration. Finally,
we propose to use large volumes of unlabeled data to derive features for our models and
perform semi-supervised learning to demonstrate that useful semantic information for anal-
ysis can be harvested from raw text. Before delving into the details of our methods in the
following chapters, we will provide a brief background on statistical modeling of natural
language semantics and motivate the necessity of semantic analysis of text.

1.1 Statistical Methods in NLP

The past two decades have witnessed an empirical revolution in natural language process-
ing (NLP). The area has increasingly been influenced by machine learning techniques and
statistical modeling of natural language phenomena has evolved to be the well-accepted
norm. The availability of the Penn Treebank (Marcus et al., 1993) led to statistical models of
natural language syntax in the form of probabilistic context free grammar variants, the more
famous manifestations being the Charniak and the Collins parsers (Charniak, 2000; Collins,
2003). Since then, treebanks for several other languages have been built, resulting in robust
syntactic parsers, both for phrase-structure and dependency grammars. Data-driven meth-
ods for other NLP tasks like text chunking (Tjong Kim Sang and Buchholz, 2000), named-
entity recognition (Tjong Kim Sang, 2002), corefence resolution (Grishman and Sundheim,
1995) and machine translation (Al-Onaizan et al., 1999), have motivated the ubiquitous use
of empirical methods in natural language analysis.

Among various empirical methods, probabilistic modeling of language structure has been
a popular form, because the probabilistic genre allows a flexible framework with several
advantages. For example, to cite a few, these models facilitate the combination of simpler
models, promote the use of ovelapping features (in log-linear models), and can accommo-
date latent variables to model unseen structure. Semi-supervised extensions of supervised
probabilistic models are intuitive and have commonly been used in NLP. In recent times,
probabilistic models have been widely used in syntactic parsing (Petrov and Klein, 2008;
Smith and Smith, 2007), sequence labeling tasks (Finkel et al., 2005), grammar induction
(Smith, 2006) and machine translation (Koehn et al., 2007).

Probabilistic modeling for natural language semantics has also been popular. For exam-
ple, significant amount of work on modeling lexical semantics exists, and has been popular:
a vast proportion of research on word sense disambiguation (Brown et al., 1991; Bruce and
Wiebe, 1994; Yarowsky, 1995) and creation of lexical resources (Snow et al., 2006; Haghighi
et al., 2008) have made use of such models. Recent research on shallow semantic parsing in
the form of semantic role labeling (SRL) has largely exploited probabilistic modeling (Gildea
and Jurafsky, 2002; Cohn and Blunsom, 2005). Several lines of work on natural language in-
ference or textual entailment have made use of probabilistic models to determine whether
semantic relationships between sentence pairs exist (Glickman et al., 2005; Glickman and
Dagan, 2005).

In this work, we will employ probabilistic methods for tasks in computational seman-
tics. We will observe why probabilistic methods suit the tasks at hand, how these methods
assist in modeling structures unobserved in supervised data, and how unlabeled text can be
brought into probabilistic modeling with the hope of extracting useful semantic information
from text.
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Marco     Polo        wrote     an    account            of    Asian    society    during    the   13th    century .
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Figure 1.1: A Penn Treebank style phrase-structure syntax tree for Example 1.1.

Marco     Polo    wrote    an      account    of    Asian    society    during    the   13th    century     .
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Figure 1.2: A labeled dependency syntax tree for Example 1.1.

1.2 Why Computational Semantics?

Semantics deals with the literal representation of meaning in natural language utterances.
Computational modeling of semantics is essential for deeper understanding of natural lan-
guage, and would lead to representations beyond formalisms such as dependency and
phrase-structure grammars that model syntax. Consider the sentence in Example 1.1:

(1.1) Marco Polo wrote an account of Asian society during the 13th century.

Figure 1.1(a) shows an example phrase-structure parse that uses Penn Treebank (Marcus
et al., 1993) conventions, while Figure 1.2 shows an example dependency syntax tree for
the same sentence. The dependency tree is labeled in that the head-modifier relations are
marked by a handful of syntactic relations. State-of-the art parsers like the Collins (2003)
and the Charniak (2000) parsers produce parses similar to Figure 1.1 while parsers such
as the MST parser (McDonald et al., 2005), the Malt parser (Nivre et al., 2004), or stacked
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Marco Polo wrote an ACCOUNT of Asian society during the 13th century.

Author Text

TEXT

Topic

Figure 1.3: A frame-semantic parse for Example 1.1.

dependency parsers (Martins et al., 2008) or would produce an analysis such as Figure 1.2.
Although such syntactic representations have proved to be very useful for several appli-

cations such as machine translation (Zollmann and Venugopal, 2006), question answering
(Wang et al., 2007) and relation extraction (Culotta and Sorensen, 2004), phenomena such
as sense ambiguity or semantic frames of lexical items in a sentence are not analyzed by
plain syntax. For example, consider the word “account” in Example 1.1. From the parses
shown in Figures 1.1 and 1.2, it is unclear to a computer system whether the word means
“a description of facts, conditions, or events” or “a statement of transactions during a fiscal
period and the resulting balance”.1

Figure 1.3 on the other hand portrays a semantic analysis of the same sentence, follow-
ing the paradigm of frame semantics (Fillmore, 1982). We will go into the details of frame
semantics in Chapter 5, but essentially the frame-semantic parse of a sentence results in a
collection of semantic frames evoked by words or phrases in a sentence, and for each frame,
a set of semantic roles are also predicted. In the parse shown in Figure 1.3, only one seman-
tic frame is evoked, by the capitalized word “account”. The semantic frame in this case is
TEXT. It has three semantic roles Author, Text, and Topic as marked under token spans in
the figure. Unlike a syntactic parse of a sentence, this analysis clearly portrays the fact that
the word “account” is a form of text that has an author and a particular topic, and not a
record of transactions. In fact, these word senses can be derived from a lexical resource like
FrameNet (Fillmore et al., 2003), that lists words and phrases with various semantic frames
they can evoke, along with each frame’s possible set of semantic roles.

What applications can benefit from deep semantic analysis? One can cite several; how-
ever, let us choose the popular task of machine translation. To test the efficacy of a state-of-
the-art machine translation system for a low-resource language pair, we provided the sen-
tence in Example 1.1 to the English to Hindi translation engine of Google.2 Unfortunately,
the Hindi translation of the sentence produced by this system is the following:

(1.2) mAko polo 13 bF\ sdF k� dOrAn eEfyAi smAj k� ek KAt� m�\ ElKA TA।

In this sentence, the literal translation of the underlined word KAt� is “a record of transac-
tions,” which indeed is another meaning of the word “account,” however not in the context
of Example 1.1. Moreoever, an extraneous postposition m�\ after KAt� is introduced, which
changes the core meaning of the translation, resulting in the following literal translation:

(1.3) Marco Polo wrote in the Asian society’s record of transactions during the 13th
century.

1See http://www.merriam-webster.com/dictionary/account for more dictionary definitions of
the word “account.”

2See http://translate.google.com/.

http://www.merriam-webster.com/dictionary/account
http://translate.google.com/
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It is easy to point out that the correct Hindi word for “account” was not used by the trans-
lation system, which possibly did not encounter the desired word sense of “account” in its
training data. To exemplify the necessity of semantic analysis of text, we next presented the
following sentence to the same translation system:

(1.4) Marco Polo wrote a chronicle of Asian society during the 13th century.

This sentence is a straightforward modification of Example 1.1, with “an account” replaced
by “a chronicle”. The replacement roughly retains the meaning of the sentence, and like
“account”, the word “chronicle” belongs to the same semantic frame TEXT according to the
FrameNet lexicon. Example 1.5 is the Hindi translation produced by the system, which
translates “chronicle” to the underlined word iEthAs, meaning “history”, resulting in the
desired meaning. The possessive marker introduced in Example 1.2 is also absent, making
it an acceptable translation.

(1.5) mAko polo 13 bF\ sdF k� dOrAn eEfyAi smAj kA iEthAs ElKA TA।

Semantic analysis of the English side could possibly have avoided the scenario presented
above. A frame-semantic parse as in Figure 1.3 of the sentence in Example 1.1 would tag
the word “account” with the semantic frame TEXT, which would have provided a signal to
the translation system indicating that the desired sense of the word in the target side should
conform to the same semantic frame.

Previous researchers have incorporate semantic analysis of text into various applications
and have reported success. Bilotti et al. (2007) used semantic roles to improve question an-
swering. Their conclusions suggest that semantic processing of web documents can produce
results more relevant to input questions. They used PropBank (Kingsbury and Palmer, 2002)
style semantic role labeling to preprocess web data used for retrieval, followed by clever in-
dexing. A blend of syntax and lexical semantics was used for question answering by Wang
et al. (2007), where lexical similarity in the form of WordNet (Fellbaum, 1998) lookups were
leveraged to rank candidate answers to questions. Shen and Lapata (2007) used FrameNet
style semantic structures to improve question answering; their approach treated the answer
selection problem as graph matching, where the graphs incorporated semantic informa-
tion. Qiu et al. (2006) used semantic roles to improve paraphrase identification. Predicate-
argument tuples were matched between candidate sentence pairs to detect a paraphrase
relationship. Das et al. (2008) have leveraged semantic roles for template creation for ab-
stractive summarization in closed domains. Their technique involved clustering of human
written summaries using a similarity metric based on semantic roles. In recent work, se-
mantic roles have been used in statistical machine translation by Wu and Fung (2009). They
used a two pass model where the first pass was a typical phrase-based approach, while the
second pass was used to develop a re-ordering strategy using semantic role annotations.
Their preliminary experiments resulted in improvements in translation quality measured
by the BLEU score (Papineni et al., 2001).

A separate line of work in computational semantics has looked at relationships between
pairs of sentences. A vast body of research has been performed in recognizing textual en-
tailment (RTE), where the goal is to identify whether a hypothesis is entailed by a premise.

(1.6) In 1998, the General Assembly of the Nippon Sei Ko Kai (Anglican Church in Japan)
voted to accept female priests.

(1.7) The Anglican Church in Japan approved the ordination of women.
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Examples 1.6 and 1.7 constitute a sentence pair where the second sentence is entailed by
the first. Determining whether the meaning of one sentence is implied by another has been
compared to the Turing test (Bos and Markert, 2005), as it may require deep semantic un-
derstanding of language. This is exemplified by the pair of sentences presented above. For
example, the fact that “ordination” and “accepting female priests” are embodiments of the
same meaning requires deep semantic analysis of text. Other examples of such relation-
ships include equivalence or paraphrase (two sentences conveying the same information),
and contradiction (the pair providing contrasting information).

Modeling semantic relationships between pairs of sentences is relevant for various NLP
applications like multi- document summarization, large news clustering systems that need
to better understand standpoints of different news sources,3 improved question answering
(Harabagiu and Hickl, 2006) or automatic grading of student responses given reference an-
swers. Modeling of phrasal paraphrases have led to improvements in statistical machine
translation for low-resource scenarios (Callison-Burch et al., 2006; Marton et al., 2009). Very
recently, Padó et al. (2009) have used features motivated by textual entailment to produce
better machine translation evaluation metrics, in comparison to traditional and popular bag-
of-words metrics like BLEU (Papineni et al., 2001).

Semantic processing of text is essential from two standpoints. First, wide-coverage and
robust natural language understanding can be furthered only through better semantic pro-
cessing of text, in the forms of lexical semantics, parsing or through the modeling of rela-
tionships between sentences. Second, a variety of NLP applications still need improvement,
and better semantic understanding of text will directly aid that.

1.3 Contributions of the Thesis

As described at the onset of this chapter, we investigate probabilistic models for two se-
mantic analysis tasks: paraphrase identification and frame-semantic parsing. Although
these problems have been addressed by the NLP community before, the described research
departs from previous work in several dimensions. The major contributions of the thesis
are:

1. We model complex semantic phenomena using structured probabilistic models, in-
stead of relying on a collection of naı̈ve classifiers. To this end, whenever possible, we
make use of distributed computing to facilitate fast parameter estimation.

2. Large quantities of data containing rich semantic annotations do not exist. We attempt
to model unseen structure in the data by employing latent variables in our probabilis-
tic models. While unseen during the estimation and the testing phases, meaningful
latent structure can be uncovered as a by-product of Viterbi inference.

3. Our models provide unique direction in modeling the two semantic analysis problems
and result in state-of-the-art performance on standard corpora. Additionally, we have
publicly released our frame-semantic parser for the NLP community to use.

4. Finally, we propose to use vast amounts of unlabeled data for improved modeling of
the aforementioned phenomena. We plan to use features derived from word clusters
found in large unannotated text corpora, as well use semi-supervised learning to learn

3See http://www.ark.cs.cmu.edu/RAVINE

http://www.ark.cs.cmu.edu/RAVINE
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models from a mixture of labeled and unlabeled data. Our probabilistic models are
amenable to both these extensions and we hope to demonstrate that unlabeled data
contains information that can significantly benefit the current methods.

1.4 Organization of the Document

This document is organized as follows. §2 focuses on relevant previous work on semantic
relationships between sentence pairs, with a focus on modeling paraphrase. Next, it de-
scribes relevant work on shallow semantic parsing, especially FrameNet based analysis of
text. Herein, we contrast our techniques with previous work, and focus on the advantages
of probabilistic modeling techniques. §3 describes a set of tools used in this thesis. Examples
of these tools are syntactic representations, probabilistic log-linear models and word cluster-
ing methods used for deriving features from unlabeled data. §4 investigates our model for
recognizing a paraphrase relationship between two sentences. We describe our probabilistic
technique, the experiments and the results achieved on a popoular corpus. §5 describes in
detail the model used for frame-semantic parsing. It describes the task in detail, the lexicon
used to derive expert knowledge, the probabilistic model used to analyze raw text, and fi-
nally explains the experiments and the results achieved on a standard dataset. §6 consists of
proposed work to be completed as a part of the final dissertation. We consider possibilities
of improving the frame-semantic parser of §5 by appending our model with features de-
rived from unlabeled corpora, as well as semi-supervised extensions. Finally, §7 concludes
the findings of this research and tabulates a timeline for the dissertation.



Chapter 2

Literature Review

This chapter reviews previous work on computational semantics relevant to the two broad
problems that we investigate. §2.1 looks at techniques used in modeling semantic relation-
ships between a sentence pair, and focuses on the recognition of sentential paraphrases.
§2.2 reviews relevant research on shallow semantic parsing, especially focusing on analysis
based on frame semantics (Fillmore, 1982). §2.1 and §2.2 provide background material for
the detailed models described in §4 for paraphrase identification and §5 for frame-semantic
parsing, respectively.

2.1 Models of Sentence-sentence Relationships

In recent years, modeling semantic relationships between sentence pairs has generated con-
siderable interest in the NLP community. Among various relationships like entailment,
paraphrase and contradition, the first has been of specific interest to a large fraction of the
community. Dagan et al. (2005), Bar-Haim et al. (2006) and Giampiccolo et al. (2007) or-
ganized the first three Recognizing Textual Entailment (RTE) shared tasks where several
participants built models for textual inference. In recent years, the Text Analysis Confer-
ence (TAC)1 has continued to organize the RTE challenges. As mentioned in Chapter 1, the
RTE task essentially asks whether there exists an entailment relationship between a premise
and a hypothesis. A popular version of the task is a binary classification problem, where
a system needs to predict whether there exists an entailment relationship or not. Another
version presents a three-way classification task where the relationships can be either entail-
ment, non-entailment or “unknown”.

Example 2.1 and 2.2 is a premise-hypothesis pair taken from the RTE3 challenge, and is
one where the entailment relationship holds.

(2.1) “The Extra Girl” (1923) is a story of a small-town girl, Sue Graham (played by Mabel
Normand) who comes to Hollywood to be in the pictures. This Mabel Normand
vehicle, produced by Mack Sennett, followed earlier films about the film industry
and also paved the way for later films about Hollywood, such as King Vidor’s ”Show
People” (1928).

(2.2) ”The Extra Girl” was produced by Sennett.

1See http://www.nist.gov/tac/.

8
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It is noticeable that the premise often is quite long, containing multiple sentences, and the
hypothesis is short. The contents of the hypothesis sentence in this example can be inferred
from the premise by first preprocessing it with tools like named-entity recognition and coref-
erence resolution, aligning relevant phrases across the two utterances, and finally using an
inference step. Identification of textual inference thus becomes non-trivial. The following is
another pair taken from the same dataset:

(2.3) Take consumer products giant Procter and Gamble. Even with a $1.8 billion Research
and Development budget, it still manages 500 active partnerships each year, many of
them with small companies.

(2.4) 500 small companies are partners of Procter and Gamble.

Clearly this pair is one where the premise does not imply the contents of the hypothesis,
and getting to this decision for a state-of-the-art NLP system is hard because it needs deep
semantic analysis and logical inference stages.

Broadly, two kinds of approaches have been used to model RTE. First, simple bag-of-
words classifiers have been employed to predict the classes. Glickman and Dagan (2005),
Jijkoun and de Rijke (2005) and MacCartney et al. (2006) describe bag-of-words models em-
ploying lexical and semantic overlap between the two sentences to predict the entailment re-
lationship. These approaches do not model any form of structural correspondence between
the premise and the hypothesis, but is robust and generally work well for a considerable
proportion of sentence pairs. However, complex effects of antonymy, variation of predicate-
argument structure and negation are not captured by these models. Another line of work
has looked at deep analysis of the sentences to result in logical forms. Bos and Markert
(2005) used deep semantic analysis to produce logical forms for the premise and the hy-
pothesis and applied a theorem prover to find textual entailment. This method resulted in
high precision, but suffered from poor coverage on the RTE1 test set. In a more recent ap-
proach, MacCartney and Manning (2007) used a less stricter formalism called Natural Logic,
where lexical items in the premise and the hypothesis were first aligned, and then local en-
tailment decisions were taken using a classifier that incorporated several lexical, syntactic
and semantic features. The local decisions were joined using compositional rules, to result
in a global entailment decision. This system had very high precision and a combination with
a simpler overlap based model resulted in good performance on the RTE datasets.

In our work, we are interested in a different but related sentence-pair relationship, that
of paraphrase. The paraphrase relationship between two sentences can be thought of bidi-
rectional entailment. Modeling the paraphrase relationship between sentences is not new.
To our knowledge, the first work in this area was presented by McKeown (1979), who de-
scribed a system that paraphrased user queries to a natural language computer interface
to ensure that the system understood the user correctly. Since then, there has been a large
body of work on automatic generation or extraction of paraphrases. Ravichandran and
Hovy (2002), Barzilay and Lee (2003) and Dolan and Brockett (2005) have presented data-
driven techniques for finding sentential paraphrases. In summary, these approaches looked
at large amounts of raw text and used surface level similarity to extract similar meaning
sentences.

Finding paraphrases at finer granularity levels of words and phrases have been investi-
gated by another section of the community. Distributional similarity-based methods have
been investigated by Pereira et al. (1993) and Lin and Pantel (2001) where monolingual cor-
pora were processed to gather syntactic contexts of words, and common contextual infor-
mation was used to cluster similar meaning words. A series of work has followed, with a
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recent one attempting to cluster phrases from a web-scale text corpus (Lin and Wu, 2009).
Other approaches to find semantically equivalent phrases have attempted to harvest mul-
tiple translations of the same foreign source (Barzilay and McKeown, 2001). Using large
volumes of multilingual corpora to extract phrasal paraphrases has been the most recent
and attractive avenue of research. Bannard and Callison-Burch (2005) presented a proba-
bilistic method of finding paraphrases from bilingual parallel corpora. From a given sen-
tence pair in the parallel corpora, they chose a phrase in the source language, and found its
translation phrase in the target language. This phrase in the target language was fixed as
a pivot. Next they scanned for this pivot phrase in the other sentence pairs in the corpora,
and found several translations in the source language. These translations were deemed
to be potential paraphrases of the original source phrase. This approach worked quite well,
and recent extentions Callison-Burch (2008); Kok and Brockett (2010) have further improved
paraphrasing quality.

In our work, rather than the generation or extraction of paraphrases from free text, we
are concerned with the problem of recognizing the paraphrase relationship given a sentence
pair. Examples 2.5 and 2.6 belong to a pair that essentially talk about the failing revenue of
a company, and is a paraphrase pair:

(2.5) Revenue in the first quarter of the year dropped 15 percent from the same period a
year earlier.

(2.6) With the scandal hanging over Stewart’s company, revenue in the first quarter of the
year dropped 15 percent from the same period a year earlier.

Another pair that has similar lexical content, but are not equivalent in meaning is cited
below. The first sentence in the pair contains some information about the police searching
for traps, which is absent in the second sentence, making the pair a non-paraphrase example.

(2.7) Security lights have also been installed and police have swept the grounds for booby
traps.

(2.8) Security lights have also been installed on a barn near the front gate.

The paraphrase identification task is a binary classification problem where a given pair
of sentences need to be labeled as paraphrase or not. Data-driven techniques for this task has
mostly leveraged the Microsoft Research Paraphrase Corpus (Dolan et al., 2004; Quirk et al.,
2004, MSRPC) to build models of paraphrase. Like the textual entailment task, this task also
has witnessed two major genres of modeling approaches: using bag-of-words feature based
classification, and methods involving deep lexical, syntactic and semantic processing of the
individual sentences in the pair.

Among the first category of work on paraphrase identification, Zhang and Patrick (2005)
used text canonicalization to transform each sentence in the pair into a simplified form, e.g.
by changing passive voice to active voice and by changing complex future tense phrases
to simpler ones. Next, they used a classifier trained on lexical match between the canoni-
calized sentences to predict the paraphrase relationship. Corley and Mihalcea (2005) used
word to word lexical similarity to measure the similarity of two sentences in a given pair.
Another line of work used several surface level features like lexical overlap, overlap of syn-
tactic dependencies in the two sentences, the BLEU score between the two sentences and the
difference in sentence lengths to train a discriminative classifier for the paraphrase relation-
ship (Finch et al., 2005; Wan et al., 2006; Malakasiotis, 2009). Wan et al. (2006) specifically
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used a Support Vector Machine (Vapnik, 1995, SVM henceforth) to train their model, and
we use their system as a strong baseline for comparison. Qiu et al. (2006) used semantic role
labeling to find dissimilarity between sentences, and used an SVM to classify whether two
sentences are paraphrases of each other.

In contrast to all the aforementioned work on recognizing paraphrases, we model the
problem as a monolingual translation scenario, where we assume that one sentence in the
pair has been transformed into the other using a loose syntactic generative process, defined
by a quasi-synchronous grammar (Smith and Eisner, 2006). This process, which is probabilistic,
gives us a posterior probability that indicates whether the pair is a paraphrase or not. We
combine dependency syntax and lexical semantics as WordNet lookups in our model in an
elegant way. Word alignments are also modeled in our method, and are treated as latent
variables and are marginalized out.

Heilman and Smith (2010) use a variant of tree edits to transform a syntax tree of one
sentence to another, and incorporate the edit operations as features in a logistic regression
model. This work comes very close to our method, but does not model word alignments ex-
plicitly. Most related to our approach, Wu (2005) used inversion transduction grammars—a
synchronous context-free formalism (Wu, 1997)—for this task. Wu’s model can be under-
stood as a strict hierarchical maximum-alignment method. In contrast, our alignments are
soft (we sum over them), and we do not require strictly isomorphic syntactic structures.
Most importantly, our approach is founded on a stochastic generative process and estimated
discriminatively for this task, while Wu did not estimate any parameters from data at all.

2.2 Techniques in Shallow Semantic Parsing

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, there has been
a great deal of computational work using predicate-argument structures for semantics.
The development of Propbank (Kingsbury and Palmer, 2002), followed by CoNLL shared
tasks on semantic role labeling (Carreras and Màrquez, 2004; Carreras and Màrquez, 2005)
boosted research in this area.

Figure 2.1 shows a sentence annotated with semantic roles, taken from Propbank.
Propbank annotations are closely tied with syntax, because the dataset is essentially the
phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank (Mar-
cus et al., 1993) annotated with predicate-argument structures for verbs. In Figure 2.1, syntax
tree for the sentence is marked with various semantic roles. The two verbs in the sentence
“created” and “pushed” are the predicates. For the former, the constituent “more than 1.2
million jobs” serves as the semantic role ARG1 and the constituent “In that time” serves as
the role ARG-TMP. Similarly for the latter verb, roles ARG1, ARG2, ARGM-DIR and ARGM-
TMP are shown in the figure. Propbank defines roles ARG0 to ARG5 which behave in a
specific manner for a given verb, and additionally defines auxiliary roles ARGM-*, exam-
ples of which are ARGM-TMP and ARGM-DIR as shown in Figure 2.1. Therefore the total
number of tags in PropBank is few, and the training dataset has ∼40,000 sentences, thus
making the semantic role labeling task an attractive one from the perspective of machine
learning.

There are many instances of influential work on semantic role labeling using Propbank
conventions. Pradhan et al. (2004) present a system that use SVMs to identify the arguments
in a syntax tree that can serve as semantic roles, followed by the classification of the iden-
tified arguments resulting the role names. The used several binary SVMs and used them
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to choose the best role. Punyakanok et al. (2004) describe a semantic role labeler that uses
integer linear programming for inference and uses several global constraints to find the best
suited predicate-argument structures. Joint modeling for semantic role labeling using dis-
criminative log-linear models is presented by Toutanova et al. (2005), where the authors
used global features looking at all arguments of a particular verb together in a dynamic
programming and reranking framework. The Computational Linguistics special issue on se-
mantic role labeling (Màrquez et al., 2008) is a repository for few other interesting papers on
the topic, leveraging the Propbank conventions for labeling shallow semantic structures.

In this work, we focus on the related topic of frame-semantic parsing. Note that from the
annotated semantic roles for the two verbs in the sentence of Figure 2.1, it is unclear what the
core roles ARG1 or ARG2 represent linguistically. To better understand the roles’ meaning
for a given verb, one has to refer to a verb specific file provided along with the PropBank
corpus. Although collapsing these verb specific core roles into tags ARG0-ARG5 leads to
a small set of classes to be learned from a reasonable sized corpus, analysis shows that the
roles ARG2-ARG5 serve as many different roles for different verbs. Yi et al. (2007) point
out that these four roles are highly overloaded and inconsistent, and they mapped them
to VerbNet (Schuler, 2005) thematic roles to get improvements on the SRL task. Instead of
working with Propbank, we focus on shallow semantic parsing of sentences in the paradigm
of frame semantics (Fillmore, 1982).

The FrameNet lexicon (Fillmore et al., 2003) contains rich linguistic information about
lexical items and predicate-argument structures. A semantic frame present in this lexicon
has associated words and phrases that can potentially evoke it in a natural language utter-
ance. Each frame has associated roles, which are also enumerated in the lexicon. Figure 2.2
shows frame-semantic annotations for the same sentence shown in Figure 2.1. Note that
the verbs “created” and “pushed” evoke the semantic frames INTENTIONALLY CREATE and
CAUSE CHANGE POSITION ON A SCALE respectively. The corresponding lexical units, cre-
ate.V and push.V (See §5.3.1 for a detailed description of lexical units.) from the FrameNet lex-
icon are also shown in the figure right above the semantic frames. The PropBank analysis in
Figure 2.1 also had predicate-argument annotations for these two verbs. While Propbank la-
beled the roles of these verbs with its limited set of tags, the frame-semantic parse labels the
frames’ arguments with specific roles shown in the figure, making it immediately clear what
those arguments mean. For example, for the INTENTIONALLY CREATE frame, “more than 1.2
million jobs” is the Created entity, and “In that time” is the Time when the jobs were created.
FrameNet also allows non-verbal words and phrases to evoke semantic frames. As an exam-
ple, the nominal “million” in the sentence evokes the frame CARDINAL NUMBERS, and uses
“jobs” as the Entity role, that is enumerated by the cardinal number, “1.2” serves as the argu-
ment filling the Multiplier role and “more than” satisfies the Precision role. FrameNet goes
beyond other annotation projects like NomBank (Meyers et al., 2004) that focuses on nouns
in that it even allows adjectives, adverbs and prepositions to evoke frames. Finally, similar
words and phrases are grouped together under a semantic frame in this lexicon and both
frames and roles are organized in a hierarchy to provide itself a structure unlike PropBank,
which does not relate words or phrases.

Most of early work on frame-semantic parsing has made use of the exemplar sentences
in the FrameNet corpus (see §5.1.1), each of which is annotated for a single frame and its
arguments. Gildea and Jurafsky (2002) presented a discriminative model for arguments
given the frame; Thompson et al. (2003) used a generative model for both the frame and
its arguments; and Fleischman et al. (2003) first used maximum entropy models to find and
label arguments given the frame. Shi and Mihalcea (2004) developed a rule-based system



2.2. TECHNIQUES IN SHALLOW SEMANTIC PARSING 13

to predict frames and their arguments in text, and Erk and Padó (2006) introduced the Shal-
maneser tool, which employs Naı̈ve Bayes classifiers to do the same. Other FrameNet SRL
systems (Giuglea and Moschitti, 2006, for instance) have used SVMs. Most of this work was
done on an older, smaller version of FrameNet, containing around 300 frames and less than
500 unique semantic roles. Unlike this body of work, we used the newer FrameNet v. 1.3,2

that lists 795 frames and 7124 roles, thus handling many more labels, and resulting in richer
frame-semantic parses.

Recent work in frame-semantic parsing—in which sentences may contain multiple
frames which need to be recognized along with their arguments—has been first under-
taken during the SemEval’07 task 19 of frame-semantic structure extraction (Baker et al.,
2007), and is a focus of this thesis. This task leveraged FrameNet v. 1.3, and also released
a small corpus containing a little more than 2000 sentences with full text annotations. The
LTH system of Johansson and Nugues (2007), which we use as our baseline (§5.1.4), had the
best performance in the SemEval’07 task in terms of full frame-semantic parsing. Johansson
and Nugues (2007) broke down the task as identifying targets that could evoke frames in
a sentence, identifying the correct semantic frame for a target, and finally determining the
arguments that fill the semantic roles of a frame. They used a series of SVMs to classify
the frames for a given target, associating unseen lexical items to frames and identifying and
classifying token spans as various semantic roles. Both the full text annotation corpus as
well as the FrameNet exemplar sentences were used to train their models. Unlike Johans-
son and Nugues, we use only the full text annotated sentences as training data, model the
whole problem with only two probabilistic models, and result in significantly better overall
parsing scores.

Among other work based on FrameNet, Matsubayashi et al. (2009) investigated various
uses of relations in the FrameNet taxonomy for learning generalizations over roles; they
trained a log-linear model on the SemEval’07 data to evaluate features for the subtask of ar-
gument identification. Another line of work has sought to extend the coverage of FrameNet
by exploiting VerbNet and WordNet (Shi and Mihalcea, 2005; Giuglea and Moschitti, 2006;
Pennacchiotti et al., 2008), and projecting entries and annotations within and across lan-
guages (Boas, 2002; Fung and Chen, 2004; Padó and Lapata, 2005; Fürstenau and Lapata,
2009). Others have explored the application of frame-semantic structures to tasks such as
information extraction (Moschitti et al., 2003; Surdeanu et al., 2003), textual entailment (Bur-
chardt, 2006; Burchardt et al., 2009), question answering (Narayanan and Harabagiu, 2004;
Shen and Lapata, 2007), and paraphrase recognition (Padó and Erk, 2005).

2Available at http://framenet.icsi.berkeley.edu as of April 9, 2010.

http://framenet.icsi.berkeley.edu
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Chapter 3

Modeling Tools

Here, we describe a set of tools used across the two major problems in computational se-
mantics that we address in this thesis proposal. These tools are general, and have been used
in wide variety of problems in natural language processing. Since they do not integrate
into the two major semantic processing tasks we consider and because these tools appear
frequently in the following few chapters, we carve out their description as subsections in
this chapter. §3.1 describes briefly the formalism of dependency grammar, and provides the
notation used for dependency trees in this work. §3.2 explains the basics of log-linear moels,
mentions the use of latent-variables, and optimization methods used for training them. §3.3
focuses on how MapReduce, a distributed framework for computing, can be used for data
and computation intensive tasks relating to these tools. §3.4 briefly looks at WordNet and
how it is used for our problems. Finally §3.5 describes a word clustering algorithm to extract
groups of similar words from unlabeled corpora. This chapter can be skimmed on a casual
reading.

3.1 Dependency Trees

A dependency tree is a lightweight syntactic representation. Given a sentence, a dependency
tree assigns each word a syntactic parent, resulting in a graph with the words as its nodes,
and the syntactic relationships as directed edges. An additional constraint ensures that the
graph is a tree. In Chapter 1, we have already seen a dependency tree in Figure 1.2.

Figures 3.1 and 3.2 show two more dependency trees. The former is a projective depen-
dency tree, where arcs cannot cross when they are depicted on one side of the sentence,
while the latter is a non-projective tree where this constraint is not imposed. We have in-
cluded a dummy root symbol “$” which serves as the parent to the main verb of a sentence.
Since English is mostly projective, in all our experiments, we use an implementation of the
Eisner algorithm (Eisner, 1996) available in the MST parser (McDonald et al., 2005). How-
ever, the publicly available version of the MST parser1 performs parsing and the labeling of
arcs jointly. We modified this to perform unlabeled parsing first, followed by the labeling of
arcs using a log-linear classifier (Martins et al., 2008), and trained it on sections 2–21 of the
WSJ portion of the Penn Treebank, transformed to dependency trees following Yamada and
Matsumoto (2003).

In the following chapters, we denote a dependency graph on a sentence x = 〈x1, ..., xk〉
as τx. Because of the tree constraint, cycles are not allowed in this graph, and x0 is taken to

1See http://sourceforge.net/projects/mstparser.
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nmod sub

vmod

prd pmod
nmod

p

$       Mr.    Thomas    ate    the    cake    with    relish           .

root

Figure 3.1: A projective dependency parse.

$      A    hearing      is      scheduled      on     the     issue    today    .

root

nmod sub
nmod

p

nmod

pmod
vc

vmod

Figure 3.2: A non-projective dependency parse.

be the dummy “wall” symbol $, whose only child is the root word of the sentence (normally
the main verb). The tree consists of two mappings. The first is a mapping of word indices
to indices of syntactic parents, τp : {1, ..., k} → {0, ..., k}. The second is a mapping of indices
of words to dependency relation types in L , the possible set of labels in the dependency
grammar. It is defined as τl : {1, ..., k} → L . The set of indices of xi’s children to its left is
denoted by λx(i) = {j : τx(j) = i, j < i}, and similarly the set of indices of children to its
right is denoted by ρx(i) = {j : τx(j) = i, j > i}. xi has a single parent, denoted by xτp(i).
The label for xi is denoted by τl(i). Finally, the subtree rooted at the ith word by τx,i.

3.2 Log-linear Models

Log-linear models (Berger, 1996) have been commonly used in natural language processing
during the past two decades across a wide range of problems. A log-linear model defines a
probability distribution over observation/label pairs (x, y) ∈ X × Y as follows:

pθ(x, y) =
expθ>f(x, y)∑

x′,y′

expθ>f(x′, y′)
(3.1)

Equation 3.1 defines a joint distribution over the observations x and the labels y. Often, we
prefer a conditional distribution, where we assume the observations as given, and we model
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the probability the labels:

pθ(y | x) =
expθ>f(x, y)∑

y′

expθ>f(x, y′)
(3.2)

The denominator in each of the two equations above is called the partition function. In the
equations, f : X × Y → Rd denotes a feature vector, and θ ∈ Rd are model parameters
estimated from data.

Given training data
〈
〈x(i), y(i)〉

〉N
i=1

, parameter estimation of a conditional model as in
Equation 3.2 is frequently done using maximum a posteriori (MAP) estimation:

θ∗ = max
θ

L(θ)− C‖θ‖22 (3.3)

where,

L(θ) =
N∑

i=1

log pθ(y(i) | x(i)) (3.4)

In Equation 3.3, the term C‖θ‖22, denotes a regularization term that prevents overfitting on
the training data, and equates to a Gaussian prior distribution over the parameter space.
This specific case is referred to as L2 regularization as it takes the L2 norm of the parame-
ters, and other forms of regularization can be performed to get certain desired model prop-
erties. The hyperparameter C is often tuned over a development set or cross-validation is
performed to get an optimal value.

In our work, the maximization procedure in Equation 3.3, is done using gradient-based
methods. We employ a numerical batch optimization technique called L-BFGS (Liu and No-
cedal, 1989) for a few problems, as well as a stochastic minibatch algorithm called stochastic
gradient descent (Bottou, 2003). Both require us to compute the gradient of L(θ) with respect
to the parameter vector. For the model expressed in Equation 3.2, the partial derivative of
L(θ) with respect to one dimension θm of θ is:

∂L
∂θm

=
N∑

i=1

(
fm(x(i), y(i))− Epθ(Y |x(i))[fm(x(i), Y ]

)
(3.5)

In other words, it is the difference of the mth feature’s value in the data and the expected
value of the same feature for all possible labels given an observation, under the conditional
distribution. This kind of model estimation is also referred to as discriminative training.

Log-linear models are elegant probabilistic models in that they are capable of modeling
overlapping features. Straightforward models like Equation 3.2 are also amenable to exten-
sions with latent variables. For example, if we want to model unobserved latent variables z
in our model, it can be expressed as:

pθ(y | x) =
∑

z

pθ(y, z | x)

=

∑

z

expθ>f(x, y, z)

∑

y′,z′

expθ>f(x, y′, z′)
(3.6)

Here, we are marginalizing out the unobserved latent variables z. Latent variable modeling
is useful in many NLP problems. To cite an example, if x denotes a sentence, and we want
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to model the a phrase-structure tree y from the Penn Treebank, we may assume that there
is a finer latent variable syntactic tree z, which is unobserved but can explain the sentence
better. Petrov and Klein (2008) presented such a framework that resulted in better scores
for the phrase-structure parsing task. While inference, such a model can be used to produce
Viterbi labeling as a by-product to show interesting latent structure. This can be done as:

〈ŷ, ẑ〉 = argmax
y,z

pθ(y, z | x) (3.7)

We will investigate two probabilistic models in the following chapters that use latent vari-
ables to model unobserved phenomenon in supervised data. Notice that the parameter
estimation procedure for a latent-variable log-linear model changes from Equation 3.3:

θ∗ = max
θ

N∑

i=1

log
∑

z

pθ(y(i), z | x(i))

︸ ︷︷ ︸
L′(θ)

−C‖θ‖22 (3.8)

The summation inside the log makes this function non-convex; techniques like conditional
Expectation-Maximization (Jebara and Pentland, 1999) can be used to locally optimize this
function. However, in our work, we use L-BFGS to train our latent-variable models. The
partial derivative form expressed in Equation 3.5 changes to:

∂L′

∂θm
=

N∑

i=1

(
Epθ(y(i),Z|x(i))[fm(x(i), yi, Z]− Epθ(Y,Z|x(i))[fm(x(i), Y, Z]

)
(3.9)

Thus the derivative now is a difference of two expectation terms. Under the conditional
distribution of y, z given x, the first term is the expected value of the mth feature among all
latent variables with the correct training label, and the second term is the expected value of
the same feature among all latent variables and all labels.

3.3 Distributed Computing for Parameter Estimation

Often, gathering statistics such as derivatives for gradient based optimization or expected
counts for algorithms such as Expectation-Maximization is a computationally expensive op-
eration. In other cases, the total number of training examples is so large that gathering statis-
tics for the entire dataset becomes expensive. Moreover, such optimization techniques are
iterative and are run till convergence or a large number of iterations. Experimentation with
different sets of features often becomes prohibitively slow for such large models. In our ex-
periments, whenever we encounter either data-intensive or computation-intensive training
tasks, we resort to parallelizing the optimization procedure using a large-scale computing
framework called MapReduce (Dean and Ghemawat, 2008).

MapReduce has a very straightforward architecture. Data is provided to a MapReduce
job in the form of key-value pairs. These key-value pairs are divided across a number of
machines. Each map task receives a chunk of key-value pairs, and iterates over each one of
them. Every key-value pair in one map task is processed to result in another form of key-
value pair(s). These output key-value pairs from the map tasks are sorted and grouped on
the basis of the keys. Next, these are divided among a number of reduce tasks. Each reduce
task receives several keys, with each key associated with all its values. The reduce task then
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Training Examples

.....map task 1 map task 2 map task M

〈
〈x(i), y(i)〉

〉m1

i=1
, θ

〈
〈x(i), y(i)〉

〉N

i=1

〈
〈x(i), y(i)〉
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〈
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〈
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〈
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d〉
〉D

d=1 〈
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d 〉
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reduce task 1 reduce task 2 reduce task R.....

〈
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Concatenation

〈
〈d, ∂d〉
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d=1

〈
〈d, ∂d〉

〉r2

d=r1+1

〈
〈d, ∂d〉

〉D

d=rR−1+1

∇θL
Figure 3.3: Parallelizing one iteration of gradient-based optimization.
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iterates over each key, and performs an operation with its values. This operation results in
a final key-value pair. At the end of the pipeline, a set of unique keys with corresponding
values are produced as output.

Every iteration of an optimization procedure can be easily parallelized using a MapRe-
duce task. Figure 3.3 shows a prototypical example of how this can be done:

1. The set of training examples
〈
〈x(i), y(i)〉

〉N
i=1

is divided among M map tasks, each
getting a chunk of training examples, and the parameter vector θ.

2. Map task m processes the mth chunk, and produces key-value pairs of the form〈
〈d, ∂md 〉

〉D
d=1

, where d is a dimension of the parameter vector, and ∂md is a partial

derivative of the log-likelihood of this data chunk, with respect to the dth parame-
ter. This partial can be substituted with expected counts if the procedure is the EM
algorithm.

3. The partitioner/sorter sorts, groups and partitions these key-value pairs such that they
are divided amongst R reducers, each getting a bunch of keys along with associated

values of the form
〈
〈d, {∂1

d , . . . ∂
M
d }〉

〉r2
d=r1

.

4. Each reducer next sums up these partial derivatives and outputs the total partial

derivative for the entire training set, of the form
〈
〈d, ∂d〉

〉r2
d=r1

. This summation can

be substituted by the M-step for the EM algorithm.

5. A concatenation of the outputs from the reducers produces ∇θL, which is the deriva-
tive of the training set log-likelihood.

The above procedure can speed up training by several orders of magnitude, ease the
experimentation process and enable swift feature engineering.

3.4 WordNet

In our models, WordNet (Fellbaum, 1998) has been used as a lexical resource. We use the
WordNet lexical database for the sole purpose of finding possible lexical and semantic rela-
tionships between two words, without considering their part-of-speech information. These
relationships, often asymmetric, are enumerated below and are used as features in log-linear
models:

1. IDENTICAL WORD: This relationship is self explanatory. It holds only when two words
are identical.

2. SYNONYM: This relationship holds when two words are synonyms of each other ac-
cording to the WordNet database. Example WordNet synonyms of each other are
“death” and “demise.”

3. ANTONYM: This relationship holds when two words convey opposite meanings, e.g.
“death” and “birth.”

4. HYPERNYM: A word’s hypernym is one which is more generic. For example, a hyper-
nym of “clatter” is “noise.”
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5. HYPONYM: Hyponym is the exact opposite of hypernym. A hyponym of “die” is
“asphyxiate,” because to asphyxiate is more specific than to die.

6. DERIVED FORM: A derived form is a lexical relationship between two words and it
holds if the second word is the lexical root of the first. For example, “probably” is a
derived form of “probable.”

7. MORPHOLOGICAL VARIATION: A set of morphological variants of a verb consists of
inflected forms of it, e.g. “passed” is a morphological variation of ”pass.”

8. VERB GROUP: The verb group relation is a symmetric relationship between two se-
mantically related verbs. An example pair is “collaborate” and “cooperate.”

9. ENTAILMENT: The entailment relationship holds between two words if the first word
implies the second word. For example, “snore” implies “sleep.”

10. SEE ALSO: This a semantic relationship between adjectives, which connects similar
adjectives, but not exactly interchangeable ones, e.g. “different” and “incompatible.”

11. CAUSAL RELATION: This is a relationship between two words when the second is
caused by the first, e.g. “age” and “mature.”

3.5 Word Clusters

Deriving features from large amounts of unlabeled data can improve the performance of
a supervised learning algorithm. The Brown algorithm (Brown et al., 1992) has been used
to cluster words, and features derived from a word’s cluster memberships have improved
syntax processing tasks like dependency parsing (Koo et al., 2008). However, Koo et al.
(2008) used a corpus of only 43 million tokens to derive the word clusters. Very recently, Lin
and Wu (2009) used news data from the Linguistic Data Consortium containing the English
Gigaword, the Tipster corpus and Reuters RCV1 corpora containing a total of 3.4 billion
tokens, and a web scale corpus containing 700 billion tokens to perform word and phrase
clustering using the straightforward the K-Means algorithm (MacQueen, 1967). Their clus-
ters improved the tasks of named-entity recognition and web query classification over a
vanilla supervised setting. Furthermore, Lin and Wu (2009) used MapReduce to parallelize
the K-Means algorithm very efficiently, and accelerated the process of gathering clusters.

In our work, we follow Lin and Wu (2009), but limit ourselves to the English Giga-
word (Graff, 2003) containing 128 million sentences and 3.02 billion tokens, and only per-
form word clustering. We choose only those words in our dataset that occur more than 100
times in the Gigaword, resulting in a vocabulary of 179,468 types. We depart from previous
work by implementing the K-Means++ algorithm (Arthur and Vassilvitskii, 2007) instead
of vanilla K-Means. The K-Means++ algorithm initializes the K cluster centroids intelli-
gently, and has exhibited better convergence rate and better quality of clusters for several
applications. The initialization algorithm is as follows:

1. Let the set of feature vectors for each type in the vocabulary be denoted as V .

2. An initial centroid C1 is chosen uniformly at random from V .

3. The next centroid Ci is chosen selecting Ci = v′ ∈ V with probability D(v′)2P
v D(v)2

. Here,
D(v) = min d(v, u), u ∈ {c1, . . . , ci−1}where d is a distance function.
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4. Step 3 is repeated until we have chosen a total of K centroids.

After selecting the initial K centroids using the above algorithm, we implement the tradi-
tional K-Means algorithm on MapReduce as follows:

1. The feature vectors for all the words in the vocabulary are distributed among several
map tasks. Each map task also receives the vectors for the K centroids.

2. Each map task computes the closest centroid for each feature vector, and outputs a
key-value pair containing the centroid ID as key and the feature vector as value.

3. A reduce task receives a centroid ID as key and all its associated feature vectors as
values. Next, each reduce task computes the average of all the received feature vectors,
and produces the centroid ID as key and the averaged result as a vector value.

4. Steps 1-3 are repeated till convergence, starting with the new set of K centroids.

5. The word clusters are derived by grouping words on the basis of their closest cen-
troids.

There has been considerable previous work investigating different ways of creating the fea-
ture vectors for a particular word. For phrase clustering, Lin and Wu (2009) investigated two
ways of constructing the feature vectors. In the first, they chose words that appeared within
a 1-word context around a given word type. All such surrounding words were gathered
from the corpus along with their counts. Each such surrounding context word was treated
as a feature. The feature value was computed as the pointwise mutual information (PMI) of
the context word and the word to be clustered. In their second type of feature computation,
they considered all words within a 3-word context window, and computed the feature vec-
tors in a similar fashion. The former resulted in more categorical features while the latter
generated topical clusters. Another avenue of computing features can be the use of syn-
tactic contexts like head-modifier relationships, which result in clusters containing similar
meaning words.

In our work till now, we have considered only the surrounding words contained in a 1-
word window around a given word as features, and used PMI to compute a feature’s value.
We experimented with several values of K, namely 64, 128, 256, 512, 1024, and plan to use
them as features in our probabilistic models for semantics. Figure 3.4 shows a few coherent
clusters found using the K-Means++ algorithm with K = 512.
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Type Examples

Adverbs ending 
with -ly

erroneously, mechanically, customarily, inappropriately, 

inexorably, remorselessly,  consciously, gleefully, 

unfairly, hastily, frenetically, loyally, callously, 

errantly systemically, valiantly, unofficially, ...

Belonging to a 
region

andorran, ossetian, malian, azeri, qatari, rican, kirgiz, 

uighur, fijian, isreali, jamaican, slovakian, tanzanian, 

kosovan, british,  antiguan, then-soviet, salvadoran, 

canadian, kirghiz, rwandese, gibraltarian, slovene, 

bavarian, emirati, palestinan, spanish, croat, ...

Indian names
saroj, bikram, tirath, binod, sharda, subhas, kajal, a.v., 

venkat, k.l., abhijit, kalpana, pravin, rishi, k.r., 

surya, chetan, mohandas, shyam, suman, ...

Stores
cash-and-carry, k-mart, panera, galeries, tesco, high-

street, home-furnishings, hardee, randalls, walmart, 

eckerd, osco, coffeeshop, carmike, office-products, ...

Digital entities

narrowband, linux, e-business, photoshop, magnifier, data-

base,  internet-enabled, 1080p, k56flex, multiple-access, 

wcdma, add/remove,  always-on, piezoelectric, 56-kilobit, 

hypertext, off-the-shelf, ftp, dial-in, ...

nth

192nd, 187th, 442nd, 196th, 171st, 205th, 13th, 18th, 

124th, 97th, 6th, 15th, twelfth, 131st, 320th, 123rd, 

24th, 12th, tenth, 16th, 60th, 59th, 85th, 256th, 172nd, 

198th, 203rd, eighteenth, 138th, 111th, nineteenth, ...

music related

cumbia, musical-theater, indie, ranchera, coloratura, 

hillbilly, adult-contemporary, zydeco, early-music, 

acoustic, go-go, minstrel, hip-hop, rock-and-roll, top-40, 

narco, soft-rock, ...

words ending with
-ing

vaccinating, air-dropping, dooming, petitioning, 

disobeying, commercializing, fortifying, airlifting, 

emigrating, recasting, simulating, supplementing, 

expediting, burnishing, redrawing, redressing, 

rationalizing, short-circuiting, skewing, ...

Figure 3.4: Example word clusters obtained using the K-Means++ algorithm. The types of
the clusters are manual labels.



Chapter 4

Paraphrase Identification

In this chapter, we focus on the task of paraphrase identification, and present a novel method
for recognizing paraphrases. The described work has been original presented in (Das and
Smith, 2009). The problem of modeling paraphrase relationships between natural language
utterances has recently attracted interest. For computational linguists, solving this problem
may shed light on how best to model the semantics of sentences. For natural language engi-
neers, the problem bears on information management systems like abstractive summarizers
that must measure semantic overlap between sentences (Barzilay and Lee, 2003), question
answering modules (Marsi and Krahmer, 2005) and machine translation (Callison-Burch
et al., 2006).

The paraphrase identification problem asks whether two sentences have essentially the
same meaning. Although paraphrase identification is defined in semantic terms, it is usu-
ally solved using statistical classifiers based on shallow lexical, n-gram, and syntactic “over-
lap” features. Such overlap features give the best-published classification accuracy for the
paraphrase identification task (Zhang and Patrick, 2005; Finch et al., 2005; Wan et al., 2006;
Corley and Mihalcea, 2005, inter alia, see Chapter 2 for more details), but do not explicitly
model correspondence structure (or “alignment”) between the parts of two sentences. In
our work, we adopt a model that posits correspondence between the words in the two sen-
tences, defining it in loose syntactic terms: if two sentences are paraphrases, we expect their
dependency trees to align closely, though some divergences are also expected, with some
more likely than others. Following Smith and Eisner (2006), we adopt the view that the
syntactic structure of sentences paraphrasing some sentence s should be “inspired” by the
structure of s.

Because dependency syntax is still only a crude approximation to semantic structure, we
augment the model with a lexical semantics component, based on WordNet, that models
how words are probabilistically altered in generating a paraphrase. This combination of
loose syntax and lexical semantics is similar to the “Jeopardy” model of Wang et al. (2007).

This syntactic framework represents a major departure from useful and popular surface
similarity features, and the latter are difficult to incorporate into our probabilistic model.
Therefore, we use a product of experts (Hinton, 2002) to bring together a logistic regression
classifier built from n-gram overlap features and our syntactic model. This combined model
leverages complementary strengths of the two approaches, outperforming a strong state-of-
the-art baseline (Wan et al., 2006).

The following sections are organized as follows. We introduce our probabilistic model
in §4.1. The model makes use of three quasi-synchronous grammar models (Smith and
Eisner, 2006, QG hereafter) as components (one modeling paraphrase, one modeling not-
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paraphrase, and one a base grammar); these are detailed, along with latent-variable infer-
ence and discriminative training algorithms, in §4.2. We discuss the Microsoft Research
Paraphrase Corpus, upon which we conduct experiments, in §4.3. In §4.4, we present ex-
periments on paraphrase identification with our model and make comparisons with the
existing state-of-the-art. We describe the product of experts and our lexical overlap model,
and discuss the results achieved in §4.5. Finally, we conclude with a discussion in §4.6.

4.1 Probabilistic Model

Since our task is a classification problem, we require our model to provide an estimate of the
posterior probability of the relationship (i.e., “paraphrase,” denoted p, or “not paraphrase,”
denoted n), given the pair of sentences.1 Here, pQ denotes model probabilities, c is a rela-
tionship class (p or n), and s1 and s2 are the two sentences. We choose the class according
to:

ĉ ← argmax
c∈{p,n}

pQ(c | s1, s2)

Using Bayes’ rule, this can be written as:

ĉ ← argmax
c∈{p,n}

pQ(c)× pQ(s1, s2 | c) (4.1)

We define the class-conditional probabilities of the two sentences using the following
generative story. First, grammar G0 generates a sentence s. Then a class c is chosen, cor-
responding to a class-specific probabilistic quasi-synchronous grammar Gc. (We will discuss
QG in detail in §4.2. For the present, consider it a specially-defined probabilistic model that
generates sentences with a specific property, like “paraphrases s,” when c = p.) Given s, Gc
generates the other sentence in the pair, s′.

When we observe a pair of sentences s1 and s2 we do not presume to know which came
first (i.e., which was s and which was s′). Both orderings are assumed to be equally probable.
For class c,

pQ(s1, s2 | c) = 0.5× pQ(s1 | G0)× pQ(s2 | Gc(s1))
+ 0.5× pQ(s2 | G0)× pQ(s1 | Gc(s2)) (4.2)

where c can be p or n; Gp(s) is the QG that generates paraphrases for sentence s, while
Gn(s) is the QG that generates sentences that are not paraphrases of sentence s. This latter
model may seem counter-intuitive: since the vast majority of possible sentences are not
paraphrases of s, why is a special grammar required? Our use of a Gn follows from the
properties of the corpus currently used for learning, in which the negative examples were
selected to have high lexical overlap. We return to this point in §4.3.

4.2 QG for Paraphrase Modeling

Here, we turn to the models Gp and Gn in detail.

1Although we do not explore the idea here, the model could be adapted for other sentence-pair relationships
like entailment or contradiction.
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4.2.1 Background

Smith and Eisner (2006) introduced the quasi-synchronous grammar formalism. Here, we
describe some of its salient aspects. The model arose out of the empirical observation that
translated sentences have some isomorphic syntactic structure, but divergences are possible.
Therefore, rather than an isomorphic structure over a pair of source and target sentences,
the syntactic tree over a target sentence is modeled by a source sentence-specific grammar
“inspired” by the source sentence’s tree. This is implemented by associating with each node
in the target tree a subset of the nodes in the source tree. Since it loosely links the two
sentences’ syntactic structures, QG is well suited for problems like word alignment (Smith
and Eisner, 2006), flexible translation models (Gimpel and Smith, 2009), parser projection
(Smith and Eisner, 2009), and question answering (Wang et al., 2007).

Consider a very simple quasi-synchronous context-free dependency grammar that gen-
erates one dependent per production rule.2 Let s = 〈s1, ..., sm〉 be the source sentence. The
grammar rules will take one of the two forms:

〈t, l〉 → 〈t, l〉〈t′, k〉 or
〈t, l〉 → 〈t′, k〉〈t, l〉

where t and t′ range over the vocabulary of the target language, and l and k ∈ {0, ...,m} are
indices in the source sentence, with 0 denoting the null word $.3

Hard or soft constraints can be applied between l and k in a rule. These constraints
imply permissible “configurations.” For example, requiring l 6= 0 and, if k 6= 0 then sk must
be a child of sl in the source tree, we can implement a synchronous dependency grammar
similar to that of Melamed (2004).

Smith and Eisner (2006) used a quasi-synchronous grammar to discover the correspon-
dence between words implied by the correspondence between the trees. We follow Wang
et al. (2007) in treating the correspondences as latent variables, and in using a WordNet-
based lexical semantics model to generate the target words.

4.2.2 Detailed Model

We describe how we model pQ(t | Gp(s)) and pQ(t | Gn(s)) for source and target sentences
s and t (appearing in Equation 4.2 alternately as s1 and s2).

Consider two sentences: let the source sentence s contain m words and the target sen-
tence t contain n words. Let the correspondence a : {1, ..., n} → {0, ...,m} be a mapping
from indices of words in t to indices of words in s. (We require each target word to map to
at most one source word, though multiple target words can map to the same source word,
i.e., a(i) = a(j) while i 6= j.) When a(i) = 0, the ith target word maps to the wall symbol
$. Each of our QGs Gp and Gn generates the alignments a, the target dependency tree τ t,
and the sentence t. Both Gp and Gn are structured in the same way, differing only in their
parameters; henceforth we discuss Gp; Gn is similar.

We assume that the dependency parse trees of s and t are known.4 Therefore our model

2Our actual model is more complicated; see §4.2.2.
3A more general QG could allow one-to-many alignments, replacing l and k with sets of indices.
4In our experiments, we use the MST parser as described in §3.1 to produce dependencies. Though this

assumption of treating the parses as observed leads to a partial “pipeline” approximation of the posterior prob-
ability p(c | s, t), we believe that the relatively high quality of English dependency parsing makes this approxi-
mation reasonable.
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defines:

pQ(t | Gp(s)) = p(τ t | Gp(τ s))
=

∑
a p(τ

t, a | Gp(τ s)) (4.3)

Because the QG is essentially a context-free dependency grammar, we can factor it into re-
cursive steps as follows (let i be an arbitrary index in {1, ..., n}):

P (τ t,i | ti, a(i), τ s) = pval (|λt(i)|, |ρt(i)| | ti)

×
∏

j∈λt(i)∪ρt(i)

m∑

a(j)=0

P (τ t,j | tj , a(j), τ s)× pkid (tj , τ t
l (j), a(j) | ti, a(i), τ s)

(4.4)

where pval and pkid are valence and child-production probabilities parameterized as dis-
cussed in §4.2.4. Note the recursion in the second-to-last line.

We next describe a dynamic programming solution for calculating p(τ t | Gp(τ s)). In
§4.2.4 we discuss the parameterization of the model.

4.2.3 Dynamic Programming

Let C(i, l) refer to the probability of τ t,i, assuming that the parent of ti, tτtp(i), is aligned to sl.
For leaves of τ t, the base case is:

C(i, l) = pval (0, 0 | ti)×
m∑

k=0

pkid (ti, τ t
l (i), k | tτtp(i), l, τ

s)

where k ranges over possible values of a(i), the source-tree node to which ti is aligned. The
recursive case is:

C(i, l) = pval (|λt(i)|, |ρt(i)| | ti)×
m∑

k=0

pkid (ti, τ t
l (i), k | tτtp(i), l, τ

s)×
∏

j∈λt(i)∪ρt(i)

C(j, k)

(4.5)

We assume that the wall symbols t0 and s0 are aligned, so p(τ t | Gp(τ s)) = C(r, 0), where
r is the index of the root word of the target tree τ t. It is straightforward to show that this
algorithm requires O(m2n) runtime and O(mn) space.

4.2.4 Parameterization

The valency distribution pval in Equation 4.4 is estimated in our model using the dependency
trees converted from the phrase-structure trees of the Penn Treebank, following Yamada
and Matsumoto (2003). For unobserved cases, the conditional probability is estimated by
backing off to the parent POS tag and child direction.

We discuss next how to parameterize the probability pkid that appears in Equa-
tions 4.4, 4.5, and 4.5. This conditional distribution forms the core of our QGs, and we
deviate from earlier research using QGs in defining pkid in a fully generative way.

In addition to assuming that dependency parse trees for s and t are observable, we also
assume each word wi comes with POS and named entity tags. In our experiments these
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were obtained automatically using MXPOST (Ratnaparkhi, 1996) and BBN’s Identifinder
(Bikel et al., 1999).

For clarity, let j = τ t
p(i) and let l = a(j).

pkid(ti, τ t
l (i), a(i) | tj , l, τ s) =

pconfig(config(ti, tj , sa(i), sl) | tj , l, τ s) (4.6)
×punif (a(i) | config(ti, tj , sa(i), sl)) (4.7)

×plab(τ t
l (i) | config(ti, tj , sa(i), sl)) (4.8)

×ppos(pos(ti) | pos(sa(i))) (4.9)
×pne(ne(ti) | ne(sa(i))) (4.10)
×plsrel (lsrel(ti) | sa(i)) (4.11)
×pword (ti | lsrel(ti), sa(i)) (4.12)

We consider each of the factors above in turn.

Configuration In QG, “configurations” refer to the tree relationship among source-tree
nodes (above, sl and sa(i)) aligned to a pair of parent-child target-tree nodes (above, tj and
ti). In deriving τ t,j , the model first chooses the configuration that will hold among ti, tj , sa(i)
(which has yet to be chosen), and sl (line 4.6). This is defined for configuration c log-linearly
by:5

pconfig(c | tj , l, τ s) =
αc∑

c′:∃sk,config(ti,tj ,sk,sl)=c′

αc′
(4.13)

Permissible configurations in our model are shown in Table 4.1. These are identical to prior
work (Smith and Eisner, 2006; Wang et al., 2007), except that we add a “root” configuration
that aligns the target parent-child pair to null and the head word of the source sentence, re-
spectively. Using many permissible configurations helps remove negative effects from noisy
parses, which our learner treats as evidence. Figure 4.1 shows some examples of major con-
figurations that Gp discovers in the data.

Source tree alignment After choosing the configuration, the specific node in τ s that ti will
align to, sa(i) is drawn uniformly (line 4.7) from among those in the configuration selected.

Dependency label, POS, and named entity class The newly generated target word’s depen-
dency label, POS, and named entity class drawn from multinomial distributions plab , ppos ,
and pne that condition, respectively, on the configuration and the POS and named entity
class of the aligned source-tree word sa(i) (lines 4.8–4.10).

WordNet relation(s) The model next chooses a lexical semantics relation between We em-
ploy a 13-feature log-linear model over all logically possible combinations of the 11 WordNet
relations described in §3.4 as well as two more additional relations: whether the two words
are same and is a number, and no relation. Similarly to Equation 4.13, we normalize this
log-linear model based on the set of relations that are non-empty in WordNet for the word

5We use log-linear models three times: for the configuration, the lexical semantics class, and the word. Each
time, we are essentially assigning one weight per outcome and renormalizing among the subset of outcomes
that are possible given what has been derived so far.
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Configuration Description
parent-child τ s

p(a(i)) = a(j), appended with τ s
l (a(i))

child-parent a(i) = τ s
p(a(j)), appended with τ s

l (a(j))
grandparent-grandchild τ s

p(τ s
p(a(i))) = a(j), appended with τ s

l (a(i))
siblings τ s

p(a(i)) = τ s
p(a(j)), a(i) 6= a(j)

same-node a(i) = a(j)
c-command the parent of one source-side word is an ancestor of the other

source-side word
root a(j) = 0, a(i) is the root of s
child-null a(i) = 0
parent-null a(j) = 0, a(i) is something other than root of s
other catch-all for all other types of configurations, which are permitted

Table 4.1: Permissible configurations. i is an index in t whose configuration is to be chosen;
j = τ t

p(i) is i’s parent.

sa(i).

Word Finally, the target word is randomly chosen from among the set of words that bear
the lexical semantic relationship just chosen (line 4.12). This distribution is, again, defined
log-linearly:

pword (ti | lsrel(ti) = R, sa(i)) =
αti∑

w′:sa(i)Rw′
αw′

(4.14)

Here αw is the Good-Turing unigram probability estimate of a word w from the Gigaword
corpus (Graff, 2003).

4.2.5 Base Grammar G0

In addition to the QG that generates a second sentence bearing the desired relationship
(paraphrase or not) to the first sentence s, our model in §4.1 also requires a base grammar
G0 over s.

We view this grammar as a trivial special case of the same QG model already described.
G0 assumes the empty source sentence consists only of a single wall node. Thus every
word generated under G0 aligns to null, and we can simplify the dynamic programming
algorithm that scores a tree τ s under G0:

C ′(i) = pval (|λt(i)|, |ρt(i)| | si)
×plab(τ t

l (i))× ppos(pos(ti))× pne(ne(ti))
×pword(ti)×

∏
j:τt(j)=iC

′(j) (4.15)

where the final product is 1 when ti has no children. It should be clear that p(s | G0) = C ′(0).
We estimate the distributions over dependency labels, POS tags, and named entity

classes using the transformed treebank (footnote 4). The distribution over words is taken
from the Gigaword corpus (as in §4.2.4).

It is important to note that G0 is designed to give a smoothed estimate of the probability
of a particular parsed, named entity-tagged sentence. It is never used for parsing or for
generation; it is only used as a component in the generative probability model presented in
§4.1 (Equation 4.2).
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Figure 4.1: Some example configurations from Table 4.1 that Gp discovers in the dev. data.
Directed arrows show head-modifier relationships, while dotted arrows show alignments.

4.2.6 Discriminative Training

Given training data
〈
〈s(i)

1 , s(i)
2 , c(i)〉

〉N
i=1

, we train the model discriminatively by maximizing
regularized conditional likelihood (see §3.2). Let θ represent the set of model parameters to
be learned. θ includes the class priors, the conditional distributions of the dependency labels
given the various configurations, the POS tags given POS tags, the NE tags given NE tags
appearing in expressions 4.8–4.10, the configuration weights appearing in Equation 4.13,
and the weights of the various features in the log-linear model for the lexical-semantics
model. As noted, the distributions pval , the word unigram weights in Equation 4.14, and the
parameters of the base grammar are fixed using the treebank (see §4.2.4) and the Gigaword
corpus.

Let the conditional probability of each training example’s class, given the two sentences
be expressed by pQ(c(i) | s(i)

1 , s(i)
2 ,θ). Note that Equation 4.2 relates this conditional prob-

ability to G0, Gp and Gn. The discriminative training criterion maximizes the following
criterion:
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About 120 potential jurors were being asked to complete a lengthy questionnaire . 

The jurors were taken into the courtroom in groups of 40 and asked to fill out a questionnaire .

Figure 4.2: Discovered alignment of Example 4.18 produced by Gp. Observe that the model
aligns identical words and also “complete” and “fill” in this specific case. This kind of
alignment provides an edge over a simple lexical overlap model.

max
θ

N∑

i=1

log pQ(c(i) | s(i)
1 , s(i)

2 ,θ)− C‖θ‖22 (4.16)

Since there is a hidden variable (a), the objective function is non-convex (see §3.2). We lo-
cally optimize using the L-BFGS quasi-Newton method. Because many of our parameters
are multinomial probabilities that are constrained to sum to one and L-BFGS is not designed
to handle constraints, we treat these parameters as unnormalized weights that get renormal-
ized (using a softmax function) before calculating the objective. Training is performed using
MapReduce on 20 CPUs (see §3.3 for more details).

4.3 Data and Task

In our experiments, we have used the Microsoft Research Paraphrase Corpus (Dolan et al.,
2004; Quirk et al., 2004). The corpus contains 5,801 pairs of sentences that have been marked
as “equivalent” or “not equivalent.” It was constructed from thousands of news sources on
the web. Dolan and Brockett (2005) remark that this corpus was created semi-automatically
by first training an SVM classifier on a disjoint annotated 10,000 sentence pair dataset and
then applying the SVM on an unseen 49,375 sentence pair corpus, with its output proba-
bilities skewed towards over-identification, i.e., towards generating some false paraphrases.
5,801 out of these 49,375 pairs were randomly selected and presented to human judges for re-
finement into true and false paraphrases. 3,900 of the pairs were marked as having “mostly
bidirectional entailment,” a standard definition of the paraphrase relation. Each sentence
was labeled first by two judges, who averaged 83% agreement, and a third judge resolved
conflicts.

We use the standard data split into 4,076 (2,753 paraphrase, 1,323 not) training and 1,725
(1147 paraphrase, 578 not) test pairs. We reserved a randomly selected 1,075 training pairs
for tuning. We cite some examples from the training set here:

(4.17) Revenue in the first quarter of the year dropped 15 percent from the same period a
year earlier.
With the scandal hanging over Stewart’s company, revenue in the first quarter of the
year dropped 15 percent from the same period a year earlier.

(4.18) About 120 potential jurors were being asked to complete a lengthy questionnaire.
The jurors were taken into the courtroom in groups of 40 and asked to fill out a
questionnaire.
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Example 4.17 is a true paraphrase pair. Notice the high lexical overlap between the two
sentences (unigram overlap of 100% in one direction and 72% in the other). Example 4.18
is another true paraphrase pair with much lower lexical overlap (unigram overlap of 50%
in one direction and 30% in the other). Notice the use of similar-meaning phrases and ir-
relevant modifiers that retain the same meaning in both sentences, which a lexical overlap
model cannot capture easily, but a model like a QG might. Also, in both pairs, the relation-
ship cannot be called total bidirectional equivalence because there is some extra information
in one sentence which cannot be inferred from the other.

Example 4.19 was labeled “not paraphrase”:

(4.19) “There were a number of bureaucratic and administrative missed signals - there’s
not one person who’s responsible here,” Gehman said.
In turning down the NIMA offer, Gehman said, “there were a number of bureaucratic
and administrative missed signals here.

There is significant content overlap, making a decision difficult for a naı̈ve lexical overlap
classifier. (In fact, pQ labels this example n while the lexical overlap models label it p.)

The fact that negative examples in this corpus were selected because of their high lexical
overlap is important. It means that any discriminative model is expected to learn to dis-
tinguish mere overlap from paraphrase. This seems appropriate, but it does mean that the
“not paraphrase” relation ought to be denoted “not paraphrase but deceptively similar on
the surface.” It is for this reason that we use a special QG for the n relation.

Table 4.2: Accuracy, p-class precision, and p-class recall on the test set (N = 1,725). See
text for differences in implementation between Wan et al. and our replication; their reported
score does not include the full test set.

Model Accuracy Precision Recall

baselines
all p 66.49 66.49 100.00
Wan et al. SVM (reported) 75.63 77.00 90.00
Wan et al. SVM (replication) 75.42 76.88 90.14

pQ

lexical semantics features removed 68.64 68.84 96.51
all features 73.33 74.48 91.10
c-command disallowed (best; see text) 73.86 74.89 91.28

§4.5
pL 75.36 78.12 87.44
product of experts 76.06 79.57 86.05

oracles
Wan et al. SVM and pL 80.17 100.00 92.07
Wan et al. SVM and pQ 83.42 100.00 96.60
pQ and pL 83.19 100.00 95.29

4.4 Experimental Evaluation

Here we present our experimental evaluation using pQ. We trained on the training set (3,001
pairs) and tuned model metaparameters (C in Equation 4.16) and the effect of different fea-
ture sets on the development set (1,075 pairs). We report accuracy on the official MSRPC
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test dataset. If the posterior probability pQ(p | s1, s2) is greater than 0.5, the pair is labeled
“paraphrase” (as in Equation 4.1).

4.4.1 Baseline

We replicated a state-of-the-art baseline model for comparison. Wan et al. (2006) report
the best published accuracy, to our knowledge, on this task, using a support vector ma-
chine. Our baseline is a reimplementation of (Wan et al., 2006), using features calculated
directly from s1 and s2 without recourse to any hidden structure: proportion of word un-
igram matches, proportion of lemmatized unigram matches, BLEU score (Papineni et al.,
2001), BLEU score on lemmatized tokens, F measure (Turian et al., 2003), difference of
sentence length, and proportion of dependency relation overlap. The SVM was trained
to classify positive and negative examples of paraphrase using SVMlight (Joachims, 1999).6

Metaparameters, tuned on the development data, were the regularization constant and the
degree of the polynomial kernel (chosen in [10−5, 102] and 1–5 respectively.). Our replica-
tion of the Wan et al. model is approximate, because we used different preprocessing tools:
MXPOST for POS tagging (Ratnaparkhi, 1996), MST parser for parsing (McDonald et al.,
2005, See §3.1), and Dan Bikel’s interface (See http://www.cis.upenn.edu/˜dbikel/
software.html#wn) to WordNet (Fellbaum, 1998) for lemmatization information. Tuning
led to C = 17 and polynomial degree 4.

It is unsurprising that the SVM performs very well on the MSRPC because of the corpus
creation process (see Sec. 4.3) where an SVM was applied as well, with very similar features
and a skewed decision process (Dolan and Brockett, 2005).

4.4.2 Results

Table 4.2 shows performance achieved by the baseline SVM and variations on pQ on the test
set. We performed a few feature ablation studies, evaluating on the development data. We
removed the lexical semantics component of the QG,7 and disallowed the syntactic config-
urations one by one, to investigate which components of pQ contributes to system perfor-
mance. The lexical semantics component is critical, as seen by the drop in accuracy from
the table (without this component, pQ behaves almost like the “all p” baseline). We found
that the most important configurations are “parent-child,” and “child-parent” while dam-
age from ablating other configurations is relatively small. Most interestingly, disallowing
the “c-command” configuration resulted in the best absolute accuracy, giving us the best
version of pQ. The c-command configuration allows more distant nodes in a source sen-
tence to align to parent-child pairs in a target (see Figure 4.1d). Allowing this configuration
guides the model in the wrong direction, thus reducing test accuracy. We tried disallowing
more than one configuration at a time, without getting improvements on development data.
We also tried ablating the WordNet relations, and observed that the “identical-word” fea-
ture hurt the model the most. Ablating the rest of the features did not produce considerable
changes in accuracy.

The development data-selected pQ achieves higher recall by 1 point than Wan et al.’s
SVM, but has precision 2 points worse.

6http://svmlight.joachims.org
7This is accomplished by eliminating lines 4.11 and 4.12 from the definition of pkid and redefining pword to be

the unigram word distribution estimated from the Gigaword corpus, as in G0, without the help of WordNet.

http://www.cis.upenn.edu/~dbikel/software.html#wn
http://www.cis.upenn.edu/~dbikel/software.html#wn
http://svmlight.joachims.org
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4.4.3 Discussion

It is quite promising that a linguistically-motivated probabilistic model comes so close to a
string-similarity baseline, without incorporating string-local phrases. We see several reasons
to prefer the more intricate QG to the straightforward SVM. First, the QG discovers hid-
den alignments between words. Alignments have been leveraged in related tasks such as
textual entailment (MacCartney and Manning, 2007, inter alia); they make the model more
interpretable in analyzing system output (e.g., Figure 4.2). Second, the paraphrases of a sen-
tence can be considered to be monolingual translations. We model the paraphrase problem
using a direct machine translation model, thus providing a translation interpretation of the
problem. This framework could be extended to permit paraphrase generation, or to exploit
other linguistic annotations, such as representations of semantics (see, e.g., Qiu et al., 2006).

Nonetheless, the usefulness of surface overlap features is difficult to ignore. We next
provide an efficient way to combine a surface model with pQ.

4.5 Product of Experts

Incorporating structural alignment and surface overlap features inside a single model can
make exact inference infeasible. As an example, consider features like n-gram overlap per-
centages that provide cues of content overlap between two sentences. One intuitive way
of including these features in a QG could be including these only at the root of the target
tree, i.e. while calculating C(r, 0). These features have to be included in estimating pkid,
which has log-linear component models (Equation 4.6- 4.12). For these bigram or trigram
overlap features, a similar log-linear model has to be normalized with a partition function,
which considers the (unnormalized) scores of all possible target sentences, given the source
sentence.

We therefore combine pQ with a lexical overlap model that gives another posterior prob-
ability estimate pL(c | s1, s2) through a product of experts (PoE; Hinton, 2002):

pJ(c | s1, s2) =
pQ(c | s1, s2)× pL(c | s1, s2)∑

c′∈{p,n}

pQ(c′ | s1, s2)× pL(c′ | s1, s2)
(4.20)

Equation 4.20 takes the product of the two models’ posterior probabilities, then normalizes
it to sum to one. PoE models are used to efficiently combine several expert models that
individually constrain different dimensions in high-dimensional data, the product therefore
constraining all of the dimensions. Combining models in this way grants to each expert
component model the ability to “veto” a class by giving it low probability; the most probable
class is the one that is least objectionable to all experts.

Probabilistic Lexical Overlap Model We devised a logistic regression (LR) model incorpo-
rating 18 simple features, computed directly from s1 and s2, without modeling any hidden
correspondence. LR provides a probability distribution (like the QG), but uses surface fea-
tures (like the SVM). The features are of the form precisionn (number of n-gram matches
divided by the number of n-grams in s1), recalln (number of n-gram matches divided by
the number of n-grams in s2) and Fn (harmonic mean of the previous two features), where
1 ≤ n ≤ 3. We also used lemmatized versions of these features. This model gives the
posterior probability pL(c | s1, s2), where c ∈ {p, n}. We estimated the model parameters
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analogously to Equation 4.16. Performance is reported in Table 4.2; this model is on par
with the SVM, though trading recall in favor of precision. We view it as a probabilistic
simulation of the SVM more suitable for combination with the QG.

Training the PoE Various ways of training a PoE exist. We first trained pQ and pL separately
as described, then initialized the PoE with those parameters. We then continued training
the parameters of both models jointly, maximizing (unregularized) conditional likelihood.

Experiment We used pQ with the “c-command” configuration excluded, and the LR model
in the product of experts. Table 4.2 includes the final results achieved by the PoE. The PoE
model outperforms all the other models, achieving an accuracy of 76.06%.8 The PoE is
conservative, labeling a pair as p only if the LR and the QG give it strong p probabilities.
This leads to high precision, at the expense of recall.

Oracle Ensembles Table 4.2 shows the results of three different oracle ensemble systems that
correctly classify a pair if either of the two individual systems in the combination is correct.
Note that the combinations involving pQ achieve 83%, the human agreement level for the
MSRPC. The LR and SVM are highly similar, and their oracle combination does not perform
as well.

4.6 Conclusion

In this chapter, we have presented a probabilistic model of paraphrase incorporating syn-
tax, lexical semantics, and hidden loose alignments between two sentences’ trees. Though it
fully defines a generative process for both sentences and their relationship, the model is dis-
criminatively trained to maximize conditional likelihood. We have shown that this model is
competitive for determining whether there exists a semantic relationship between them, and
can be improved by principled combination with more standard lexical overlap approaches.

Along with providing a posterior distribution over the class given two sentences, the
quasi-synchronous grammars trained using our method can produce word level alignments
between two sentences, if Viterbi inference is performed to obtain the latent correspon-
dences. Figure 4.1 shows some example configurations discovered by the positive class QG
Gp. Figure 4.2 shows a sentence pair with the Viterbi alignments decoded using the same
QG.

Our method is amenable to the use of more features at the alignment sites because it
is composed of locally normalized log-linear models; it can be extended to capture prop-
erties like distributional similarity, and lexical features derived from unlabeled data can be
incorporated with ease (see §6.2.2).

8This accuracy is significant over pQ under a paired t-test (p < 0.04), but is not significant over the SVM.
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Frame-Semantic Parsing

bell.nring.vthere be.v enough.a
NOISE_MAKERSSUFFICIENCYEXISTENCE CAUSE_TO_MAKE_NOISE

.BELLSmore than six of the eightRINGtoringersENOUGHn'tAREstillTHEREBut

N_m

Sound_makerAgent

Item Enabled_situation

Entity

Figure 5.1: A sentence from PropBank and the SemEval’07 training data, and a partial de-
piction of gold FrameNet annotations. Each frame appears above the target that evokes it,
and each target is capitalized. Lexical units are shown above the frames. Each shaded figure
denotes a frame and all its roles. The double stroked lines denote roles. “N m” under bells is
short for the Noise maker role of the NOISE MAKERS frame—it is a denoted frame element
because it is also the target. The last row indicates that there. . . are is a discontinuous target.
In PropBank, the verb ring is the only annotated predicate for this sentence, and it is not
related to other predicates with similar meanings.

FrameNet (Fillmore et al., 2003) is a rich linguistic resource containing considerable in-
formation about lexical and predicate-argument semantics in English. Grounded in the
theory of frame semantics (Fillmore, 1982), it suggests—but does not formally define—a
semantic representation that blends word-sense disambiguation and semantic role labeling.

In this chapter, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures such
as those shown in Figure 5.1. We aim to predict a frame-semantic representation as a struc-
ture, not as a pipeline of classifiers. We use a probabilistic framework that cleanly integrates
the FrameNet lexicon and limited available training data. Although our models often in-
volve strong independence assumptions, the probabilistic framework we adopt is highly
amenable to future extension through new features, relaxed independence assumptions,
and semisupervised learning. Some novel aspects of our current approach include a latent-
variable model that permits disambiguation of words not in the FrameNet lexicon, a unified
model for finding and labeling arguments, and a precision-boosting constraint that forbids

37
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Figure 5.2: Partial illustration of frames, roles, and LUs related to the
CAUSE TO MAKE NOISE frame, from the FrameNet lexicon. “Core” roles are filled
ovals. Non-core roles (such as Place and Time) as unfilled ovals. No particular significance
is ascribed to the ordering of a frame’s roles in its lexicon entry (the selection and ordering
of roles above is for illustative convenience). CAUSE TO MAKE NOISE defines a total of 14
roles, many of them not shown here.

arguments of the same predicate to overlap. Our parser, named SEMAFOR1 achieves the
best published results to date on the SemEval’07 FrameNet task (Baker et al., 2007), and has
been originally presented in (Das et al., 2010a) and (Das et al., 2010b).

This chapter is organized as follows. §5.1 describes in detail the task and the resources
we used to solve it. §5.2, §5.3 and §5.4 detail the three major subtasks that constitute the
full problem of frame-semantic parsing, and also present the experiments and the results
achieved. Finally, §5.5 concludes this chapter with a discussion.

5.1 Resources and Task

We consider frame-semantic parsing resources.

5.1.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose frames for
English.2 Listed in the lexicon with each frame are several lemmas (with part of speech) that
can denote the frame or some aspect of it—these are called lexical units (LUs). In a sentence,
word or phrase tokens that evoke a frame are known as targets. The set of LUs listed for a
frame in FrameNet may not be exhaustive; we may see a target in new data that does not
correspond to an LU for the frame it evokes. Each frame definition also includes a set of
frame elements, or roles, corresponding to different aspects of the concept represented by

1Semantic Analyzer of Frame Representations. Available at http://www.ark.cs.cmu.edu/SEMAFOR
2Like the SemEval’07 participants, we used FrameNet v. 1.3 (http://framenet.icsi.berkeley.edu).

http://www.ark.cs.cmu.edu/SEMAFOR
http://framenet.icsi.berkeley.edu
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FRAMENET LEXICON V. 1.3
lexical exemplars
entries counts coverage
8379 LUs 139K sentences, 3.1M

words
70% LUs

795 frames 1 frame
annotation / sentence

63%
frames

7124 roles 285K overt arguments 56% roles

Table 5.1: Snapshot of lexicon entries and exemplar sentences. Coverage indicates the frac-
tion of types attested in at least one exemplar. The lexicon associates an average of 12.8 LUs
with a frame, and 66% of those LUs are attested for that frame. The average ambiguity of an
LU is 1.2 frames (the 1322 ambiguous LUs have an average ambiguity of 2.4 frames).

the frame, such as participants, props, and attributes. We use the term argument to refer to
a sequence of word tokens annotated as filling a frame role. Figure 5.1 shows an example
sentence from the training data with annotated targets, LUs, frames, and role-argument
pairs. The FrameNet lexicon also provides information about relations between frames and
between roles (e.g., INHERITANCE). Figure 5.2 shows a subset of the relations between three
frames and their roles.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexicographic
exemplar sentences (primarily from the British National Corpus) annotated for that frame.
Typically chosen to illustrate variation in argument realization patterns for the frame in
question, these sentences only contain annotations for a single frame. We found that us-
ing exemplar sentences directly to train our models hurt performance as evaluated on
SemEval’07 data, even though the number of exemplar sentences is an order of magnitude
larger than the number of sentences in our training set (§5.1.2). This is presumably because
the exemplars are neither representative as a sample nor similar to the test data. Instead, we
make use of these exemplars in features (§5.3.2).

TARGETS AND ARGUMENTS BY PART OF SPEECH
targets arguments

count % count %

Noun 5155 52 Noun 9439 55

Verb 2785 28 Preposition or
complementizerAdjective 1411 14 2553 15

Preposition 296 3 Adjective 1744 10

Adverb 103 1 Verb 1156 7

Number 63 1 Pronoun 736 4

Conjunction 8 Adverb 373 2

Article 3 Other 1047 6

9824 17048

Table 5.2: Breakdown of targets and arguments in the SemEval’07 training set in terms of
part of speech. The target POS is based on the LU annotation for the frame instance. For
arguments, this reflects the part of speech of the head word (estimated from automatic de-
pendency parse); the percentage is out of all overt arguments.
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FULL-TEXT ANNOTATIONS SemEval’07 data
train dev test

Size (words sentences documents)
all 43.3K 1.7K 22 6.3K 251 4 2.8K 120 3

ANC (travel) 3.9K 154 2 .8K 32 1 1.3K 67 1

NTI (bureaucratic) 32.2K 1.2K 15 5.5K 219 3 1.5K 53 2

PropBank (news) 7.3K 325 5 0 0 0 0 0 0

Annotations (frames/word overt arguments/word)
all 0.23 0.39 0.22 0.37 0.37 0.65

ANC 0.22 0.38 0.15 0.29 0.37 0.60

NTI 0.23 0.40 0.23 0.37 0.38 0.69

PropBank 0.22 0.37

Coverage of lexicon (% frames % roles % LUs)
all 64.1 27.4 21.0 34.0 10.2 7.3 29.3 7.7 4.9

ANC 26.4 7.4 4.8 8.9 2.0 1.1 17.5 3.9 2.3

NTI 52.4 21.1 14.9 31.5 9.2 6.7 19.0 5.0 3.0

PropBank 40.8 12.0 8.4

Out-of-lexicon types (frames roles LUs)
all 14 69 71 2 4 2 39 99 189

ANC 12 39 41 0 0 2 26 63 123

NTI 6 32 33 2 4 0 19 45 70

PropBank 3 11 3

Out-of-lexicon tokens (% frames % roles % LUs)
all 0.7 0.9 1.1 1.0 0.4 0.2 9.8 11.2 25.3

ANC 3.2 4.2 7.6 0.0 0.0 1.8 11.5 13.5 34.8

NTI 0.6 0.6 0.5 1.1 0.4 0.0 8.5 9.4 17.4

PropBank 0.3 0.4 0.2

Table 5.3: Snapshot of the SemEval’07 annotated data. Our development set en-
compasses the following documents: StephanopoulousCrimes (from ANC), plus
Iran Biological, NorthKorea Introduction, and WMDNews 042106 (NTI). We use
the standard test set, consisting of IntroOfDublin (ANC) and chinaOverview and
workAdvances (NTI). Two ANC documents provided as part of the task were unanno-
tated; we ignore them throughout.

5.1.2 Data

Our training, development, and test sets consist of documents annotated with frame-
semantic structures for the SemEval’07 task, which we refer to collectively as the SemEval’07
data.3 For the most part, the frames and roles used in annotating these documents were
defined in the FrameNet lexicon, but there are some exceptions for which the annotators
defined supplementary frames and roles; these are included in the possible output of our
parser.

Table 5.3 provides a snapshot of the SemEval’07 data. We randomly selected three docu-
ments from the original SemEval training data to create a development set for tuning model
hyperparameters. Notice that the test set contains more annotations per word, both in terms
of frames and arguments. Moreover, there are many more out-of-lexicon frame, role, and
LU types in the test set than in the training set. This inconsistency in the data results in poor

3The full-text annotations and other resources for the 2007 task are available at http://framenet.icsi.
berkeley.edu/semeval/FSSE.html.

http://framenet.icsi.berkeley.edu/semeval/FSSE.html
http://framenet.icsi.berkeley.edu/semeval/FSSE.html
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recall scores for all models trained on the given data split, a problem we have not sought to
address here.

Table 5.2 shows the breakdown of the targets and the arguments with respect to part of
speech in the SemEval’07 training data. The statistics indicate that for both, nouns dominate
the annotations, followed by verbs. However, unlike other corpora for semantic role labeling
the FrameNet annotations encompass nearly all types of POS for the targets.

Preprocessing. We preprocess sentences in our dataset with a standard set of annotations:
POS tags from MXPOST (Ratnaparkhi, 1996) and dependency parses from the MST parser as
described in §3.1 since manual syntactic parses are not available for most of the FrameNet-
annotated documents. We used WordNet (Fellbaum, 1998) for lemmatization. Our models
treat these pieces of information as observations. We also labeled each verb in the data as
having ACTIVE or PASSIVE voice, using code from the SRL system described by Johansson
and Nugues (2008).

5.1.3 Task and Evaluation

Automatic annotations of frame-semantic structure can be broken into three parts: (1) tar-
gets, the words or phrases that evoke frames; (2) the frame type, defined in the lexicon, evoked
by each target; and (3) the arguments, or spans of words that serve to fill roles defined by each
evoked frame. These correspond to the three subtasks in our parser, each described and
evaluated in turn: target identification (§5.2), frame identification (§5.3, not unlike word-
sense disambiguation), and argument identification (§5.4, not unlike semantic role labeling).

The standard evaluation script from the SemEval’07 shared task calculates precision,
recall, and F1-measure for frames and arguments; it also provides a score that gives par-
tial credit for hypothesizing a frame related to the correct one. We present precision, recall,
and F1-measure microaveraged across the test documents, report labels-only matching scores
(spans must match exactly), and do not use named entity labels. More details can be found
in (Baker et al., 2007). For our experiments, statistical significance is measured using a reim-
plementation of Dan Bikel’s randomized parsing evaluation comparator.4

5.1.4 Baseline

A strong baseline for frame-semantic parsing is the system presented by (Johansson and
Nugues, 2007, hereafter J&N’07), the best system in the SemEval’07 shared task. That system
is based on a collection of SVMs. For frame identification, they used an SVM classifier
to disambiguate frames for known frame-evoking words. They used WordNet synsets to
extend the vocabulary of frame-evoking words to cover unknown words, and then used a
collection of separate SVM classifiers—one for each frame—to predict a single evoked frame
for each occurrence of a word in the extended set.

J&N’07 modeled the argument identification problem by dividing it into two tasks: first,
they classified candidate spans as to whether they were arguments or not; then they as-
signed roles to those that were identified as arguments. Both phases used SVMs. Thus,
their formulation of the problem involves a multitude of classifiers—whereas ours uses two
log-linear models, each with a single set of weights, to find a full frame-semantic parse.

4http://www.cis.upenn.edu/˜dbikel/software.html#comparator

http://www.cis.upenn.edu/~dbikel/software.html#comparator
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TARGET IDENTIFICATION P R F1

Our technique (§5.2) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

Table 5.4: Target identification results for our system and the baseline. Scores in bold denote
significant improvements over the baseline (p < 0.05).

5.2 Target Identification

Target identification is the problem of deciding which word tokens (or word token se-
quences) evoke frames in a given sentence. In other semantic role labeling schemes
(e.g. PropBank), simple part-of-speech criteria typically distinguish predicates from non-
predicates. But in frame semantics, verbs, nouns, adjectives, and even prepositions can
evoke frames under certain conditions. One complication is that semantically-impoverished
support predicates (such as make in make a request) do not evoke frames in the context of a
frame-evoking, syntactially-dependent noun (request). Furthermore, only temporal, loca-
tive, and directional senses of prepositions evoke frames.

We found that, because the test set is more completely annotated—that is, it boasts far
more frames per token than the training data (see Table 5.3)—learned models did not gen-
eralize well and achieved poor test recall. Instead, we followed J&N’07 in using a small set
of rules to identify targets.

First, we created a master list of all the morphological variants of targets that appear in
the exemplar sentences and the SemEval’07 training set. For a sentence in new data, we
considered only those substrings as candidate targets that appear in this master list. We also
did not attempt to capture discontinuous frame targets: e.g. we treat there would have been as
a single span even though the corresponding LU is there be.V.5

Next, we pruned the candidate target set by applying a series of rules identical to the
ones described by (Johansson and Nugues, 2007, §3.1.1), with two exceptions. First, they
identified locative, temporal, and directional prepositions using a dependency parser so
as to retain them as valid LUs. In contrast, we pruned all types of prepositions because
we found them to hurt our performance on the development set due to errors in syntactic
parsing. In a second departure from their target extraction rules, we did not remove the
candidate targets that had been tagged as support verbs for some other target.

Note that we used a conservative white list which filters out targets whose morphologi-
cal variants were not seen either in the lexicon or the training data. Therefore, our full parser
loses the capability to predict frames for completely unseen LUs, despite the fact that our
our powerful frame identification model (§5.3) can accurately label frames for new LUs.

Results. Table 5.4 shows results on target identification; our system gains 3 F1 points over
the baseline. This is statistically significant with p < 0.01. Our results are also significant
in terms of precision (p < 0.05) and recall (p < 0.01). There are 85 distinct LUs for which
the baseline fails to identify the correct target while our system succeeds. A considerable
proportion of these units have more than one tokens (e.g. chemical and biological weapon.N,

5There are 629 multiword LUs in the lexicon, and they correspond to 4.8% of the targets in the training set;
among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N. In the SemEval’07 training data,
there are just 99 discontinuous multiword targets (1% of all targets).
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ballistic missile.N, etc.), which J&N’07 do not model. The baseline also does not label variants
of there be.V, e.g. there are and there has been, which we correctly label as targets. Some
examples of other single token LUs that the baseline fails to identify are names of months,
LUs that belong to the ORIGIN frame (e.g. iranian.A) and directions, e.g., north.A or north-
south.A.

5.3 Frame Identification

Given targets, the parser next identifies their frames.

5.3.1 Lexical units

FrameNet specifies a great deal of structural information both within and among frames.
For frame identification we make use of frame-evoking lexical units, the (lemmatized and
POS-tagged) words and phrases listed in the lexicon as referring to specific frames. For
example, listed with the BRAGGING frame are 10 LUs, including boast.N, boast.V, boastful.A,
brag.V, and braggart.N. Of course, due to polysemy and homonymy, the same LU may be
associated with multiple frames; for example, gobble.V is listed under both the INGESTION

and MAKE NOISE frames. We thus term gobble.V an ambiguous LU (see Table 5.1).6 All
targets in the exemplar sentences, and most in our training and test data, correspond to
known LUs (see Table 5.3).

To incorporate frame-evoking expressions found in the training data but not the
lexicon—and to avoid the possibility of lemmatization errors—our frame identification
model will incorporate, via a latent variable, features based directly on exemplar and train-
ing targets rather than LUs. Let L be the set of (unlemmatized and automatically POS-
tagged) targets found in the exemplar sentences of the lexicon and/or the sentences in our
training set. Let Lf ⊆ L be the subset of these targets annotated as evoking a particular
frame f .7 Let Ll and Llf denote the lemmatized versions of L and Lf respectively. Then,
we write boasted.VBD ∈ LBRAGGING and boast.VBD ∈ LlBRAGGING to indicate that this inflected
verb boasted and its lemma boast have been seen to evoke the BRAGGING frame. Significantly,
however, another target, such as toot your own horn, might be used in other data to evoke this
frame. We thus face the additional hurdle of predicting frames for unknown words.

The SemEval annotators created 47 new frames not present in the lexicon, out of which
14 belonged to our training set. We considered these with the 795 frames in the lexicon when
parsing new data. Automatically predicting new frames is a challenge not yet attempted to
our knowledge (including here). Note that the scoring metric (§5.1.3) gives partial credit for
related frames (e.g., a more general frame from the lexicon).

5.3.2 Model

For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word
sequence).8 Let tli denote its lemma. We seek a list f = 〈f1, . . . , fm〉 of frames, one per target.
In our model, the set of candidate frames for ti is defined to include every frame f such that

6In our terminology an LU may be shared by multiple frames (LUs may be defined elswehere as frame-
specific).

7On average, there are 34 targets per frame in our dataset. The average frame ambiguity of each target in L
is 1.17.

8Each ti is a word sequence 〈wu, . . . , wv〉, 1 ≤ u ≤ v ≤ n, though in principle targets can be noncontiguous



44 CHAPTER 5. FRAME-SEMANTIC PARSING

tli ∈ Llf—or if tli 6∈ Ll, then every known frame (the latter condition applies for 4.7% of the
gold targets in the development set). In both cases, we let Fi be the set of candidate frames
for the ith target in x.

To allow frame identification for targets whose lemmas were seen in neither the exem-
plars nor the training data, our model includes an additional variable, `i. This variable
ranges over the seen targets in Lfi

, which can be thought of as prototypes for the expres-
sion of the frame. Importantly, frames are predicted, but prototypes are summed over via the
latent variable. The prediction rule requires a probabilistic model over frames for a target:

fi ← argmaxf∈Fi

∑
`∈Lf

pθ(f, ` | ti,x) (5.1)

We adopt a conditional log-linear model: for f ∈ Fi and ` ∈ Lf ,

pθ(f, ` | ti,x) =
expθ>g(f, `, ti,x)∑

f ′∈Fi

∑
`′∈Lf ′

expθ>g(f ′, `′, ti,x)
(5.2)

where θ are the model weights, and g is a vector-valued feature function. This discrimina-
tive formulation is very flexible, allowing for a variety of (possibly overlapping) features;
e.g., a feature might relate a frame type to a prototype, represent a lexical-semantic relation-
ship between a prototype and a target, or encode part of the syntax of the sentence.

Previous work has exploited WordNet for better coverage during frame identification
(Johansson and Nugues, 2007; Burchardt et al., 2005, e.g., by expanding the set of targets
using synsets), and others have sought to extend the lexicon itself (see §2.2). We differ in our
use of a latent variable to incorporate lexical-semantic features in a discriminative model,
relating known lexical units to unknown words that may evoke frames. Here we are able to
take advantage of the large inventory of partially-annotated exemplar sentences.

Note that this model makes a strong independence assumption: each frame is predicted
independently of all others in the document. In this way the model is similar to J&N’07.
However, ours is a single conditional model that shares features and weights across all tar-
gets, frames, and prototypes, whereas the approach of J&N’07 consists of many separately
trained models. Moreover, our model is unique in that it uses a latent variable to smooth
over frames for unknown or ambiguous LUs.

Frame identification features depend on the preprocessed sentence x, the prototype `
and its WordNet lexical-semantic relationship with the target ti, and of course the frame f .
Our model instantiates 662,020 binary features, which are detailed in Table 5.5.

5.3.3 Training

Given the training subset of the SemEval’07 data, which is of the form〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

(N = 1663 is the number of sentences), we discriminatively

9If the target is not a subtree in the parse, we consider the words that have parents outside the span, and
apply three heuristic rules to select the head: 1) choose the first word if it is a verb; 2) choose the last word if the
first word is an adjective; 3) if the target contains the word of, and the first word is a noun, we choose it. If none
of these hold, choose the last word with an external parent to be the head.

10These are the 11 WordNet relations enumerated in §3.4 as well as NO RELATION.
11POS tags are found automatically during preprocessing.
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• the POS of the parent of the head word of ti
• the set of syntactic dependencies of the head

word9 of ti
• if the head word of ti is a verb, then the set of

dependency labels of its children
• the dependency label on the edge connecting the

head of ti and its parent
• the sequence of words in the prototype, w`

• the lemmatized sequence of words in the proto-
type
• the lemmatized sequence of words in the proto-

type and their part-of-speech tags π`

•WordNet relation10 ρ holds between ` and ti
•WordNet relation10 ρ holds between ` and ti, and

the prototype is `
•WordNet relation10 ρ holds between ` and ti, the

POS tag sequence of ` is π`, and the POS tag se-
quence of ti is πt

Table 5.5: Features used for frame identification. All also incorporate f , the frame being
scored. ` = 〈w`,π`〉 consists of the words and POS tags11 of a target seen in an exemplar or
training sentence as evoking f . There are a total of 662,020 binary features in our model.

train the frame identification model by maximizing the following log-likelihood:12

max
θ

N∑

j=1

mj∑

i=1

log
∑

`∈L
f
(j)
i

pθ(f (j)
i , ` | t(j)i ,x(j)) (5.3)

Note that the training problem is non-convex because of the summed-out prototype latent
variable ` for each frame. To calculate the objective function, we need to cope with a sum
over frames and prototypes for each target (see Equation 5.2), often an expensive operation.
We locally optimize the function using a distributed implementation of L-BFGS. This is the
most expensive model that we train: with 100 CPUs parallelized using MapReduce (see
§3.3), training takes several hours. (Decoding takes only a few minutes on one CPU for the
test set.)

5.3.4 Results

We evaluate the performance of our frame identification model given gold-standard targets
and automatically identified targets (§5.2); see Table 5.6.

To compare the frame identification stage in isolation with that of J&N’07, we ran our
frame identification model with the targets identified by their system as input. With partial
matching, our model achieves a relative improvement of 0.6% F1 over J&N’07, as shown in
the third row of Table!5.6 (though this is not significant).

12We found no benefit on development data from using an L2 regularizer (zero-mean Gaussian prior).
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FRAME IDENTIFICATION exact frame matching partial frame matching
(§5.3) targets P R F1 P R F1

Frame identification (oracle targets) ∗ 60.21 60.21 60.21 74.21 74.21 74.21
Frame identification (predicted targets) auto §5.2 69.75 54.91 61.44 77.51 61.03 68.29
Frame identification (J&N’07 targets) auto 65.34 49.91 56.59 74.30 56.74 64.34
Baseline: J&N’07 auto 66.22 50.57 57.34 73.86 56.41 63.97

Table 5.6: Frame identification results. Precision, recall, and F1 were evaluated under exact
and partial frame matching; see §5.1.3. Bold indicates statistically significant results with
respect to the baseline (p < 0.05).

While our frame identification model thus performs on par with the current state of the
art for this task, it improves upon J&N’s formulation of the problem because it requires only
a single model, learns lexical-semantic features as part of that model rather than requiring a
preprocessing step to expand the vocabulary of frame-evoking words, and is probabilistic,
which can facilitate global reasoning.

For gold-standard targets, 210 out of 1058 lemmas were not present in the white list that
we used for target identification (see §5.2). Our model correctly identifies the frames for 4
of these 210 lemmas. For 44 of these lemmas, the evaluation script assigns a score of 0.5 or
more, suggesting that our model predicts a closely related frame. Finally, for 190 of the 210
lemmas, a positive score is assigned by the evaluation script. This suggests that the hidden
variable model helps in identifying related (but rarely exact) frames for unseen targets, and
explains why under exact—but not partial—frame matching, the F1 score using automatic
targets is commensurate with the score for oracle targets.13

For automatically identified targets, the F1 score falls below 70 points because the model
fails to predict frames for unseen lemmas. However, our model outperforms J&N’07 by 4
F1 points. We measured statistical significance with respect the baseline for results with the
partial frame matching criterion. The F1 score of our model represents a significant improve-
ment over the baseline (p < 0.01). The precision and recall measures are significant as well
(p < 0.05 and p < 0.01, respectively). However, because targets identified by J&N’07 and
frames classified by our frame identification model resulted in scores at par with the base-
line, we note that the significant results follow due to better target identification. Note from
the results that the automatic target identification model leads to an increase in precision, at
the expense of recall. This is because of the fact that the white list for target identification
restricts the model to predict frames only for known LUs, leading to a more precise model.

5.4 Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of targets t = 〈t1, . . . , tm〉, and a list of evoked
frames f = 〈f1, . . . , fm〉 corresponding to each target, argument identification is the task of

13J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame iden-
tification models is difficult. Considering only the predicted arguments for the frames they predicted correctly,
we can estimate that their argument identification model given oracle targets and frames would have achieved
0.58 precision, 0.48 recall, and 0.53 F1—though we caution that these are not directly comparable with our oracle
results.
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choosing which of each fi’s roles are filled, and by which parts of x. This task is most similar
to the problem of semantic role labeling, but uses frame-specific labels that are richer than
the PropBank annotations.

5.4.1 Model

Let Rfi
= {r1, . . . , r|Rfi

|} denote frame fi’s roles (named frame element types) observed in
an exemplar sentence and/or our training set. A subset of each frame’s roles are marked
as core roles; these roles are conceptually and/or syntactically necessary for any given use
of the frame, though they need not be overt in every sentence involving the frame. These
are roughly analogous to the core arguments ARG0–ARG5 in PropBank. Non-core roles—
analogous to the various ARGM-* in PropBank—loosely correspond to syntactic adjuncts,
and carry broadly-applicable information such as the time, place, or purpose of an event.
The lexicon imposes some additional structure on roles, including relations to other roles in
the same or related frames, and semantic types with respect to a small ontology (marking,
for instance, that the entity filling the protagonist role must be sentient for frames of cogni-
tion). Figure 5.2 illustrates some of the structural elements comprising the frame lexicon by
considering the CAUSE TO MAKE NOISE frame.

We identify a set S of spans that are candidates for filling any role r ∈ Rfi
. In principle, S

could contain any subsequence of x, but in this work we only consider the set of contiguous
spans that (a) contain a single word or (b) comprise a valid subtree of a word and all its
descendants in the dependency parse produced by the MST parser. This covers 81% of
arguments in the development data. The empty span, denoted ∅, is also included in S, since
some roles are not explicitly filled; in the development data, the average number of roles
an evoked frame defines is 6.7, but the average number of overt arguments is only 1.7.14 In
training, if a labeled argument is not a valid subtree of the dependency parse, we add its
span to S.

Let Ai denote the mapping of roles in Rfi
to spans in S. Our model makes a prediction

for each Ai(rk) (for all roles rk ∈ Rfi
) using:

Ai(rk)← argmaxs∈S pψ(s | rk, fi, ti,x) (5.4)

We use a conditional log-linear model over spans for each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti,x) =
expψ>h(s, rk, fi, ti,x)∑

s′∈S expψ>h(s′, rk, fi, ti,x)
(5.5)

Note that our model chooses the span for each role separately from the other roles and ig-
nores all frames except the frame the role belongs to. Our model departs from the traditional
SRL literature by modeling the argument identification problem in a single stage, rather than
first classifying token spans as arguments and then labeling them. A constraint implicit in
our formulation restricts each role to have at most one overt argument, which is consistent
with 96.5% of the role instances in the training data.

Out of the overt argument spans in the training data, 12% are duplicates, having been
used by some previous frame in the sentence (supposing some arbitrary ordering of frames).

14In the annotated data, each core role is filled with one of three types of null instantiations indicating how the
role is conveyed implicitly. For instance, the imperative construction implicitly designates a role as filled by the
addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this work we do not
distinguish different types of null instantiations.
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Our role-filling model, unlike a sentence-global argument detection-and-classification ap-
proach,15 permits this sort of argument sharing among frames. The incidence of span over-
lap among frames is much higher; Figure 5.1 illustrates a case with a high degree of overlap.
Word tokens belong to an average of 1.6 argument spans, including the quarter of words
that do not belong to any argument.

Appending these local inference decisions together gives us the best mapping Ât for tar-
get t. Features for our log-linear model (Equation 5.5) depend on the preprocessed sentence
x; the target t; a role r of frame f ; and a candidate argument span s ∈ S.16 For features
using the head word of the target t or a candidate argument span s, we use the heuristic
described in footnote 9 for selecting the head of non-subtree spans. Table 5.7 lists the feature
templates used in our model. Every feature template has a version which does not take into
account the role being filled (so as to incorporate overall biases). The G# symbol indicates
that the feature template also has a variant which is conjoined with r, the name of the role
being filled; and  indicates that the feature template additionally has a variant which is
conjoined with both r and f , the name of the frame.17 The role name–only variants provide
for smoothing over frames for common types of roles such as Time and Place; see Matsub-
ayashi et al. (2009) for a detailed analysis of the effects of using role features at varying levels
of granularity.

5.4.2 Training

We train the argument identification model by:

max
ψ

N∑

j=1

mj∑

i=1

|R
f
(j)
i

|
∑

k=1

log pψ(A(j)
i (rk) | f (j)

i , t
(j)
i ,x(j)) (5.6)

This objective function is concave, and we globally optimize it using stochastic gradient
ascent (Bottou, 2003). We train this model until the argument identification F1 score stops
increasing on the development data. Best results on this dataset were obtained with a batch
size of 2 and 23 passes through the data.

5.4.3 Approximate Joint Decoding

Naı̈ve prediction of roles using Equation 5.4 may result in overlap among arguments filling
different roles of a frame, since the argument identification model fills each role indepen-
dently of the others. We want to enforce the constraint that two roles of a single frame
cannot be filled by overlapping spans.20 Toutanova et al. (2005) presented a dynamic pro-
gramming algorithm to prevent overlapping arguments for semantic role labeling; however,
their approach used an orthogonal view to the argument identification stage, wherein they
labeled phrase-structure tree constituents with semantic roles. This view helped them to

15J&N’07, like us, identify arguments for each target.
16In this section we use t, f , and r without subscripts since the features only consider a single role of a single

target’s frame.
17I.e., the  symbol subsumes G#, which in turn subsumes #.
18Quantized into groups: (−∞,−20], [−19,−10], [−9,−5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19], [20,∞).
19We treat as a closed-class POS tag any Penn Treebank tag except for CD which does not start with V, N, A, or

R.
20On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments to be

shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation for this task
only considers the primary layer, which is guaranteed to have disjoint arguments.



5.4. ARGUMENT IDENTIFICATION 49

Features with both null and non-null variants: These features come in two flavors: if the argument is
null, then one version fires; if it is overt (non-null), then another version fires.
 some word in t has lemma λ  some word in t has POS π
G# some word in t has lemma λ, and the sentence

uses PASSIVE voice
G# some word in t has lemma λ, and the sentence

uses ACTIVE voice
G# the head of t has subcategorization sequence
τ = 〈τ1, τ2, . . . 〉

G# some syntactic dependent of the head of t has
dependency type τ

 the head of t has c syntactic dependents  bias feature (always fires)
Span content features: apply to overt argument candidates.
# POS tag π occurs for some word in s
# the head word of s has POS π  |s|, the number of words in the candidate

argument18

# the first word of s has POS π, provided |s| > 0 # the head word of s has syntactic dependency
type τ

# the last word of s has POS π, provided |s| > 0  the syntactic dependency type τs1 of the first
word with respect to its head the first word of s: ws1 , and its POS tag πs1 ,

provided that πs1 is a closed-class POS19  τs2 , provided that |s| ≥ 2
 ws2 and its closed-class POS tag πs2 , provided

that |s| ≥ 2
 τs|s| , provided that |s| ≥ 3
# the first word of s has lemma λ, provided |s| > 0

 the last word of s: ws|s| , and its closed-class POS
tag πs|s| , provided that |s| ≥ 3

# the head word of s has lemma λ
# the last word of s has lemma λ, provided |s| > 0

G# lemma λ is realized in some word in s G# lemma λ is realized in some word in s, the voice
denoted in the span, s’s position with respect to
t (BEFORE, AFTER, or OVERLAPPING)

G# lemma λ is realized in some word in s, the voice
denoted in the span (ACTIVE or PASSIVE)

Syntactic features: apply to overt argument candidates.
# dependency path: sequence of labeled, directed

edges from the head word of s to the head word
of t

# length of the dependency path18

Span context POS features: for overt candidates, up to 6 of these features will be active.
# a word with POS π occurs up to 3 words before

the first word of s
# a word with POS π occurs up to 3 words after the

last word of s
Ordering features: apply to overt argument candidates.
 the position of s with respect to to the span of t:

BEFORE, AFTER, or OVERLAPPING (i.e. there is at
least one word shared by s and t)

# target-argument crossing: there is at least one
word shared by s and t, at least one word in s
that is not in t, and at least one word in t that is
not in s

# linear word distance between the nearest word
of s and the nearest word of t, provided s and t
do not overlap18

# linear word distance between the middle word
of s and the middle word of t, provided s and t
do not overlap18

Table 5.7: Features used for argument identification. Instantiating the above (binary) fea-
tures for our data yields 1,297,857 parameters.

adopt a dynamic programming approach, which does not suit our model because we find
best possible argument span for each role.

To eliminate illegal overlap, we adopt the beam search technique detailed in Algorithm 1.
The algorithm produces a set of k-best hypotheses for a frame instance’s full set of role-
span pairs, but uses an approximation in order to avoid scoring an exponential number of
hypotheses. After determining which roles are most likely not explicitly filled, it considers



50 CHAPTER 5. FRAME-SEMANTIC PARSING

Algorithm 1 Joint decoding of frame fi’s arguments. topk(S, pψ, rj) extracts the k most prob-
able spans from S, under pψ, for role rj . extend(D0:(j−1),S ′) extends each span vector in
D0:(j−1) with the most probable non-overlapping span from S ′, resulting in k best exten-
sions overall.
Input: k > 0,Rfi

, S, the distribution pψ from Equation 5.5 for each role rj ∈ Rfi

Output: Âi, a high-scoring mapping of roles of fi to spans with no token overlap among
the spans

1: Calculate Ai according to Equation 5.4
2: ∀r ∈ Rfi

such that Ai(r) = ∅, let Âi(r)← ∅
3: R+

fi
← {r : r ∈ Rfi

,Ai(r) 6= ∅}
4: n← |R+

fi
|

5: Arbitrarily orderR+
fi

as {r1, r2, . . . rn}
6: Let D0:j = 〈D0:j

1 , . . . , D0:j
k 〉 refer to the k-best list of vectors of compatible filler spans for

roles r1 through rj
7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S, pψ, rj))

10: end for
11: ∀j ∈ {1, . . . , n}, Âi(rj)← D0:n

1 [j]
12: return Âi

each of the other roles in turn: in each iteration, hypotheses incorporating a subset of roles
are extended with high-scoring spans for the next role, always maintaining k alternatives.
We set k = 10000.

5.4.4 Results

Performance of the argument identification model is presented in Table 5.8. The table
shows how performance varies given different types of perfect input: correct targets, cor-
rect frames, and the set of correct spans; correct targets and frames, with the heuristically-
constructed set of candidate spans; correct targets only, with model frames; and ultimately,
no oracle input (the full frame parsing scenario).

The first four rows of results isolate the argument identification task from the frame
identification task. Given gold targets and frames and an oracle set of argument spans, our
local model achieves about 87% precision and 75% recall. Beam search decoding to eliminate
illegal argument assignments within a frame (§5.4.3) further improves precision by about
1.6%, with negligible harm to recall. Note that 96.5% recall is possible under the constraint
that roles are not multiply-filled (§5.4.1); there is thus considerable room for improvement
with this constraint in place. Joint prediction of each frame’s arguments is worth exploring
to capture correlations not encoded in our local models or joint decoding scheme.

The 15-point drop in recall when the heuristically-built candidate argument set replaces
the set of true argument spans is unsurprising: an estimated 19% of correct arguments are
excluded because they are neither single words nor complete subtrees (see §5.4.1).21 Qual-

21Using all constituents from the 10-best syntactic parses would improve oracle recall of spans in the develop-
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ARGUMENT IDENTIFICATION exact frame matching
targets frames spans decoding P R F1

Argument identification
(oracle spans)

∗ ∗ ∗ naı̈ve 86.61 75.11 80.45
∗ ∗ ∗ beam 88.29 74.77 80.97

Argument
identification (full)

∗ ∗ model naı̈ve 77.43 60.76 68.09 partial frame matching
∗ ∗ model beam 78.71 60.57 68.46 P R F1

Parsing (oracle targets) ∗ model model beam 49.68 42.82 46.00 57.85 49.86 53.56
Parsing (full) auto model model beam 58.08 38.76 46.49 62.76 41.89 50.24
Parsing (J&N’07
targets and frames)

auto model model beam 56.26 36.63 44.37 60.98 39.70 48.09

Baseline: J&N’07 auto model model N/A 51.59 35.44 42.01 56.01 38.48 45.62

Table 5.8: Argument identification results. ∗ indicates that gold-standard labels were used
for a given pipeline stage. “model” indicates that a statistical model has been used for a
particular subtask. For decoding, “beam” and “naı̈ve” indicate whether the approximate
joint decoding algorithm has been used or local independent decisions have been made for
argument identification, respectively. For full parsing, bolded scores indicate significant
improvements relative to the baseline (p < 0.05).

itatively, the problem of candidate span recall seems to be largely due to syntactic parse
errors.22 Still, the 10-point decrease in precision when using the syntactic parse to deter-
mine candidate spans suggests that the model has trouble discriminating between good
and bad arguments, and that additional feature engineering or jointly decoding arguments
of a sentence’s frames may be beneficial in this regard.

The fifth and sixth rows show the effect of automatic frame identification on overall
frame parsing performance. There is a 22% decrease in F1 (18% when partial credit is
given for related frames), suggesting that improved frame identification or joint prediction
of frames and arguments is likely to have a sizeable impact on overall performance.

The final two rows of the table compare our full model (target, frame, and argument
identification) with the baseline, showing significant improvement of more than 4.4 F1

points for both exact and partial frame matching. As with frame identification, we com-
pared the argument identification stage with that of J&N’07 in isolation, using the automati-
cally identified targets and frames from the latter as input to our model. As shown in the 7th
row of the table, with partial frame matching, this gave us an F1 score of 48.1% on the test
set—significantly better (p < 0.05) than 45.6%, the full parsing result from J&N’07 (last row
in Table 5.8). This indicates that our argument identification model—which uses a single
discriminative model with a large number of features for role filling (rather than argument
labeling)—is more powerful than the previous state of the art.

ment set by just a couple of percentage points, at the computational cost of a larger pool of candidate arguments
per role.

22Note that, because of our labels-only evaluation scheme (§5.1.3), arguments missing a word or containing
an extra word receive no credit. In fact, of the frame roles correctly predicted as having an overt span, the correct
span was predicted 66% of the time, while 10% of the time the predicted starting and ending boundaries of the
span were off by a total of 1 or 2 words.
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5.5 Discussion

We have provided a supervised model for rich frame-semantic parsing, based on a com-
bination of knowledge from FrameNet, two probabilistic models trained on SemEval’07
data, and expedient heuristics. One of the models employs latent variables to model un-
seen lexical units in either the FrameNet lexicon or training data, and our results show
that quite often, this model is able to find a closely related frame to the gold standard.
The second probabilistic model for argument identification conjoins the two traditional
steps of finding the potential arguments in a sentence and then labeling them as a role
into one stage. Our system achieves improvements over the state of the art at each
stage of processing and collectively, and is amenable to future extension, that we con-
sider in Chapter 6. The parser described in this chapter is available for download at
http://www.ark.cs.cmu.edu/SEMAFOR.

http://www.ark.cs.cmu.edu/SEMAFOR


Chapter 6

Proposed Work

This chapter proposes extensions to the models described in Chapters 4 for modeling para-
phrase and in Chapter 5 for frame-semantic parsing, as future work to be completed for
this dissertation. The common aspect across the different proposed directions is the use of
large amounts of unlabeled data to aid in better learning of natural language semantics. The
choice of using unlabeled data to append purely supervised methods follows from the ab-
sence of large volumes of training data for the problems we consider in this thesis, and we
aim to explore the possibilities of improving the quality of the semantic processing tasks
using raw text.

6.1 Background and Motivation

The use of unlabeled data along with annotated training examples has been widely re-
searched in the NLP community. First, unlabeled data has been used in scenarios like do-
main adaptation where labeled data in varied domains is unavailable in large quantities
and models from one domain is projected to another. Second, unlabeled data has been suc-
cessfully used along with labeled data for scenarios where labeled data for a single domain
is very limited, thus making it hard for a trained model to generalize to unseen data. For
the semantic processing tasks we consider in this thesis, we face the latter scenario. This is
especially true for the task of frame-semantic parsing, where the training data size is minis-
cule, containing less than 2,000 sentences, in contrast to tasks like syntactic parsing, where
the most popular dataset in English contains around 40,000 example sentences. Hence, we
propose to use techniques that derive useful information from unlabeled data with the hope
of improving upon supervised models described in the previous sections.

There have been attempts at incorporating features based on word clusters derived from
unlabeled data in supervised discriminative models. Miller et al. (2004) presented a tech-
nique of obtaining hierarchical word clusters from raw text and used the cluster information
as features in named-entity recognition. This approach has been used later for dependency
parsing by Koo et al. (2008) and for query classification by Lin and Wu (2009). The lat-
ter went further and clustered phrases using a web-scale text corpus and used the cluster
information for discriminative learning. There are a few instances of research in semantic
processing of language that used word clusters derived from raw text. He and Gildea (2006)
derived clusters using distributional similarity (Pereira et al., 1993) and used the clusters to
improve semantic role labeling using a probabilistic model. However, the scale at which He
and Gildea (2006) performed their experiments was much smaller than the task of frame-

53
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semantic parsing that we consider in our work. More recently, Deschacht and Moens (2009)
have used a latent-variable model that finds similarity between words using unlabeled text,
and used it to improve PropBank style SRL performance. In our work, we plan to leverage
word clusters of various types gathered from the Gigaword corpus (Graff, 2003) for the tasks
of paraphrase identification and frame-semantic structure extraction. Gigaword-scale data
for word clustering has been used only by Lin and Wu (2009) and they showed significant
improvements for shallow NLP tasks. We hope to attain lexical semantic knowledge from
the word clusters to improve semantic analysis.

Another major area of research is the development of statistical models that learn from
both labeled and unlabeled data. This is traditionally named semi-supervised learning, and
a large research community has focused on these techniques and have applied them for
language processing tasks. Here, we will cite a few influential papers that used semi-
supervised learning successfully for NLP. Steedman et al. (2003) used co-training (Blum and
Mitchell, 1998) for bootstrapping syntactic parsers using labeled and unlabeled data, and
received improvements over vanilla supervised methods. Since co-training requires sta-
tistical classifiers using diverse views of a particular problem, they used two parsers, one
based on probabilistic context free grammar and the other on lexicalized Tree Adjoining
Grammar (Joshi and Schabes, 1997). Self-training is another approach that starts by learning
from labeled data and then labels unlabeled data with the trained model. Some automati-
cally labeled samples (usually on which the model has high confidence) from the originally
unlabeled data are selected and appended to the training set, and then the model is re-
trained. This is done iteratively till some stopping criterion. McClosky et al. (2006) used
this approach for syntactic parsing to achieve better performance than supervised parsers.
More recently, Chang et al. (2007) presented a method of using constraints (encoding do-
main knowledge) in semi-supervised learning. Their method started by learning a model
from labeled data. Next they used this learned model to label unlabeled data along with a
set of manually set constraints, and chose the topK labels for each unlabeled data point. All
the data points in the unlabeled set with their top K labels are next used to learn a model.
The model initially learned from the supervised data and the model learned using the un-
labeled data are interpolated to result in a new model. This new model is used to label
the unlabeled data again and a newer model is learned. This process is repeated several
times. This algorithm described by Chang et al. (2007) resulted in improved performance
compared to supervised methods.

Recently, NLP researchers using probabilistic methods for various problems, have at-
tempted to estimate statistical models from both labeled and unlabeled data together by in-
corporating a component that minimizes a function modeling the unlabeled data, append-
ing that to the standard MAP estimation framework for supervised learning (equations 3.3-
3.4). One example of such a framework is expectation regularization for semi-supervised
learning (Mann and McCallum, 2007) where the objective function of conditional log-linear
models is appended by a divergence term between the expected value of feature/label pairs
predicted by the model and human provided feature/label expectation priors. This method
needs human provided class priors given the features in the model, or these priors can be
estimated from labeled data, which is very small for our case. Another similar technique
is the use of entropy minimization where the objective function of supervised log-linear
models is appended with the negative conditional entropy of the unlabeled data (Grand-
valet and Bengio, 2004; Jiao et al., 2006). Significant gains in information extraction tasks
and syntactic parsing have been observed using this technique. We propose to adopt this
framework for our models of semantics. Extending our log-linear models with the entropy
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of unlabeled data is straightforward and features gathered from unlabeled data using this
technique shows definite hope of improving over supervised frame-semantic parsing.

Another attractive avenue of research is the adoption of a hybrid framework of discrim-
inative models and generative models. The general idea behind such a framework is the
assumption that the unlabeled data is explained by a generative process, while the super-
vised data labels are explained by a discriminative model given sets of features who weights
are estimated both from labeled as well as unlabeled data (Suzuki and Isozaki, 2008). This
approach is attractive in that it combines conditional models with EM-like generative mod-
els that are used for unsupervised learning. It also does not involve heavy computation for
calculating complex derivative terms unlike other semi-supervised learning methods, mak-
ing the method amenable to the use of huge amounts of unlabeled data. We propose to use
this approach for the semantic processing tasks at hand.

Our proposed directions of future work can be summarized into three distinct types and
are inspired by relevant work that exploits both labeled and unlabeled data:

1. We plan to incorporate categorical, topical, and synonymous word clusters (see de-
scription of clustering methods in §3.5) into our models for paraphrase identification
and frame-semantic parsing, with the goal of injecting information extracted from un-
labeled corpora, and hope to improve upon purely supervised models for both the
tasks. §6.2 focuses on this particular direction of future work.

2. The argument identification phase of frame-semantic parsing deals with 7124 unique
roles that are listed in the FrameNet lexicon. The total number of overt roles that serve
as training instances for the log-linear model devised for the argument identification
task (see §5.4) is only around three times the total number of role types in the lexicon.
This suggests that the number of argument phrases in the training data per role type
is very few, making the features used for the model sparse. We intend to use phrasal
paraphrases and phrase clusters gathered from large volumes of unlabeled corpora
as features in our argument identification model to improve our model’s performance,
and we focus on this aspect in §6.3.

3. Our final goal as a part of this thesis is to investigate semi-supervised learning tech-
niques to improve the task of frame-semantic parsing. To this end, we plan to inves-
tigate entropy minimization techniques first. We also intend to devise techniques that
combine discriminative and generative models into one framework and leverage a lot
of unlabeled data to improve upon supervised learning. §6.4 focuses on this part of
proposed work.

6.2 Word Clusters and Semantics

Recent work in syntactic analysis (Koo et al., 2008) and information extraction (Lin and
Wu, 2009) has showed that using word cluster information in discriminative models can
significantly improve model performance over vanilla supervised methods. In this section,
we concentrate on incorporating word cluster information for two semantic processing tasks
– paraphrase identification and frame-semantic parsing.

In §3.5, we described a general procedure of deriving word clusters from unlabeled cor-
pora, and enumerated a set of coherent clusters extracted from the Gigaword corpus using
K-Means++ clustering. Till date, we have been able to run K-Means++ clustering using
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features derived from minimal contextual information of only 1-word windows around a
word to be clustered. This resulted in categorical clusters, as shown in Figure 3.4. Lin and
Wu (2009) found that using larger context windows, namely that of 3-word windows around
a word resulted in more topical clusters, at least for the case of phrase clustering, which they
investigated.

As proposed work, we plan to run our clustering algorithms for larger context windows
of 3 words around a given word to be clustered, and analyze the clusters qualitatively. If
qualitative differences are found when compared with the clusters derived using 1-word
context, we plan to use these clusters for further experiments. At this stage, feature extrac-
tion using 3-word context for every word in the Gigaword vocabulary is complete, along
with the special initialization step for K-Means++; only the clustering iterations for various
number of centroidsK is remaining. We plan to use MapReduce to parallelize the clustering
algorithm, as described in §3.5.

Furthermore, we plan to run a final set of clustering experiments, where we parse the
entire Gigaword corpus using the MST parser (see §3.1), and extract features based on the
syntactic context of a word to be clustered. We define the syntactic context of a word w
as a tuple (r, w′), where r is a syntactic relation in the dependency tree and w′ is the word
to which w is connected to. These syntactic contexts serve as features instead of just the
words, as in the clustering method described in §3.5; such syntactic context features have
been used in a wide body of work in finding distributional similarity between words (Lin
and Pantel, 2001; Gorman and Curran, 2006). Previous work shows that clusters derived by
using syntactic contexts are groups of similar meaning or synonymous words. We intend to
use these clusters in our experiments too.

6.2.1 Word Clusters in Frame-Semantic Parsing

Word cluster information can be appended as features to the two major components of
frame-semantic parsing, namely frame identification §5.3 and argument identification §5.4.
We call this set of proposed experiments WC1. A possible set of features that could be ap-
pended to the existing feature set shown in Table 5.5 is tabulated in in Table 6.1.

• the categorical word cluster of the parent of the head word of ti
• the topical word cluster of the parent of the head word of ti
• the lemmatized sequence of words in the prototype and their categorical word

clusters
• the lemmatized sequence of words in the prototype and their topical word

clusters
• the sequence of synonymous word clusters corresponding to the words in ti
• the sequence of synonymous word clusters corresponding to the words in ti

and the sequence of synonymous word clusters corresponding to the words in
w`

• a binary feature indicating whether the sequence of synonymous word clusters
in ti and the sequence of synonymous word clusters in w` are the same

Table 6.1: Proposed features to be used for frame identification. All features incorporate f ,
the frame being scored. w` represents the words and π` represents the POS tags of a target
seen in an exemplar or training sentence as evoking f .

Some features involving WordNet relationships shown in Table 5.5 can be ablated to
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check whether they hurt performance. If not and if this ablation study improves perforamce,
it will indicate that word cluster information serve as a proxy for the lexical semantic rela-
tionships extracted from a limited lexical resource like WordNet, and it can be ignored as a
mandatory lexical resource in our model for frame identification.

Features with both null and non-null variants: These features come in two flavors: if the
argument is null, then one version fires; if it is overt (non-null), then another version fires.
 some word ti in t exists, s.t. ti ∈ cs  some word ti in t exists, s.t. ti ∈ cc
 some word ti in t exists, s.t. ti ∈ ct
G# some word ti in t exists, s.t. ti ∈ cs, and the

sentence uses PASSIVE voice
G# some word ti in t exists, s.t. ti ∈ cs, and the

sentence uses ACTIVE voice
Span content features: apply to overt argument candidates.
# For some word wsj in s, wsj ∈ cc # For some word wsj in s, wsj ∈ ct
# the head word of s ∈ cc # the head word of s ∈ ct
G# For some word wsj

in s, wsj
∈ cs G# For some word wsj

in s, wsj
∈ cs, the voice is

denoted in the span, s’s position with respect
to t (BEFORE, AFTER, or OVERLAPPING)

G# For some word wsj
in s, wsj

∈ cs, the voice
denoted in the span (ACTIVE or PASSIVE)

Span context POS features: for overt candidates, up to 6 of these features will be active.
# a word belonging to cc occurs up to 3 words

before the first word of s
# a word belonging to cc occurs up to 3 words

after the last word of s
# a word belonging to ct occurs up to 3 words

before the first word of s
# a word belonging to ct occurs up to 3 words

after the last word of s

Table 6.2: Proposed set of features to be used for argument identification. Here, t denotes
the target that evokes a semantic frame, s is the candidate span being considered as an
argument, cc denotes a particular categorical word cluster, ct denotes a particular topical
word cluster, and cs denotes a particular synonymous word cluster. Rest of the notation
follows from §5.4.

Taking inspiration from the features shown in Table 6.1, we can incorporate cluster infor-
mation in the feature set for argument identification, which is shown in Table 5.7. A possible
set of cluster-based features is tabulated in Table 6.2. These features incorporate all three
types of cluster features: categorical, topical and synonymous. Due to the nature of these
clusters, they will generalize to new data and reduce sparsity, and provide valuable signals
extracted from unlabeled data to the log-linear model devised for argument identification,
and could improve the performance of overall frame-semantic parsing.

We hope that the use of word clusters extracted from very large volumes of data like the
Gigaword will help the model to generalize better to new data unlike supervised models
trained on a small set of domains, e.g. the SemEval’07 data.

6.2.2 Word Clusters in Paraphrase Identification

Word cluster information in the form of cluster IDs can be incorporated into the paraphrase
identification model described in Chapter 4 to either improve the model’s performance or
reduce the dependence on preprocessing tools like a part-of-speech tagger or a named-entity
recognizer. It may also obviate the use of a lexical resource like WordNet. We call the pro-
posed task of incorporating word clusters into our paraphrase model WC2. The paremeteri-
zation of our quasi-sychronous grammar model for identifying paraphrases occurred at the
pkid level, which we defined in Equations 4.6-4.12. For the ease of the reader, we reproduce
it below:
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pkid(ti, τ t
l (i), a(i) | tj , l, τ s) =

pconfig(config(ti, tj , sa(i), sl) | tj , l, τ s) (6.1)
×punif (a(i) | config(ti, tj , sa(i), sl)) (6.2)

×plab(τ t
l (i) | config(ti, tj , sa(i), sl)) (6.3)

×ppos(pos(ti) | pos(sa(i))) (6.4)
×pne(ne(ti) | ne(sa(i))) (6.5)
×plsrel (lsrel(ti) | sa(i)) (6.6)
×pword (ti | lsrel(ti), sa(i)) (6.7)

Word cluster information can be incorporated in the previous equation at several loca-
tions. Some of these possibilities are enumerated below.

P1. ppos (expression 6.4) can be converted to a log-linear model that defines a conditional
probability distribution over the POS tag pos(ti) as well as the categorical word cluster
Cc(ti) observed at ti, given the POS tag pos(sa(i)) as well as the categorical word cluster
Cc(sa(i)) observed at sa(i).

P2. ppos can be redefined to be a log-linear model that does not use POS tags at all, and just
uses categorical cluster information. If this works, then we reduce our dependence on
a part-of-speech tagger.

P3. pne (expression 6.5) can be converted to a log-linear model that defines a conditional
probability distribution over the NE tag ne(ti) as well as the categorical word cluster
Cc(ti) observed at ti, given the POS tag ne(sa(i)) as well as the categorical word cluster
Cc(sa(i)) observed at sa(i).

P4. pne can be ignored completely, if either P1, P2 works. This is a possibility because word
clusters often cluster named entities together. This would reduce our dependence on
a named-entity recognizer.

P5. ppos, pne and categorical word cluster information can be combined to one single
log-linear model that models pos(ti), ne(ti) and Cc(ti) given pos(sa(i)), ne(sa(i)) and
Cc(sa(i)).

P6. Finally, expressions 6.6 and 6.7, which are components that rely on WordNet lookups,
can be replaced with a log-linear model that models the probability of observing ti
given the synonymous cluster information Cs(sa(i)) of sa(i). This model may com-
pletely ignore WordNet lookups because we noticed during feature ablation studies
that only the IDENTICAL WORD feature from WordNet (see §3.4) played an important
role. If proper synonyms are being gathered using syntactic distributional similarity
based clustering, such a log-linear model may eliminate our need to use WordNet for
finding lexical semantic similarity.

Using word cluster information in the paraphrase model will reduce dependence on pre-
processors and lexical resources, help in the generalization of the model to newer domains
and will reduce the number of parameters in the model with efficient feature engineering.
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6.3 Argument Identification with Phrasal Paraphrases

The FramNet lexicon contains 7124 roles and the training data for SemEval’07 contains 22093
role instances. This statistic suggests that there are very few unique spans corresponding to
each role type in the lexicon, making the features used for argument identification very
sparse. Several problems that deal with text units at the level of phrases face this kind
of sparsity problem. Recently, Bannard and Callison-Burch (2005) investigated techniques
for automatically extracting phrasal paraphrases from bilingual corpora that are tradition-
ally used for machine translation. They demonstrated that for low resource language pairs,
with the use of these extracted paraphrases, data sparsity for statistical machine transla-
tion can be reduced and better quality translation can be produced (Callison-Burch et al.,
2006). More recently, Callison-Burch (2008) added syntactic constraints to his paraphrase
extraction method, and released publicly available software to extract paraphrases.1

Lin and Wu (2009) also extracted phrase clusters or groups of categorically or topically
similar phrases from huge volumes of data using the K-Means algorithm, and used these
clusters as features in an information extraction task. In our proposed work, which we label
as WC3, we plan to improve argument identification using phrasal paraphrases and phrase
clusters. To extract phrase clusters, we will apply the K-Means++ algorithm to phrases that
appear in query logs2 and use the Gigaword corpus in the same way as we used it to find the
word clusters, resulting in topical and categorical clusters. For phrasal paraphrases, we will
use the software from Callison-Burch (2008). For argument identification, we plan to use
these phrasal paraphrases and phrase clusters in the form of features, which we enumerate
in Table 6.3.

Span content features: apply to overt argu-
ment candidates.
# Span s belongs to categorical phrase cluster cpc
# Span s belongs to topical phrase cluster cpt
G# A real valued feature denoting the highest paraphrase similarity score be-

tween span s and a exemplar phrase associated with role r
G# Span s belongs to topical phrase cluster cpt , the voice is denoted in the span,
s’s position with respect to t (BEFORE, AFTER, or OVERLAPPING)

G# Span s belongs to topical phrase cluster cpt , the voice denoted in the span
(ACTIVE or PASSIVE)

Table 6.3: Proposed set of features leveraging phrasal paraphrases and phrase clusters to
be used for argument identification. Notation follows from §5.4. The third feature is a real
valued feature and is computed using a paraphrase score between a span and all the phrases
filling a role r in the exemplar sentences of FrameNet or the training data.

Using the features tabulated in Table 6.3, it may be possible to reduce data sparsity be-
cause of the miniscule size of the training corpus, and reduce argument identification errors.

1See http://www.cs.jhu.edu/˜ccb/howto-extract-paraphrases.html
2There are several publicly available query logs. One example is the AOL dataset available at http://

brie.di.unipi.it/smalltext/datasets.html.

http://www.cs.jhu.edu/~ccb/howto-extract-paraphrases.html
http://brie.di.unipi.it/smalltext/datasets.html
http://brie.di.unipi.it/smalltext/datasets.html
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6.4 Semi-supervised Learning for Frame Semantics

In this section, we focus on future work that investigates semi-supervised modeling tech-
niques to improve the frame-semantic structure prediction task. Unlike the proposed work
discussed in §6.2 and §6.3 that focuses on designing features based on clusters realized from
unlabeled data, in the following subsections we explore directions that focus on the mod-
eling technique, incorporating labeled as well as unlabeled data. Specifically, we discuss
two kinds of semi-supervised learning approaches, that have been moderately investigated
by the NLP community, resulting in improvements for information extraction and syntac-
tic parsing tasks. These two approaches are entropy minimization (§6.4.1) and techniques
for combining discriminative and generative models (§6.4.2. These techniques are perfectly
suitable to our problem because our models are manifestations of conditional log-linear
models at which these semi-supervised techniques are targeted. Moreoever, the frame-
semantic parsing task has very little labeled data, and large volumes of unlabeled data
leveraged using these semi-supervised extensions could improve the quality of semantic
analysis.

6.4.1 Entropy Minimization for Frame-Semantic Parsing

Entropy minimization techniques for semi-supervised learning has been proposed by
Grandvalet and Bengio (2004). Later on, the same framework has been adapted in NLP for
the case of log-linear sequence labeling models like CRFs (Jiao et al., 2006) and for depen-
dency parsing (Smith and Eisner, 2007). In both cases, improvements were achieved over
vanilla supervised methods with small amounts of labeled data. We hope to employ this
method for frame-semantic parsing and label this proposed task as SS1. The entropy min-
imization technique is a straightforward extension to the conditional maximum-likelihood
criterion for log-linear models. For a supervised log-linear model, we maximize the follow-
ing regularized conditional likelihood of the data (see §3.2 for basic details):

SL(θ) =
N∑

i=1

log pθ(y(i) | x(i))− C‖θ‖22 (6.8)

The entropy minimization framework presented by Grandvalet and Bengio (2004) modifies
the above expression to account for unlabeled data in the following way:

SSL(θ) =
N∑

i=1

log pθ(y(i) | x(i))− C‖θ‖22

+ γ
M∑

i=N+1

∑

y

pθ(y | x(i)) log pθ(y | x(i)) (6.9)

The third term on the right hand side of Equation 6.9 denotes the negative conditional en-
tropy of the unlabeled data Du under the conditional log-linear model. γ is a positive real
valued number that controls how much to trust the unlabeled data. This approach is mo-
tivated by the fact that minimizing the conditional entropy of unlabeled data encourages
the algorithm to find potential labelings for the unlabeled data that are mutually reinforc-
ing with the supervised labels; greater certainty on these potential labelings coincides with
greater conditional likelihood on the supervised labels, and vice versa. It has been shown
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empirically that this method partitions the unlabeled data into useful clusters. For exam-
ple, experiments on finding identifying gene and protein mentions in biomedical text (Jiao
et al., 2006) have shown that considerable improvements over purely supervised methods
are possible using this method.

Note that the objective function in Equation 6.9 is non-convex. Hence, numerical opti-
mization methods will lead to a local minumum. Moreoever, the challenge in this method
lies in the fact that numerical optimization methods to optimize this objective function re-
quires us to take its derivative with respect to the parameter vector θ. The derivative of the
first two terms on the right hand size of Equation 6.9 is the same as a typical regularized
conditional log-linear model (see Equation 3.5). However, the derivative of the negative
conditional entropy comes out to be:

∂

∂θm

( M∑

i=N+1

∑

y

pθ(y | x(i)) log pθ(y | x(i))
)

=

M∑

i=N+1

(∑

n

θn

[∑

y

pθ(y | x(i))fn(x(i), y)fm(x(i), y)

−
[∑

y

pθ(y | x(i))fn(x(i), y)
][∑

y

pθ(y | x(i))fm(x(i), y)
]])

Computing this derivative can be very expensive for large models with a lot of classes. For
structured models like CRFs (Lafferty et al., 2001), this can be prohibitively expensive. Our
argument identification model, which is a simple log-linear model with polynomial number
of labels, can be extended with an entropy regularizer as described above, and the expense is
not as large as compared to a model with exponential number of labels. However, there are
a certain number of challenges that need to be overcome before we can use this framework
of semi-supervised learning. The argument identification model described in §5.4 assumes
that the targets invoking semantic frames and the frames themselves are assumed to be
given before the model is used to discover the semantic roles. For completely unlabeled
data therefore, we need to first label potential targets and their semantic frames in some
way, before we can find a data point’s total entropy by summing up over all possible spans
for a particular role.

To this end, first, we plan to use our target identification model described in §5.2 which
has an F1 score of 79% on the test data suggesting that it is moderately accurate. We assume
that the noise in labeling wrong targets will be turned down by large amounts of unlabeled
data. Next, we plan to run our frame identification model on these labeled targets, but only
choose the frames on which our model has high confidence; here, confidence will be mea-
sured using the posterior probability assigned to a frame, given the model’s observations.
This measure of high confidence will be tuned on a development set, and then fixed for un-
labeled data. We have the option of summing up over all possible frames for a target and
treat the frame as unobserved, but estimating model parameters for that option will be very
expensive. Finally, we would run the entropy minimization technique to hope that it would
improve the argument identification model.

For a log-linear model that incorporates a hidden variable, the conditional log-likelihood
of the data has the following form:
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SHL(θ) =
N∑

i=1

[∑

z

θ>f(x(i), z, y(i))− log
∑

y

∑

z′

expθ>f(x(i), z′, y)
]

︸ ︷︷ ︸
log p′ (y(i)|x(i))

−C‖θ‖22

(6.10)

This model is exactly similar to the model we have described for frame identification in
§5.3. Note that because of the presence of the hidden variable, computing derivatives for
this model is more expensive than the supervised model. The negative conditional entropy
of unlabeled data Du for this model will look like:

− Entropy(Du) =
N∑

i=1

∑

y′

p
′
(y′ | x(i))×

[∑

z

θ>f(x(i), z, y′)− log
∑

y

∑

z′

expθ>f(x(i), z′, y)
]

(6.11)

Computing the derivative of this term will involve a specific set of latent variables for each
semantic frame (the variables y and y′), and thus will take up a complex form.

For training a frame identification model using entropy minimization, we first intend
to label the unlabeled data with targets, by labeling all content words. Ideally in frame se-
mantics, every content word can evoke a frame, although this was not followed for the data
released in the SemEval’07 task, where targets containing the maximum semantic informa-
tion in a sentence were selectively labeled. Labeling every content word as a candidate
target in the unlabeled data would enable the model to find frame identification features for
as many targets as possible; when presented with gold targets on real test data, we hope
that the model will be able to find better frames for targets unseen in the FrameNet lexicon
and supervised training data.

As an alternate strategy, we will also attempt to use our target identification heuristics
(§5.2) instead of labeling all content words, and follow the optimization procedure for the
entropy minimization framework on the combined set of labeled and unlabeled data.

6.4.2 Mixture of Discriminative and Generative Models

In this section, we consider the use of models that efficiently include parameters estimated
using generative models into conditional log-linear models, and plan to use these for frame-
semantic parsing. We call this proposed direction of work SS2. Suzuki and Isozaki (2008)
proposed a model that blended several weighted generative models into the feature function
of a conditional log-linear model. The parameters of the generative models were estimated
on unlabeled data. They used their models on a sequence labeling task and used very large-
scale unlabeled data for their experiments, and achieved improvements over supervised
methods. Recently, Suzuki et al. (2009) used the same technique for dependency parsing, to
get improvements over the corresponding supervised setting.

The extension of a conditional log-linear model to make room for generative models is
straightforward. The conditional probability under such a model looks like the following:

pθ(y | x) =
exp g(x, y)∑

y′

exp g(x, y′)
(6.12)
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where, g is a function that maps the observation/label pair (x, y) to a non-negative real
number. For a traditional log-linear model,

g(x, y) = θ>f(x, y) (6.13)

Here, like before, θ are the model parameters and f is a vector of features. To integrate a
generative component into such a model, we modify the function g as follows:

g(x, y) = θ>f(x, y) + ς>q(x, y) (6.14)

Here, q is a k-dimensional vector, whose components qj are functions trained on unlabeled
data, and ς are relative strengths of each function qj and are trained on labeled data. Also
let Θ denote the concatenation of θ and ς , thus defining a conditional distribution pΘ(y | x).
To derive q, the following is done. The actual feature vector is partitioned into k disjoint
parts, resulting in k functions r1(x, y) . . . rk(x, y). Next the following generative probability
is defined:

q′j(x, y) =
Dj∏

d=1

β
rj,d(x,y)
j,d (6.15)

Here, Dj is the number of dimensions of rj(x, y) and βj,1 . . . βj,Dj , the parameters of this

model form a multinomial distribution such that βj,d ≥ 0 and
Dj∑

d=1

βj,d = 1. Next, qj are just

defined as logarithms of q′j :

qj(x, y) =
Dj∑

d=1

rj,d(x, y) log βj,d (6.16)

The parameters βj,d of the smaller generative models are estimated using a lot of unlabeled
data. For unlabeled data, the log-likelihood of the data under the jth generative model is
defined to be:

M∑

i=1

∑

y

pΘ(y | x) log q′j(x, y) (6.17)

The above expression resembles the likelihood expression for the M-step of the EM algo-
rithm, with the only difference that the posterior probability of the data pΘ(y | x) (a log-
linear model with the exponent taking the form shown in Equation 6.14) is used instead of
the standard Q function.3 To estimate the parameters βj,d appearing in expression 6.17, a
renormalization procedure like the M-step is followed.

For complete parameter estimation, an iterative procedure is followed. At first, ∀j, the
parameters βj,d in the jth generative model are initialized such that it follows a uniform
distribution. With βj,d fixed, the parameters Θ of the log-linear model, that contain the stan-
dard feature weights θ as well as the weights ς of the qj functions, are trained on the labeled
data using a numerical optimization method like L-BFGS. Next, at the second step, by fixing
Θ, the parameters in the generative models are trained by maximizing the expression 6.17
on unlabeled data. Finally, with the trained βj,d fixed, another step of parameter training

3The standard form of likelihood for the M-step of the EM algorithm is as follows:
X
x,y

p̃(x)Q(y | x) log p(x, y).

Here, Q(y | x) is a distribution over labels given observations that is estimated using the E-step.
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for the log-linear model is done on supervised data to estimate Θ. This iterative training
procedure can be optionally done several times alternating between training the log-linear
model and training the generative models.

Both probabilistic models for the frame-semantic parsing task are amenable to this kind
of a training procedure. The challenging steps required to adapt our models requires us to
partition the feature set into several smaller generative models meaningfully. For the de-
pendency parsing task (Suzuki et al., 2009), 140 such partitions were found using careful
partitioning. Another important modification to this algorithm for the frame identification
task will require us to adapt the framework to a log-linear model containing hidden vari-
ables. Moreover, the challenges mentioned in §6.4.1 about not having gold targets for the
frame identifiation task and not having gold targets and frames for the argument identifi-
cation task prevails for this kind of semi-supervised training too. We plan to follow similar
approaches as mentioned in §6.4.1 to handle the absence of gold labels for the unlabeled
data.

We hope to gain benefits by using the semi-supervised techniques considered in this
section because our problem of frame-semantic parsing boasts very little training data, and
our existing feature rich probabilistic frameworks should benefit by leveraging unlabeled
data by either minimizing its entropy or finding generative model parameters describing it.
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Conclusion

We have provided detailed descriptions of probabilistic methods used to predict structures
useful to analyze natural language semantics. We have focused on two different aspects
of semantic processing – paraphrase modeling and prediction of frame-semantic structures.
For both tasks, our models have been able to achieve state-of-the-art results, and for frame-
semantic analysis, we have made available a tool for the natural language processing com-
munity to use.

A major focus in our models has been in the use of modeling latent structures useful
to describe some semantic phenomenon, but unavailable as annotations in labeled corpora.
We have used latent variables to model word alignments in monolingual sentence pairs and
to model latent lexical units for semantic frames.

Whenever required, we have made use of distributed computing to expedite the process
of parameter learning for large scale models, and for deriving useful feature information
from large corpora.

As future work, we have proposed the use of very large corpora along with available an-
notated data. Our proposed work includes the derivation of features from unlabeled data,
as well as the use of unlabeled data for parameter learning in a semi-supervised frame-
work. The goal of this thesis is to build robust computational models for natural language
semantics, for which we have developed initial probabilistic frameworks. Our hope is to
demonstrate that with the use of unannotated data in these frameworks, we will be able
to harvest useful semantic information and significantly improve the quality of semantic
analysis of text.

The following section looks as a tentative schedule for the proposed work.

65
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7.1 Timeline of Proposed Work

Table 7.1 shows an estimated schedule of the proposed work. The table also shows some
required tasks to be completed as a part of a doctoral degree.

Semester Task Description of Task

Spring 2010
WC1 §6.2.1 Incorporating word clusters in frame-semantic parsing
Writing Writing paper for EMNLP 2010

Summer 2010 Other Internship at Google Research, New York on semi-supervised learning
for NLP.

Fall 2010

WC2 §6.2.2 Incorporating word clusters in paraphrase identification
WC3 §6.3 Incorporating phrase clusters and paraphrases in argument identifica-

tion for frame-semantic parsing
SS1 §6.4.1 Initial work on entropy minimization techniques for frame-semantic

parsing.
Other Side project on Arabic syntax processing
Other Mandatory teaching assistantship

Spring 2011

SS1 §6.4.1 Entropy minimization techniques for frame-semantic parsing.
SS2 §6.4.2 Initial work on semi-supervised mixture of discriminative and genera-

tive models for frame-semantic parsing.
Writing Writing paper for ACL 2011

Summer 2011
SS2 §6.4.2 Semi-supervised mixture of discriminative and generative models for

frame-semantic parsing.
Writing Writing paper for EMNLP 2011

Fall 2011
Writing Writing Dissertation
Other Job search
Defense November 2011

Table 7.1: Timeline for proposed work
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