#### **Stacked Hierarchical Labeling**

Dan Munoz

Drew Bagnell

Martial Hebert



## **The Labeling Problem**





Input

**Our Predicted Labels** 

# **The Labeling Problem**



### **The Labeling Problem**



- Needed: better representation & interactions
  - Ohta '78

# **Using Regions**





Input

**Ideal Regions** 

# **Using Regions**





Input

**Actual Regions** 

#### **Using Regions + Interactions**



**Image Representation** 



#### **Ideal Prob. Graphical Model**

- High-order
- Expressive interactions

### **Using Regions + Interactions**



**Image Representation** 



#### **Actual PGM**

- Restrictive interactions
- Still NP-hard

### Learning with Approximate Inference

- PGM learning requires exact inference
  - Otherwise, may diverge Kulesza and Pereira '08



Simple **Random Field** 



**Learning Path** 

# **PGM Approach**



### **Our Approach**



#### Sequence of simple problems

Cohen '05, Daume III '06

#### A Sequence of Simple Problems



- Training simple modules to net desired output
  - No searching in exponential space

- Not optimizing any joint distribution/energy
  - Not necessarily doing it before! Kulesza & Pereira '08

#### **Our Contribution**

- An effective PGM alternative for labeling
  - Training a hierarchical procedure of simple problems

- Naturally analyzes multiple scales
  - Robust to imperfect segmentations

- Enables more expressive interactions
  - Beyond pair-wise smoothing

#### **Related Work**

- Learning with multi-scale configurations
  - Joint probability distribution
     Bouman '94, Feng '02, He '04
     Borenstein '04, Kumar '05
  - Joint score/energy
     Tu '03, S.C. Zhu '06, L. Zhu '08
     Munoz '09, Gould '09, Ladicky '09



- Mitigating the intractable joint optimization
  - Cohen '05, Daume III '06, Kou '07, Tu '08, Ross '10





In this work, the segmentation tree is given

We use the technique from Arbelaez '09





- Parent sees big picture
- Naturally handles scales



- Parent sees big picture
   Break into simple tasks
- Naturally handles scales
   Predict label mixtures

### **Handling Real Segmentation**

•  $f_i$  predicts **mixture** of labels for each region



Input



Segmentation Map

#### **Actual Predicted Mixtures**







(brighter → higher probability)

### **Training Overview**

- How to train each module  $f_i$ ?
- How to use previous predictions?
- How to train the hierarchical sequence?



### **Training Overview**

- How to train each module  $f_i$ ?
- How to use previous predictions?
- How to train the hierarchical sequence?



#### **Modeling Heterogeneous Regions**





- Count **true labels**  $P_r$  present in each region r
- Train a **model Q** to match each  $P_r$ 
  - Logistic Regression
- $min_Q H(P,Q) \rightarrow$  Weighted Logistic Regression
  - Image features: texture, color, etc. (Gould '08)

### **Training Overview**

- How to train each module  $f_i$ ?
- How to use previous predictions?
- How to train the hierarchical sequence?



#### **Using Parent Predictions**

Use broader context in the finer regions



- Allow finer regions access to all parent predictions
- Create & append 3 types of context features
  - Kumar '05, Sofman '06, Shotton '06, Tu '08

#### **Parent Context**

Refining the parent





#### **Detailed In Paper**

Image-wise (co-occurrence)



Spatial Neighborhood (center-surround)



### **Training Overview**

- How to train each module  $f_i$ ?
- How to use previous predictions?

How to train the hierarchical sequence?



#### Approach #1

- Train each module independently
  - Use ground truth context features



- Problem: Cascades of Errors
  - Modules depend on perfect context features
  - Observe no mistakes during training
    - → Propagate mistakes during testing

#### Approach #2

- Solution: Train in feed-forward manner
  - Viola-Jones '01, Kumar '05, Wainwright '06, Ross '10



# **Training Feed-Forward**



# **Training Feed-Forward**



## **Cascades of Overfitting**

F.F. Train Confusions

2
4
6
8
10
12
14
16
18
20



#### Solution: Stacking

- Wolpert '92, Cohen '05
- Similar to x-validation
- Don't predict on data used for training





# **Stacking**



# **Stacking**



# **Stacking**



# **Stacking**



## **Stacking**





### **Learning to Fix Mistakes**

Person part of incorrect segment Person segmented, but relies on parent Person fixes previous mistake



Segmentation





















**Current Output** Segmentation P(Foreground) P(Building) P(Tree) P(Road)

**Current Output** Segmentation P(Foreground) P(Building) P(Tree) P(Road)



Current Output Segmentation P(Foreground) P(Building) P(Tree) P(Road)

**Current Output** Segmentation P(Foreground) P(Tree) P(Building) P(Road)

**Current Output** Segmentation P(Foreground) P(Tree) P(Building) P(Road)

**Current Output Segmentation** P(Foreground) P(Tree) P(Building) P(Road)

**Current Output** Segmentation P(Foreground) P(Building) P(Tree) P(Road)

Current Output Segmentation P(Foreground)







P(Tree)





#### **Stanford Background Dataset**

- 8 Classes
- 715 Images

| Method            | Avg Class Accuracy |
|-------------------|--------------------|
| Gould ICCV '09    | 65.5               |
| LogReg (Baseline) | 58.0               |
| SHL (Proposed)    | 66.2               |

- Inference time
  - Segmentation & image features held constant

| Method         | sec/image |
|----------------|-----------|
| Gould ICCV '09 | 30 - 600  |
| SHL (Proposed) | 10 - 12   |

#### **MSRC-21**

• 21 Classes

• 591 Images

| Method            | Avg Class Accuracy |
|-------------------|--------------------|
| Gould IJCV '08    | 64                 |
| LogReg (Baseline) | 60                 |
| SHL (Proposed)    | 71                 |
| Lim ICCV'09       | 67                 |
| Tu PAMI'09        | 69                 |
| Zhu NIPS'08       | 74                 |
| Ladicky ICCV '09  | 75                 |

#### **MSRC-21**

• 21 Classes

• 591 Images

| Method            | Avg Class Accuracy |
|-------------------|--------------------|
| Gould IJCV '08    | 64                 |
| LogReg (Baseline) | 60                 |
| SHL (Proposed)    | 71                 |
| Lim ICCV'09       | 67                 |
| Tu PAMI'09        | 69                 |
| Zhu NIPS'08       | 74                 |
| Ladicky ICCV '09  | 75                 |
| LogReg (Baseline) | 69                 |
| SHL (Proposed)    | <b>7</b> 5         |

## **Ongoing Work**



#### Conclusion

- An effective structured prediction alternative
  - High performance with no graphical model
- Beyond site-wise representations
  - Robust to imperfect segmentations & multiple scales



- Prediction is a series of simple problems
  - Stacked to avoid cascading errors and overfitting



#### **Thank You**

- Acknowledgements
  - QinetiQ North America Robotics Fellowship
  - ONR MURI: Reasoning in Reduced Information Spaces
  - Reviewers, S. Ross, A. Grubb, B. Becker, J.-F. Lalonde

Questions?

## **Image-wise**



## Spatial neighborhood





#### **Interactions**

Described in this talk



Described in the paper



### SHL vs. M3N





### SHL vs. M3N



