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Problem: 3D Scene Understanding  
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Solution: Contextual Classification 



• Intractable 
inference 
 
 

• Difficult to train 
 
 

• Limited success 

4 

Graphical models 

Fig. from Anguelov, et al. CVPR 2005 

Classical Approach: Graphical Models 

Anguelov, et al. CVPR 2005 
Triebel, et. al. IJCAI 2007  
Munoz, et al. CVPR 2009 

Kulesza NIPS 2007 
Wainwright JMLR 2006 
Finley & Joachims ICML 2008 

Belief propagation 
Mean field 
MCMC 



• Intractable 
inference 
 
 

• Difficult to train 
 
 

• Limited success 

5 

Graphical models 

Fig. from Anguelov, et al. CVPR 2005 

Classical Approach: Graphical Models 

Anguelov, et al. CVPR 2005 
Triebel, et. al. IJCAI 2007  
Munoz, et al. CVPR 2009 

Kulesza NIPS 2007 
Wainwright JMLR 2006 
Finley & Joachims ICML 2008 

Belief propagation 
Mean field 
MCMC 



• Intractable 
inference 
 
 

• Difficult to train 
 
 

• Limited success 

6 

Graphical models 

Fig. from Anguelov, et al. CVPR 2005 

Classical Approach: Graphical Models 

Anguelov, et al. CVPR 2005 
Triebel, et. al. IJCAI 2007  
Munoz, et al. CVPR 2009 

Kulesza 
Wainwright 
Finley & Joachims ICML 2008 

Belief propagation 
Mean field 
MCMC 



7 



8 



9 



10 



Our Approach: Inference Machines 
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• Train an inference procedure, not a model. 
– To encode spatial layout and long range relations 
– Daume III 2006, Tu 2008, Bagnell 2010, Munoz 2010 
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Example features 
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Local features only 
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Learned Relationships 
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Experiments 

• 3 large-scale datasets 
– CMU (26M), Moscow State (10M), Univ. Wash (10M) 

• Multiple classes (4 to 8)   
– car, building, veg, wire, fence, people, trunk, pole, 

ground, street sign 

• Different sensors 
– SICK (ground), ALTM 2050 (aerial), Velodyne (ground) 

• Comparisons 
– Graphical models, exemplar based 
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Quantitative Results 
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[1] Munoz CVPR 2009 [2] Shapovalov PCV 2010 [3] Lai RSS 2010 * 

* Use additional semi-supervised data not leveraged by other methods. 



CMU Dataset 
Ours Max Margin CRF [1] 
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[1] Munoz, et. al. CVPR 2009 
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Moscow State Dataset 
Ours  Logistic regression 
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Conclusion 

• Simple and fast approach for scene labeling 
– No graphical model 
– Labeling via 5x logistic regression predictions 

 
 
 

• Support flexible contextual features 
– Learning rich relationships 
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Thank you! And Questions? 
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