Onboard Contextual Classification of 3-D Point Clouds with Learned High-order Markov Random Fields

Daniel Munoz

Nicolas Vandapel

Martial Hebert

Example of 3-D point cloud

Hand labeled data

Hand labeled data

□ Do it **onboard**

Scene understanding for autonomous vehicle navigation

■ **Environments**: urban and natural settings

Labels

□ **Purpose**: environment modeling, obstacle detection

Challenges

- Mobility laser data only
- Onboard data processing
 - Process continuously streaming data, over 100 K pts/s
 - Real-time data processing
 - Vehicle speed up to 6 m/s (20 km/h)

Demo-III eXperimental Unmanned Vehicle (Demo-III XUV)

农

Performance

Motivation

Anisotropic MRF [munoz-3dpvt-08]

High-order MRF [munoz-icra-09]

Scale selection

[unnikrishnan-3dpvt-06] [lalonde-3dim-05]

Local classification [vandapel-icra-04]

Efficient data structure

[lalonde-ijrr-07]

(Off-board)

(On-board)

Better

Computational efficiency

Outline

- Model introduction
- Contributions
- Onboard experiments

Model introduction

Local classifiers

$$E(\mathbf{y}) = \sum_{i=1}^{N} E_i(y_i)$$

Model introduction

Local classifiers

$$\mathbf{Y} = \{Y_1, \dots, Y_N\}$$
$$Y_i \in \{\ell_1, \dots, \ell_K\}$$

Model introduction

Markov Random Fields

$$\mathbf{Y} = \{Y_1, \dots, Y_N\}$$
$$Y_i \in \{\ell_1, \dots, \ell_K\}$$

$$E(\mathbf{y}) = \sum_{i=1}^{N} E_i(y_i) + \sum_{(ij)\in E} E_{ij}(y_i, y_j)$$

- ☐ Key concepts (see paper for details)
 - Each $E_c(\cdot)$ dependent on **features x** and **label**-specific **weights w**
 - Classification: optimal* labeling y can be found efficiently

 ✓ [boykov-pami-01]
 - Learning: finding w is a convex optimization problem
 - ✓ [taskar-nips-03, ratliff-aistats-07]

Learning high-order interactions

- High-order interactions
 - [kohli-cvpr-07]
 - Params not learned

$$E(\mathbf{y}) = \sum_{i=1}^{N} E_i(y_i) + \sum_{(ij)\in E} E_{ij}(y_i, y_j) + \sum_{c\in S} E_c(\mathbf{y_c})$$

□ **This work**: cast E_c under the same learning framework

$$E_c(\mathbf{y_c}) = \begin{cases} \mathbf{w_c^k} \cdot \mathbf{x_c} & \text{if } \forall i \in c, y_i = l_k \\ 0 & \text{otherwise,} \end{cases}$$

Context approximation

□ Are pairwise interactions necessary?

(Edge construction = k-NN)

Context approximation

□ Are pairwise interactions necessary?

$$E_c(\mathbf{y_c}) = \begin{cases} \mathbf{w_c^k} \cdot \mathbf{x_c} & \text{if } \forall i \in c, y_i = l_k \\ 0 & \text{otherwise,} \end{cases}$$

Counter-intuitive:

High-order inference is <u>fast</u>

(High-order clique construction = k-means clustering)

- □ Classification comparison vs k-NN pairwise model
 - 1.2 M ground truth points

VS	Accuracy rate	Computation speedup (off-board)
5-NN	Slightly worse (87% vs 89%)	10x faster
3-NN	Similar (87% vs 88%)	2x faster

Onboard Classification

Dynamic random field structure

Simple and efficient

Onboard verification

Comparison

- **Green** = Classification
- **Black** = Total processing time (green + updating graph structure)
- Onboard speedup: 3x

Field experimentation

- ☐ Tested over 20 km of terrain, 25 x 50 m map
- □ Urban (MOUT), trail and forest environment

□ Efficient onboard feature computation [lalonde-ijrr-07]

Field experimentation

□ Average speed: ~2 m/s

Forest Environment

Example of integration

□ Updating prior map for long range planning

Conclusion

- Contributions
 - Efficiently learn high-order interactions
 - Context approximation for onboard processing
 - **✓** Fast
 - ✓ Works well in practice

- Limitations
 - Computation time
 - Clique interactions
 - Optimization

Functional M³N [munoz-cvpr-09]

High-order interactions [munoz-icra-09]

Computational efficiency

Thank you

- Acknowledgements
 - U.S. Army Research Laboratory
 - General Dynamics Robotic Systems