CNBC Matlab Mini-Course

Quick Line Fitting

David S. Touretzky October 2023

Day 4: Analyzing Data

```
clear all

x = 0: 0.1: 5;

y = 3*x + rand(1, length(x));

scatter(x, y)

scatter(x, y, 20, 'r', 'filled')

Isline % lease squares line fit
```

Exploring Distributions

- Use disttool to display a distribution and manipulate its parameters.
- · Switch between CDF and PDF.
- Click and drag a slider arrow to change a parameter.
- Try a Gamma distribution.
- Click and drag in the figure window to measure the value of the distribution (dashed red line will slide as you move the mouse).

Polynomial Fitting

clear all

x = -10 : 0.25 : 10;

 $y = x.^3/10 - x.^2 + 5*sin(x);$

polytool(x,y)

Try using a Degree of 2, then 3.

Click the Export button.

beta

clf, plot(x, y, 'LineWidth', 2)

hold on, plot(x, polyval(beta, x), 'ro')

Random Distributions

- Use randtool to explore random distributions.
- Select Poisson distribution.
- Click the Resample button a few times.
- Increase the sample size to 1000 samples.
- Try resampling now.
- Click the Export button to export samples to the workspace.

```
hist(poissrv)
plot(sort(poissrv), 'o')
```

Anonymous Functions

 $f = @(x) 1 ./ (1+exp(-x.^2))$

whos f

f(5)

f()

f(-1:4)

3

Plot Tools: Data Statistics

```
clf
x = randn(1000,1);
y = 1 - f(x)
plot(x, y, 'ro')
  Undock the figure if it is docked.
  Select Tools > Data Statistics, then
  check boxes for x mean and x std. dev.
```

Plot Tools: Basic Fitting

Check "cubic"

Check "Show equations"

Click the → button

Click the next → button

In the "Find y=f(x)" panel, enter -2: 0.5: 1.5

Click the Evaluate button, then check "Plot evaluated results"

Select Tools > Basic Fitting

Neurophysiology Exercise

 How does axon diameter in microns relate to conduction velocity in meters/second?

!wget www.cs.cmu.edu/~dst/Tutorials/Matlab/hursh.csv

type hursh.csv clear all

Select "Import Data" from the toolbar Select the file hursh.csv Select Import as: Column Vectors Click the Import Selection button

Neurophysiology Exercise (cont.)

- Notice the two variables in your workspace.
- Make a diameter-vs-velocity scatter plot.
- Fit a line to this data using the Basic Fitting tool.
- What is the predicted conduction velocity of an axon 22 microns in diameter?
- What diameter value would give a conduction velocity of 6 meters/second?

Fitting A Gaussian (Live Script)

- Download https://www.cs.cmu.edu/~dst/Tutorials/Matlab/Likelihood.mlx
- Run the script.

Fitting A Gaussian (Manually)

- Load a dataset of gasoline prices: clear all, load gas.mat
- Type the value of price2
- Let's look at the distribution of values: hist(price2)
- Calculate some statistics:
 n = length(price2)
 mu = mean(price2)
 sigma = std(price2) * sqrt((n-1)/n)

Plot the Gaussian

```
x = min(price2) : 0.25 : max(price2)
y = normpdf(x, mu, sigma);
scaled y = y * 4/max(y);
hold on
plot(x, scaled y, 'r')
```

Could also do: histfit(price2, 10)

Plot the Likelihood Surface

```
mus = 116 : 0.5 : 121;
sigmas = 2.5 : 0.1 : 5.5;
[x,y] = meshgrid(mus, sigmas);
z = gauslike(x, y, price2);
clf, surfc(x, y, z*10)
xlabel mu
ylabel sigma
zlabel Likelihood
rotate3d on
```

What Is the Likelihood?

- We estimated the mu and sigma parameters based on a small sample size (20 points).
- The true distribution may differ from our estimate.
- If we change mu and/or sigma slightly, how well does the new distribution fit our dataset?

Countour Plot of Likelihood

figure

14

```
[c,h] = contour(mus, sigmas, z*1e24);
clabel(c,h)
```

Calculating Likelihood

```
function z = gauslike(mu, sigma, points)
 n = length(points);
 z = ones(size(mu));
 for i = 1 : n
  z = z.* normpdf(points(i), mu, sigma);
 end
end
```

Interactive Contour Plot

fsurfht('gauslike', [116 122], [2.5 5.5], price2)

- Click and drag to move the crosshairs.
- Type the mean 118.5 into the X Value box.
- Type the sigma value 3.6401 into the Y Value box. Note the Z Value is 2.8386e-24
- Compute std(price2) and type that value into the Y-value box: the Z Value decreases.
- The peak is located at the sample mean, but not at the sample's standard deviation.
- Moral: the sigma value giving the greatest

Nonlinear Regression

- Matlab can "tweak" parameters to fit an arbitrary model to a data set.
- First step: choose a model and determine its set of parameters. Example: a constant term plus an exponential function plus a noise term:

$$y_i = a_1 + a_2 \exp(-a_3 x_i) + epsilon_i$$

 Write a Matlab function to evaluate the model given a parameter vector a and data x:

$$mdl = @(a,x) a(1) + a(2)*exp(-a(3)*x)$$

Examining the Fit

```
xrange = min(x) : 0.01 : max(x);
clf, hold on
scatter(x, y)
plot(xrange, mdl(a_hat, xrange), 'r')
```

. .

Generate Some Test Data

true_a = [1; 3; 2] x = exprnd(2.5, 100, 1); % 100x1 exp. distrib. noise = normrnd(0, 0.1, 100, 1); $y = mdl(true_a, x) + noise;$ scatter(x,y)

Box Plots

load carsmall

MPG

Origin

boxplot(MPG,Origin)

doc boxplot

Fitting The Model to the Data

- Need a starting point for the parameter vector.
- Doesn't have to be accurate; just guess.

• Now use nlinfit to estimate the parameters:

• Pretty close to true_a!

Anova Example

doc anova1

21

Scroll down to Example 2. Are steel beams as strong as special alloy beams?

Cut and paste the sample code into your Matlab command window. Then do:

anova1(strength, alloy)

24

To Learn More

- Browse the Statistics Toolbox documentation:
 doc stats
- Take Rob Kass' course on statistics for computational neuroscience.

Live Scripts

- Function definitions must go at the end of the file.
- Figures can appear either to the right, or inline.
- Type "open <filename>" to open the file.

25

2

Live Scripts

- Similar to Jupyter Notebooks (Python) or Mathematica notebooks
- Combine text, code, images, and hyperlinks
- File name ends in .mlx instead of .m

26

Live Scripts

- · New Live Script button
- Type Matlab code
- Press the Run button, or left click on the bar at the left edge of the editor, or Control-Return.
- · To enter text: click on the Text button
- Text formatting: style, bold/italics, etc.
- To insert a figure: go to the Insert tab and click the Image button
- Save as a .mlx file