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Abstract

Temporal-difference learning (TD) models explain
most responses of primate dopamine neurons in ap-
petitive conditioning. But because existing models are
based in the simple formal setting of Markov processes,
they do not provide a realistic account of the partial ob-
servability of the state of the world, nor of variation
in event timing. For instance, the TD model of Mon-
tague et al. (1996) mispredicts the dopamine response
when an expected reward is delivered early.

We explain such experimental results using a ver-
sion of TD learning grounded in the richer formal-
ism of partially observable semi-Markov processes. We
propose that the brain infers the likely state of the
world from limited observations, using a statistical
model of how the world’s state evolves. Inference is
necessary for such judgements as whether an expected
reward is merely late, versus having been omitted alto-
gether. The dopamine signal is modeled as a TD error
signal for learning to predict future rewards from this
inferred state representation.

1 Introduction
Several investigators have suggested that the pri-

mate dopamine system carries an error signal for
learning to predict future rewards [1, 2, 3]. These mod-
els, based on temporal-difference (TD) learning [4], ex-
plain most phasic responses of primate dopamine neu-
rons in appetitive conditioning [5]; moreover, they sug-
gest a neurophysiological account of animal condition-
ing behavior. But because existing models are based
in the simple formal setting of Markov processes, they
are deficient in at least two areas relevant to physi-
ological and behavioral data. They do not provide a
realistic account of the partial observability of the state
of the world, nor of how the system tracks the timing
of events. In this paper, we introduce a version of TD
learning grounded in a richer formal model to better

address both issues and, consequently, to explain some
data that challenge existing models.

In a Markov process, the setting for the basic TD al-
gorithm, the state of the world relevant to reward pre-
diction is always fully observable. This property does
not hold for many of the key experiments on dopamine
neurons. These are better modeled as partially observ-
able Markov processes, where the state of the world
is hidden and observations may reveal only ambigu-
ous information about it. For instance, in an exper-
iment where a brief flash of light signals that a food
reward will be delivered a few seconds later, nothing
observable about the world differentiates states in the
interim period when reward is imminent. TD models
of dopamine handle these situations by augmenting
their representation of the state of the world with in-
formation about previous observations (such as, in this
example, the flash of light) in hopes that the combi-
nation will be sufficient to fully predict reward.

This device introduces problems due to how it rep-
resents the timing of the previous observations. The
state augmentation scheme of previous models treats,
for instance, a flash of light five seconds ago and the
same stimulus six seconds ago as totally unrelated
events. This precludes a satisfactory treatment of
variability in the intervals between events; as a result
such models mispredict the behavior of dopamine neu-
rons when a signaled reward is delivered early. We ad-
dress this problem using the theory of partially observ-
able semi -Markov processes, which explicitly incorpo-
rate variability in the timing of events. Such variation
interacts with the problem of partial observability in
our model: If a flash of light signals reward after some
variable delay, as time passes without the reward oc-
curring, the algorithm must determine the chance that
the reward is simply late, versus that it was omitted
altogether. We treat this as an inference problem, and



solve it by using a statistical model of how the world’s
hidden state evolves to infer the state from a series of
observations. Because this inferred state is generated
from a model of the process’s dynamics, it provides a
better representation for TD learning than the aug-
mented state of previous models. A similar inference
method has recently been proposed to explain a num-
ber of behavioral results from animal conditioning [6].
The present paper aims to connect such a theory with
known physiology by investigating how state inference
and reward prediction systems might interact to gen-
erate the dopamine signal.

2 The model
A Markov process consists of a set S of states, and

two functions Q and R defined on that set. If the state
of the world at time t is st ∈ S, then the transition
function Q(st) defines a probability distribution over S
from which is drawn the successor state st+1. Rewards
are also delivered: the reward rt received at time t in
the state st has magnitude distributed according to
the function R(st). The TD algorithm learns a third
function, the value function, which maps each state to
the discounted reward expected in the future:

V (st) = E


∑

t′≥t

γt′−trt′


 (1)

where the parameter γ < 1 controls the steepness of
discounting and the expectation is over variability in
reward magnitudes and state transitions.

The TD algorithm [4] follows from a recursive
rewriting of equation 1:

V (st) = E [rt] + γ · E [V (st+1)] (2)

Using this relation, an estimate, V̂ , of V can be im-
proved online. If, in some state st, a reward rt and a
successor state st+1 are observed, they can be taken
as samples of the distributions over which the expec-

tations are taken in equation 2. Using V̂ (st+1) as an
approximation for E [V (st+1)], a sample of the right
side of equation 2 can be computed, and the estimate
V̂ (st) can be updated in its direction. The change

in V̂ (st) is proportional to the difference between the
approximated left and right sides of equation 2:

δt = rt + γV̂ (st+1) − V̂ (st) (3)

The TD models [1, 2, 3] propose that the activity of
dopamine neurons reflects this error signal δt.

This paper considers TD algorithms for a richer set-
ting, a partially observable semi-Markov process. The
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Figure 1: Models of a conditioning task. (a) Markov

model. The passage of time is indicated by progression

through a series of states. The two rows of states corre-

spond to the interval between stimulus and reward (“ISI”)

and the interval between trials (“ITI”). Transitions from

ITI states back to the beginning are not shown. (b) Semi-

Markov model. Events occur on entry to a state, and each

state corresponds to the interval between a pair of events.

The dwell time in each state varies according to some dis-

tribution (not pictured).

first change — partial observability [7] — is that the
state s is only observable indirectly through an obser-
vation function O(s), which maps s to a distribution
over a set of observations O. An observation ot ∈ O
may not uniquely identify the underlying state st. The
second change is that the discrete temporal dynamics,
in which the state advances with each “tick” of the
clock, are replaced with semi-Markov dynamics [8], in
which discrete state transitions take place in continu-
ous time. A function T (s) provides a distribution of
the duration of a stay in state s, which allows for ex-
plicit modeling of variation in the time between events.
As the time t is now continuous, we index the irregu-
lar but discrete state transitions by an integer n; e.g.,
if the process enters state sn at time t then it enters
state sn+1 at time t + τn where sn+1 is drawn from
Q(sn) and τn is drawn from T (sn).

As a concrete example, figure 1 illustrates Markov
and semi-Markov models of the conditioning task we
study in this paper. The Markov model tracks the
passage of time between events by a procession of
intermediate hidden states; in contrast, each inter-
val in the semi-Markov model corresponds to a single
state, whose duration can vary continuously accord-
ing to some distribution. While one can derive a dis-
crete Markov approximation to a semi-Markov system
by subdividing the states, the problems of inference
about timing that we consider here will persist, albeit
in more muddled form.
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Our model differs slightly from traditional semi-
Markov models with respect to rewards and observa-
tions, to better reflect the experimental situation. Tra-
ditionally, both occur ongoing during the duration of
a stay at a state. We instead assume that all rewards
drawn from R(sn) and observations from O(sn) are
instantaneous and occur only at the moment that the
state sn is entered. Until the state is left, all rewards
and observations are empty. So any reward or obser-
vation signals that a state change has occurred, but we
also assume that state transitions can occur “silently,”
unsignaled by reward or observation. This feature re-
quires inference to determine whether an unsignaled
state transition has occurred.

Neglecting partial observability momentarily, we
can redefine the value of a state sn in the semi-Markov
model as the discounted expected reward at the mo-
ment the state is entered. For bookkeeping reasons we
omit rn from this value, beginning the sum with rn+1:

V (sn) = E

[ ∑

N>n

γτn+...+τN rN

]
(4)

= E [γτn(rn+1 + V (sn+1)] (5)

where the expectation is now additionally taken over
the dwell durations τ .

Approaches to partial observability in reinforce-
ment learning divide according to whether they use
models. Model-free approaches, used in previous TD
models of the dopamine system, augment the observ-
able state on with previously observed states on−1 etc.
in order to try to disambiguate the current hidden
state. Unmodified TD for fully observable processes
can be used to learn V as a function of the augmented
state.

Model-based approaches [7] instead assume that the
system learns or is given a model of the process —
that is, the functions Q, O, R, and T . The value of
each hidden state can be derived offline by solving the
model (e.g. using value iteration), without any sam-
ple trajectories. While traversing the Markov process,
the model can be used to compute a probability dis-
tribution over the hidden state given a series of obser-
vations, and the value is the expectation with respect
to this distribution of the hidden state values.

We propose that the dopamine system mixes these
model-based and model-free approaches, using meth-
ods similar to those of Chrisman [9]. In this proposal,
the brain learns a model of the world, but rather than
solving the model directly to obtain V̂ , it uses the
model only to estimate the hidden state during sam-
ple trajectories. From these samples, it uses TD to
incrementally learn the values of the hidden states.

Were the states and transitions fully observable, we
could update V̂ (sn) at each transition analogously to
equation 3:

δn = γτn [rn+1 + V̂ (sn+1)] − V̂ (sn) (6)

which follows from equation 5 [8]. τn is the time since
the last transition.

But since the states and transition times are only
known probabilistically, through inference, we use a
probabilistic form of equation 6, periodically updat-
ing each state’s value proportionately to how strongly
we believe the process has transitioned out of that
state since the last update. We define βs,t = P (st =
s, st+ε 6= s|o1 . . . ot+ε), the probability that the pro-
cess transitioned out of state s between times t and
t + ε. Every ε timesteps, the model updates its beliefs
about β, conditioning on the most recent observation
using Bayes’ rule:

βs,t ∝ P (ot+ε|st = s, st+ε 6= s)·P (st = s, st+ε 6= s|o1 . . . ot)

where the first term is computable from the current
observation and the functions O and Q, and the sec-
ond term follows recursively from its values at previ-
ous timesteps together with information about previ-
ous observations. (For a full treatment of inference in
hidden semi-Markov models, see [10].)

With this information we can update the values.
The change in V̂ (s) at time t is proportional to the
error:

δs,t = βs,t(E [γτ ] [rt+ε + E
[
V̂ (st+ε)

]
] − V̂ (s)) (7)

where E [γτ ] is the expected discounting given the ob-
servations and the hypothesis that the process has
just transitioned out of s, which depends on the
distribution of the system’s likely dwell time in s;

and E
[
V̂ (st+ε)

]
=

∑
s′ 6=s V̂ (s′) · P (st+ε = s′|st =

s, o1 . . . ot+ε) is the expected value at time t+ ε, given
the observations and the hypothesis that the process
has just transitioned out of s.

Unlike the error signal of equation 3, this signal is
vector-valued: V̂ (s) is updated differently for every
s at every timestep. We could assume that different
dopamine neurons code this vector in a distributed
manner — which might explain why individual neu-
rons differ in their firing properties even though under
previous models they all report the same scalar quan-
tity. Alternatively, we can assume dopamine neurons
report a scalar approximation of this error signal: its
average over all states weighted by βs,t. Using β and
this scalar signal, dopamine targets could apportion
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training between states. This approximation works
well in our simulations because the distribution of the
hidden state is generally sharply peaked; we use it in
the results reported below.

To recap the structure of our model, the system is
given (or learns, using methods outside the scope of
this paper) a “world model” of how the hidden state
evolves and produces observations. This model is pe-
riodically combined with new observations to update
an estimate of β, the likelihood that each state has
just been left. This estimate is used to perform a TD
backup of information about received and predicted
rewards to the likely predecessor states in order to
learn the reward prediction function V .

3 Data
Schultz and collaborators have recorded dopamine

neurons in primates performing tasks for reward (re-
viewed in [5]). The neurons’ phasic responses share
several properties with the TD error signal: They
burst in response to unexpected reward. If a reward is
predicted by a stimulus known to precede it by some
fixed interval, the response transfers to the stimulus
and there is no response to the reward. If a pre-
dicted reward is omitted, the neurons’ background fir-
ing pauses briefly at the time the reward should have
occurred.

These experiments are compatible with TD models
using many timing schemes. In practice, most models
augment the observable state with extra states corre-
sponding to different fixed intervals after the occur-
rence of the reward-predicting stimulus [2, 3, 11]. If
the reward occurs five seconds after the stimulus, the
states corresponding to intervals shorter than five sec-
onds would learn higher values (anticipating the re-
ward) than the states corresponding to intervals longer
than five seconds, and transitions from one set of
states to the other produce changes in V̂ (st) which,
together with the presence or absence of observed re-
wards rt, produce the appropriate phasic events in δt

of equation 3.
Further insight into how the system handles tim-

ing comes from experiments testing how the neurons
treat variation in the stimulus-reward interval. In
one experiment [12], animals were trained with a fixed
stimulus-reward interval of one second, and dopamine
neurons were recorded when the rewards were then de-
livered a half-second early or late. For early rewards,
a burst occurred to the rewards, but the neurons did
not then pause at the time the reward was originally
expected. With late reward, a pause was seen at the
time reward was expected, followed by a burst when
the reward was delivered.
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Figure 2: Modeled dopamine signals when reward deliv-

ery is varied away from an expected time. Left: In the

TD model of Montague et al., early reward delivery (top)

causes positive followed by negative TD error, reward de-

livery at the expected time (middle) produces no error,

and late reward delivery (bottom) causes negative followed

by positive error. Right: Our semi-Markov TD model per-

forms similarly, except that early reward delivery produces

no negative error, in accord with the data.

In another experiment [13], animals were trained on
a variable delay of one to three seconds between stim-
ulus and reward. Dopamine responses to the rewards
persisted throughout extensive training, with stronger
responses to earlier rewards.

As we will discuss in the next section, both of these
results require some sophistication of a TD timing
mechanism.

4 Results
Previous TD models of dopamine capture variation

in the timing of reward by manipulating the proba-
bility of reward in each of a number of states rep-
resenting different time intervals. But though these
states should be coupled, they are all treated indepen-
dently. For example, when early reward is delivered
to the model of Montague et al. [2], no reward is ex-
pected during the state corresponding to that delay,
so positive TD error results (Figure 2, top left). But
the arrival of reward in the early state has no effect
on the expectation of reward in the later state where
reward usually arrives; the nonoccurence of reward
there triggers negative TD error, predicting a pause
in dopamine cell firing. No such pause is seen experi-
mentally [12]. A previous attempt to correct this in-
consistency [11] assumed that the receipt of a reward
reset the representational system, clearing all predic-
tions and thereby suppressing the pause in dopamine
cell activity. Such an ad hoc device would not gener-
alize appropriately; for instance, animals can learn to
predict multiple rewards in sequence, an ability that

4



0
0.5

1

δ t ← stim
← rew

Markov TD model

0
0.5

1

δ t ← stim
← rew

0
0.5

1

δ t ← stim
← rew

0
0.5

1

δ t ← stim
← rew

0 2 4
0

0.5
1

δ t ← stim
← rew

Time →

−0.1
0

0.1
← stim ← rew

semi−Markov TD model

−0.1
0

0.1
← stim ← rew

−0.1
0

0.1
← stim ← rew

−0.1
0

0.1
← stim

← rew

0 2 4
−0.1

0
0.1

← stim

← rew

Time →

Figure 3: Modeled dopamine signals when reward timing

varies uniformly. Left: In the TD model of Montague et al.,

the TD error does not vary with the stimulus-reward in-

terval. Right: In our semi-Markov TD model, the modeled

dopamine signal decreases as the stimulus-reward interval

increases.

would be eliminated by the hypothesized reset.

The data are explained more elegantly under a
model that properly treats variation in the timing of
events. Under this account, the system infers that the
early reward is the same reward that had been ex-
pected to arrive later, and thus does not expect it to
arrive again. We demonstrate this idea using the two-
state semi-Markov model shown in Figure 1 and the
TD algorithm of equation 7. The ISI dwell duration
is modeled by a lognormal distribution with the ap-
propriate mean. (The distribution is sharply peaked,
but allows for some uncertainty in the reward timing.)
This model shows positive error to an early reward
(Figure 2, top right); this is not because the reward is
wholly unexpected but because it occurs earlier than
usual and is thus worth more than usual due to the
discounting by dwell duration in equation 7. Having
received the reward, the model immediately enters the
ITI state, and there is thus no error at the time when
reward is normally delivered.

Both models behave similarly in the case of late
reward. In the semi-Markov model, initial negative
error occurs because as the interval without a re-
ward becomes unusually long, the model infers that an
unsignaled state transition from the ISI state to the
ITI state has taken place without the expected reward.
The negative error is smeared out in time since this
inference occurs gradually, as probability mass leaks
from one state into the other. The subsequent reward
in the ITI state is then surprising, producing positive
error.

Figure 3 compares the models when the stimulus-
reward interval varies uniformly over an interval. For

this, we replace the inference model’s lognormal ISI
distribution with a uniform one. Traces are shown
for a number of trials, ordered by delay. In the Mon-
tague et al. [2] model, identical positive error is seen
for all rewards, since reward is equally likely at all de-
lays. Due to discounting, the error in the semi-Markov
model depends on the timing of reward relative to
the mean delay. For earlier-than-average reward deliv-
ery, positive error is seen, more for shorter ISIs. For
later-than-average delivery, negative error occurs at
the time of the reward. (In contrast to the late-reward
condition of figure 2, phasic negative error is not seen
at the average time of reward delivery because the in-
ference model expects reward time to vary uniformly.)
The increase in positive error with decrease in ISI is
consistent with experimental results [13], though no
reports have yet noted pauses in dopamine activity at
the time of later-than-average rewards, as we predict
here.

5 Discussion
We propose a combination of model-based and

model-free reinforcement learning techniques, to
model the dopamine system as a TD learner using
an inferred representation of the hidden state of the
world. We are mainly concerned here with inference
about the timing of events; we use a semi-Markov
model to capture variance in this timing. The main
advantage of treating variance so explicitly is that it
gives a clear, normative picture of how the TD state
representation should evolve in these situations, which
is easily contrasted with previous models. The model
of Montague et al. [2] fails when reward timing varies
because reward delivery does not affect its state rep-
resentation at all; it consequently misses dependencies
between states such as early reward arrival reducing
the chance that the same reward is coming later. Suri
and Schultz [11] address this by using a simple rule
to adapt the state when reward arrives, but whether
such a device approximates what a full model would
infer depends on the situation.

Our combination of model-based and model-free
techniques raises a question: Given a complete world
model, why not solve it directly (e.g. using value it-
eration) rather than doing TD? One answer is that
animals must learn world models online in nonstation-
ary situations. We envision our system could learn its
world models with online versions of hidden (semi-)
Markov model learning, as have been used to model
animal conditioning behavior [6]. In this setting, it

might be infeasible to re-solve the model for V̂ at ev-
ery model update, and instead sensible to learn V̂

incrementally in parallel using TD. TD might alter-
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natively be necessitated by inadequacies in animals’
state estimation systems. While we have assumed an-
imals perform statistically valid state inference using
a complete world model, more rudimentary inference
using a simpler observation model could suffice. Such
a system could accord with the thesis of this paper
that dopamine activity reveals evidence of state infer-
ence, but would still require sample-based TD to learn
to predict values.

A future direction is to connect this work with be-
havioral data on animal timing. The number of condi-
tioning trials it takes animals to learn an association
is invariant to dilations or contractions of the speed
of events [14]. Such timescale invariance is difficult
to capture using the discretely clocked temporal dy-
namics of a Markov TD model, but follows naturally
from the event-driven transitions of the semi-Markov
model presented here. Variance in animals’ interval
judgments follows a similar scalar property [15]; such
estimation noise would be a fairly straightforward ad-
dition to the semi-Markov model.

A surprising prediction of this model is that later-
than-average events can trigger a pause in dopamine
neuron firing. This effect can occur not only to re-
wards (as in figure 3) but also to reward-predictive
stimuli whose delivery time varies. (The traces de-
picted in figures 2 and 3 were taken after shorter-than-
average intertrial intervals so the stimulus evoked pos-
itive error. Negative error would follow longer inter-
trial intervals.) These results suggest that dopamine
responses to a reward predictive stimulus can eventu-
ally be trained away on average, even when the inter-
trial interval is randomized. Individual stimulus pre-
sentations could still evoke dopamine bursts or pauses,
depending on presentation time relative to expecta-
tion, but in the aggregate they should nearly balance
out. Dopamine responses to reward predictive stim-
uli do eventually disappear in overtrained animals [5],
but the experiment contained only slight variability in
the intertrial interval, making it difficult to judge the
model’s predictions.

Another experimental question raised by this re-
search is whether a vector-valued TD error signal
could account for observed variation in responses be-
tween dopamine neurons, with different neurons car-
rying error for different states the animal believes it
might be in. Our vector and scalar models differ as
to whether each state’s value is updated in the direc-
tion of its own mismatch with expected reward, or
whether all states’ values are updated in the direction
of the aggregate mismatch. It should be possible to
experimentally distinguish these situations, by search-

ing for dopamine activity in situations where positive
and negative error for different states cancel out to
produce zero aggregate error.
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