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Global Multiple Sequence Alignment

HUMAN  MKWVTFISLL FLFSSAYSRG V..FRRDA.H KSEVAHRFKD LGEENFKALV
RABIT MKWVTFISLL FLFSSAYSRG V..FRREA.H KSEIAHRFND VGEEHFIGLV
PIG ~~WVTFISLL FLFSSAYSRG V..FRRDT.Y KSEIAHRFKD LGEQYFKGLV
CHICK MKWVTLISFI FLFSSATSRN LQRFARDAEH KSEIAHRYND LKEETFKAVA

Align k sequences, so that residues in each column
share a property of interest:

—a common ancestor
— a structural or functional role

Global Multiple Sequence Alignment

Given sequences s,...s, of lengths n,...n,
seek s’,...s’, of length / 2 max{n;} such that
— Obtain s; from s’; by removing gaps
— No column contains all gaps
— The score of the alignment is optimal

Scoring function: Sum-of-Pairs

SCOI'e = Zka=1 2,(3:1 2;3 >a p(s’a[l:ll S,b[I])

Score = p[s;s;] + plsy, Syl * plsySs]
= 0+g+g=2g

Note: this example uses a similarity function. We can also use Sum-of-Pairs
with distance scoring.




Scoring function: Sum-of-Pairs

Score =¥, 3. 205 o P(SLLil, Spfi])

Q) ATT g
(2 A_T_ @ pL._]=0
(3) ACAT ?

Score = p[s;,S,] + p[S1,S3] + P[S, S5
=M+m+m=2m+M

Note: this example uses a similarity function. We can also use Sum-of-Pairs
with distance scoring.

Scoring function: Sum-of-Pairs

Score =¥, Xai 25 P(SII, S'pli)

Q) ATT ?
2) AT ? o[, ]=0
(3) ACAT ?
Score = p[s;,sy] +p[sy,S3] + P[S,S3]
g+M+g=29+M

Note: this example uses a similarity function. We can also use Sum-of-Pairs
with distance scoring.

Scoring Multiple Alignments

Sum of Pairs Tree alighment
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Dynamic Programming for Multiple Alignment
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Optimal score




Dynamic Programming for Multiple Alignment

oF
‘\»
o
\\\* Each cell has O(2%) neighboring
9VS[1], $1(2], Sy[3].... cells
S,[1] Calculating the sum-of-pairs score
S4[2], for each neighbor is O(k?)
S4[3
{3l @ Number of cells in matrix: O(nk)
Total computational complexity:
O(nk 2k k?)
Limits:

~k = 8- 10 sequences

) MSA is NP-complete for
~n =500 residues

Sum-of-Pairs scoring

Observations

1. A multiple alignment induces pairwise alignments

2. A column in the induced pairwise alignment may
contain all gaps, even though no column in the MSA
contains all gaps.

(1) [AG CT
) | AG_CT
(3) ACT_T

3. The pairwise alignments induced by the optimal multiple
alignment are not the same as the optimal pairwise
alignments.

Optimal Pairwise Optimal Multiple

Alignments Alignment
(1) ACT o
1 substitution
(2) AGT
(1) AC T el
(2) A GT indels
(3) ACGT

Although this costs more, it
may be a biologically more
realistic alignment

Since exact methods for MSA have exponential time
complexity, heuristic approaches are used.
Progressive alignment is the most commonly used.

Basic progressive alignment strategy:

» Compute D, a matrix of distances between
all pairs of sequences

e From D, construct a “guide tree” T

» Construct MSA by pairwise alignment of
partial alignments (“profiles”) guided by T

« Improve alignment by postprocessing steps.




(1) ACTCAT
(2) AGTCAT
(3) ACGTCCT

dix,y) = 3
dax,”_") =2

Optimal Pairwise
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Alignments

ACTCAT
AGTCAT

A GTCAT
ACGTCCT

AC TCAT
ACGTCCT

Progressive Alignment

??7?

ACTCAT
AGTCAT

)AclteeT  (@)AcTeAT (1)ACTCAT

« Use profile alignment to merge sequences according to a
guide tree.

e Typically, most closely related sequences are merged first.

Merging strategy:

Align the profile (1,2) with sequence (3)

(1) ACTCAT
(2) AGTCAT
(3) ACGTCCT

dx,y) = 3
ax,".") =2

(1) ACTCAT
(2) AGTCAT
(2) AGTCAT
(3) ACGTCCT
(1) AC_TCAT
(3) ACGTCCT
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Note: no penalty for mutations in the profile.

We paid for those in a previous step

_ACTCAT
_AGTCAT
— 4 dix,y) = 3
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dix.y) = 3
dx,”.") =2

_ACTCAT
_AGTCAT
_ 4 8 12 16 20 24 dix,.y) = 3
A 0 4 8 1216 20 dx, ) = 2
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T 16 AYC
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C
T
_ACTCAT
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_ 4 812 16 20 24 dix,y) = 3
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C 8 4 37 812 16
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C 20 16 15 11 7 11 15
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Optimal Pairwise
Alignments

(1)
(2)

(@)
®3)

(1)
®3)

ACTCAT
AGTCAT

A GTCAT
ACGTCCT

AC TCAT
ACGTCCT

Progressive alignment

(1.2)+(3)
(3) ACGTCCT
(1) AC TCAT “4m+2g
(2) AG_TCAT

An alternate alignment
(1) AC TCAT

(2) A GTCAT  2m+4g
(3) ACGTCCT




Optimal Pairwise

(1)
(@)

(2)
@)

(1)
(3)

Alignments

ACTCAT
AGTCAT

A GTCAT
ACGTCCT

AC TCAT
ACGTCCT

Progressive alignment

(1,2) + (3)
(3) ACGTCCT
(1) AC TCAT
(2) AG TCAT

An alternate alignment

(1) AC TCAT
(2) A GTCAT
(3) AcGTCCT
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&===| Multiple alignhments can identify patterns that
are conserved in a family but not apparent in a
pairwise alignment of two family members.

Progressive alignment

* “Once a gap, always a gap”

—You can't go back and correct a bad

decision at an earlier step.

* Progressive alignment is not
guaranteed to give the optimal
alignment.

» But it does have better complexity...

Complexity of progressive alignment

» Distance matrix
— Each pairwise alignment O(n?)
— Number of pairwise alignments O(k?)
* lterative construction of MSA
— Number of merge steps O(k)
— Each pairwise alignment O(k?n?)

Entire method O(k?n?)




Summary:
Progressive alignment heuristics

* Not guaranteed to give the optimal MSA
» Bad choice of gaps propagates

o Complexity
— Progressive: O(k’n?)
—versus DP: O(n* 2¥k?)

Typically, merge the most closely related
sequences first.

Mathematical correctness is not a guarantee of biological
accuracy. The performance of MSA programs is typically
evaluated using benchmarks based on biological data:

— Curated structural alignment
— Automated structural alignment
— Real or simulated sequence

Various benchmarks are designed to mimic properties of different
types of data sets encountered in practice, especially those
that are challenging to align:

- Highly divergent sequences, e.g., <50% or <30% identity
- A family of related sequences plus several outliers, or
“orphan” sequences

- Related sequences that differ due to large N or C terminal
extensions or large internal insertions or deletions

Benchmark challenges

| PROBLEM | Description

Even Phylogenic Spread.

‘é One Outlier Sequence

Two Distantly related Groups

-_— Long Internal Indel

I — Long Terminal Indel

Source: BaliBase, Thompson et al, NAR, 1999,

Mathematical correctness is not a guarantee of biological
accuracy. The performance of MSA programs is typically
evaluated using benchmarks based on biological data:

— Curated structural alignment
— Automated structural alignment
— Real or simulated sequence

Various benchmarks are designed to mimic properties of different
types of data sets encountered in practice, especially those
that are challenging to align:

- Highly divergent sequences, e.g., <50% or <30% identity
- A family of related sequences plus several outliers, or
“orphan” sequences

- Related sequences that differ due to large N or C terminal
extensions or large internal insertions or deletions




BaliBase: Reference MSAs based on
structural alignment.

Comparison

Note that implementation choices result in substantial
differences in running time:

Aligner Performance” Time
DIALIGN 57.2 12 h, 25 min
CLUSTALW 58.9 2 h, 57 min
T-Coffee 63.6 144 h, 51 min
MUSCLE 64.8 3 h, 11 min
MAFFT 64.8 2h,36min
ProbCons 66.9 19 h, 41 min
ProbCons-ext 68.0 37 h, 46 min

* Fraction of correctly aligned residue pairs

Do et al, Genome Research, 2005

Which program to choose?

ves repeats or rearrangements?

MUMMALS
F1oDA — l no PROBCONS
Al MAFFT (G-ins-i)

yes structures available?
3D-COFFEE —

SPEM-3D no global
DIALIGN
MAFFT (L-ins-i
yes _>2.000 aa in length? local S ( Bl )
MAFFT (NS-2)
MAFFET (NS-i) S stomaiei
Clustalw
yes =200 sequences’) wg internal gaps
MAFFT (NS-2)
MUSCLE
>35% |dsnmy P'obAIlgn
= PRIME
Any tool MAFFT (E-ins-i)
es <10 sequences?
PROMALS
SPEM

PRALINE
MAFFT (homologs)

Do and Katoh, 2008

PROBLEM

Description
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Even PhfTpgenic
Spread.

One Ouer
Sequence

Two Dimﬂ)tly
related ups
Long IntH’wal
Indel

Long Teﬂinal
Indel

Source: BaliBase, Thompson et al, NAR, 1999,
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Approaches for improving MSA
(Speed or accuracy)

Iterative refinement of the MSA

Faster estimation of the guide tree

Better scoring

— Combining information from various sources
— Consistency in alignments of 3 sequences
— Weighting sequences pairs

Position specific gap penalties

lterative refinement

Progressive “alignment suffers from its greediness”
Notredame et al, JIMB 2000

1. Randomly select one sequence, remove it and
realign it with the rest of the alignment

2. Remove each sequence in turn and realign with the
remaining alignment. Select the best of these as
the new alignment.

3. Randomly split into two sub alignments and realign
them.

Apply strategy repeatedly until convergence or out of
computer time

Approaches for improving MSA
(Speed or accuracy)

Iterative refinement of the MSA

Faster estimation of the guide tree

Better scoring

— Combining information from various sources
— Consistency in alignments of 3 sequences

— Weighting sequences pairs

Position specific gap penalties

Combining information from multiple
sources

T. Coffee, Notredame, Higgins, Heringa, JMB 2000

DRHNSNIKV 229% deni
DLKPENLLI o identlty

DRNIKVDDG_QLFHIDFGHFLD 129% identity

YL DIYRDLKPENL IDQQGY IQV

Construct a library of pairwise alignments
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Consistency Consistency
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Combining information from multiple sources:
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=w=| Multiple alignments can identify patterns that

are conserved in a family but not apparent in a
pairwise alignment of two family members. Sequenc




Approaches for improving MSA
(Speed or accuracy)

Iterative refinement of the MSA

Faster estimation of the guide tree

Better scoring

— Combining information from various sources
— Consistency in alignments of 3 sequences

— Weighting sequences pairs

Position specific gap penalties

Position specific gap penalties

Penalize gaps in hydrophobic and
hydrophillic regions differently

hydrophilic exterior
position-specific gap penaliies
:> — |
e i

Do and Katoh, 2008

Other improvements

» Sequence weighting

'LAssign weights so that
these sequences do not dominate.

Do and Katoh, 2008

Pairwise sequence alignment
(global and local)

Multiple sequence
alignment
\ Substitution
matrices
/ Database
global local searching

BLAST
Sequence
statistics

Evolutionary tree
reconstruction
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