

Scoring function: Sum-of-Pairs $Score = \sum_{a=1}^{k} \sum_{a=1}^{k} \sum_{b>a} p(s'_{a}[i], s'_{b}[i])$ (1) A_TT
(2) A_T
(2) A_T
(2) A_T
(2) A_T
(2) P[.,_] = 0
(3) ACAT
(3) CAT
(4) P[.,_] = 0
(5) Score = p[s_{1},s_{2}] + p[s_{1},s_{3}] + p[s_{2},s_{3}] = 0 + g + g = 2gNote: this example uses a similarity function. We can also use Sum-of-Pairs with distance scoring.

Basic progressive alignment strategy:

- Compute *D*, a matrix of distances between all pairs of sequences
- From D, construct a "guide tree" T
- Construct MSA by pairwise alignment of partial alignments ("profiles") guided by T
- Improve alignment by postprocessing steps.

ACTCAT AGTCAT d(x,y)=3(4) ____ d(x, "_") = 2 Α Α С C^A G т C С т

	_	A A	C G	T T	C C	A A	T T					
_	_	4	8	12	16	2	0 24	Ļ	d(d(x	(x,γ) , " "	= 3) = 2	
A	4									/_/	-	
C	8											
G	12											
Т	16											
C	•••											
С												
т												

ACTCAT AGTCAT d(x,y)=34 8 12 16 20 24 d(x, "_") = 2 Α 4 (0) 8 С A **G** 12 **T** 16 С ... С т

	_	A	C	т	C	A	т		
	_	Α	G	т	С	Α	т		
_		4	8	12	16	2	0 2	4	d(x,y)=3
A	4	0	4	8					d(x, ' <u></u> ') = 2
C	8								
G	12								
Т	16								
C	•••								
C									
Т									

	_	A	C	тсат	
	_	Α	G	ТСАТ	
_		4	8	12 16 20 24	$4 \qquad d(x,y) = 3$
Α	4	0	4	8 12	d(x, "_") = 2
С	8				
G	12				
т	16				
C	•••				
С					
т					

	_	A A	C G	ТСАТ ТСАТ	
_	_	4	8	12 16 20 24	d(x, y) = 3
Α	4	0	4	8 12⊷16	a(x, _) = 2
C	8				
G	12				
Т	16				
C	•••				
C					
Т					

_ A C T C A T _ A G T C A T d(x,y) = 3 4 8 12 16 20 24 d(x, "_") = 2 **A** 4 0 4 8 12 16 20 8 4 3 С A C **G** 12 A G A C **T** 16 С ... C т

Optimal Pairwise	Progressive alignment					
Alignments	(1,2) + (3)					
(1) ACTCAT(2) AGTCAT	 (3) ACGTCCT (1) AC_TCAT 4m+2g (2) AG_TCAT 					
(2) A_GTCAT (3) ACGTCCT	An alternate alignment					
(1) AC_TCAT(3) ACGTCCT	 (1) AC_TCAT (2) A_GTCAT 2m+4g (3) ACGTCCT 					

Summary: Progressive alignment heuristics

- Not guaranteed to give the optimal MSA
- Bad choice of gaps propagates
- Complexity
 - Progressive: $O(k^2n^2)$
 - versus DP: $O(n^k 2^k k^2)$
- Typically, merge the most closely related sequences first.

Mathematical correctness is not a guarantee of biological accuracy. The performance of MSA programs is typically evaluated using benchmarks based on biological data:

- Curated structural alignment
- Automated structural alignment
- Real or simulated sequence

Various benchmarks are designed to mimic properties of different types of data sets encountered in practice, especially those that are challenging to align:

- Highly divergent sequences, e.g., <50% or <30% identity
- A family of related sequences plus several outliers, or "orphan" sequences
- Related sequences that differ due to large N or C terminal extensions or large internal insertions or deletions

Mathematical correctness is not a guarantee of biological accuracy. The performance of MSA programs is typically evaluated using benchmarks based on biological data:

- Curated structural alignment
- Automated structural alignment
- Real or simulated sequence
- Various benchmarks are designed to mimic properties of different types of data sets encountered in practice, especially those that are challenging to align:
 - Highly divergent sequences, e.g., <50% or <30% identity
 - A family of related sequences plus several outliers, or "orphan" sequences
 - Related sequences that differ due to large N or C terminal extensions or large internal insertions or deletions

Note that implementation choices result in substantial differences in running time:								
	Aligner	Performance*	Time					
	DIALIGN	57.2	12 h, 25 min					
	CLUSTALW	58.9	2 h, 57 min					
	T-Coffee	63.6	144 h, 51 min					
	MUSCLE	64.8	3 h, 11 min					
	MAFFT	64.8	2h,36min					
	19 h, 41 min							
	ProbCons-ext	68.0	37 h, 46 min					
* Fraction of correctly aligned residue pairs Do et al, Genome Research, 2005								

Approaches for improving MSA (Speed or accuracy)

- Iterative refinement of the MSA
- · Faster estimation of the guide tree
- Better scoring
 - Combining information from various sources
 - Consistency in alignments of 3 sequences
 - Weighting sequences pairs
- Position specific gap penalties

Iterative refinement

Progressive "alignment suffers from its greediness" Notredame et al, JMB 2000

- 1. Randomly select one sequence, remove it and realign it with the rest of the alignment
- 2. Remove each sequence in turn and realign with the remaining alignment. Select the best of these as the new alignment.
- 3. Randomly split into two sub alignments and realign them.
- Apply strategy repeatedly until convergence or out of computer time

Approaches for improving MSA (Speed or accuracy)

- Iterative refinement of the MSA
- Faster estimation of the guide tree
- Better scoring
 - Combining information from various sources
 - Consistency in alignments of 3 sequences
 - Weighting sequences pairs
- Position specific gap penalties

Combining information from multiple sources

T. Coffee, Notredame, Higgins, Heringa, JMB 2000 DRHNSNIKV DLKPENLLI

22% identity

DRHNSNIKVDDG QLFHIDFGHFLD YLHSLDIYRDLKPENLIDQQGYIQV

12% identity

Construct a library of pairwise alignments

Approaches for improving MSA (Speed or accuracy)

- Iterative refinement of the MSA
- Faster estimation of the guide tree
- Better scoring
 - Combining information from various sources
 - Consistency in alignments of 3 sequences
 - Weighting sequences pairs
- Position specific gap penalties

