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Gene clusters that span three or more chromosomal regions are of increasing importance, yet statistical
tests to validate such clusters are in their infancy. Current approaches either conduct several pairwise
comparisons, or consider only the number of genes that occurin all the regions. In this paper, we
provide statistical tests for clusters spanning exactly three regions based on genome models of typical
comparative genomics problems, including analysis of conserved linkage within multiple species and
identification of large-scale duplications. Our tests are the first to combine evidence from genes shared
among all three regions and genes shared between pairs of regions. We show that our tests of clusters
spanning three regions are more sensitive than existing approaches and can thus be used to identify
more diverged homologous regions.

1. Introduction

An essential task in comparative genomics is to identify chromosomal regions that de-
scended from a single ancestral region, either through speciation or duplication. Conserved
homologous regions can be used to find evidence of functionalselection or shared regula-
tory regions, and to analyze the history of large-scale duplications and rearrangements. In
distantly related genomes, homologous genes are used as markers for identifying homol-
ogous regions. Gene content and order, although initially conserved, will diverge through
local rearrangements, gene loss, and duplications5. Thus, distantly related homologous
regions appear asgene clusters, distinct chromosomal regions that share a number of ho-
mologous gene pairs, where neither gene order nor gene content is perfectly preserved.

In order to distinguish regions that arose from the same ancestral region from unrelated
regions that share homologous gene pairs, it is necessary toshow that local similarities
in gene content could not have occurred by chance. There is anemerging body of work
on statistical tests for this purpose2,3,4,9,10,14,15,18. However, this work focuses almost
exclusively on tests for comparisons of two regions. With the rapid rate of whole genome
sequencing, analysis of gene clusters that span three or more chromosomal regions is of
increasing interest.

When comparing two regions, the number of shared homologs (x, shown in Fig. 1(a))
is typically used as the measure of similarity. However, this approach cannot be directly
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(a) (b)

Figure 1. Venn diagram representation of shared homologs inwindows sampled from distinct chromosomal
regions. (a) Pairwise comparison of windows,W1 andW2, which sharex homologous genes. (b) Three-way
comparison ofW1, W2, andW3, in which x123 homologs appear in all three windows. The variablesxij

represent the number of genes that appear in onlyWi andWj , andxi represents the number of genes that appear
in only a single windowWi.

extended for tests of clusters spanning more than two regions. When comparing three
regions (W1, W2, andW3), there are many more quantities to consider (Fig. 1(b)): the
number of homologs observed in all three regions (x123), the number of homologs observed
in each pair of regions (x12, x13 andx23), and the number of genes observed only in a
single window (x1, x2, andx3). Evidence for homology comes not only from the set of
homologs that appear inall the regions being compared (x123), but also from the number of
homologs that appear in only a subset of the regions (xij

′s). How best to combine evidence
from different subsets of regions remains an unsolved problem.

In this paper, we develop the first attempt to address this issue, for the problem of
clusters spanning exactly three regions. Given a set of three windows sampled from three
genomes, each containingr consecutive genes, we wish to determine whether the windows
share more homologous genes than expected by chance. (If duplications are under con-
sideration, two of the windows will be sampled from distinctregions of a single genome.)
This problem, while restricted to three regions, exihits the basic challenges that arise in the
more general problem.

Statistical tests for gene clusters in multiple regions maybe useful either because the
researcher is studying more than two genomic regions or because comparison with addi-
tional genomes may increase confidence that a pair of regionsarose from a single ancestral
region. To identify regions duplicated in a whole genome duplication (WGD), in partic-
ular, comparisons with related genomes may be necessary. Although evidence of WGD
can sometimes be found by comparing a genome with itself and looking for pairwise clus-
ters, in many cases duplicated regions may not be identifiable by direct comparison due
to reciprocal gene loss: Following a WGD, in many cases there is no immediate selective
advantage for retaining a gene in duplicate, so one copy of most duplicates is lost. As a
result, the gene content of duplicated regions is often disjoint.

A solution to this problem is comparison with the genome of a closely related species
that diverged shortly before the whole genome duplication (a pre-duplication species). If
two regions in thepost-duplication species both have significant similarity to a single region
in the pre-duplication species, they are likely to be homologous even if they share few or
no homologous genes. This strategy provides more statistical power to detect duplicated
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regions and has been successfully employed to analyze duplications in fish6, plants8,16,17

and several yeast species7,11.
The most common strategy for testing significance of multiple regions is to conduct

multiple pairwise comparisons (reviewed by Simillionet. al.12). If region W1 is signifi-
cantly similar toW2, andW2 is significantly similar to regionW3, then homology between
all three regions is inferred, even ifW1 andW3 share few genes. This approach allows the
use of existing statistical methods, which are designed forcomparing two regions. How-
ever, this strategy is conservative as it will only identifya three-way cluster if at least two
of the three pairwise comparisons are independently significant. Furthermore, it does not
explicitly recognize the additional significance of genes that occur in all three regions.

In a second approach, once a significantly similar pair of regions is identified, the genes
in these regions are merged to approximate their common ancestral region12. Then ad-
ditional pairwise comparisons are conducted with this inferred ancestral segment as the
search query. This approach still allows the use of pairwisestatistical tests, but is more
powerful than the above approach, since the second step considers the genes that occur in
W1 as well as those that occur inW2 when searching for a third homologous region. How-
ever, it still requires that at least one pair of regions is independently significant. Moreover,
when comparing with a third region,W3, it does not consider the additional significance of
genes that appear inW1 and W2, compared to genes that appear in only one of the regions.

The previous two approaches use sequential pairwise comparisons. Another model has
been proposed that allows forsimultaneous comparison of multiple regions3. However this
model only considersx123, the number of genes that are conserved in all regions. This
approach is also conservative as it does not consider genes that occur in only a subset of
the regions (thexij

′s). Thus, current approaches account for either the genes that occur in
all three regions, or those that occur in pairs of regions, but not both.

In this paper, we develop the first statistical tests that consider both the quantitiesx123

and xij simultaneously. We obtain expressions for the probability—under the null hy-
pothesis of random gene order—that the number of shared genes is at least as large as the
number observed. These expressions are derived for genome models that are appropri-
ate for two common types of comparative genomics problems: (1) analyses of conserved
linkage of genes in three regions from three genomes, and (2)identification of segments
duplicated by a whole genome duplication, via comparison with the genome of a related,
pre-duplication species. We show through simulations thatour tests for comparing three
regions are more sensitive than existing approaches, and have the potential to detect more
diverged homologous regions.

2. Statistical tests for three regions

The significance of a cluster depends not only on properties of the windows (Fig. 1), but
also on the properties of the genomes (Fig. 2). The relevant properties of the genomes
are the total number of genes in each genome and thegene content overlap— the fraction
of genes shared among the three genomes. Depending on which biological questions are
being investigated, the processes of gene loss differ, and an appropriate model of gene con-
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(a) (b) (c)

Figure 2. Gene content overlap models. The set of genes in each genome is represented as a circle. (a) Identical
gene content model: all genes are shared between all three genomes. (b) Shared gene content model:n123 genes
are shared between all three genomes. The remaining genes are singletons. (c) Pre/post duplication model:Gpre

is the union of two ancestral, duplicated genomes embedded within it. n1,2 genes appear twice inGpost (once in
each embedded genome) and once inGpre. These are the genes that are retained in duplicate.n1,1 genes appear
once inGpre and once inGpost. These are the genes that were preferentially lost.n0,1 genes appear once in
Gpost but do not appear inGpre. These are the genes retained in singleton inGpost but lost inGpre.

tent overlap will also differ. Here, we develop statisticaltests for three different models of
gene content overlap. The first two models are designed for comparisons of three genomes,
while the third is for detection of duplicated regions by comparison with a pre-duplication
genome. For each model we give analytical expressions for three statistical tests, and com-
pute cluster probabilities for typical parameter values using Mathematica. We investigate
the impact of different gene content overlap models and alternative test statistics on cluster
significance, and compare the sensitivity of our tests with that of existing approaches.

2.1. Identical gene content model

We model a genomeGi as an ordered set ofNi genes,Gi = 1, 2, . . .Ni. We ignore chro-
mosome breaks and physical distance between genes, and assume genes do not overlap. In
this, the simplest model, each genome containsn identical genes,i.e., n=N1=N2=N3

(Fig. 2(a)). Each gene in genomeGi has exactly one homolog each inGj andGk.
In order to determine the significance of gene clusters, we require test statistics that

capture the essential properties of the clusters of interest. In the pairwise case, given a
pair of chromosomal regions containingx observed homologs, significance is typically
demonstrated by showing thatP (X ≥ x) is small under the null hypothesis, whereX is
a random variable representing the number of homologs shared between the two regions.
This probability can be computed using a combinatorial approach, counting the number of
ways the two windows can be filled with genes, such that they share at leastx genes, and
normalizing by the number of ways of filling the windows without restrictions.

We illustrate this approach for the simpler case of a pairwise cluster, then present an-
alytical expressions for the probabilities of three-region clusters under the null hypoth-
esis. Given two windows,W1 and W2 of size r1 and r2, sampled from two genomes
containingn identical genes, the number of ways the windows can shareexactly x genes is
(

n
x

)(

n−x
r1−x

)(

n−r1

r2−x

)

. The first binomial is the number of ways of choosing thex shared genes,
and the remaining two binomials give the number of ways of choosing two sets of genes to
fill the remainder of each window, such that the sets are disjoint. We normalize by the total
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number of ways of choosing genes to fill two windows of sizer1 andr2 is
(

n

r1

)(

n

r2

)

. Thus,
the probability that these windows shareexactly x genes is3

P2(X =x) =

(

n
x

)(

n−x
r1−x

)(

n−r1

r2−x

)

(

n
r1

)(

n
r2

) =

(

n
x,r1−x,r2−x

)

(

n
r1

)(

n
r2

) , (1)

where we definea

(

n

i1, i2, ..., ik

)

≡

(

n

i1

) k−1
∏

j=1

(

n −
∑j

l=1 il

ij+1

)

=
n!

i1!i2! . . . (n − i1 − i2 . . . − ik)!
.

Thus, the probability that two windows shareat least x genes is

P2(X ≥ x) =

r
∑

h=x

P2(X =h). (2)

We use an analogous approach and notation for computing the probabilities for com-
parisons of three regions. In addition, we define~x = (x123, x12, x13, x23) and use~X = ~x

as shorthand forX123 = x123, X12 = x12, X13 = x13, andX23 = x23. As above, we first
derive an expression for the probability of observing exactly ~x genes, then sum over this
expression to find the probability of observing at least as many shared genes.

In the above pairwise comparison, we counted the number of ways to form three differ-
ent sets: thex shared genes, ther1−x genes unique toW1, and ther2−x genes unique to
W2. Computing the probability of three windows containingexactly the observed number
of shared genes is a direct extension of the two-window problem, except there are seven
sets to be selected (Fig. 1(b)) instead of three sets:

P3( ~X =~x) =
1

(

n
r1

)(

n
r2

)(

n
r3

) ·

(

n

x123, x12, x13, x23, x1, x2, x3

)

. (3)

The probability of observingat least ~x shared genes is obtained by summing over all
possible values ofX123 andXij ,

P3( ~X ≥ ~x) =

u123
∑

v123=x123

u12
∑

v12=x12

u13
∑

v13=x13

u23
∑

v23=x23

P3( ~X = ~v), (4)

whereu123 = min(r1, r2, r3), u12 = min(r1, r2) − v123, u13 = min(r1−v12, r3)−v123,
u23 = min(r2−v12, r3−v13)−v123, and~v = (v123, v12, v13, v23). In the worst case, eval-
uating this expression takesO(r4) time. In practice, the computation time is substantially
reduced, because the summand decreases exponentially asx123 and thexij

′s increase.
Only the smallest values will contribute to the final probability, and most of the terms can
be disregarded.

It might seem natural to use the probability of observing theexact number of shared
homologs directly to test cluster significance. However, such an approach is risky. As
shown in Fig. 3(a), for small values ofxij , P ( ~X =~x) underestimatesP ( ~X ≥ ~x) by several

aNote that this is a non-standard use of the multinomial notation since we do not require thatn= i1 + i2 + . . . ik.
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Figure 3. (a) A comparison ofP ( ~X ≥ ~x) with P ( ~X =~x) for n=5000, r=100, x123 =0, andx12 =x13 =
x23 =h, ash ranges from zero to seven. (b) A comparison ofP (X123 ≥ x123) with P ( ~X ≥ ~x) for n=5000,
r = 100, x12 = x13 = x23 = 3, asx123 ranges from zero to four.(c) A comparison ofP ( ~X ≥ (h, 0, 0, 0)) and
P ( ~X ≥ (0, h, h, h)), showing the impact ofx123 andxij

′s on cluster significance, whenn=5000, r=100.

orders of magnitude. For example, given the parameters in Fig. 3(a), when the three regions
shareno genes (x123 = xij = 0), the exact test reports a probability significantly less than
one! This test will lead to false positives. However, asxij increases, the probabilities
converge. This suggests that, for sufficiently large valuesof xij , the exact probability may
be used as a fast approximation.

In order to assess the additional sensitivity gained by incorporating genes that are shared
between only two of three regions into the statistical test,we compareP ( ~X ≥ ~x) with
P (X123 ≥ x123), the probability of observing at leastx123 homologs shared between
all three windows. To ensure that all three windows shareexactly x123 genes with no
restrictions on thexij

′s, it is necessary to selectx12, x13 andx23 so that they have no
homologs in common. Otherwise,X123 would be greater than rather than equal tox123.
This can be achieved using the following expression for the number of windows that share
exactly x123 genes:

q(X123 = x123) =

r1−x123
∑

x12=0

(

r1

x123, x12

)(

n− r1

r2−x123−x12

)(

n−x123−x12

r3−x123

)

, (5)

where the second term ensures thatW1 andW2 share exactlyx12 genes, and the third
term ensures that exactlyx123 genes are shared in all three windows. We then obtain the
probability of observingat least x123 genes in common by summing overq as follows:

P (X123 ≥ x123) =

(

n

r2

)

−1(
n

r3

)

−1 u123
∑

k=x123

q(X123 = k). (6)

We analyzed the impact of considering thexij
′s, by comparing Eq. 6 with Eq. 4

(Fig. 3(b)). P (X123 ≥ x123) is consistently two orders of magnitude greater than
P ( ~X ≥ ~x). This is because a test based only onx123 fails to capture evidence of ho-
mology from genes that occur in only a subset of the windows (i.e., the xij

′s), and will
severely underestimate cluster significance. For example,given a significance threshold
of α = .01 and the parameters used in Fig. 3(b), a cluster withx12 = x13 = x23 = 3 and
x123 =1 would not be considered significant using a test based onx123 alone, even though
such a cluster is unlikely to arise by chance.
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To further understand the relative importance ofx123 andxij , we analyzed how much
more a gene shared by all three windows contributes to significance than a gene shared by
only two windows. Consider a cluster in whichh genes are shared by all three windows
(i.e., x123 = h, xij = 0), compared to a cluster where there areh distinct genes shared
between eachpair of windows (i.e., x123 =0, xij =h). Notice that in both cases, each pair
of windows sharesh genes. However, in the first case each region only containsh shared
genes, whereas in the second case each region shares2h genes with the other regions.
Although the total number of shared genes is larger in the second scenario, Fig. 3(c) shows
that the first scenario is always much more significant. Even asmall increase inx123 results
in a large increase in significance—much more so than an increase of an equivalent number
of homologous matches between pairs of regions.

2.2. Shared gene content model

In contrast to the assumptions of the identical gene contentmodel, in most cases, a genome
will have singleton genes that do not have a detectable homolog in related genomes. How
does this difference affect cluster significance? In the shared gene content model, we as-
sume the genomes share a common set ofn123 ≤ Ni homologs (Fig. 2(b)). In addition,
each genomeGi containsni = Ni −n123 singleton genes. Homology between gene pairs
that have no homolog in the third genome is disregarded, withsuch genes being treated as
singletons. This models the situation that would result if homologs were identified accord-
ing to the triangle method used in COGs13.

To compute the probability of observing exactly~x shared genes, we must count the
number of ways of choosing the~x shared genes, as well as the genes that are unique to each
window (x1, x2, andx3). As in the case of identical gene content, the shared genes must
be selected from then123 genes common to the three genomes. However, thexi genes that
are unique to each windowWi can be selected either from the remaining common genes,
or from the singletons of that genome (ni). In the former case, care must be taken to ensure
that a gene is only assigned to one window. As a result, two additional summations are
required, since the number of ways to choose thex3 genes unique toW3 depends on how
many genes from then123 common genes were used to fillW1 andW2. The probability is:

PS( ~X =~x) =

(

N1

r1

)

−1(
N2

r2

)

−1(
N3

r3

)

−1(
n123

x123, x12, x13, x23

)

x1
∑

i=0

x2
∑

j=0

(

n123−s

i, j

)(

n1

x1− i

)(

n2

x2− j

)(

N3−s− i− j

x3

)

,

(7)

wheres = x123 + x12 + x13 + x23 is the total number of shared genes.PS( ~X ≥ ~x), the
probability of observingat least as many shared genes under this model, can be computed
from Eq. 7 by summing overPS( ~X =~x), similar to Eq. 4.

We use this expression to study how cluster significance depends on the extent of gene
content overlap among the genomes. As the proportion of singleton genes in the genomes
increases from0.3 to 0.9, the probability of observing a cluster drops from0.01 to 10−5



October 9, 2006 22:35 Proceedings Trim Size: 9.75in x 6.5in apbc223a

8

 1e-05

 0.0001

 0.001

 0.01

 0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
ro

ba
bi

lit
y

Proportion of singleton genes

(a)

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  1  2  3  4  5
P

ro
ba

bi
lit

y

h

x23=0,x123=0
x23=1,x123=0
x23=0,x123 =1

(b)

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  1  2  3  4  5  6  7  8

P
ro

ba
bi

lit
y

h

Pairwise
Product of Pairwise
Three-way

(c)

Figure 4. (a) The effect of singleton genes on cluster significance. The x-axis shows the proportion of singletons
in each genome (1 − n123/N ). The y-axis shows the probabilityPS( ~X ≥ (1, 1, 1, 1)), whenN = N1 =
N2 = N3 = 5000, andr = 100. (b) The effect of reciprocal loss on cluster significance incomparing pre- and
post-duplication genomes, whenn1,2 = 450, n1,1 = 3600, n0,1 = 500, r = 50, andx12 = x13 = h, ash
ranges from 0 to 5. (c) Comparing pairwise probabilities, the product of two pairwise probabilities, and three-way
probabilities, whenN =5000, r=100, x123 =0, andx12 =x13 =x23 =h.

(Fig. 4(a)). This is because as fewer homologs are shared between the genomes, it is more
surprising to find them clustered together. This shows the importance of considering the
extent of gene content overlap among the genomes when evaluating cluster significance.

2.3. Pre/Post Duplication Model

We propose a third genome overlap model specifically for analyzing duplications. Let
Gpost be a genome that has undergone a WGD andGpre be a genome that diverged prior
to the WGD (Fig. 2(c)). Letni,j be the number of genes that appeari times inGpre andj

times inGpost, wherei ≤ 1, j ≤ 2. This model only recognizes paralogs that arose through
WGD, ignoring lineage specific duplications. Thus, it assumes that each gene inGpost has
at most one paralog and that genes inGpre have no paralogs;i.e., n2,0 = n2,1 = n2,2 = 0.
Furthermore, this model assumes that every gene that appears twice in the post-duplication
genome also has a homolog in the pre-duplication genome;i.e., n0,2 =0. This assumption
is based on the rationale that genes retained in duplicate are functionally important and,
hence, are retained inGpre as well. This assumption is supported by empirical observation.
For example, in post-WGD yeast species over 95% of genes retained in duplicate are also
present in each pre-WGD yeast genome1. Similarly, in this model every gene inGpre has
at least one homolog inGpost (n1,0 = 0). We use the convention thatW1 is the window
sampled fromGpre, andW2 andW3 are sampled fromGpost.

To compute the probability of observingexactly ~x shared homologs under the null
hypothesis, we make the additional assumption that at most one copy of a duplicated gene
appears in a given window. Given this condition,

PD( ~X = ~x) =

(

n1,2

x123, x23

)(

Npre − x123 − x23

x12, x13

)(

Npre − s

x1

)(

Npost − n1,2 − s − x1

x2, x3

)

(

Npre

r1

) min(r2,r3)
∑

i=0

(

n1,2

i

)(

Npre + n0,1 − i

r2 − i

)(

Npre + n0,1 − r2

r3 − i

)

,

whereNpre = n1,2+n1,1 andNpost = 2n1,2+n1,1+n0,1. PD( ~X ≥ ~x), the probability of
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observingat least ~x shared homologs under the null hypothesis, is then obtainedas before
by summing overPD( ~X = ~x).

We calculatedPD( ~X ≥ ~x) with parameter values based on a recent study of pre- and
post-duplication yeast species1,11. In our simulations,Npost = 5000 andn1,2 = 450, con-
sistent with the observation that only 16% of genes inS. cerevisiae are duplicate genes
that arose during the WGD. Since the number of genes that occur twice in Gpost is small,
even small values ofx123 andx23 will have a large impact on cluster significance. Fig 4(b)
compares the significance of clusters for three reciprocal gene loss scenarios: when no
genes are shared between the two regions selected from the post-duplication genome
(x123 = 0, x23 = 0), when a single gene is shared (x123 = 0, x23 = 1), and when a single
gene is shared among all three regions (x123 =1, x23=0). The shape of the three curves is
similar, but the probabilities drop by an order of magnitudefrom one to the next. Even the
addition of a single gene retained in duplicate has a large impact on cluster significance!
This is particularly noteworthy because current methods compare the pre-duplication re-
gion independently with each of the post-duplication regions, and thus ignore the values of
x23 andx123

6,7,8,11,16,17. Our results show that these current methods could fail to detect
clearly significant clusters, thus resulting in a substantial decrease in sensitivity.

3. Discussion

We have presented three different models of gene content overlap and proposed novel sta-
tistical tests for evaluating the significance of gene clusters spanning three regions. Our
tests are the first to combine evidence from genes shared among all three regions and genes
shared only between pairs of regions.

How do our three-way tests compare to current approaches reviewed in Sec. 1? Unlike
tests that consider onlyx123, our tests also considerxij

′s, and thus can detect significant
clusters even whenx123 is small (Fig. 3(b)). Our tests also have advantages over current
approaches based on pairwise statistical tests alone. These approaches construct multi-
region clusters by merging pairwise clusters. However, this method does not explicitly
consider the number of genes shared among all three regions.Our results (Fig. 3(c)) show
that even a few genes conserved in all three regions dramatically increases the statistical
significance of gene clusters. This effect is particularly strong when the shared gene content
of the genomes is small (Fig. 4(a)). Thus, unlike pairwise tests, our approach can detect
related regions where each pair of regions share only a few genes (i.e., xij

′s are small), but
where a few genes are also shared among all the regions (i.e., x123 is non-zero but small).

Even whenx123 = 0, we gain sensitivity over pairwise approaches. This is because
the pairwise approach requires two of the three pairwise tests to be independently signifi-
cant, whereas our approach considers the three regions jointly. Figure 4(c) illustrates this
difference, for a scenario in whichn = 5000 andr = 100. In this case, given a signifi-
cance threshold ofα=0.01, for apair of regions to be significantly similar (P2(X ≥ x)),
they must share at least seven genes. Thus, to find a three-waycluster with the pairwise
approach,W1 must share seven genes each withW2 andW3. In contrast, using our test
P3(X̄ ≥ x̄), a cluster is significant when each pair of regions shares only four genes, even
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when none of these genes appear in all three regions.
Since the comparison of two windowsW1 andW2 is independent of the comparison of

W1 andW3, one could try using theproduct of two pairwise probabilities as an approxima-
tion of the joint probability of all three windows. This approximation, though closer to the
three-way probabilities, still underestimates the multi-region significance (Fig. 4(c)). This
is because the product of pairwise probabilities fails to consider the genes shared between
the third pair of windows (W2 andW3), and also does not give more weight to the genes
that are shared among all the windows. Thus, we argue that pairwise tests are not always
sufficient and multi-region tests will be able to identify more distantly related homolo-
gous regions. Here, we have presented initial results in this direction, yet many important
problems remain. A more general test would take all paralogsinto account. In addition,
to investigate hypotheses of multiple WGDs within the same lineage, tests for more than
three regions sampled from the same genome are required.
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