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Abstract

We present a novel framework for shape-based tem-
plate matching in images. While previous approaches
required brittle contour extraction, considered only lo-
cal information, or used coarse statistics, we propose
to match the shape explicitly on low-level gradients by
formulating the problem as traversing paths in a gra-
dient network. We evaluate our algorithm on a chal-
lenging dataset of objects in cluttered environments and
demonstrate significant improvement over state-of-the-
art methods for shape matching and object detection.

Introduction
Recognizing specific object instances in images of natural
scenes is crucial for many applications ranging from robotic
manipulation to visual image search and augmented reality.
While distinctive point-based features such as SIFT (Lowe
2004) have been shown to work well for recognizing texture-
rich objects (e.g., books and paintings) even under severe
occlusions, these methods fail when presented with objects
that have large uniform regions. These texture-less objects
(e.g., pitcher in Figure 1) are primarily defined by their con-
tour structure, which are often just simple collections of
curves and junctions. Even though many shape matching
approaches work well when objects are un-occluded, their
performance decrease rapidly in natural scenes where occlu-
sions are common. This sensitivity to occlusions arises be-
cause these methods are either heavily dependent on repeat-
able contour extraction or only consider information very lo-
cally. The main contribution of this paper is to increase the
robustness of shape matching under occlusions by formulat-
ing it as traversing paths in a low-level gradient network.

In the past, significant research has been dedicated to rep-
resenting and matching shape for object detection. A com-
mon representation is to use lines (Ferrari, Tuytelaars, and
Van Gool 2006) and contour fragments (Shotton, Blake, and
Cipolla 2008). In the simplest form, contours are represented
by a set of points and Chamfer matching (Barrow et al. 1977)
is used to find locations that align well in an edgemap. Lo-
cal edge orientation is often incorporated (Shotton, Blake,
and Cipolla 2008) in the matching cost to increase robust-
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Figure 1: Example of shape matching under heavy oc-
clusion. (left) Image window, (center) normalized gradient
magnitudes, and (right) probability that each pixel matches
the shape of the pitcher.

ness to clutter. These methods, however, consider each point
independently and do not use edge connectivity.

To incorporate connectivity, some methods enforce the
constraint that matched points are close together (Thayanan-
than et al. 2003), but this still does not ensure that the
matches belong to the same image contour. Other ap-
proaches capture connectivity by approximating curves as
sequences of line segments or splines (Zhao and Chen 1997)
instead of points. A common issue with these approaches,
however, is the difficulty of breaking contours at repeatable
locations due to noise in the edgemaps and object occlu-
sions. To address this issue, many-to-one contour match-
ing (Srinivasan, Zhu, and Shi 2010) pieces together image
contours to match the object shape using Shape Context (Be-
longie, Malik, and Puzicha 2002) features. The Contour
Segment Network (Ferrari, Tuytelaars, and Van Gool 2006)
method finds paths that match the shape through a network
of extracted line segments. A major limitation of these ap-
proaches is their reliance on stable edge detection, which
still remains an open area of research (Arbeláez et al. 2011).

To bypass edge extraction, some methods represent the
shape by using coarse gradient statistics. Histogram of Ori-
ented Gradients (HOG) (Dalal 2006) bins gradient magni-
tudes into nine orientation bins. These methods, however,
only provide a coarse match of shape, losing many fine-
grained details needed for instance detection. For example,
a HOG cell with a single line and a HOG cell with multiple
parallel lines have exactly the same descriptor. In addition,
HOG cells on the object boundary are easily corrupted by
strong background gradients and by object occlusions.

To capture the shape more explicitly without extracting
edges, the LINE2D (Hinterstoisser et al. 2012) method scans



a template of sparse edge points across a gradient map. The
rLINE2D (Hsiao and Hebert 2012) method increases the
robustness of LINE2D by only considering points where
the quantized edge orientation matches exactly. These ap-
proaches, however, do not account for edge connectivity, re-
sulting in high-scoring false positives in cluttered regions.

In a parallel line of research, there has been work on
classifying edges which belong to a specific object cate-
gory. The Boosted Edge Learning (BEL) detector (Dollar,
Tu, and Belongie 2006) extends the Probabilistic Boosting
Tree (Tu 2005) algorithm to classify whether each location
in the image belongs to the edge of the object. To speed
up the classification, some approaches train local classifiers
only at Canny edge points (Prasad et al. 2006). Sparse cod-
ing (Mairal et al. 2008) has also been used to learn class-
specific edges. However in all of these cases, the classifica-
tion is done independently at each location, effectively los-
ing connectivity and the global shape. They also require a
large amount of labeled training data and for the background
in the test images to be very similar to the training set.

In this paper, we propose a shape matching approach
which captures contour connectivity directly on low-level
image gradients. For each image pixel, our algorithm es-
timates the probability (Figure 1) that it matches a tem-
plate shape. The problem is formulated as traversing paths
in a gradient network and is inspired by the edge extrac-
tion method of GradientShop (Bhat et al. 2010). Our results
show significant improvement in shape matching and object
detection on a difficult dataset of texture-less objects in nat-
ural scenes with severe clutter and occlusions.

Gradient Networks
In this section, we describe our algorithm for explicit shape
matching using low-level gradients. For a template shape
placed at a particular image location, our method returns for
each image pixel, the probability that it matches the tem-
plate. We begin by defining the gradient network of an im-
age. Then, we formulate shape matching as finding paths in
the network which have high local shape similarity. We de-
scribe the local shape potential for each node in the network,
followed by the algorithm used for shape matching.

Formulation
For each pixel p in an image, let ν(p) be the gradient mag-
nitude and θ(p) be the gradient orientation computed using
oriented filters (Freeman and Adelson 1991). Let Qp0 be the
set of four pixels at integer coordinates closest to the float-
ing point coordinate calculated by translating the pixel p a
distance of

√
2 in the direction of the tangent θ(p) + π/2.

Similarly, let Qp1 be the set of four pixels in the direction of
the tangent θ(p)−π/2. A gradient network is then defined as
a graph where each pixel p in the image is a node that is con-
nected to the eight pixels q ∈ {Qp0, Q

p
1} as shown in Figure

2. We define φβ(p, q) to be the bilinear interpolation weight
for each q with respect to its ideal floating point coordinate.

In addition, let S(z) be a template shape S placed at po-
sition z in the image. Initially, for simplicity of explanation,
we define S(z) by N edge points Y = {y1, ..., yN}, each

p

pQ0

pQ1

q

Figure 2: Gradient network. Each node is a pixel in the im-
age. We create a network (green) by connecting each pixel p
with its 8 neighbors in the direction of the local tangent.

with a gradient orientation ψi. Later, we extend the formu-
lation to directly operate on model edge strengths. For con-
ciseness of notation, superscript S in the following deriva-
tion is implicitly S(z). Let dS(p) be the distance from p to
the nearest model edge point y∗ ∈ Y and θS(p) = ψ∗ be
the orientation of that edge point. Both values can be com-
puted simultaneously using a Distance Transform (Breu et
al. 1995). The goal is then to find long connected paths in
the gradient network which match the template S(z) well.

Local Shape Potential
We begin by defining the local shape potential, ΦS(p), which
measures how well each node p in the gradient network
matches S(z) locally. This potential is composed of three
terms: 1) the region of influence φSroi, 2) the local appear-
ance φSA, and 3) the edge potential φE . It is given by:

ΦS(p) = φSroi(p) · φSA(p) · φE(p). (1)

Region of Influence Given S(z), we only want to consider
pixels which are sufficiently close as candidates for match-
ing while simultaneously allowing slight deformations of the
template (Bai et al. 2009). We employ a linear weighting
scheme to define the region of influence as:

φSroi(p) = max

[
1− dS(p)

τd
, 0

]
, (2)

where τd is the farthest distance from the shape that we want
to consider. We set τd = 15 to be the same as in Oriented
Chamfer Matching (Shotton, Blake, and Cipolla 2008).

Local Appearance This term describes how well each
pixel matches the local appearance of S(z). Many types of
information can be used, ranging from local gradient orien-
tation to interior appearance of the object, such as color and
texture. For illustration of our approach, we consider the ef-
fects of gradient orientation and color. The local appearance
potential is then defined as:

φSA(p) = φSθ(p) · φSC(p), (3)

where φSθ is the orientation potential and φSC is the color po-
tential. We define the local orientation potential as:

φSθ(p) = exp

(
−
[
θ(p)− θS(p)

]2
2σ2

θ

)
, (4)
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Figure 3: Illustration of algorithm. Given (a) the template
and (b) the image window, we compute (c) the local shape
potential and apply the message passing algorithm to pro-
duce (d) the shape similarity. The local shape potential is
composed of the (e) region of interest, (f) orientation, (g)
color, and (h) edge potentials.

with σθ = π/8 (i.e., the orientation bin size of
LINE2D (Hinterstoisser et al. 2012)).

Many methods can be used to incorporate color informa-
tion around an edge. We describe a simple approach to show
its efficacy. Unlike BEL (Dollar, Tu, and Belongie 2006) and
(Prasad et al. 2006) which consider local patches centered on
an edge, we only use information from the object interior to
be more robust to background clutter.

Let vi be the unit-norm gradient vector pointing to the ob-
ject interior and ci be the L*u*v color of the object extracted
a fixed distance in the direction of vi for each model edge
point yi. Then let vS(p) = v∗ and CS(p) = c∗ correspond
to the y∗ ∈ Y closest to p. From the image, we extract the
color C(p) at the same fixed distance from p in the direction
of vS(p). This corresponds to what the object interior would
look like from this pixel if it is part of the shape. The local
color potential is then defined as:

φSC(p) = exp

(
−
[
C(p)− CS(p)

]2
2σ2
C

)
. (5)

We set σ2
C = 1/15 according to (Luo and Guo 2003) for

L*u*v color normalization.

Edge Potential The edge potential, φE , characterizes how
likely a pixel belongs to an edge in the image. Many dif-
ferent metrics can be used. In the simplest form, the edge
potential can be the raw gradient magnitude ν(p). In Gradi-
entShop, the authors normalize the magnitude of each pixel
with respect to the magnitudes in a 5× 5 neighborhood z to
be more robust to edge contrast. If µz and σz are the mean
and standard deviation of the magnitudes in z, then the nor-
malized gradient magnitude is:

ν̂(p) =
ν(p)− µz
σz + ε

. (6)

More complicated edge potentials, such as the output of
edge detectors like the Global Probability of Boundary
(gPb) (Arbeláez et al. 2009), can also be used instead. In the
evaluation, we explore the effect of different edge potentials.

Shape Matching
While the local shape potential can be used as a measure of
shape similarity, it considers only a very limited scope when
determining how well each pixel matches S(z). By itself, it is
prone to incorrect similarities from accidental alignments in
background clutter and occlusions (Figure 3c). Our key idea
for obtaining a more robust shape similarity is to broaden the
scope of each pixel, p, by traversing the path in the gradient
network on which it is centered. The pixel matches the shape
well if this path consists of a long contiguous set of pixels
which all have high local shape potential.

We characterize the contiguity from pixel p to each q ∈
{Qp0, Q

p
1} by the pairwise potential:

ΨS(p, q) = φβ(p, q) · φθ(p, q) · φSA(q), (7)

where φβ(p, q) is the bilinear interpolation weight and

φθ(p, q) = exp
(
− [θ(p)−θ(q)]2

2(π/5)2

)
is the edge smooth-

ness (Bhat et al. 2010). The local appearance potential,
φSA(q), effectively breaks the contiguity when the shape of
the neighbor q is improbable. We do not include the region
of influence potential as we do not wish to overly penalize
an imperfectly aligned template.

This formulation of shape matching is related to the edge
extraction approach of GradientShop (Bhat et al. 2010). We
adapt their message passing technique to estimate the shape
similarity. The problem of estimating the shape similarity
at p is broken into two subproblems; one for estimating the
similarity in the direction of Qp0 and the other for estimating
the similarity in the direction of Qp1. At each iteration t, the
messages are computed as:

mS,t
0 (p) =

∑
q∈Qp

0

ΨS(p, q) ·
[
ΦS(q) +mS,t−1

0 (q)
]
, (8)

mS,t
1 (p) =

∑
q∈Qp

1

ΨS(p, q) ·
[
ΦS(q) +mS,t−1

1 (q)
]
, (9)

and the estimated shape similarity is:

ΩS,t(p) = mS,t
0 (p) +mS,t

1 (p) + ΦS(p). (10)

The messages are initialized to mS,0
0 (p) = mS,0

1 (p) = 0,
and the message passing is iterated for a fixed number of
iterations to produce the final shape similarity estimate ΩS.
Empirically, the message passing converges in 25 iterations
and we use this for all of our experiments.

Probability Calibration
The shape similarity ΩS, computed in Equation 10, depends
on the template shape S. This makes it difficult to compare
the similarity values of different templates, and thus difficult
to choose the highest scoring template for object recogni-
tion. A method to calibrate these values is thus needed.

We use the Extreme Value Theory (Scheirer et al. 2012) to
calibrate the shape similarity since it only requires the distri-
bution of similarity values on negative data. Unlike category
recognition where positive data can easily be mined from
the Internet, it is much more difficult to obtain many images



of the same object instance under the same viewpoint. Neg-
ative data, on the other hand, is easy to obtain. We sample
random locations in background images and use all the ΩS

within the region of influence as negative data.

Soft Shape Model
The above formulation defines the template S(z) as a dis-
crete set of edge points. This discrete representation requires
either a manually specified template or automatic edge ex-
traction. Manual specification, however, is impractical for
a large set of templates, and automatic edge extraction re-
quires time consuming parameter tuning to obtain good
edgemaps. We address this limitation by computing a soft
shape model using the raw edge strength (e.g., edge poten-
tial) of every object pixel (i.e., object mask), instead of dis-
crete edge points. In the following, we define a soft way to
compute the distance dS and orientation θS which fully de-
scribe the relationship between S(z) and the image.

Let Y = {y1, ..., yN} be all the pixels representing S(z),
each with an edge strength γi and gradient orientation ψi.
We define the soft distance dS as:

dS(p) = min
i

[D(p, yi) + 1/γi − 1/γmax] , (11)

where D(p, yi) is the Euclidean distance between p and yi,
and γmax is the maximum edge strength. Then, the soft
orientation is θS(p) = ψ∗ and corresponds to the y∗ ∈
Y that minimizes Equation 11. Both values can be com-
puted simultaneously using the Generalized Distance Trans-
form (Felzenszwalb and Huttenlocher 2012). If γi is binary,
then the soft shape model reduces to the discrete case.

Evaluation
In order to validate our method’s performance in shape-
based object instance detection, we performed two sets of
experiments. The first evaluates the algorithm’s accuracy in
shape matching, while the second evaluates the algorithm’s
ability to detect objects. We compare the effects of using a
hard model versus a soft model, as well as the effects of dif-
ferent edge and local appearance potentials.

Dataset
We evaluate our algorithm on the challenging CMU Kitchen
Occlusion (CMU KO8) dataset (Hsiao and Hebert 2012).
Unlike other object instance detection datasets (Sun et al.
2010; Lai et al. 2011), CMU KO8 contains objects in more
realistic household scenes with both severe clutter and oc-
clusions. The dataset contains 1600 images of 8 texture-less
household objects under single and multiple viewpoints with
groundtruth occlusion labels.

Algorithms
We compare our approach with a number of state-of-the-art
methods for template-based shape matching. For fair com-
parison, we use the same M sampled model edge points xi
for all the methods. These points are specified relative to the
template center. We give a brief description of the algorithms
in our comparison below.

Gradient Network (GN) Our algorithm returns a shape
similarity ΩS for each pixel given the template S(z). For fair
comparison, we apply a 7 × 7 max spatial filter (i.e., equiv-
alent to LINE2D) to ΩS resulting in Ω̂S. The template score
at z is then

∑M
i=1 Ω̂S(xi + z). We use the soft shape model

with normalized gradient magnitudes for the edge potential,
and both color and orientation for the appearance.

Our algorithm takes on average 2 ms per location z on a
3GHz Core2 Duo CPU. In practice, we run our algorithm
only at the hypothesis detections of rLINE2D (Hsiao and
Hebert 2012), which has been shown to have high recall. The
combined computation time is about 1 second per image.

LINE2D (L2D) (Hinterstoisser et al. 2012) This method
quantizes all gradient orientations into 8 orientation bins.
The similarity for point xi is the cosine of the smallest quan-
tized orientation difference, ∆θi, between its orientation and
the image orientations in a 7×7 neighborhood of xi+z. The
score of a window is

∑M
i=1 cos(∆θi).

rLINE2D (rL2D) (Hsiao and Hebert 2012) This method
binarizes LINE2D by only considering model edge points
which have the same quantized orientation as the image.
The algorithm is more robust than LINE2D in cluttered
scenes with severe occlusions. The score of a window is∑M
i=1 δ(∆θi = 0) where δ(z) = 1 if z is true.

Oriented Chamfer Matching (OCM) (Shotton, Blake,
and Cipolla 2008) This method extends Chamfer match-
ing to include the cost of the orientation dissimilarity. Let
DT be the distance transform of the image edgemap and
DTθ be the orientation of the nearest edge point, then
the OCM score at position z is

∑M
i=1DT (xi + z) +

λ
∑M
i=1Dθ [DTθ(xi + z), ψi]. The parameter λ is learned

for each shape independently.

Histogram of Oriented Gradients (HOG) (Dalal 2006;
Malisiewicz and Efros 2011) This method represents
an object as a grid of gradient histograms. An Exem-
plar SVM (Malisiewicz and Efros 2011) is learned for
each shape. We use the one hundred negative images in
CMU KO8, the same parameters as (Malisiewicz and Efros
2011), and three hard negative mining iterations for training.
The object is detected by convolving the learned template
with the HOG of the image.

rL2D-gPb and GN-gPb To explore the use of more com-
plex edge potentials, we extend rL2D and GN to use the out-
put of gPb (Arbeláez et al. 2009), a state-of-the-art edge de-
tector that uses texture and color segmentations. gPb outputs
the probability B that a pixel belongs to an object boundary.
The rL2D-gPb algorithm applies a 7 × 7 max spatial filter
to B to produce B̂ and computes the score at position z as∑M
i=1 B̂(xi + z) · δ(∆θi = 0). The GN-gPb algorithm uses

φE = B as the edge potential.

Shape Matching
We first evaluate the performance in matching accuracy.
Each algorithm, besides HOG, returns a similarity measure



combined orientation color

naive (label all visible) 0.78 - -
L2D 0.83 - -
rL2D 0.83 - -
rL2D-gPb 0.79 - -
OCM 0.79 - -
GN 0.87 0.85 0.83
GN-hard 0.86 0.85 0.83
GN-gPb 0.85 0.84 0.84

Table 1: F-measure characterizing the shape matching on
CMU KO8. For methods which use GN, we evaluate the ef-
fects of using orientation, color, and their combination for
the local appearance potential, φSA. We also compare soft
shape models (GN) with hard shape models (GN-hard).

Single L2D rL2D rL2D-gPb OCM HOG GN GN-gPb

baking pan 0.46 0.68 0.41 0.66 0.69 0.89 0.86
colander 0.58 0.87 1.00 0.74 0.85 0.92 0.97
cup 0.45 0.80 0.93 0.71 0.86 0.98 0.96
pitcher 0.45 0.84 0.67 0.76 0.77 0.85 0.89
saucepan 0.49 0.82 0.71 0.70 0.69 0.99 1.00
scissors 0.29 0.62 0.27 0.53 0.75 0.87 0.86
shaker 0.29 0.68 0.91 0.49 0.72 0.84 0.93
thermos 0.57 0.80 0.50 0.71 0.80 0.94 0.94

Mean 0.45 0.76 0.68 0.66 0.77 0.91 0.93

Multiple L2D rL2D rL2D-gPb OCM HOG GN GN-gPb

baking pan 0.32 0.41 0.19 0.45 0.65 0.97 0.90
colander 0.53 0.81 0.95 0.31 0.82 0.93 0.94
cup 0.34 0.67 0.78 0.42 0.90 0.97 0.97
pitcher 0.43 0.65 0.11 0.28 0.68 0.86 0.83
saucepan 0.41 0.76 0.64 0.59 0.82 0.99 0.98
scissors 0.37 0.60 0.07 0.17 0.64 0.93 0.80
shaker 0.34 0.61 0.50 0.18 0.59 0.84 0.89
thermos 0.38 0.75 0.40 0.36 0.85 0.93 0.95

Mean 0.39 0.66 0.45 0.35 0.74 0.93 0.91

Table 2: Detection rate at 1.0 FPPI on CMU KO8.

per model point. Ideally for an image window, points cor-
responding to visible object parts should have higher sim-
ilarity than those that are occluded. Given the groundtruth
occlusion labels for every image, we partition the similar-
ity scores into visible and occluded scores, and report the
F-measure (i.e., maximum geometric mean of precision and
recall) in Table 1. We do not include HOG in this evaluation
because it does not return point confidences, and thus cannot
be compared fairly with the other methods. Figure 4 shows
some qualitative results.

From the table, GN outperforms all the baseline algo-
rithms. L2D, rL2D and OCM consider information very lo-
cally resulting in many incorrect point confidences. rL2D-
gPb removes spurious texture responses by using gPb, but
performs poorly because its similarity measure is not indica-
tive of how well the shape matches (e.g., high contrast edges
have high gPb probabilities irrespective of shape). By con-
sidering long connected paths in gPb which match the shape,
GN-gPb performs significantly better than rL2D-gPb. How-
ever, it performs slightly worse than GN, because gPb often
gives low probability to interior object edges, resulting in
incorrect confidences in these areas. The table also shows,
importantly, that both the orientation and color appearance
potentials at edge points are informative for shape matching.

In addition, we evaluate the effect of using a soft shape
model (GN) versus a hard shape model (GN-hard). We tuned

Figure 4: Results of shape matching using GN. From left
to right, we show: 1) template, 2) window, 3) ΦS, and 4)
probability that each pixel matches the template.
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Figure 5: Detection rate under different occlusion levels. GN
and GN-gPb are more robust to occlusions.

a Canny edge detector very carefully on the model images
to obtain the best possible contours for GN-hard. Our re-
sults show that using a soft shape model, which does not
require any parameter tuning, actually performs on par and
even slightly better than a hard shape model.

Object Detection
Next we evaluate the performance for object detection. An
object is correctly detected if the intersection-over-union
(IoU) of the predicted bounding box and the groundtruth
bounding box is greater than 0.5. The CMU KO8 dataset
is split into two parts: 800 images for single viewpoint and
800 images for multiple viewpoints. Figure 6 and 7 show
the false positive per image (FPPI) versus the detection rate
(DR) for these parts respectively. Table 2 summarizes the
performance with the detection rate at 1.0 FPPI.

From the tables, GN significantly outperforms the other
algorithms. The relative performance of the algorithms is
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Figure 6: FPPI/DR results for single view on CMU KO8.
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Figure 7: FPPI/DR results for multiple view on CMU KO8.

Single combined orientation color

GN 0.91 0.88 0.76
GN-hard 0.92 0.87 0.77
GN-gPb 0.93 0.85 0.86

Multiple combined orientation color

GN 0.93 0.74 0.88
GN-hard 0.93 0.73 0.87
GN-gPb 0.91 0.65 0.66

Table 3: Average detection rate at 1.0 FPPI on CMU KO8.

similar to the shape matching evaluation. For objects with
vibrant colors, such as the shaker (red) and colander (or-
ange), GN-gPb performs slightly better than GN because
these objects receive high gPb edge potentials. However for
typical, un-colorful objects, gPb gives less confident edge
potentials and this results in worse overall performance of

GN-gPb for these objects. In addition, HOG performs worse
than GN because it only captures the shape very coarsely and
the cells covering the object boundary are easily corrupted
by background clutter and occlusions.

Figure 5 shows the performance under different levels of
occlusions. While many of the systems perform fairly well
at low occlusion levels (0-15%), they perform significantly
worse at high occlusion levels (>35%). L2D, rL2D and
OCM often incorrectly have high point confidences in back-
ground clutter which result in false positives with higher
score than true positives under heavy occlusion. HOG per-
forms especially poorly because occlusions severely corrupt
the descriptors of HOG cells. Our GN and GN-gPb algo-
rithms are more robust to object occlusions, since they pre-
dict better shape similarities.

Table 3 analyzes the performance of soft versus hard
shape model, different edge potentials and the effects of gra-



Figure 8: False positives of GN. Each triplet shows (1) tem-
plate, (2) false positive window and (3) predicted match in
red overlaid on the Canny edgemap.

dient orientation and color. Again, a soft shape model per-
forms equivalently to the hard model, and both the orienta-
tion and color contribute to the detection accuracy.

Figure 8 shows typical false positives of GN. These detec-
tions have long contours which align well to the image. Ad-
ditional information such as occlusion reasoning (Hsiao and
Hebert 2012) or interior appearance of the object is needed
to filter these false positives.

Conclusion
The main contribution of this paper is to demonstrate that
shape matching can incorporate edge connectivity directly
on low-level gradients without extracting contours. We cre-
ate a gradient network where each pixel is connected with its
neighbors in the local tangent direction. Long paths which
match the template shape are found using a message passing
algorithm. Our results on a challenging dataset of texture-
less objects in realistic environments with severe occlusions
demonstrate significant improvement over state-of-the-art
methods for shape matching and object instance detection.
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