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Occlusion Reasoning for
Object Detection under Arbitrary Viewpoint

Edward Hsiao, Student Member, IEEE, and Martial Hebert, Member, IEEE

Abstract—We present a unified occlusion model for object instance detection under arbitrary viewpoint. Whereas previous approaches
primarily modeled local coherency of occlusions or attempted to learn the structure of occlusions from data, we propose to explicitly
model occlusions by reasoning about 3D interactions of objects. Our approach accurately represents occlusions under arbitrary
viewpoint without requiring additional training data, which can often be difficult to obtain. We validate our model by incorporating
occlusion reasoning with the state-of-the-art LINE2D and Gradient Network methods for object instance detection and demonstrate
significant improvement in recognizing texture-less objects under severe occlusions.

Index Terms—occlusion reasoning, object detection, arbitrary viewpoint

1 INTRODUCTION

CCLUSIONS are common in real world scenes and
Oare a major obstacle to robust object detection.
While texture-rich objects can be detected under se-
vere occlusions with distinctive local features, such as
SIFT [1], many man-made objects have large uniform
regions. These texture-less objects are characterized by
their contour structure, which are often ambiguous even
without occlusions. Instance detection of texture-less ob-
jects compounds this ambiguity by requiring recognition
under arbitrary viewpoint with severe occlusions as
shown in Fig. 1. While much research has addressed
each component separately (texture-less objects [2]-[5],
arbitrary viewpoint [6]-[8], occlusions [9]-[11]), address-
ing them together is extremely challenging. The main
contributions of this paper are (i) a concise model of
occlusions under arbitrary viewpoint without requiring
additional training data and (ii) a method to capture
global visibility relationships without combinatorial ex-
plosion.

In the past, occlusion reasoning for object detection
has been extensively studied [11]-[13]. One common
approach is to model occlusions as regions that are in-
consistent with object statistics [10], [14], [15] and to en-
force local coherency with a Markov Random Field [16]
to reduce noise in these classifications. While assuming
that any inconsistent region is an occlusion is valid if
occlusions happen uniformly over an object, it ignores
the fact there is structure to occlusions for many objects.
For example, in real world environments, objects are
usually occluded by other objects resting on the same
surface. Thus it is often more likely for the bottom of an
object to be occluded than the top of an object [17].

Recently, researchers have attempted to learn the
structure of occlusions from data [9], [18]. With enough
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Fig. 1: Example detections of (left) cup and (right) pitcher
under severe occlusions.

data, these methods can learn an accurate model of
occlusions. However, obtaining a broad sampling of
occluder objects is usually difficult, resulting in biases
to the occlusions of a particular dataset. This becomes
more problematic when considering object detection un-
der arbitrary view [6], [19], [20]. Learning approaches
need to learn a new model for each view of an object
and require the segmentation of the occluder for each
training image. This is intractable, especially when recent
studies [6] have claimed that approximately 2000 views
are needed to sample the view space of an object. A key
contribution of our approach is to represent occlusions
under arbitrary viewpoint without requiring additional
annotated training data of occlusion segmentations. We
demonstrate that our approach accurately models occlu-
sions by using only information about the distribution
of object dimensions in an environment and the size of
the object of interest, and that learning occlusions from
data does not give better performance.

Researchers have shown in the past that incorporat-
ing 3D geometric understanding of scenes [21], [22]
improves the performance of object detection systems.
Following these approaches, we propose to reason about
occlusions by explicitly modeling 3D interactions of
objects. For a given environment, we compute physical
statistics of objects in the scene and represent an occluder
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as a probabilistic distribution of 3D blocks. The physical
statistics need only be computed once for a particular
environment and can be used to represent occlusions for
many objects in the scene. By reasoning about occlusions
in 3D, we effectively provide a unified occlusion model
for different viewpoints of an object as well as different
objects in the scene.

We incorporate occlusion reasoning with object de-
tection by: (i) a bottom-up stage which hypothesizes
the likelihood of occluded regions from the image data,
followed by (ii) a top-down stage which uses prior
knowledge represented by the occlusion model to score
the plausibility of the occluded regions. We combine the
output of the two stages into a single measure to score
a candidate detection.

The focus of this paper is to demonstrate that a
relatively simple model of 3D interaction of objects can
be used to represent occlusions effectively for instance
detection of texture-less objects under arbitrary view.
Recently, there has been significant progress in simple
and efficient template matching techniques [6], [23] for
instance detection. These approaches work extremely
well when objects are largely visible, but degrade rapidly
when faced with strong occlusions in heavy background
clutter. We incorporate our occlusion reasoning with
two state-of-the-art gradient-based template matching
methods, LINE2D [6] and Gradient Network (GN) [5],
and demonstrate significant improvement in detection
performance on the challenging CMU Kitchen Occlusion
Dataset (CMU_KOS) [24].

2 RELATED WORK

Occlusion reasoning has been widely used in many
areas from object recognition to segmentation and track-
ing. While the literature is extensive, there has been
comparatively little work on modeling occlusions from
different viewpoints and using 3D information until re-
cently. In the following, we review current techniques for
occlusion reasoning and broadly classify them into four
categories. We begin by discussing classical approaches
which use object statistics, part-based models and mul-
tiple images, and then discuss more recent approaches
on incorporating 3D information.

2.1 Inconsistent Object Statistics

Occlusions are commonly modeled as regions which
are inconsistent with object statistics. Girshick et al. [14]
use an occluder part in their grammar model when all
parts cannot be placed. Wang et al. [10] use the scores
of individual HOG filter cells, while Meger et al. [15]
use depth inconsistency from 3D sensor data to classify
occlusions. To reduce noise in occlusion classifications,
local coherency of regions is often enforced [16]. Our
approach hypothesizes occlusions as regions which are
inconsistent with object statistics, and then performs
higher level reasoning about the likelihood of the result-
ing occlusion pattern.

2.2 Multiple Images

When multiple images in a sequence are provided, ad-
jacent frames are often used to disambiguate the object
from the occluders. The location of objects is typically
passed to subsequent frames to identify potential occlu-
sions. For example, Shu et al. [25] pass the information
of occluded parts to the following frame to penalize
them when detecting. Ess et al. [26] keep tracks alive
and extrapolate the state of occluded objects using an
Extended Kalman Filter. Xing et al. [27] using a temporal
sliding window to generate a set of reliable tracklets and
use them to disambiguate fully occluded objects. Kowdle
et al. [28] use motion cues and a smooth motion prior
in a Markov Random Field framework to segment the
scene into depth layers. Our approach differs from these
methods in that we directly operate on a single image.

2.3 Part-based Models

While global object templates work well for detecting
objects that are unoccluded, they quickly degrade when
occlusions are present. A common representation is to
separate an object into a set of parts, so that the overall
detector is more robust to individual sections being
occluded. Tang et al. [29] leverage the fact the occlu-
sions often form characteristic patterns and extend the
Deformable Parts Model (DPM) [30] for joint person
detection. Vedaldi and Zisserman [31] decompose the
HOG descriptor into small blocks which can selectively
switch between either an object descriptor or an oc-
clusion descriptor. For human pose estimation, Sigal
and Black [32] encode occlusion relationships between
body parts using hidden binary variables. Shu et al. [25]
examine the contribution of each part using a linear SVM
and adapts the classifier to use unoccluded parts which
maximize the probability of detection. Wu and Neva-
tia [33] assign the responses of multiple part detectors
into object hypotheses that maximize the joint likelihood.
Given the visibility confidences of the parts on an object,
our approach reasons about its likelihood in the real
world.

2.4 3D Reasoning

More recently with the advent of Kinect [34] and more
affordable 3D sensors, there has been increasing work
on introducing 3D information for occlusion reason-
ing. Having 3D data provides richer information of the
world, such as depth discontinuities and object size.
Wojek et al. [35] combine object and part detectors based
on their expected visibility using a 3D scene model.
Contemporary with this work, Pepik et al. [36] leverage
fine-grained 3D annotated urban street scenes to mine
distinctive, reoccurring occlusion patterns. Detectors are
then trained for each of these patterns. Zia et al. [37]
model occlusions on a 3D geometric object class model
by enumerating a small finite of occlusion patterns.
Wang et al. [38] build a depth-encoded context model
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Fig. 2: Occlusion model. (left) Example camera view of an object (gray) and occluder (red). (middle) Projected width
of occluder, w, for a rotation of §. (right) Projected height of occluder, h, and projected height of object, Hyy;, for
an elevation angle of 1. Notice that / is the projection of h onto the image plane since this is the maximum height
that can occlude the object, while H,; is the apparent height of the object silhouette. An occluder needs a projected

height of h > H,;; to fully occlude the object.

using RGB-D information and extend Hough voting to
include both the object location and its visibility pattern.
Our approach uses the key idea of reasoning about
occlusions in 3D, but works directly on a 2D image.

3 OccLuUSsION MODEL

Occlusions in real world scenes are often caused by a
solid object resting on the same surface as the object of
interest. In our model, we approximate occluding objects
by their 3D bounding box and demonstrate how to
compute occlusion statistics of an object under different
camera viewpoints, ¢, defined by an elevation angle
and azimuth 6.

Let ¥ = {X4,..., Xn} be a set of N points on the object
with their visibility states represented by a set of binary
variables V = {V4,...,Vy} such that if V; = 1, then X;
is visible. For occlusions O, under a particular camera
viewpoint ¢, we want to compute occlusion statistics
for each point in X. Unlike other occlusion models
which only compute an occlusion prior P(V;|0.), we
propose to also model the global relationship between
visibility states, P(V;|V.;, O.) where V.; = V\V,. Through
our derivation, we observe that P(V;|O.) captures the
classic intuition that the bottom of the object is more
likely to be occluded than the top. More interesting
is P(Vi|V.;, O.) which captures the structural layout of
an occlusion. The computation of these two occlusion
properties both reduce to integral geometry [39] (an
entire field dedicated to geometric probability theory).

We make a couple of approximations to tractably
derive the occlusion statistics. Specifically, since objects
which occlude each other are usually physically close
together, we approximate the objects to be on the same
support surface and we approximate the perspective ef-
fects over the range of object occlusions to be negligible.

3.1 Representation under different viewpoints

The likelihood that a point on an object is occluded
depends on the angle the object is being viewed from.
Most methods that learn the structure of occlusions from
data [9] require a separate occlusion model for each view
of every object. These methods do not scale well when
considering detection of many objects under arbitrary
view.

In the following, we propose a unified representation
of occlusions under arbitrary viewpoint of an object. Our
method requires only the statistics of object dimensions,
which is obtained once for a given environment and can
be shared across many objects for that environment.

The representation we propose is illustrated in Fig. 2.
For a specific viewpoint, we represent the portion of a
block that can occlude the object as a bounding box with
dimensions corresponding to the projected height 4 and
the projected width @ of the block.

The object of interest, on the other hand, is represented
by its silhouette in the image. Initially, we derive our
model using the bounding box of the silhouette with
dimensions Hob7 and Wobj, and then relax our model to
use the actual silhouette (Section 3.4).

First, we compute the projected width w of an occluder
with width w and length [ as shown by the top-down
view in Fig. 2. In our convention, & = w for an azimuth
of # = 0. Using simple geometry, the projected width is:

w(0) =w-|cos@| +1-|sinb). (1)

Since # is unknown for an occluding object, we obtain
a distribution of @ assuming all rotations about the
vertical axis are equally likely. The distribution of @ over
6 € [0,2n] is equivalent to the distribution over any
5 interval. Thus, the distribution of @ is computed by
transforming a uniformly distributed random variable

on [0, 5] by (1). The resulting probability density of @ is
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Fig. 3: Computation of the occlusion prior. (2) We consider the center positions of a block (red) which occlude the
object. The base of the block is always below the object, since we assume they are on the same surface. (b) The
set of positions is defined by the yellow rectangle which has area Ao,. (c) The set of positions which occlude the
object while keeping X; visible is defined by the green region which has area Ay, o,

given by:
1
2(1-#p) ", w<o<l
pa(@) =478 LT @
L(1-n) ", 10 < Va?+ P

The full derivation of this density is provided in Ap-
pendix A.

Next, we compute the projected height i of an oc-
cluder as illustrated by the side view of Fig. 2. We define
h to be the projection of h on the image plane as this
corresponds to the maximum height that can occlude
the object given our assumptions. Blocks with different
width and length, but the same height will have the same
occlusion of the object vertically. Thus, for an elevation
angle ¢ and occluding block with height &, the projected
height 7 is:

h(y) = h - cosp. (3)

The projected height of the object, H,;, is slightly
different in that it accounts for the apparent height of the
object silhouette. An object is fully occluded vertically
only if h > Hobj To compute H obj, we need the distance,

Dyyj, from the closest edge to the farthest edge of the
object. Following the computation of the projected width
W, we have Doy;(0) = Wop; - |sinb| + Lepj - | cosé|. The
projected height of the object at an elevation angle ¢ is
then given by:

ﬁobj(eai/}) = Hobj . |COSU)| + Dobj(e) ' |Sln7/f| (4)

Finally, the projected width of the object W,; is com-
puted using the aspect ratio of the silhouette bounding
box.

3.2 Occlusion Prior

Given the representation derived in Section 3.1, we want
to compute a probability for a point on the object being
occluded. Many systems which attempt to address occlu-
sions assume that they occur randomly and uniformly

across the object. However, recent studies [17] have
shown that there is structure to occlusions for many
objects.

We begin by deriving the occlusion prior using an oc-
cluding block with projected dimensions (i, 2) and then
extend the formulation to use a probabilistic distribution
of occluding blocks of different sizes. The occlusion prior
specifies the probability P(V;|O.) that a point on the
object X; = (z;,y;) is visible given an occlusion of the
object. This involves estimating the area, Ap,, covering
the set of block positions that occlude the object (shown
by the yellow region in Fig. 3b), and estimating the area,
Ay, 0., covering the set of block positions that occlude
the object while keeping X; visible (shown by the green
region in Fig. 3c). The occlusion prior is then just a ratio
of these two areas:

Ay, o,

From Fig. 3b, a block (red) will occlude the object if
its center is inside the yellow region. The area of this
region, Ao,, is:

c

Ao, = (Wopj + 1) - h. (6)

Next, from Fig. 3¢, this region can be partitioned into
a region where the occluding block occludes X; (blue)
and a region which does not (green). Ay, o. corresponds
to the area of the green region and can be computed as:

Av,.0, = Wop; - h + 10 - min(h, y;). (7)

The derivation is provided in Appendix B.

Now that we have derived the occlusion prior using
a particular occluding block, we extend the formulation
to a distribution of blocks of different sizes. Let py (w)
and p;l(ﬁ) be distributions of @ and h respectively.
To simplify notation, we define py = I, 4)[w] and
p, = By, (h)[A] to be the expected width and height
of the occluders under these distributions, and define
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Fig. 4: Example of (a) occlusion prior P(V;|O.), (b,c) conditional likelihood P(V;|V},O.) and P(V;|Vi,O,) given two
separate points X; and X individually, (d) approximate conditional likelihood P(V;|V}, Vi, O.) from (12), and (e)

explicit conditional likelihood P(V;|V}, Vi, O,) from (10).

By(y:) = [min(h,y;) - pj, (k) dh. The average areas, Ao,
and Ay, o, are then given by:

Ao, = Waoyj + pa) - 145, (8)

Av, 0, = Wopj - iy, + i - By (Yi)- )

This derivation assumes that the distribution p, ; (w0, h)

can be separated into py(w) and p;l(ﬁ). For household
objects, we empirically verified that this approximation
holds. In practice, the areas are computed by discretizing
the distributions and Fig. 4(a) shows an example occlu-
sion prior. Fig. 5 shows how the distribution changes
under different camera viewpoints. Our model is able to
capture that the top of the object is much less likely to
be occluded when viewed from a higher elevation angle
than from a lower one. This is because the projected
height of occluders is shorter the higher the elevation
angle.

3.3 Occlusion Conditional Likelihood

Most occlusion models only account for local coherency
and the prior probability that a point on the object is
occluded. Ideally, we want to compute a global relation-
ship between all visibility states V on the object. While
this is usually infeasible combinatorially, we show how a
tractable approximation can be derived in the following
section.

Let Xy, be the visible subset of X' according to V.;.
We want to compute the probability P(V;[V.;, O.) that a
point X; is visible given the visibility of Xy, ;. Following
Section 3.2, the conditional likelihood is given by:

Ay, v, 0.

PV, 00) = e

(10)
This computation involves estimating the areas, Ay, o,
covering the set of block positions that occlude the object
while keeping &y, visible, and Ay, ., 0, covering the set
of block positions that occlude the object while keeping
both X; and &y, visible.

We first consider the case where we condition on
one visible point, X; (i.e., Xy, = {X;}). To compute
P(V;|V},O.), we already have Ay, o, from (9), so we just
need Ay, v, 0.. The computation follows from Section
3.2, so we omit the details and just provide the results

below. The detailed derivation is provided in Appendix
C. If we let By (z;, ;) = [min(d, |z; — z;]) - po (@) dub,
then:

Av, ;00 = Wonj — o — 5]) -

|i—=;|
+ (/0 (|lzi — 5] — @) - po () dﬁ)) 1,
+ B (@i, x5) - By (yi) + pi - By (Ys)- (11)

We can generalize the conditional likelihood to &
visible points (i.e., |Xy,| = k) by counting as above,
however, the number of cases increases combinatorially.
We make the approximation that the point X; € &),
with the highest conditional likelihood P(V;|V;, O,) pro-
vides all the information about the visibility of X;. This
observation assumes that given Vj, the visibility of X;
is independent of the visibility of all other points (i.e.,
Vi L {V.\V;}|V;) and allows us to compute the global
visibility relationship P(V;|V.;, O.) without combinato-
rial explosion. The approximation of P(V;|V.;,0.;) is
then:

P(Vi[Vi,0.) = P(Vi|V}', O), (12)
V" = argmax P(V;|V}, O,). (13)
VA

]Gv,i

For example, Fig. 4(d,e) shows the approximate condi-
tional likelihood and the exact one for |X),| = 2. Fig.
5 shows how the distribution changes under different
camera viewpoints.

3.4 Arbitrary object silhouette

The above derivation can easily be relaxed to use the
actual object silhouette. The idea is to subtract the area,
A, covering the set of block positions that occlude the
object bounding box but not the silhouette from the
areas described in Sections 3.2 and 3.3. Fig. 7 shows
two example block positions. An algorithm to compute
A, is provided in Appendix D. The occlusion prior and
conditional likelihood are then given by:

Av, 0. — As
P(Vi|0,) = —E2=—=, (14)
Avivi0. — As
PVi|V.4,0,) = —arize 7 15
ViV, 0) = g (15)



6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 2013

L a2

Fig. 5: The occlusion prior and conditional distribution
under different camera viewpoints. We show the (left)
model viewpoint, (middle) occlusion prior and (right)
occlusion conditional likelihood.

=

(a) True positive (b) False positive

Fig. 6: Examples of occlusion hypotheses. (a) For a true
detection, the occluded points (red) are consistent with
our model. (b) For a false positive, the top of the object is
hypothesized to be occluded while the bottom is visible,
which is highly unlikely according to our model.

i

il

Fig. 7: Using an arbitrary object silhouette. (left) Object.
(right) Two blocks in red which occlude the object bound-
ing box in gray, but not the silhouette in black.

4 OBJECT DETECTION

Given our occlusion model from Section 3, we augment
an object detection system by (i) a bottom-up stage
which hypothesizes occluded regions using the object
detector, followed by (ii) a top-down stage which mea-
sures the consistency of the hypothesized occlusion with
our model. We explore using the occlusion prior and

occlusion conditional likelihood for scoring and show
in our evaluation that both are informative for object
detection. Initially, we assume that the hypothesized
visibility labeling V* is provided for a sliding window
location z. We describe in detail in Section 5.3 how to
obtain V* for different instances of algorithms.

Given V%, we want a metric of how well the occluded
regions agree with our model. Intuitively, we should
penalize points that are hypothesized to be occluded
by the object detector but are highly likely to be visible
according to our occlusion model. From this intuition,
we propose the following detection score:

score; (V%) = =N ZV‘ V%) (16)

where f(V) is a penalty function for occlusions. A higher
score indicates a more confident detection, and for de-
tections with no occlusion, the score is 1. For detections
with occlusion, the penalty f(V) is higher the more
occluded points which are inconsistent with the model.
In the following, we propose two penalty functions,
forr(V) and focLp(V), based on the occlusion prior and
occlusion conditional likelihood of Section 3.

4.1 Occlusion Prior Penalty

The occlusion prior penalty (OPP) gives high penalty
to locations that are hypothesized to be occluded but
have a high prior probability P(V;?|O.) of being visible.
Intuitively, once the prior probability drops below some
level ), the point should be considered part of a valid

occlusion and should not be penalized. This corresponds
to a hinge loss function I'(P,\) = max (If 2 ) The

linear penalty we use is then:

Z

Jorp(V (P(VilOc), \p)l- (17)

4.2 Occlusion Conditional Likelihood Penalty

The occlusion conditional likelihood penalty (OCLP), on
the other hand, gives high penalty to locations that are
hypothesized to be occluded but have a high probability
P(Vi|V.;, O.) of being visible given the visibility labeling
of all other points V.;. Using the same penalty function
formulation as the occlusion prior penalty, we have that:

(P(VilV.i,Oc), Ac)] - (18)

JocLp(V :Ng (1-V;

5 EVALUATION

In order to evaluate our occlusion model’s performance
for object instance detection, two sets of experiments
were conducted; the first for a single view of an object
and the second for multiple views of an object. While in
practice, one would only detect objects under multiple
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Fig. 8: Example detection results under severe occlusions in cluttered household environments.

views, it is important to tease apart the effect of occlusion
from the effect of viewpoint.

In each set of experiments, we explore the benefits of
(i) using only the bottom-up stage and (ii) incorporating
prior knowledge of occlusions with the top-down stage.
When evaluating the bottom-up stage, we hypothesize
the occluded region and consider the score of only the
visible portions of the detection. This score is equivalent
to the first term of (16).

The parameters of our occlusion model were cali-
brated on images not in the dataset and were kept the
same for all objects and all experiments. The occlusion
parameters were set to A, = 0.5 and A, = 0.95. We show
in Section 5.8 that our model is not sensitive to the exact
choice of these parameters.

5.1 CMU Kitchen Occlusion Dataset (CMU_KOS8)

Many object recognition algorithms work well in con-
trolled scenes, but fail when faced with real-world con-
ditions exhibiting strong viewpoint and illumination
changes, occlusions and clutter. Current datasets for ob-
ject detection under multiple viewpoints either contain

objects on simple backgrounds [40] or have minimal
occlusions [6], [8]. For evaluation under a more natural
setting, the dataset we collected consists of common
household objects in real, cluttered environments under
various levels of occlusion. Our dataset contains 1600
images of 8 objects and is split evenly into two parts; 800
for a single view of an object and 800 for multiple views
of an object. The single-view part contains ground truth
labels of the occlusions and Fig. 9 shows that our dataset
contains roughly equal amounts of partial occlusion (1-
35%) and heavy occlusions (35-80%) as defined by [17],
making this dataset very challenging.

For multiple-view evaluation, we focus our viewpoint
variation to primarily the elevation angle as occlusions
patterns for different azimuth angles are similar. While
it may be harder to recognize certain objects for certain
azimuth angles, we are focused only on the relative
performance change with using an occlusion model. For
our experiments, we use 25 model images for each object
which is the same sampling density as [6]. Each model
image was collected with a calibration pattern to ground
truth the camera viewpoint (¢, §) and to rectify the object
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Fig. 9: Dataset occlusion statistics. Our dataset contains
roughly equal amount of partial occlusions (1-35%) and
heavy occlusions (35-80%).
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Fig. 10: Distribution of (left) heights and (right) length
and width of occluders in household environments.

silhouette to be upright. The test data was collected by
changing the camera viewpoint and the scene around
a stationary object. A calibration pattern was used to
ground truth the position of the object.

5.2 Validity of Occlusion Model

To derive the occlusion probabilities, we approximated
occluder objects to be bounding boxes which are on the
same surface as the object. While this approximation is
consistent with the occlusion types observed by Dollar et
al. in [17], we further validate the approximation on our
dataset. Given the groundtruth occlusion labels in the
dataset, we consider an occluded pixel to be consistent
with the approximation if there are no un-occluded
object pixels below it. From Fig. 11, for 80% of the
images, over 90% of the occluded pixels are consistent.

5.3 Algorithms

We validate our approach by incorporating occlusion
reasoning with two state-of-the-art methods for instance
detection under arbitrary viewpoint, LINE2D [6] and
Gradient Networks (GN) [5]. For fair comparison, we use
the same M sampled edge points x; for all the methods.
These points are specified relative to the template center,
z. We give a brief description of the algorithms in our
comparison below.

5.3.1 LINE2D [6]

The LINE2D method is a current state-of-the-art system
for instance detection under arbitrary viewpoint. It rep-
resents an object by a template of sampled edge points,

o
e

o
3

o o
o o

percent of instances
o o
S

o ¢
Now

o
o

0 01 02 08 09 1

0.3 0.4 0.5 0.6 0.7
percent of valid occluded pixels

Fig. 11: Validity of occlusion model. (left) We show in
blue, the occluded pixels which satisfy our approxima-
tion, and in red, those that do not. (right) For each object
instance in the dataset, we evaluate the percentage of
occluded pixels which satisfy our approximation that
they can be explained by a bounding box with a base
lower than the object. For 80% of the images, over 90%
of the occluded pixels can be explained with our model.

each with a quantized orientation. For every scanning
window location, a similarity score is computed between
the gradient of each model point and the image. In [6],
the gradient orientations are quantized into 8 orientation
bins and the similarity for point x; is the cosine of the
smallest quantized orientation difference, Af;, between
its orientation and the image orientations in a 7 x 7
nei§hborhood of z; + z. The score of a window is
S cos(Ad;). We kept all other parameters for LINE2D
the same as [6]. We tested our implementation on a
subset of the dataset provided by the authors of [6] and
observed negligible difference in performance.

5.3.2 robust-LINE2D (rLINE2D) [24]

Since the LINE2D method returns continuous values, we
need to threshold it to obtain the occlusion hypothesis.
We consider a point to be occluded if the image gradient
and the model gradient have different quantized orien-
tations. Fig. 6 shows example occlusion hypotheses. This
produces a binary descriptor for each scanning window
location. The score of a window is le\il (A0, = 0)
where §(t) = 1 if ¢ is true. We refer to this method as
robust-LINE2D (rLINE2D). In the evaluation, we show
that simply binarizing the descriptor with rLINE2D sig-
nificantly outperforms LINE2D in cluttered scenes with
severe occlusions.

5.3.3 Gradient Networks (GN) [5]

The LINE2D and rLINE2D methods only consider local
gradient information when matching the shape. Since
these approaches do not account for edge connectivity,
this often results in misclassification of occlusion in
cluttered regions where the local gradient orientation
matches accidentally. To address this issue, our Gradient
Networks method captures contour connectivity directly
on low-level image gradients. For each image pixel,
the algorithm estimates the probability that it matches
a template shape. Our results in [5] show significant
improvement in shape matching and object detection in
natural scenes with severe clutter and occlusions.
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TABLE 1: Single view. Average precision.

Object LINE2D rLINE2D rLINE2D+OPP  rLINE2D+OCLP GN GN+OPP GN+OCLP
bakingpan 0.12 0.23 0.27 0.36 0.44 0.51 0.61
colander 0.26 0.60 0.66 0.74 0.76 0.75 0.80
cup 0.25 0.64 0.65 0.75 0.84 0.84 0.89
pitcher 0.14 0.66 0.69 0.76 0.71 0.64 0.77
saucepan 0.12 0.51 0.52 0.53 0.85 0.83 0.85
scissors 0.09 0.21 0.21 0.26 0.42 0.41 0.45
shaker 0.05 0.36 0.48 0.59 0.47 0.52 0.64
thermos 0.24 0.56 0.68 0.68 0.73 0.79 0.76
Mean 0.16 0.47 0.52 0.58 0.65 0.66 0.72
TABLE 2: Multiple view. Average precision.
Object LINE2D rLINE2D rLINE2D+OPP  rLINE2D+OCLP GN GN+OPP GN+OCLP
bakingpan 0.06 0.12 0.12 0.15 0.78 0.61 0.79
colander 0.19 0.55 0.58 0.67 0.72 0.71 0.79
cup 0.13 0.44 0.46 0.50 0.85 0.86 0.87
pitcher 0.08 0.22 0.32 0.34 0.53 0.60 0.67
saucepan 0.09 0.40 0.42 0.41 0.90 0.88 0.89
scissors 0.05 0.20 0.20 0.26 0.72 0.68 0.81
shaker 0.08 0.16 0.25 0.25 0.41 0.50 0.52
thermos 0.08 0.30 0.44 0.48 0.66 0.74 0.81
Mean 0.09 0.30 0.35 0.38 0.70 0.70 0.77

The GN algorithm returns a shape similarity Q° for
each pixel given the template S(z). For fair comparison,
we apply a 7 x 7 max spatial filter (i.e., equivalent to
LINE2D) to Q° resulting in Q°. The template score at z
is then Zﬁl 05 (2;42). We use the soft shape model with
normalized gradient magnitudes for the edge potential,
and both color and orientation for the appearance. Since
the similarity measure Q°(z; + z) is calibrated so that
it can be interpreted as a probability, we generate the
occlusion hypothesis by thresholding this value at 0.5.

Our algorithm takes on average 2 ms per location z on
a 3GHz Core2 Duo CPU. In practice, we run our algo-
rithm only at the hypothesis detections of rLINE2D [24].
The combined computation time is about 1 second per
image.

5.4 Distribution of Occluder Sizes

The distribution of object sizes varies in different en-
vironments. For a particular scenario, it is natural to
only consider objects as occluders if they appear in that
environment. The statistics of objects can be obtained
from the Internet [41] or, in the household scenario,
simply from 100 common household items. Fig. 10 shows
the distributions for household objects.

From real world dimensions, we can compute the
projected width and height distributions, p; (@) and
Dj, (h), for a given camera viewpoint. The projected width
distribution is the same for all viewpoints and is ob-
tained by computing the probability density from (2)
for each pair of width and length measurement. These
densities are discretized and averaged to give the final
distribution of .

The projected height distribution, on the other hand,
depends on the elevation angle 4. From (3), h is a factor

cos1p of h. Thus, the projected height distribution, p; (h),
is computed by subsampling p(h) by cos.

5.5 Single view

We first evaluate the performance for single view ob-
ject detection. An object is correctly detected if the
intersection-over-union (IoU) of the predicted bounding
box and the ground truth bounding box is greater than
0.5. Each object is evaluated on all 800 images in this part
of the dataset and Fig. 12 shows the precision-recall plot.
To summarize the performance, we report the Average
Precision in Table 1. A few example detections are shown
in Fig. 8.

From the table, the rLINE2D method already signif-
icantly outperforms the baseline LINE2D method. One
issue with the LINE2D gradient similarity metric (ie.,
cosine of the orientation difference) is that it gives high
score even to orientations that are very different, result-
ing in false positives with high scores. The rLINE2D met-
ric of considering only points with the same quantized
orientation is more robust to background clutter in the
presence of occlusions. However, since rLINE2D only
considers information very locally around each edge
point, there are still many misclassifications in back-
ground clutter. The Gradient Network method performs
substantially better than rLINE2D by incorporating edge
connectivity directly on low-level gradients. This results
in an improvement of 18% in average precision.

When rLINE2D is augmented with occlusion reason-
ing, there is an absolute improvement of 5% for OPP
and 11% for OCLP. For GN, there is a corresponding
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Fig. 12: Precision-recall results for single view. There is significant improvement in performance by using occlusion
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Fig. 13: Precision-recall results for multiple views. The overall performance is lower than the single view experiments
due to more false positives, but importantly, we observe similar gains from using our occlusion reasoning

improvement of 1% and 7%. This indicates that both
occlusion properties are informative for object detection.
The disparity between the gains of OPP and OCLP
suggests that accounting for global occlusion layout by
OCLP is more informative than considering the a priori
occlusion probability of each point individually by OPP.
In particular, OCLP improves over OPP when one side

of the object is completely occluded as shown in Fig.
14. Although the top of the object is validly occluded,
OPP assigns a high penalty. By over-penalizing true
detections, OPP often makes the performance worse.
OCLP, on the other hand, always performs at least on
par with the baseline methods and usually performs
substantially better.
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Fig. 14: A typical case where OCLP performs better than
OPP. (left) For OPP, the false positives in red have higher
scores than the true detection in green. The occluded
region at the top of the true detection is over-penalized.
(right) For OCLP, the true detection is the top detection.
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Fig. 15: Performance under different occlusion levels.
While our methods improve performance under all
levels of occlusions, we see larger gains under heavy
occlusions.

Fig. 15 shows the performance under different levels
of occlusion. Here, the detection rate is the percentage
of top detections which are correct. Our occlusion rea-
soning improves object detection under both low (0-
35%) and high levels (>35%) of occlusions, but provides
significantly larger gains for heavy occlusions. For unoc-
cluded objects, we verified that the occlusion model did
not degrade performance.

5.6 Multiple views

Next we evaluate the performance for object detection
under multiple views. Fig. 13 shows the precision-
recall plots and Table 2 reports the Average Precision.
Again, we obtain significant improvement gains over the
LINE2D system. The performance is lower for rLINE2D
due to more false positives from increasing the number
of templates, but the relative gains at 5% for OPP and
8% for OCLP are similar to the single view case. GN,
on the other hand, is a much more robust template
matching technique. With more templates, GN is able to
find better aligned viewpoints while keeping a low false
positive rate, leading to increased performance over the
single view case. We again see similar gains for OCLP
at 7%. This demonstrates that our model is effective for
representing occlusions under arbitrary view.

Fig. 6 shows a typical false positive that can only be

= j‘:' ‘. i A -
Fig. 16: Typical failure cases of OCLP. (left) The pitcher is
occluded by the handle of the pot which is not accurately
modeled by a block. (right) The scissor is occluded by a
plastic bag resting on top of it. In these cases, OCLP over
penalizes the detections.

filtered by our occlusion reasoning. Although a majority
of the points match well and the missing parts are
largely coherent, the detection is not consistent with our
occlusion model and is thus penalized and filtered.

Fig. 16 shows a couple of failure cases where our
assumptions are violated. In the first image, the pot
occluding the pitcher is not accurately modeled by its
bounding box. In the second image, the occluding object
rests on top of the scissor. Even though we do not
handle these types of occlusions, our model represents
the majority of occlusions and is thus able to increase
the overall detection performance.

5.7 Learning From Data

To verify that our model accurately represents occlusions
in real world scenes, we rerun the above experiments
with occlusion priors and conditional likelihoods learned
from data. We use the detailed groundtruth occlusion
masks in the single view portion of the dataset to obtain
the empirical distributions. Fig. 17 compares learning
the occlusion prior and occlusion likelihood using 10,
20, 40 and 80 images with our analytical model. The
distributions from the empirical and analytical model are
very similar.

We use 5-fold cross-validation for quantitative eval-
uation and Fig. 18 shows the results using different
number of images for learning. The learned occlusion
properties, IOPP and 10CLP, correspond to their explicit
counterparts, OPP and OCLP. The learned occlusion
prior, 10OPP, performs slightly better than OPP. This is
a result of the slightly different distribution seen in
Fig. 17 where the sides of the object are more likely
to be occluded in the dataset. The learned occlusion
conditional likelihood, 10OCLP, performs essentially the
same as OCLP, but requires 80 images for every view of
every object to achieve the same level of performance.

5.8 Parameter Sensitivity

The two parameters of our occlusion reasoning approach
are A, and A, corresponding to the hinge loss parameters
for OPP and OCLP. To verify that our approach is not
sensitive to the exact choice of these parameters, we
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Fig. 17: Learning the occlusion distributions from from data. From left to right, columns 1-4 show using 10, 20,
40, and 80 images for learning the occlusion prior (top) and the occlusion conditional likelihood (bottom). The last

column shows the distribution of our analytical model.
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Fig. 18: Learning the occlusion prior and conditional like-
lihood using groundtruth occlusion segmentations from
the single view portion of the dataset. The dotted lines
show the performance of our analytic approach, which
does not depend on the number of training images. We
show the learned occlusion properties, IOPP (red) and
IOCLP (blue), corresponding to OPP and OCLP. While
1OPP performs slightly better than OPP, it needs about
20 images and is only slightly better. IOCLP needs about
60 to 80 images to achieve the same level of performance
as OCLP.

evaluated the performance of the occlusion reasoning for
a range of parameter values. Fig. 19 shows the sensitivity
of A\, and A\, when augmenting both rLINE2D and GN.
From the figure, the performance is relatively constant

o
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Fig. 19: Parameter sensitivity for (left) OPP and (right)
OCLP. The last data point for OCLP is plotted at A, =
0.999 which penalizes only points that the model be-
lieves are definitely occluded (i.e., P(V;|V4,0.) = 1).
The exact choice of the parameter does not affect the
performance of the methods significantly.

for a wide range of parameter values and is thus robust
to the exact choice.

6 CONCLUSION

The main contribution of this paper is to demonstrate
that a simple model of 3D interaction of objects can
be used to represent occlusions effectively for object
detection under arbitrary viewpoint without requiring
additional training data. We propose a tractable method
to capture global visibility relationships and show that it
is more informative than the typical a priori probability
of a point being occluded. Our results on a challenging
dataset of texture-less objects under severe occlusions
demonstrate that our approach can significantly improve
object detection performance.
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APPENDICES

Many of the results derived for the Occlusion Prior and
Occlusion Conditional Likelihood are from the classic
field of integral geometry [39]. In the following, we show
the detailed derivations.

APPENDIX A
PROBABILITY DENSITY OF w

We show how to transform a uniform variable over
a 3 interval by (1) using the distribution function tech-

nique [42]. First, let’s simplify the equation for the pro-
jected width:

w(0) =w-cosf+1-sinf (19)
S o2 2. .
=vVw?+1 { = cos
l .
+ \/uﬂjw . sm9} (20)
= Vw2 +12. {cos {tan‘1 (i)] - cosf
w
+ sin {tan‘1 (i)] ~sin9} (21)
w
l
=V w? 412 cos {6’ — tan™! <—)] ) (22)
w

Since the transformation over any 7 interval is equiv-
alent, the shift by tan™ ( %) is irrelevant. For simplicity
of derivation, consider the interval [0, 05], where 6; =

1 l 1 w :
cos ( \/m) \/m) We define the
random variable © to have a uniform density over this

interval:
2/m, 01 <0<6
p@(e) :{ / 1 2

0, else.

and 6y = cos

(23)

To compute the probability density of w, we apply the
transformation ¢(f) = w(0)/vVw? +1? = cosf to © to
produce the random variable Y (i.e., Y = ¢(0)). The
distribution function technique calculates the density
py (y) of Y by first finding the cumulative distribution
function Py (y) and then taking the derivative. There
are two cases.

Case 1: cosfy < y < cos b

02 2
Prl)= [ Zeao (24)
cosly T
= _2 costy + 292 (25)
T T
= (26)

py(y) = W\/T—yg

Case 2: costh <y <1

—cos™t y 2 62 2
Py(y):/ —-d9+/ —-df (27)
—6, T cosly Y
4 2
= - cos™ Y+ ;(91 + 62) (28)
4
pY(y) = W\/T—yz (29)
Thus we have that:
2_ cosfy <y <cosb
T /19,2
py(y) = 711 ’ cosb <y<1 (30)
m/1—y2’

Substituting in ¢,, #2 and y, we obtain the probability
density function py () in (2).

APPENDIX B
OcCcCLUSION PRIOR

We show how to compute the area Ay, o, covering all
the possible positions of the red block in Fig. 3a which
occlude the object but keep the point X; visible. This
region is specified in green in Fig. 20. To compute the
area Ay, 0., we break it up into the area of three parts:

Av, 0, =A11+ Ao+ Ao, (31)

From the figure, we can see that the purple region has
area:

A1+ A =Wey - h. (32)

Note that this area does not depend on the position of
Xi. On the other hand, the area of yellow region does
depend on the y coordinate of X;. If the projected height
of the block h is shorter than y;, the height of the yellow
region is h. If it is taller, there are less possible positions
of the red block and the height of the yellow region is
y;. Thus its area is:

b-h, h<uy
Ay = Ii) =Y
w-y;, h>y;

Combining (32) and (33), we get the area Ay, o, in (7).

(33)

APPENDIX C
OccCLUSION CONDITIONAL LIKELIHOOD

We show how to compute the area Ay, v, 0. covering
all the possible positions of the red block in Fig. 3a
which occlude the object but keep both points X; and
X visible. Without loss of generality, assume that X is
lower than X; (i.e., y; < y;). If this is not the case, we
can simply switch the points. The region is specified in
green in Fig. 21. To compute the area Ay, v, 0., we break
it up into the area of five parts:

Av,vio. =M1+ Ao+ A+ A3+ Ay (34)

From the figure, we can see that the purple region has
area:

Ay +Aro=Weyy — |zi—25]) - h (35)
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Fig. 20: Detailed illustration of how to compute the area Ay, o, covering all the possible positions where the red
block in Fig. 3a occludes the object while keeping X; visible.

"
< Wytw

Fig. 21: Detailed illustration of how to compute the area Ay, v, 0. covering all the possible positions where the red
block in Fig. 3a occludes the object while keeping both X; and X visible.

The area of the yellow region is the same as for the
occlusion prior, and it does not depend on the location
of X gt

A." 7 < s
A2 _ {U} h, h ; Yi (36)

Wy, h "

The blue region covers the positions of the block which
can fit in between X; and X. If the projected width w is
greater than |z; — x|, it can not fit in this region and the
area is 0. However, if it is less than |z; — x|, the width
of the blue region is |z; — z;| — w. Thus the area is:

Agz{m—xﬂ—w)ﬁ, @

0, 0

The orange region covers the positions of the block
that are below X;. When the projected width w is less
than |z; — x;|, the computation of the area is similar to
Ao. However, when it is greater, the possible horizontal
positions of the block is restricted by point X;. In this
case, instead of w positions, there are only |z; — z;j]

positions. Thus the area is:

w - h, ﬁ)§|ml—x]|,fz<yj
A4 — wy]? R u:)g |xl_xj|7]}’>y] (38)
|z; — ;|- h, >z, —xj],h <y,

|z — x| -y, W > |w — ), ho> ;.
Combining (35), (36), (37), (38) and simplifying the equa-
tion, we get:
Av,v,.0. = Worj — |z —5]) - h
+ 1 - min(h, y;)
+0(0 < i — ) - (Joi —

+ min(w, |z; — xj]) - min(iz, Yi)

xj| — ) h
(39)

Integrating over the projected width and height distri-
butions py and p;, we get the average area in (11).

APPENDIX D

COMPUTING AREA FOR SILHOUETTE

We show how to compute the area of the silhouette A,
used in (14) and (15). Given a mask M, we extract the
height of the lowest point Y™ (z) relative to bottom of
the mask for each unique position € X*. Then for an
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Algorithm 1 Mask Sliding Min, Q(x™ YM 4, h)

Require: bottom of mask (X, YM), projected width w0,
projected height h

1: YM = min(YM, h)

2: for x = min(xM) — % — max(XM) + % do
3 Z(z) = MiNg e[z /2,0-40/2] yM(:%)

4: end for

5. return Z

occluder with projected width and height (i, ), the area
covering all the positions that intersect the bounding box
but not the silhouette is given by,

A, = / QXM YV i h) - de, (40)

where QXM YM 4, h) is the Mask Sliding Min shown in
Algorithm 1. This function considers the highest position
to place an occluder at position = while not intersecting
the mask. The position is lower than the height of the
occluder and lower than the height of all mask points
within an interval [—@w/2,@/2] of z.

For a distribution of occluding blocks py () and p;l(ﬁ)
for 1 and h respectively, the average areas are then given

by:

///Q(XM,yM,w,fz) - po (W) - p; (h) - da - div - dh. (41)
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