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Abstract

In this thesis, we study the topic of ambiguity when detecting object instances in scenes

with severe clutter and occlusions. Our work focuses on the three key areas: (1) objects

that have ambiguous features, (2) objects where discriminative point-based features can-

not be reliably extracted, and (3) occlusions.

Current approaches for object instance detection rely heavily on matching discrim-

inative point-based features such as SIFT. While one-to-one correspondences between

an image and an object can often be generated, these correspondences cannot be ob-

tained when objects have ambiguous features due to similar and repeated patterns. We

present the Discriminative Hierarchical Matching (DHM) method which preserves fea-

ture ambiguity at the matching stage until hypothesis testing by vector quantization. We

demonstrate that combining our quantization framework with Simulated Affine features

can significantly improve the performance of 3D point-based recognition systems.

While discriminative point-based features work well for many objects, they cannot be

stably extracted on smooth objects which have large uniform regions. To represent these

feature-poor objects, we first present Gradient Networks, a framework for robust shape

matching without extracting edges. Our approach incorporates connectivity directly

on low-level gradients and significantly outperforms approaches which use only local

information or coarse gradient statistics. Next, we present the Boundary and Region

Template (BaRT) framework which incorporates an explicit boundary representation

with the interior appearance of the object. We show that the lack of texture in the

object interior is actually informative and that an explicit representation of the boundary

performs better than a coarse representation.

While many approaches work well when objects are entirely visible, their performance

decrease rapidly with occlusions. We introduce two methods for increasing the robustness

of object detection in these challenging scenarios. First, we present a framework for

capturing the occlusion structure under arbitrary object viewpoint by modeling the

Occlusion Conditional Likelihood that a point on the object is visible given the visibility

labelings of all other points. Second, we propose a method to predict the occluding region

and score a probabilistic matching pattern by searching for a set of valid occluders. We

demonstrate significant increase in detection performance under severe occlusions.
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Chapter 1

Overview

As humans, we interact with objects perpetually throughout the day, from pouring coffee

into a mug in the morning to switching on the TV with a remote at night. We often take

for granted the seemingly simple task of identifying the objects around us. For example,

we can find a mug on a cluttered kitchen counter or a TV remote on the coffee table

without a second thought. Even when objects are severely occluded and only a small

portion of an object is visible, we are often still able to identify them with high accuracy.

However for computers, this is not the case. Even though researchers have been working

on the problem of object detection for decades, detecting objects automatically in natural

scenes still proves to be a significant challenge.

At the beginning of the millennium, the development of SIFT [70] and other discrim-

inative keypoint features [79] produced significant advances in recognizing objects which

have unique patterns and textures. These objects, such as cereal boxes and paintings

(Figure 1.1a), have many corners within the object interior where keypoints can be stably

and repeatably extracted. Researchers have exploited the unique appearance of these ob-

jects by creating highly discriminative descriptors to represent the local statistics around

each keypoint. By matching only a small number of keypoints, these systems [22, 48] can

recognize and estimate the 6D pose of an object given only a single image. In this thesis,

we refer to objects where keypoint features can be reliably extracted as feature-rich.

While matching discriminative features works for the majority of feature-rich objects,

many man-made objects contain repeated patterns from logos, text and printed graphics.

Features extracted from these regions will have similar descriptors, and in the extreme

case, they may be exactly the same. Current algorithms discard ambiguous matches

because they are assumed to arise from background clutter. However, ignoring these

matches often results in insufficient correspondences for reliable recognition.

Feature-rich objects also only comprise a small portion of the objects that we inter-

act with everyday. In daily living environments, for example, many objects lack tex-

ture [94] such as cups, glasses and staplers (Figure 1.1b). These objects are of particular
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(a) Feature-rich (b) Feature-poor

Figure 1.1: Feature-rich vs. feature poor. (a) The cereal box and painting are examples
of feature-rich objects where many keypoints can be stably extracted. (b) The cup and
stapler are examples of feature-poor objects where keypoint features are unreliable.

importance for personal household robotic systems such as HERB [106] and PR2 [20]

which need to manipulate them, as well as for applications in augmented reality and

visual search (e.g., Google Goggles [1]). For these objects, keypoint features can not

be extracted reliably and we refer to them as feature-poor. Research has shown that

feature-poor objects are among the most difficult to recognize [3, 44, 115].

So what makes detecting feature-poor objects particularly challenging? Without

stable keypoints, feature-poor objects are primarily defined by their contour structure

and shape. While keypoint features are highly discriminative, contour fragments are

locally just smooth varying curves with very little distinctiveness. A straight edge, for

example, can be found anywhere in the image. To increase the distinctiveness, longer

contour fragments are often used, but extracting them reliably is in itself very difficult.

The problem of detecting feature-poor objects is further exacerbated by occlusions,

which are common in natural scenes with large amounts of clutter. Occlusions break

up long contour fragments and in general reduce the overall information available for

object detection. Since many contour fragments can easily align locally to background

clutter, this results in false detections with higher score than true detections that are

occluded. Many shape-based systems work well when objects are entirely visible, but

degrade rapidly in the presence of occlusions.

1.1 Detecting Object Instances

In this thesis, we investigate how to address ambiguity for detecting object instances

in scenes with severe clutter and occlusions. But how do we define an object instance?

Ideally, this would refer to the exact same object, but does a small hairline scratch

on an object make it a different instance? How about many scratches? In addition,
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Figure 1.2: Ambiguous object viewpoints. From the side view, these two soup cans are
clearly different. However from the top view, they look exactly the same.

the majority of man-made objects in the world are not unique. Thousands of copies

of a particular model of laptop or cell phone exist in the world. Requiring an object

instance to be the exact same object is too restrictive and unrealistic to achieve even

for humans. Thus, we define an object instance to be a set of objects encompassing all

those manufactured in the same way and all those visually indistinguishable to a human

being. By this definition, for example, all Apple iPhone 5s are the same object instance.

The problem of detecting object instances is significantly different from the prob-

lem of detecting object categories. The primary difference between the two lies in the

amount and type of variation that needs to be handled. For object instances, there is in

principle no physical variation, but only variations in the image domain due to changes

in viewpoint and lighting. On the other hand, for categories, the goal is to capture the

variations within human defined groups which can be from physical differences as well

as variations in the image domain.

So, if all we have to address are viewpoint and lighting variations when detecting

object instances, can we be sure that an object instance has been correctly detected?

Regrettably, the answer is that even for humans, there are cases where we can not be

a hundred percent certain. Many objects in the real world have very similar physical

appearance. Under certain camera viewpoints, two objects can look identical as shown in

Figure 1.2. If an object is occluded, the level of ambiguity increases further. Given only

a single image, the best we can do is generate a reasonable hypothesis and a confidence

measure of how likely it corresponds to the object of interest. On a physical system such

as a robot, the hypothesis may be verified and disambiguated by moving the robot or

manipulating the object to obtain more viewpoints. In this thesis, we focus on instance

detection from a single image.
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1.2 Summary of Contributions

The main contribution of this thesis are as follows:

• Addressing discriminative feature matching in the presence of ambiguous features.

– Discriminative Hierarchical Matching (DHM) - framework for preserving fea-

ture ambiguity at the matching stage until hypothesis testing to address sim-

ilar features.

– Simulated Affine features - additional features extracted from affine trans-

formed model images to detect objects with viewpoints significantly different

from the model images.

• More robust representation of feature-poor objects.

– Gradient Networks - method for explicit shape matching on low-level gradients

without extracting edges.

– Boundary and Region Templates - framework to capture explicit boundary

and region information.

• Methods to increase robustness of object detection under severe occlusions.

– Occlusion reasoning under arbitrary viewpoint - analytical model which in-

corporates environmental statistics with simple 3D reasoning.

– Occlusion Efficient Subwindow Search (OESS) - method to coherently reason

probabilistically about occlusions on boundary and region together.

• Datasets (Appendix A)

– CMU Grocery Dataset (CMU10 3D) of 10 feature-rich grocery items in clut-

tered household scenes.

– CMU Kitchen Occlusion Dataset (CMU KO8) of 8 feature-poor kitchen ob-

jects in cluttered scenes with severe occlusions.

1.3 Roadmap

In the first part of the thesis, we begin by addressing feature ambiguity and similar

features when using discriminative keypoints for detection (Chapter 3). In the second

part, we discuss methods for better representing objects when discriminative features can

not be stably extracted. We introduce our Gradient Networks (Chapter 4) method for

matching shape explicitly without extracting contours. Then we present our Boundary

and Region Template method (Chapter 5) which captures both the explicit shape of the
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object and the interior appearance. In the next part, we introduce methods to exploit

the structure of occlusions for increasing the robustness of object detection in cluttered

scenes. We present a model for reasoning about occlusions under arbitrary viewpoint

(Chapter 6) and a formulation of occlusion reasoning as efficient search (Chapter 7). Fi-

nally, we conclude the thesis with a discussion of our contributions and future directions.

1.4 Publication Note

The publications which comprise this thesis are listed below:

• E. Hsiao, A. Collet and M. Hebert. Making specific features less discriminative to

improve point-based 3D object recognition. In Proceedings of IEEE Conference on

Computer Vision (CVPR), 2010. [48]

• E. Hsiao and M. Hebert. Occlusion reasoning for object detection under arbi-

trary viewpoint. In Proceedings of IEEE Conference on Computer Vision (CVPR),

2012. [49]

• E. Hsiao and M. Hebert. Shape-based instance detection under arbitrary view-

point. Book chapter in Shape Perception in Human and Computer Vision: An

Interdisciplinary Perspective, Springer, 2013. [51]

• E. Hsiao and M. Hebert. Gradient networks: Explicit shape matching without

extracting edges. In Proceedings of AAAI Conference on Artificial Intelligence

(AAAI), 2013. [50]





Chapter 2

Background

Significant research has gone into recognizing object instances from a single image. In

this chapter, we provide a general overview of the approaches in this area. We begin

by reviewing methods which use discriminative features and discuss the types of ob-

jects that they work on. Next, we review the literature on shape-based methods which

are commonly used when keypoint features cannot be reliably extracted. Finally, we

summarize occlusion reasoning approaches that have been used in the context of object

detection.

2.1 Recognition Using Discriminative Features

A popular approach in the literature for recognizing object instances is to use discrimi-

native keypoint features. The general paradigm of these approaches is to extract features

on a set of model images and then match them discriminatively to those extracted on a

test image. Extensive research has been dedicated to designing repeatable methods for

extracting keypoints, making them scale and rotation invariant, and creating highly dis-

criminative descriptors. Given a set of candidate feature matches, geometric constraints

are typically enforced to recognize the object and estimate its pose. In the following, we

summarize the research for each of these components and empirically evaluate the types

of objects discriminative features work on.

2.1.1 Keypoint Detection

The goal of keypoint detection is to extract locations on the object which are repeatable,

well localized and informative. On smooth surfaces and contours, localization is difficult

and the local neighborhood in these regions is usually not very distinctive. Thus, the

majority of keypoint detection methods focus on finding corners. A comprehensive review

of historical work is presented by Mikolajczyk and Schmid [80].
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One of the first interest point detection techniques was proposed by Schmid and

Mohr [102] and used local extremas of the Harris [42] operator. While the Harris operator

is invariant to image rotations, the scale invariance is obtained by extracting features

at multiple scales. The Hessian operator [80] has also been used similarly and has

been shown to be more robust in certain experiments. To find stable keypoints more

efficiently across scale, Lowe [70] used local extremas of Difference-of-Gaussian (DOG)

filtered images. Mikolayczyk and Schmid in [76] detect keypoints at multiple scales and

then select characteristic points using scale space selection [67]. More recently, FAST [96]

was proposed to use a segment test heuristic and machine learning to detect corners at

frame rate.

While most keypoint detectors find corners, others try to find stable regions. The

Maximally Stable Extremal Regions (MSER) [74] method detects stable blobs by finding

regions which do not change over a large range of binarization thresholds. The method

has been shown to outperform many corner-based approaches [80]. While MSER works

well when objects have many small regions, they are sensitive to occlusions when objects

have large regions.

Most keypoint detection methods are scale and rotation invariant. However, when

performing matching across different viewpoints, this is often not enough. More recent

approaches try to extend the range that keypoints can be matched by being invariant

to affine transformations as well. Tuytelaars and Van Gool [117] fit affine invariant re-

gions to image intensities. The Harris-Affine and Hessian-Affine [77] detectors adapt the

Harris and Hessian detectors by fitting an affine covariant region iteratively around each

keypoint based on the second moment matrix. The ASIFT [82] method extracts features

from affine transformations of both model and test images and considers matching be-

tween all pairs of transformed images. Incorporating affine invariance has been shown

to significantly increase the robustness of feature matching.

2.1.2 Feature Description

Once a keypoint is detected, local invariance to scale, rotation, and affine transformations

is obtained by normalizing the neighborhood region. SIFT [70] estimates the dominant

orientation in a local neighborhood of the keypoint and warps the surrounding patch to a

canonical orientation. Harris-Affine and Hessian-Affine [77] methods warp the estimated

affine elliptical region into a circle.

Given a normalized region, the common philosophy for object instance detection

is to design descriptors that are as unique as possible. The SIFT feature histograms

the gradients in the region using a 4 × 4 grid with 8 gradient orientation bins and

weights their contribution using their gradient magnitude. This descriptor has shown

to be extremely discriminative, especially when combined with the ratio test [70]. The
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Gradient Location and Orientation Histogram (GLOH) [79] extends SIFT by using a

log-polar binning instead of a square grid and is shown to be more robust. To speed up

the computation time, the Speeded Up Robust Features (SURF) [9] use Haar wavelets

and Integral Images [118] to compute derivatives quickly. Other extensions of SIFT,

such as DAISY [113] have been proposed for dense matching. For real time applications,

BRIEF [17] uses a sequence of binary tests to describe a keypoint. A comparison of

popular feature descriptors is presented by Mikolajczyk and Schmid [79].

2.1.3 Feature Matching

Given a set of model features and a set of test features, the general paradigm is to gen-

erate one-to-one correspondences. The simplest approach is to take the nearest neighbor

using the Euclidean distance, however, some descriptors are close to everything, espe-

cially in high dimensional space [93] making this approach very brittle. Lowe proposed

the ratio test [70] which considers the ratio of the distance to the first nearest neighbor

with the distance to the second nearest neighbor. If the ratio is less than a certain

threshold, it is a good match.

Other approaches use machine learning techniques to match the features. Lepetit and

Fua used Random Decision Trees [64] to classify keypoints. The FERNS [86] approach

formulates feature point recognition in the Naive Bayes classification framework. Nister

and Stwenius [84] build a vocabulary tree for efficient keypoint classification.

2.1.4 Feature-richness of Objects

Feature-based methods work really well on book covers, paintings and cereal boxes, but

are unable to obtain good matches with smooth objects as shown in Figure 2.1. Yet,

for many of these smooth objects, it is not because there is a lack of keypoints. From

the figure, there are many keypoints on the thermos. So what is the difference between

keypoints on book covers and those on smooth objects?

The main difference is that the majority of keypoints on smooth objects, such as the

thermos, are on the boundary at the intersection of background clutter with the object

or at corners due to specularities and lighting effects. These types of keypoints are not

repeatable, since they will not fire at the same locations if the background or lighting is

slightly different. The only repeatable keypoints are corners of the object.

However, these corners are also not very informative. These corners are on the object

boundary, resulting in a large portion of the descriptor capturing the background clutter.

Since descriptors are designed to be highly discriminative, the same feature extracted

on different backgrounds will have very different values. Thus, they will not be matched

unless the background statistics around the keypoint are very similar as well, which is

often not the case.
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Figure 2.1: Discriminative SIFT matching on feature-poor objects. (top) SIFT keypoints
extracted on a thermos for two images. (bottom) SIFT matches between the images using
the ratio test. Even though both images contain many features on the thermos, they
still cannot be matched.

Stochastic textures are also a problem for discriminative features. These textures

have the same statistical properties between objects, but do not have the same exact

appearance. Many objects have stochastic textures such as a wooden bowl or a fur coat.

While many keypoints can be extracted on these textures, these features are usually not

useful. For the same exact model of the object, the textures will not be exactly the same

for two physical objects, leading to different descriptors. In addition, the keypoints are

often difficult to localize in these regions.

However, feature-based matching can be used on texture instances. A texture in-

stance is the same exact physical object with the same stochastic texture. Since the

appearance of the texture does not change, the descriptors extracted do not change as

well, and thus can be matched.

This leads to a simple metric which we empirically show is a good indicator of which

objects feature-based methods will work on. Given the above observations, we define

an informative keypoint to be one where the local neighborhood region used to compute

its descriptor is contained entirely within the object. These keypoints can be stably

extracted and their descriptors are not affected by background clutter. The number of
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Least keypoints Most keypoints 

Feature-rich Feature-poor 

Figure 2.2: Levels of feature richness. From left to right, and top to bottom, we show
the ordering of objects with the most keypoints that are contained entirely within the
object interior. Those objects to the left of the red line can be matched reliably, while
those on the right can not. The outliers with red borders can not be matched.
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informative keypoints thus corresponds to the feature-richness of the object and is a

good indicator of when approaches such as SIFT will work.

Figure 2.2 shows the ranking of feature-richness using this simple metric. We per-

formed a simple experiment by taking three images of 46 common household objects on

different backgrounds. If more than five features were matched for all pairs of object

images, we considered recognition to work. The red line divides the feature-poor objects

from the feature-rich. We can see that there is a fairly clear boundary with only a few

outliers (i.e., fan, plant, pepper shaker) shown by the red boxes.

Each of these outliers contains an interior region which appears significantly different

with a slightly change in viewpoint. These areas are essentially a stochastic texture, and

thus are difficult to match even though there are many keypoints. From a single image,

it is impossible to determine if a region is a stochastic texture and our metric is the best

that we can do. Given multiple images, the number of correct matches between all pairs

of images can be used.

2.2 Shape Matching

In the previous section, we described keypoint-based approaches for detecting feature-

rich objects. While these approaches work well for many objects, there exist many

feature-poor objects (Figure 2.2) where they do not work. These feature-poor objects

are primarily defined by their contour structure and approaches for recognizing them

focus on shape matching [31, 44, 53, 115]. However, many object shapes are very simple,

comprising of only a small number of curves and junctions. Even when considering a

single viewpoint, these curves and junctions are often locally ambiguous as they can be

observed on many different objects. The collection of curves and junctions in a global

configuration defines the shape and is what makes it more discriminative.

Object instance detection, however, requires detecting objects under arbitrary view-

point. Introducing viewpoint variations further compounds shape ambiguity as the ad-

ditional curve variations can match more background clutter. Much research has gone

into representing shape variation across viewpoint. In general, current models can be

divided roughly into two main paradigms: invariant and non-invariant models. On one

hand, invariant models create a unified object representation across viewpoint by explic-

itly modeling the structural relationships of high level shape primitives (e.g., curves and

lines). On the other hand, non-invariant models use view-based templates and capture

viewpoint variations by sampling the view space and matching each template indepen-

dently. In the following, we summarize these two classes of shape matching approaches.
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Co-linearity 
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Figure 2.3: Invariant methods consider properties of shape primitives that are invari-
ant across viewpoint. Common invariant properties that are used are parallelism, co-
termination, co-linearity and symmetry.

2.2.1 Invariant methods

Invariant methods are based on representing structural relationships between view-

invariant shape primitives [14, 41]. Typically, these methods represent an object in

3D and reduce the problem of object detection to generating correspondences between

a 2D image and a 3D model. To facilitate generating these correspondences, significant

work has gone into designing shape primitives [13] that can be differentiated and de-

tected solely from their perceptual properties in 2D while being relatively independent

of viewing direction. Research in perceptual organization [68] and non-accidental proper-

ties (NAPs) [124] have demonstrated that certain properties of edges in 2D are invariant

across viewpoint and unlikely to be produced by accidental alignments of viewpoint and

image features. These properties provide a way to group edges into shape primitives

and are used to distinguish them from each other and from the background. Example

of such properties are collinearity, symmetry, parallelism and co-termination as illus-

trated in Figure 2.3. After generating candidate correspondences between 2D image

and 3D model using these properties, the position and pose of the object can then be

simultaneously computed.

In earlier approaches, 3D CAD models [32, 53, 127] were extensively studied for

view-invariant object recognition. For simple, polyhedral objects, CAD models consist

of lines. However for complex, non-polyhedral objects, curves, surfaces and volumetric

models [55] are used. In general, obtaining a compact representation of arbitrary 3D

surfaces for recognition is very challenging. Biederman’s Recognition-by-Components

(RBC) [13] method decomposes objects into simple geometric primitives (e.g., blocks

and cylinders) called geons. By using geons, structural relationships based on NAPs can

be formulated for view-invariant detection.

Given geometric constraints from NAPs and an object model, the recognition prob-
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lem reduces to determining if there exists a valid object transformation that aligns the

model features with the image features. This correspondence problem is classically for-

mulated as search, and approaches such as interpretation trees [40, 41], Generalized

Hough Transforms [41] and alignment [18, 52] are used.

Interpretation trees [40, 41] consider correspondences as nodes in a tree and sequen-

tially identify nodes such that the feature correspondences are consistent with the geo-

metric constraints. If a node does not satisfy all the geometric constraints, the subtree

below that node is abandoned. Generalized Hough Transforms (GHT) [41], on the other

hand, cluster evidence using a discretized pose space. Each pair of model and image

feature votes for all possible transformations that would align them together. Geomet-

ric constraints are combined with the voting scheme to restrict the search of feasible

transformations. Finally, alignment-based techniques [18, 52] start with just enough

correspondences to estimate a hypothesis transformation. Verification is then used to

search for additional model features satisfying the geometric constraints. The hypothesis

with the most consistent interpretation is chosen.

While CAD models and geons have been shown to work well in a number of scenar-

ios, automatically learning 3D models is a considerable challenge [15, 40]. In addition,

geons are unable to approximate many complex objects. To address these issues, recent

approaches [62, 87] try to learn view-invariant features and non-accidental properties

directly from 2D data. A common paradigm is to align and cluster primitives that have

similar appearance across viewpoint. For example, the Implicit Shape Model (ISM) [62]

considers images patches as primitives and uses Hough voting for recognition. To de-

termine view-invariant features, images patches from all viewpoints of the object are

clustered. Each cluster corresponds to a locally view-invariant patch and is associated

with a probabilistic set of object centers. A match to a cluster casts a probabilistic vote

for its corresponding object positions.

The critical issue with allowing local deformations is that it is difficult to enforce

global consistency of deformations without storing the constraints for each viewpoint

individually. However, if the constraints are defined individually for each viewpoint, the

view-invariance is lost and the approach is equivalent to matching each view indepen-

dently (i.e., non-invariant).

Another common issue with invariant approaches is that they rely on stable extraction

of shape primitives. This is a significant limitation since reliable curve extraction and

grouping [68] still proves to be a considerable challenge. While there has been significant

development in object boundary detection [4, 26], no single boundary detector is able

to extract all relevant curves. The Global Probability of Boundary (gPb) detector [4],

which is designed to ignore stochastic textures, often confuses interior contours with

stochastic texture. These interior edges provide distinctiveness that is necessary for
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Figure 2.4: Non-invariant methods create a template for each viewpoint of the object.

recognizing specific objects. Due to the challenges of creating 3D models, extracting

shape primitives and learning geometric constraints from data, many recent approaches

have moved away from using invariant shape primitives. In the next section, we discuss

how non-invariant, view-based methods are able to address some of the above issues.

2.2.2 Non-invariant (view-based) methods

Non-invariant methods represent an object under multiple viewpoints by creating a

“view-based” template [90] for each object view (Figure 2.4). Each template captures

a specific viewpoint, only allowing slight deformation from noise and minor pose varia-

tion. Unlike invariant methods which define geometric constraints between pairs or sets

of shape primitives, non-invariant methods directly fix both the local and global shape

configurations. To combine the output of view-based templates, the scores from each

view are normalized [73, 101] and non-maximal suppression is applied.

Non-invariant methods have a number of benefits over invariant ones. First, using

view-based templates bypasses the 3D model generation and allows the algorithm to

directly observe the exact projection of the object to be recognized. This has the benefit

of not approximating the shape with volumetric primitives (e.g., geons), which can lose

fine-grained details needed for recognizing specific objects. Secondly, template matching

approaches can operate directly on low-level features and do not require extraction of

high-level shape primitives. Finally, many non-invariant approaches achieve recognition

performances on par or better than invariant ones, while being relatively simple and

efficient to implement. Recent results show that they can be successfully applied to

tasks such as robotic manipulation.

A number of methods exist for representing object shape from a single view. These

range from using curves and lines [30, 31, 107] to sparse edge features [44, 63] and gradient

histograms [23]. Methods which use curves and lines often employ 2D view-invariant
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(a) Image (b) Canny edges (c) gPb

Figure 2.5: Sensitivity of edge extraction. Current state-of-the-art methods in boundary
detection (gPb [5]) are unable to stably extract interior contours which are essential for
recognizing specific objects. Canny, on the other hand, can detect these edges, but will
also fire on spurious texture edges.

(a) ambiguous shape (b) background corruption

Figure 2.6: Limitations of HOG. (a) Ambiguous shape; two patches can have the same
HOG descriptor. (b) Background corruption; gradients on the background can severely
change the HOG descriptor.

techniques, similar to the approaches described in Section 2.2.1, to reduce the number of

view samples needed. Interpretation trees [41], Generalized Hough Transforms [41] and

alignment techniques [18] which are used for 3D view-invariance are similarly applied to

2D geometric constraints.

While some approaches use 2D view-invariance, others simply brute force match all

the possible viewpoints. Lines [31] and contour fragments [85, 104], in the simplest

form, are represented by a set of points [11, 44] and Chamfer matching [8] is used to

find locations that align well in an edgemap. Local edge orientation is often incor-

porated [104] in the matching cost to increase robustness to clutter. These methods,

however, consider each point independently and do not use edge connectivity. Other

approaches capture connectivity by approximating curves as sequences of line segments

or splines [128] instead of points. A common issue with these approaches, however, is

the difficulty of breaking contours at repeatable locations due to noise in the edgemaps

and object occlusions. A further limitation of these approaches is their reliance on stable

edge detection (Figure 2.5), which still remains an open area of research [5]. To bypass
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edge extraction, other methods represent the shape by using coarse gradient statistics.

Histogram of Oriented Gradients (HOG) [23] bins gradient magnitudes into nine orienta-

tion bins. These methods, however, only provide a coarse match of shape (Figure 2.6a),

losing many fine-grained details needed for instance detection. They are also sensitive

to strong background gradients (Figure 2.6b).

An additional criticism of non-invariant methods is that they require a large num-

ber of templates to sample the view space. For example, LINE2D [44] requires 2000

templates per object. While this many templates may have resulted in prohibitive com-

putation times in the past, advances in algorithms [44, 45] and processing power have

demonstrated that template matching can be done very efficiently (e.g., LINE2D and

DOT are able to match objects at 10 frames per second). To increase the scalability,

template clustering and branch-and-bound [45] methods are commonly used. In addi-

tion, templates are easily scanned in parallel and many can be implemented efficiently

on Graphics Processing Units (GPUs) [92].

2.3 Occlusion Reasoning

Occlusions are common in real world scenes and are a major obstacle to robust object

detection. For feature-rich objects, discriminative keypoint features can be used to

match unique local patterns on the object even under severe occlusions. For feature-poor

objects, however, occlusions further increase the shape ambiguity. While many shape

matching approaches work really well when objects are entirely visible, their performance

decrease rapidly with occlusions. When objects are under heavy occlusions, the score of

false positives begin to overwhelm the scores of true detections, resulting in the inability

to recognize objects robustly in these scenarios.

In the past, occlusion reasoning for object detection has been extensively studied [41,

89, 108]. Occlusions are commonly modeled as regions that are inconsistent with object

statistics. Girshick et al. [38] use an occluder part in their grammar model when all

parts cannot be placed. Wang et al. [120] use the scores of individual HOG filter cells,

while Meger et al. [75] use depth inconsistency from 3D sensor data to classify occlusions.

Local coherency of occlusions are often enforced with a Markov Random Field [33] to

reduce noise in these classifications. Li et al. [66] use RANSAC to generate a large

set of hypotheses and hallucinate points at positions where there is high error. These

approaches, however, assume that occlusions can happen randomly on an object. While

this is true for some cases, in real world environments, objects are usually occluded by

other objects resting on the same surface. It is thus often more likely for the bottom of

an object to be occluded than the top of an object [27].

Recently, researchers have attempted to learn the structure of occlusions from data [36,
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57]. With enough data, these methods can learn an accurate model of occlusions. How-

ever, obtaining a broad sampling of occluder objects is usually difficult, resulting in

biases to the occlusions of a particular dataset. This becomes more problematic when

considering object detection under arbitrary view [44, 109, 112]. Learning approaches

need to learn a new model for each view of an object. This becomes intractable, espe-

cially when recent studies [44] have claimed that approximately 2000 views are needed

to sample the view space of an object.

In general occlusion reasoning has primarily been used to separate regions which

belong to the object from those that do not. This allows the detector to ignore occluded

regions which would otherwise corrupt the overall score. Girshick et al. [38] uses an

occluder part to ignore regions that are classified as occlusions, while Wang et al. [120]

turn off deformable parts in these regions. Other methods use occlusions to determine

the depth ordering [119, 125] of detections and remove parts that have already been

explained.
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Chapter 3

Addressing Ambiguous Features

Discriminative keypoint features work really well for object detection when the features

on the object are unique. Current state-of-the-art methods for instance detection with

keypoint features employ 3D models, and their general paradigm [21, 39, 97] is to first

generate correspondences between image features and model features, and then to use

the 3D positions associated with the matched model features to estimate the pose of

an object by enforcing geometric constraints. Given a set of perfect correspondences

between 3D points and 2D projections, the problem of determining the pose of a cal-

ibrated camera has been extensively studied [2, 65]. The main problem that remains

unsolved in 3D object recognition is the problem of automatically generating enough

reliable correspondences. Even though techniques like RANSAC are able to deal with

incorrect correspondences, often there are just not enough correspondences to begin

with. If enough correspondences are provided, recovering the pose is essentially solved

and we show that the various methods for recovering pose have very similar recognition

performance.

One main issue that arises with manmade objects is that there are inevitably loca-

tions on the object that have similar local appearances. Features extracted from these

locations have similar descriptors, and in the extreme case, the descriptors may be ex-

actly the same. Most current algorithms perform matching discriminatively; ambiguous

matches are often discarded because they are assumed to arise from background clutter.

This is exemplified by the ratio test [70], which compares the distance to the closest

neighbor with the distance to the second closest neighbor. Discriminative matching pre-

vents features with similar descriptors from being matched, even though these features

contain rich information about the pose of the object. The presence of similar features

is an inherent issue in matching and no amount of tuning parameters or design of local

features can circumvent this problem. Figure 3.1 shows examples where local patches

around keypoints have very similar appearance, and Figure 3.2 shows objects where large

portions of the object are repeated due to logos and images.
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Figure 3.1: Example of keypoint locations with similar local appearance. Text regions
on man-made objects often look very similar.

Figure 3.2: Examples where large portions of an object are repeated. (left) Two sides of
the orange juice carton are almost exactly the same. (right) The logo of the cereal box
is repeated at different scales.

In this chapter, we argue that matching is more robust if we do not commit initially

to specific point-to-point correspondences. Instead, if a match is ambiguous, we claim

that the image feature should be associated with a set of possible locations on the model,

retaining the ambiguity of the correspondence until hypothesis testing. Figure 3.3 illus-

trates our proposed framework. Given a candidate pose of an object, the correspondence

ambiguity can be resolved as the one which best fits the hypothesized pose. Finally, the

candidate pose with the greatest evidence after considering multiple hypotheses is chosen

as the pose of the object.
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Figure 3.3: Quantization Framework. Features are extracted from a query image and
then matched to a set of quantized model descriptors. Each quantized model descriptor
is associated with all of its possible locations on the 3D model, which allows similar
features to be matched.

3.1 Quantization Framework

We propose to maintain feature ambiguity by quantizing the features on a model. Each

quantized feature is associated with a descriptor and all of its possible model locations.

These quantized features are still matched discriminatively, but the quantization allows

us to associate a feature on a query image with multiple locations on a model. Because

retaining feature ambiguity increases the potential number of outliers, we demonstrate

an efficient way to handle these additional correspondences.

Vector quantization of features has been used widely in the computer vision literature

for categorization tasks such as scene recognition [95] and object categorization [123].

Many of the algorithms used for these tasks fall in the realm of the Bag of Words ap-

proach, where a dictionary of visual features is learned through clustering and new im-

ages are categorized by comparing histograms of quantized visual words. In these cases,

quantization is used as a way to generalize and be robust to intra-category variations.

Most related to our work are methods that employ geometric reasoning on visual

words [19, 112] for image retrieval and category recognition. However, for the task of

specific 3D object recognition, the prevailing view is to use highly discriminative features.

As a result, multiple features with similar appearance on a model are rarely matched.

We claim that these similar features are essential to obtain reliable 3D object recog-

nition. We introduce ambiguity into the matching process by quantizing the model

features and associating each quantized descriptor with potentially multiple locations

on the model. When an image feature is matched to a quantized feature, it is associ-

ated with all the possible locations of that feature. During hypothesis testing, the most

likely correspondence given the current pose can be then be determined. Our framework
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Figure 3.4: Discriminative Hierarchical Matching (DHM). We preserve ambiguity by
matching the features at multiple levels of quantization and aggregating them to obtain
the candidate correspondences.

allows us to choose the most likely hypothesis given what we have seen, and combines

both ambiguous and unique features in a unified framework.

3.1.1 Hierarchical mean-shift quantization

In general, it is very difficult to choose the number of feature clusters a priori as different

models have different number of features and degree of feature similarity. We choose the

mean shift algorithm because it clusters features based on the similarity of the descriptors

in feature space. The bandwidth parameter of mean shift is a rough indication of the

desired intra-cluster variation and is more relevant to set than the number of clusters.

In our implementation, we use a dual-bandwidth approach where features are quan-

tized in a hierarchical manner [84] using two levels of mean shift with bandwidths r1

and r2, such that r1 < r2. Clustering in this way allows matching to be more robust

to the distribution of descriptors in feature space. Our quantization scheme results in

three levels of quantized features, where the finest level l = 0 corresponds to the original

features. Each quantized feature qli at level l is then associated with a set of 3D positions

on the model corresponding to all the features in that cluster.

3.1.2 Discriminative hierarchical matching (DHM)

For the task of image retrieval, a common technique is hierarchical matching on vocabu-

lary trees [84] which assigns a visual word to every image feature. However, for the task

of object recognition, most image features arise from background clutter. Assigning a

visual word to every image feature can increase the number of outlier correspondences

by orders of magnitude, making RANSAC intractable. We propose to perform discrim-

inative matching on each level of the hierarchy to limit matches to background clutter.
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Figure 3.5: Example of quantized matching where (top) a query feature in green matches
at a coarser level, but does not match at a finer level by the ratio test and on (bottom)
the vice versa is true.

Candidate correspondences are obtained by independently matching the image fea-

tures with each of the three levels of features. A feature is matched on a particular level if

it satisfies the ratio test within that level. The matched image feature is then associated

with all the possible 3D locations of its corresponding quantized model feature. The

final set of correspondences is obtained by aggregating all candidate correspondences at

all levels, removing any duplicate point correspondences.

Figure 3.5 illustrates the reason for our choice of hierarchical clustering. In Fig-

ure 3.5 (top), the query feature in green is equidistant to the centers of the two fine

clusters (blue), but it is significantly closer to the coarse cluster (red) on the left than

the coarse cluster on the right. At this stage, it is impossible to disambiguate the

correspondences in the two fine clusters, so the quantized matching returns all the can-

didate locations of the coarse cluster on the left for later processing. Conversely in

Figure 3.5 (bottom), the query feature is equidistant to the centers of the two coarse

clusters, but will match at the fine cluster level. If there were only one level of clustering,

one of these two situations would result in no correspondence.

3.1.3 View-constrained RANSAC

Quantized matching drastically increases the number of outliers as all potential locations

on the model for a particular quantized feature that do not correspond to the actual

location are incorrect. This is a significant issue as the number of iterations of RANSAC

needed to guarantee a consistent set of inliers increases dramatically with the number

of times a feature is repeated. If each feature is repeated α times, then approximately

αn times more iterations are needed to guarantee the same level of performance from

RANSAC, where n is the sample size.

Prior to the advent of highly discriminative locally invariant features, such as SIFT,
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Figure 3.6: Example of tomato soup can recognized (left) at a viewpoint significantly
different from the closest model view (right).

local features were mostly shape-based and very ambiguous (e.g., corners, high curvature

points, curve inflections). Given that one-to-one matching was infeasible, it was not

uncommon for the co-visibility [89] of model features to be used as a constraint to

reduce the search space. This constraint avoided attempting to estimate an object’s

pose from a set of features that were not simultaneously visible on the model. In early

literature on the topic, methods such as interpretation trees [41], Hough transforms [41],

alignment [52] and grouping [68] were used to address feature ambiguity.

Here, we introduce a modification of RANSAC, termed view-constrained RANSAC,

to again exploit the co-visibility of model features. In practice, this is implemented by

maintaining the set of views for which each point is visible when generating the 3D

models. We will refer to the set of cameras for which a point Pi is visible in as its view

set Vi. The view-constrained RANSAC algorithm begins by choosing a correspondence

Ci,j between an image point pi and a model point Pj at random from the set of candidate

matches, C. Only points Pk with a view set Vk that overlaps with the view set of the

selected model point Pj are retained. The view-constrained set of correspondences Cvc(j)

for a model point Pj is defined as:

Cvc(j) = {Ci,k : Vj ∩ Vk 6= ∅ ∧ k 6= j} . (3.1)

The remaining n−1 points needed to generate a pose hypothesis are then selected at

random without replacement from the view-constrained set of points Cvc(j). The process

is repeated for a fixed number of iterations and the pose with the greatest consistent

evidence is selected.
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3.2 Viewpoint Variations

In unstructured environments, objects can appear in any orientation and position, often

significantly different from the images used to generate the 3D models. Accounting for

all possible viewpoints is infeasible, yet a 3D recognition system must still recover the

object pose given a finite set of training images. A näıve solution to this problem is to

incorporate images of the object from all possible viewpoints, although densely sampling

the view space would require a very large number of images. In the following, we describe

our approach for handling viewpoint variation more tractably and how the quantization

framework can facilitate feature matching.

In the past, popular techniques to address this have been to use affine invariant fea-

tures [78], affine invariant patches [97] and view clustering [69]. Other approaches have

accounted for viewpoint change by simulating novel viewpoints using affine or perspec-

tive transformations of the model images [43, 64, 86]. Viewpoint simulation has been

used to determine a keypoint’s repeatability [43] and to model a keypoint’s local appear-

ance [64, 86]. Recently, Morel et al. [82] demonstrated that directly matching features

extracted from these simulated viewpoints significantly outperformed the state-of-the-

art affine invariant features [78] under large viewpoint change. Matching is performed

by extracting features from a finite set of affine transformations of both model and query

images and then comparing all sets of features.

Our approach is inspired by Morel et al. and incorporates features extracted from

affine warped images onto the 3D models. One problem with this approach, however, is

that the total number of features on the model may increase by an order of magnitude

or more, with many features having similar descriptors. Pruning these features is very

difficult because there is no clear metric as to when two features are similar enough to

remove one of them. Our quantization framework facilitates matching to similar features

and results in a seamless integration of the these features into a recognition system. We

show in the evaluation that handling viewpoint in this way can significantly increase the

performance of 3D object recognition.

An affine transformation A can be decomposed as:

A = λR(ψ)

[
t 0

0 1

]
R(φ), (3.2)

using Singular Value Decomposition (SVD), where R(ψ), R(φ) are rotation matrices, λ >

0, and t ≥ 1. In this decomposition, λ corresponds to the zoom and R(ψ) corresponds

to the planar rotation of the camera. For the case of SIFT-based systems, we can ignore

these terms as SIFT features are both scale and rotation invariant. However, other types

of features may require sampling the whole space of transformations. The remaining

terms in the decomposition correspond to the camera viewpoint, where t = 1
cos(θ) is the
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Figure 3.7: 3D model of the tomato soup can from 25 images.

tilt of the camera and φ is the longitude angle.

We consider tilts of t = {1,
√

2, 2} corresponding to latitude angles of θ = {0◦, 45◦, 60◦}
in our implementation. For each t, we follow Morel et al. and sample the longitude angles

φ by an arithmetic series φ = {0, b/t, ..., kb/t} for b = 72◦ and k = b180◦ · t/bc. Each pair

{t, φ} specifies an affine transformation At,φ which we use to transform a model image

I:

It,φ(x, y) = I(At,φ(x, y)). (3.3)

From the affine transformed image It,φ, we extract SIFT features and compute the

locations of each keypoint pi = A−1
t,φp

i
t,φ on the original image. We refer to these features

as simulated affine (SA) features.

3.3 Evaluation

In order to validate the performance of our quantization framework and simulated affine

features in feature-based object recognition, two sets of experiments were conducted.

The first set evaluates our algorithm’s ability to recognize objects in images, while the

second set evaluates the algorithm’s accuracy in recovering the full pose (3D position and

orientation) of objects in images. Given that our methods can be easily used to extend

any point-based 3D object recognition algorithm, we use three state-of-the-art algorithms

(Gordon and Lowe [39], EPnP [65], and Collet et al. [21]) as our baseline systems. We

incorporate the SA features and quantization separately (SA, Q) and together (SA+Q)

to show their performance gains in complex scenes.

We evaluate our approach on the CMU Grocery Dataset which contains 10 common

grocery items in cluttered household scenes. The dataset contains 620 images, 500

collected in natural environments and the other 120 collected in a calibrated setup. We

use the 500 images to evaluate the recognition performance and the 120 to evaluate the

accuracy of the pose estimation.
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Figure 3.8: Example detections on CMU10 3D. The images were taken in cluttered
environments with different lighting conditions, various object viewpoints and occlusions.
The bottom two rows show the views used to generate the models for two objects.

3.3.1 Base systems

The 3D object recognition systems used as baselines in our evaluation are those of Gordon

and Lowe [39], EPnP [65], and Collet et al. [21]. All of these systems use sparse 3D models

of objects with SIFT features for recognition and share a common methodology which

we summarize here. The goal of these systems is to estimate a transformation M = [R, t]

of a 3D model with respect to the camera frame for each object class instance in the

image. This is accomplished by minimizing the sum of reprojection errors between the

set of N projected 3D points P from the model and the set of N 2D points in the image,

p. The optimal transformation M∗ is defined as:

M∗ = arg min
M

N∑
i=1

d(pi,MPi)
2 (3.4)

The 3D models used are created with a standard Structure from Motion [110] algo-

rithm from 25 images taken at approximately equally spaced intervals in a circle around

each object, as shown in Figure 3.7. Every 3D point on the model is associated with a

corresponding SIFT descriptor. Finally, proper alignment and scale for each model are

computed to match the real object dimensions.

When using SA features, we augment the basic 3D model by first extracting SA

features from each of the model images. Then, using the estimated camera geometry,

we search for correspondences of each SA feature along the epipolar lines in the nearby

views. These correspondences are used to triangulate the SA features onto the 3D model.

When incorporating quantization, we use quantized descriptors (Section 3.1.1) and

replace the ratio test with quantized matching (Section 3.1.2) and RANSAC with view-

constrained RANSAC (Section 3.1.3).
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Figure 3.9: Effect of different quantization bandwidths on the Average Precision for the
orange juice carton using the Collet et al. system. We vary the smaller bandwidth, r1,
and choose the larger bandwidth to be r2 = 1.5r1. There is no significant change in
performance for r1 ∈ [0.15, 0.30], and even over the entire range, we obtain substantial
improvement over the baseline system.

Gordon and Lowe [39]

Gordon and Lowe introduced a fast 3D scene recognition algorithm, which we modify

to recognize objects. The algorithm extracts SIFT features from the input image and

matches against each object model using the ratio test to obtain a set of candidate 3D-

2D correspondences P↔ p. Using RANSAC, a random subset of n points is chosen and

used to estimate a pose hypothesis by minimizing the reprojection error with Levenberg-

Marquardt. If the number of points consistent with the pose hypothesis is higher than

a threshold, a new object instance is created and the pose is refined using all consistent

points. This procedure is repeated until the number of unallocated points is lower than

a threshold, or the maximum number of iterations has been exceeded.

Enhanced PnP [65]

Enhanced PnP is a non-iterative, O(n) solution to the PnP problem which does not

require any initialization and is much faster than standard iterative minimization tech-

niques. The EPnP 3D recognition system we created is similar to that of Gordon and

Lowe, but instead of using Levenberg-Marquardt, we use the EPnP algorithm.

Collet et al. [21]

The algorithm introduced by Collet et al. improves on the Gordon and Lowe method

by combining RANSAC and mean shift clustering on the set of 3D-2D correspondences.
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This combination allows for a real-time solution of the correspondence problem, even

when there are many instances of the same object present. After extracting 3D-2D

correspondences from a new image, the 2D locations p are clustered using the mean

shift algorithm. Each cluster of points pk is then processed independently by running

the Gordon and Lowe pose estimation described in Section 3.3.1. Finally, all detected

instances from different clusters with similar estimated pose are merged together, and

the instances with the most consistent points survive.

Parameters

The parameters for our experiments were calibrated on images not in the dataset and

were kept constant for every system and every object. The mean shift cluster bandwidths

used for feature quantization were r1 = 0.2 and r2 = 0.3, although the exact choice has

little impact on the overall performance of the system (Figure 3.9). For matching, we

choose a ratio test threshold of 0.8. We also restrict image features to have at most 10

model correspondences in the view-constrained RANSAC to maintain tractability. The

evaluation on this dataset was performed only once.

3.3.2 Object Detection

We first evaluated the performance of each system for object detection. For each detec-

tion in an image, we project all the points of the corresponding model onto the image

using the recovered pose and calculate the region A inside the convex hull. We use the

region overlap criterion [122]:
A ∩Agt
A ∪Agt

> 0.5, (3.5)

between the region A and the ground truth segmentation Agt to determine if an object

is correctly detected.

Figure 3.10 shows the averaged Precision/Recall plots for the three baseline systems.

To summarize the performance of all the objects for each baseline system, we use the

Average Precision corresponding to the area underneath the Precision/Recall curve. The

results are shown in Table 3.1.

From the table, the performance of the baseline systems is very similar when none

of our algorithms are incorporated. EPnP and the Gordon and Lowe system show

similar performance gains when augmented with the proposed methods, suggesting that

matching has a larger impact on the performance of 3D recognition than the particular

choice of pose estimation algorithm. Collet et al.’s system, which combines RANSAC and

mean shift clustering, shows further improvement once SA features and quantization are

added. The use of mean shift clustering in conjunction with RANSAC reduces the outlier-

inlier ratio in each cluster, and makes RANSAC more tractable with the significant
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Gordon and Lowe none SA Q SA+Q

Clam chowder can 0.36 0.56 0.46 0.79
Diet coke can 0.09 0.07 0.04 0.23
Juice box 0.37 0.44 0.44 0.71
Orange juice carton 0.28 0.44 0.33 0.53
Pot roast soup 0.32 0.18 0.53 0.79
Rice pilaf box 0.63 0.81 0.56 0.81
Rice tuscan box 0.50 0.66 0.47 0.62
Soy milk can 0.07 0.05 0.14 0.39
Soy milk carton 0.44 0.46 0.44 0.66
Tomato soup can 0.48 0.48 0.45 0.72

Average 0.35 0.41 0.39 0.62

EPnP none SA Q SA+Q

Clam chowder can 0.36 0.52 0.49 0.79
Diet coke can 0.08 0.07 0.05 0.23
Juice box 0.27 0.35 0.43 0.73
Orange juice carton 0.27 0.30 0.27 0.53
Pot roast soup 0.32 0.19 0.54 0.73
Rice pilaf box 0.60 0.71 0.41 0.81
Rice tuscan box 0.45 0.56 0.40 0.64
Soy milk can 0.04 0.08 0.17 0.39
Soy milk carton 0.28 0.39 0.52 0.64
Tomato soup can 0.40 0.55 0.46 0.75

Average 0.31 0.37 0.37 0.62

Collet et al. none SA Q SA+Q

Clam chowder can 0.37 0.43 0.78 0.92
Diet coke can 0.12 0.04 0.28 0.51
Juice box 0.33 0.44 0.66 0.87
Orange juice carton 0.31 0.48 0.39 0.61
Pot roast soup 0.32 0.21 0.67 0.81
Rice pilaf box 0.61 0.76 0.71 0.96
Rice tuscan box 0.49 0.60 0.51 0.80
Soy milk can 0.06 0.03 0.27 0.57
Soy milk carton 0.36 0.46 0.63 0.88
Tomato soup can 0.45 0.47 0.76 0.92

Average 0.34 0.39 0.57 0.78

Table 3.1: Average Precision. We show the results by object for the three base systems:
(top) Gordon and Lowe, (middle) EPnP, and (bottom) Collet et al. We demonstrate the
improvements of simulated affine features (SA), quantization (Q), and the combination
of the two (SA+Q).
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Figure 3.10: Averaged Precision/Recall plots: (left) Gordon and Lowe, (center) EPnP,
and (right) Collet et al. For each plot, we show the improvements from simulated affine
features (SA), quantization (Q) and the combination of the two (SA+Q).
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Figure 3.11: Examples of misdetection with Collet et al. and SA+Q. In the first two
images, the point matches are on only one side of the object, resulting in a planar pose
ambiguity. For the third image, the system finds a repeated pattern on the wrong side of
the object. In the last two images, the system does not find the objects due to significant
lighting and viewpoint changes from the model training images.

increase in correspondences added by our algorithms. Some example detections are

shown in Figure 3.8.

The objects which show the most improvement, as expected, are the objects with

repeated patterns (e.g., diet coke can, soy milk can). Recognizing some of these objects is

already very difficult, as they have particularly few features. With repeated patterns on

them as well, most systems are unable to generate enough correspondences to estimate

a reliable pose. Our improvements on the Collet et al. system increase the performance

of the diet coke can by over four times and that of the soy milk can by over nine times.

The remaining objects which do not have repeated patterns also benefit significantly

from the addition of SA features and quantization, doubling the performance for almost

all the objects compared to the Collet et al. system. Objects such as the juice box and

the pot roast soup have large regions where there is tiny text. Given that these regions

look similar locally, most systems cannot find enough unique correspondences in these

areas. Quantization addresses this issue and uses these features for pose estimation.

Figure 3.11 shows example failures of the system. The first two images are false

positives due to a planar pose ambiguity described and addressed in [103]. In the center

image, the system detects the repeated pattern on the object correctly, but chooses the

wrong side of the object because it fails to incorporate matches from other sides of the

object. Finally, the last two images show examples where the objects were not detected.

In these images, the lighting conditions and viewpoints are too different from the images

used to generate the model and there are not enough correct matches to estimate a pose.

3.3.3 Pose accuracy

An accurate pose is essential for object manipulation by a robot as well as for general

understanding of a scene. In this section we evaluate the pose accuracy of the recognition

systems. To conduct this experiment, we extrinsically calibrated a camera and ground

truthed the objects in 12 poses each. For 8 of the object poses, we placed the object at

0.5 m from the camera and rotated it standing upright at intervals of 45 degrees. The
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Correct detections (%) none SA Q SA+Q

Gordon and Lowe 63 80 69 88
EPnP 61 73 70 88
Collet et al. 65 75 74 92

Table 3.2: Detections (%) within 5 cm and 22.5 degrees of the true pose. SA+Q gives
significant improvement over the baseline.

Translation error (cm) none SA Q SA+Q

Gordon and Lowe 1.17 1.31 1.10 1.12
EPnP 1.19 1.20 1.15 1.13
Collet et al. 1.22 1.30 1.12 1.18

Rotation error (degrees) none SA Q SA+Q

Gordon and Lowe 4.59 5.25 4.77 5.17
EPnP 4.73 5.66 4.47 5.18
Collet et al. 4.84 5.04 4.87 5.31

Table 3.3: Translation error in cm (top) and rotation error in degrees (bottom) for the
correct detections. SA+Q approximately maintains the accuracy while improving the
recognition rate.

remaining 4 poses were with the object lying on the table and were rotated at 90 degree

intervals.

We evaluate the pose for both rotation and translation error. We compute the trans-

lation error as the Euclidean distance and the rotation error as the quaternion angle

2 arccos(qT qgt) from the ground truth pose. For this set of experiments, we measure the

translation error on the plane of the table and consider the error of objects which were

detected within 5 cm and 22.5 degrees of the true pose.

Table 3.2 shows the percentage of correct detections for each of the systems. Out

of 120 total experiments per system, the baseline systems retrieved less than two-thirds

correctly. SA features and quantization boosted recognition rate to close to 90 percent

for each of the systems. It is worth mentioning that some of the instances that were not

detected correspond to poses where only the repeated pattern is visible; in these cases,

it is impossible even for a human to disambiguate.

Table 3.3 shows the average translation error in cm and average rotation error in

degrees. Despite the average rotation error being slightly higher with our proposed

methods, this error of less than a degree is well within the uncertainty of the manual

ground truth. Importantly, we were able to achieve a higher recognition rate while

maintaining essentially equivalent pose accuracy.
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3.4 Discussion

In this chapter, we showed that not committing to specific point-to-point correspon-

dences until the hypothesis verification step can significantly improve the performance

of recognition. We develop a framework in which features are quantized and matched

in a hierarchical manner. To maintain the tractability of RANSAC, we propose a view-

constrained RANSAC method to reduce the ratio of potential outliers to inliers. We

show that incorporating features from affine transformed images is a way to address

viewpoint change and that matching to these features is facilitated by the quantization

framework. Our results on a difficult dataset demonstrate that quantization combined

with SA features can significantly improve the performance of current state-of-the-art

3D recognition systems.



Part III

Representing Objects

Without Discriminative Features





Chapter 4

Shape Matching Using

Gradient Networks

Keypoint features cannot be used to detect objects that are feature-poor. These objects

(e.g., hammer in Figure 4.1) are primarily defined by their contour structure, which are

often just simple collections of curves and junctions. Even though many shape matching

approaches work well when objects are un-occluded, their performance decrease rapidly

in natural scenes where occlusions are common (see evaluation in Section 4.6.3). This

sensitivity to occlusions arises because these methods are either heavily dependent on

repeatable contour extraction or only consider information very locally. The main con-

tribution of this chapter is to increase the robustness of shape matching under occlusions

by formulating the problem as traversing paths in a gradient network.

In the past, significant research has been dedicated to representing and matching

shape for object detection. A common representation is to use lines [31] and contour frag-

ments [85, 104]. In the simplest form, contours are represented by a set of points [11, 44]

and Chamfer matching [8] is used to find locations that align well in an edgemap. Local

edge orientation is often incorporated [104] in the matching cost to increase robustness

to clutter. These methods, however, consider each point independently and do not use

edge connectivity.

To incorporate connectivity, some methods enforce the constraint that matched

points are close together [111], but this still does not ensure that the matches belong

to the same image contour. Other approaches capture connectivity by approximating

curves as sequences of line segments or splines [128] instead of points. A common is-

sue with these approaches, however, is the difficulty of breaking contours at repeatable

locations due to noise in the edgemaps and object occlusions. To address this issue,

many-to-one contour matching [107] pieces together image contours to match the object

shape using Shape Context [10] features. The Contour Segment Network [31] method

finds paths that match the shape through a network of extracted line segments. A ma-



42 CHAPTER 4. SHAPE MATCHING USING GRADIENT NETWORKS

Figure 4.1: Example of shape matching under heavy occlusion. (left) Hammer template,
(center-left) image window, (center-right) normalized gradient magnitudes, and (right)
probability that each pixel matches the shape of the hammer.

Figure 4.2: Failure of sparse edge point methods in clutter. (left) Input window. (right)
Red points match the cup and blue points do not. In the textured region at the bottom
of the cup, there are many matched points because it is easy to find gradients which
match the cup template very locally.

jor limitation of these approaches is their reliance on stable edge detection, which still

remains an open area of research [5].

To bypass edge extraction, some methods represent the shape by using coarse gradient

statistics. Histogram of Oriented Gradients (HOG) [23] bins gradient magnitudes into

nine orientation bins. These methods, however, only provide a coarse match of shape,

losing many fine-grained details needed for instance detection. For example, a HOG

cell with a single line and a HOG cell with multiple parallel lines have exactly the same

descriptor. In addition, HOG cells on the object boundary are easily corrupted by strong

background gradients and by object occlusions.

To capture the shape more explicitly without extracting edges, the LINE2D [44]

method scans a template of sparse edge points across a gradient map. The rLINE2D [49]

method increases the robustness of LINE2D by only considering points where the quan-
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tized edge orientation matches exactly. These approaches, however, do not account for

edge connectivity, resulting in spurious matches in clutter (Figure 4.2) and high-scoring

false positives in these regions.

In a parallel line of research, there has been work on classifying edges which belong

to a specific object category. The Boosted Edge Learning (BEL) detector [26] extends

the Probabilistic Boosting Tree [116] algorithm to classify whether each location in the

image belongs to the edge of the object. To speed up the classification, some approaches

train local classifiers only at Canny edge points [91]. Sparse coding [72] has also been

used to learn class-specific edges. However in all of these cases, the classification is done

independently at each location, effectively losing connectivity and the global shape. They

also require a large amount of labeled training data and for the background in the test

images to be very similar to the training set.

In this chapter, we propose a shape matching approach which captures contour con-

nectivity directly on low-level image gradients. For each image pixel, our algorithm

estimates the probability (Figure 4.1) that it matches a template shape. The problem is

formulated as traversing paths in a gradient network and is inspired by the edge extrac-

tion method of GradientShop [12]. Our results show significant improvement in shape

matching and object detection on a difficult dataset of feature-poor objects in natural

scenes with severe clutter and occlusions.

4.1 Formulation

For a template shape placed at a particular image location, our method returns for each

image pixel, the probability that it matches the template. We begin by defining the

gradient network of an image. Then, we formulate shape matching as finding paths in

the network which have high local shape similarity. We describe the local shape potential

for each node in the network, followed by the algorithm used for shape matching.

For each pixel p in an image, let ν(p) be the gradient magnitude and θ(p) be the

gradient orientation computed using oriented filters [34]. Let Qp0 be the set of four pixels

at integer coordinates closest to the floating point coordinate calculated by translating

the pixel p a distance of
√

2 in the direction of the tangent θ(p) + π/2. Similarly, let Qp1
be the set of four pixels in the direction of the tangent θ(p)−π/2. A gradient network is

then defined as a graph where each pixel p in the image is a node that is connected to the

eight pixels q ∈ {Qp0, Q
p
1} as shown in Figure 4.3. We define φβ(p, q) to be the bilinear

interpolation weight for each q with respect to its ideal floating point coordinate.

In addition, let S(z) be a template shape S placed at position z in the image. Initially,

for simplicity of explanation, we define S(z) by N edge points Y = {y1, ..., yN}, each with

a gradient orientation ψi. Later, we extend the formulation to directly operate on model
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p

pQ0

pQ1

q

Figure 4.3: Gradient Network (GN). Each node is a pixel in the image. We create a
network (green) by connecting each pixel p with its 8 neighbors in the direction of the
local tangent.

edge strengths. For conciseness of notation, superscript S in the following derivation is

implicitly S(z). Let dS(p) be the distance from p to the nearest model edge point y∗ ∈ Y
and θS(p) = ψ∗ be the orientation of that edge point. Both values can be computed

simultaneously using a Distance Transform [16]. The goal is then to find long connected

paths in the gradient network which match the template S(z) well.

4.2 Local Shape Potential

We begin by defining the local shape potential, ΦS(p), which measures how well each

node p in the gradient network matches S(z) locally. This potential is composed of

three terms: 1) the region of influence φSroi, 2) the local appearance φSA, and 3) the edge

potential φE . It is given by:

ΦS(p) = φSroi(p) · φSA(p) · φE(p). (4.1)

4.2.1 Region of Influence

Given S(z), we only want to consider pixels which are sufficiently close as candidates

for matching while simultaneously allowing slight deformations of the template [6]. We

employ a linear weighting scheme to define the region of influence as:

φSroi(p) = max

[
1− dS(p)

τd
, 0

]
, (4.2)

where τd is the farthest distance from the shape that we want to consider. We set τd = 15

to be the same as in Oriented Chamfer Matching [104].
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(a) template (b) window (c) ΦS (d) ΩS

(e) φS
roi (f) φS

θ (g) φS
C (h) φE

Figure 4.4: Illustration of shape matching algorithm. Given (a) the template and (b) the
image window, we compute (c) the local shape potential and apply the message passing
algorithm to produce (d) the shape similarity. The local shape potential is composed of
the (e) region of interest, (f) orientation, (g) color, and (h) edge potentials.

4.2.2 Local Appearance

This term describes how well each pixel matches the local appearance of S(z). Many

types of information can be used, ranging from local gradient orientation to interior

appearance of the object, such as color and texture. To illustrate our approach, we

consider the effects of gradient orientation and color. The local appearance potential is

defined as:

φSA(p) = φSθ(p) · φSC(p), (4.3)

where φSθ is the orientation potential and φSC is the color potential. We define the local

orientation potential as:

φSθ(p) = exp

(
−
[
θ(p)− θS(p)

]2
2σ2

θ

)
, (4.4)

with σθ = π/8 (i.e., the orientation bin size of LINE2D [44]).

The color potential captures the color around the object shape. Unlike BEL [26]

and [91] which consider local patches centered on an edge, we only use information from

the object interior to be more robust to background clutter. Let vi be the unit-norm

gradient vector at yi pointing to the object interior and ci be the L*u*v color of the

object extracted a fixed distance in the direction of vi for each model edge point yi.
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Figure 4.5: Computation of the color potential. For model edge point yi, the unit-norm
vector vi points to the object interior. The color ci is the object color extracted a fixed
distance from yi in the direction of vi. For pixel p, the closest model point y∗ is yi, so
vS(p) = vi and CS(p) = ci. From the image, we extract the color C(p) at the same fixed
distance from p in the direction of vS(p).

Then let vS(p) = v∗ and CS(p) = c∗ correspond to the y∗ ∈ Y closest to p. From the

image, we extract the color C(p) at the same fixed distance from p in the direction of

vS(p). This corresponds to what the object interior would look like from this pixel if it

is part of the shape. The local color potential is then defined as:

φSC(p) = exp

(
−
[
C(p)− CS(p)

]2
2σ2
C

)
. (4.5)

We set σ2
C = 1/15 according to [71] for L*u*v color normalization. Figure 4.5 illustrates

the computation of the color potential.

4.2.3 Edge Potential

The edge potential, φE , characterizes how likely a pixel belongs to an edge in the image.

Many different metrics can be used. In the simplest form, the edge potential can be the

raw gradient magnitude ν(p). In GradientShop, the authors normalize the magnitude of

each pixel with respect to the magnitudes in a 5× 5 neighborhood κ to be more robust

to edge contrast. If µκ and σκ are the mean and standard deviation of the magnitudes

in κ, then the normalized gradient magnitude is:

ν̂(p) =
ν(p)− µκ
σκ + ε

. (4.6)

More complicated edge potentials, such as the output of edge detectors like the Global

Probability of Boundary (gPb) [4], can also be used instead. In the evaluation, we

explore the effect of different edge potentials.
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(a) window (b) ΦS (c) iter 5 (d) iter 10 (e) iter 25 (f) iter 100

Figure 4.6: Shape similarity for different number of message passing iterations.

4.3 Shape Matching

While the local shape potential can be used as a measure of shape similarity, it considers

only a very limited scope when determining how well each pixel matches S(z). By itself,

it is prone to incorrect similarities from accidental alignments in background clutter and

occlusions (Figure 4.4c). Our key idea for obtaining a more robust shape similarity is

to broaden the scope of each pixel, p, by traversing the path in the gradient network

on which it is centered. The pixel matches the shape well if this path consists of a long

contiguous set of pixels which all have high local shape potential.

We characterize the contiguity from pixel p to each q ∈ {Qp0, Q
p
1} by the pairwise

potential:

ΨS(p, q) = φβ(p, q) · φθ(p, q) · φSA(q), (4.7)

where φβ(p, q) is the bilinear interpolation weight and φθ(p, q) = exp
(
− [θ(p)−θ(q)]2

2(π/5)2

)
is

the edge smoothness [12]. The local appearance potential, φSA(q), effectively breaks the

contiguity when the shape of the neighbor q is improbable. We do not include the

region of influence potential as we do not wish to overly penalize an imperfectly aligned

template.

This formulation of shape matching is related to the edge extraction approach of

GradientShop [12]. We adapt their message passing technique to estimate the shape

similarity. The problem of estimating the shape similarity at p is broken into two sub-

problems; one for estimating the similarity in the direction of Qp0 and the other for

estimating the similarity in the direction of Qp1. At each iteration t, the messages are

computed as:

mS,t
0 (p) =

∑
q∈Qp0

ΨS(p, q) ·
[
ΦS(q) +mS,t−1

0 (q)
]
, (4.8)

mS,t
1 (p) =

∑
q∈Qp1

ΨS(p, q) ·
[
ΦS(q) +mS,t−1

1 (q)
]
, (4.9)



48 CHAPTER 4. SHAPE MATCHING USING GRADIENT NETWORKS

(a) uncalibrated (b) calibrated

Figure 4.7: Probability calibration of the shape similarity using the Extreme Value The-
ory. (a) Raw, uncalibrated shape similarity returned by the message passing algorithm.
(b) Probabilistic similarity after calibration.

and the estimated shape similarity is:

ΩS,t(p) = mS,t
0 (p) +mS,t

1 (p) + ΦS(p). (4.10)

The messages are initialized to mS,0
0 (p) = mS,0

1 (p) = 0, and the message passing is

iterated for a fixed number of iterations to produce the final shape similarity estimate

ΩS. Empirically, the message passing converges in 25 iterations and we use this for all of

our experiments. Figure 4.6 shows the shape similarity for different number of message

passing iterations.

4.4 Probability Calibration

The shape similarity ΩS, computed in Equation 4.10, depends on the template shape

S. This makes it difficult to compare the similarity values of different templates, and

thus difficult to choose the highest scoring template for object recognition. A method

to calibrate these values is thus needed.

There exist many methods for performing score normalization. A common method

is to fit Gaussian distributions [81] to the scores and select the maximum likelihood

class. Exemplar SVMs [73] fit a sigmoid function to the positive and negative scores of

each instance detector to convert the scores into probabilities. However, a limitation of

these approaches is that they require a large amount of data to model the distributions

accurately. Unlike category recognition where positive instances can easily be mined

from the Internet, it is often much more difficult to obtain many images of the same

object instance under multiple viewpoints. Negative data on the other hand is easily

obtained by sampling background images.



4.5. SOFT SHAPE MODEL 49

We use the Extreme Value Theory [101] to calibrate the shape similarity since it only

requires the distribution of similarity values on negative data. The method fits a Weibull

function to the extreme values (i.e., tail) of the negative distribution and estimates

the positive distribution as its conditional density. We sample random locations in

background images and use all the ΩS within the region of influence as negative data.

Figure 4.7 shows an example of the calibration.

4.5 Soft Shape Model

The above formulation defines the template S(z) as a discrete set of edge points. This

discrete representation requires either a manually specified template or automatic edge

extraction. Manual specification, however, is impractical for a large set of templates,

and automatic edge extraction requires time consuming parameter tuning to obtain

good edgemaps. We address this limitation by computing a soft shape model using the

raw edge strength (e.g., edge potential) of every object pixel (i.e., object mask), instead

of discrete edge points. In the following, we define a soft way to compute the distance

dS and orientation θS which fully describe the relationship between S(z) and the image.

Let Y = {y1, ..., yN} be all the pixels representing S(z), each with an edge strength

γi and gradient orientation ψi. We define the soft distance dS as:

dS(p) = min
i

[D(p, yi) + 1/γi − 1/γmax] , (4.11)

where D(p, yi) is the Euclidean distance between p and yi, and γmax is the maximum

edge strength. Then, the soft orientation is θS(p) = ψ∗ and corresponds to the y∗ ∈ Y
that minimizes Equation 4.11. Both values can be computed simultaneously using the

Generalized Distance Transform [29]. If γi is binary, then the soft shape model reduces

to the discrete case.

4.6 Evaluation

In order to validate the performance of Gradient Network in shape-based object instance

detection, we performed two sets of experiments. The first evaluates the algorithm’s

accuracy in shape matching, while the second evaluates the algorithm’s ability to detect

objects. We compare the effects of using a hard model versus a soft model, as well as

the effects of different edge and local appearance potentials. We evaluate our algorithm

on the challenging CMU Kitchen Occlusion (CMU KO8) dataset [49].

4.6.1 Algorithms

We compare our approach with a number of state-of-the-art methods for template-based

shape matching. For fair comparison, we use the same M sampled model edge points xi
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(a subset of Y) for all the methods. These points are specified relative to the template

center. We give a brief description of the algorithms in our comparison below.

Gradient Network (GN) Our algorithm returns a shape similarity ΩS for each pixel

given the template S(z). For fair comparison, we apply a 7 × 7 max spatial filter

(i.e., equivalent to LINE2D) to ΩS resulting in Ω̂S. The template score at z is then∑M
i=1 Ω̂S(xi + z). We use the soft shape model with normalized gradient magnitudes for

the edge potential, and both color and orientation for the appearance.

Our algorithm takes on average 2 ms per location z on a 3GHz Core2 Duo CPU. In

practice, we run our algorithm only at the hypothesis detections of rLINE2D [49], which

has been shown to have high recall. The combined computation time is about 1 second

per image.

LINE2D (L2D) [44] This method quantizes all gradient orientations into 8 orienta-

tion bins. The similarity for point xi is the cosine of the smallest quantized orientation

difference, ∆θi, between its orientation and the image orientations in a 7×7 neighborhood

of xi + z. The score of a window is
∑M

i=1 cos(∆θi).

rLINE2D (rL2D) [49] This method binarizes LINE2D by only considering model

edge points which have the same quantized orientation as the image. The algorithm is

more robust than LINE2D in cluttered scenes with severe occlusions. The score of a

window is
∑M

i=1 δ(∆θi = 0) where δ(z) = 1 if z is true.

Oriented Chamfer Matching (OCM) [104] This method extends Chamfer match-

ing to include the cost of the orientation dissimilarity. Let DT be the distance transform

of the image edgemap and DTθ be the orientation of the nearest edge point, then the

OCM score at position z is
∑M

i=1DT (xi + z) +λ
∑M

i=1Dθ [DTθ(xi + z), ψi]. The param-

eter λ is learned for each shape independently.

Histogram of Oriented Gradients (HOG) [23, 73] This method represents an

object as a grid of gradient histograms. An Exemplar SVM [73] is learned for each

shape. We use the one hundred negative images in CMU KO8, the same parameters as

[73], and three hard negative mining iterations for training. The object is detected by

convolving the learned template with the HOG of the image.

rL2D-gPb and GN-gPb To explore the use of more complex edge potentials, we

extend rL2D and GN to use the output of gPb [4], a state-of-the-art edge detector that

uses texture and color segmentations. gPb outputs the probability B that a pixel belongs

to an object boundary. The rL2D-gPb algorithm applies a 7 × 7 max spatial filter to
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B to produce B̂ and computes the score at position z as
∑M

i=1 B̂(xi + z) · δ(∆θi = 0).

The GN-gPb algorithm uses φE = B as the edge potential.

4.6.2 Shape Matching

We first evaluate the performance in matching accuracy. Each algorithm, besides HOG,

returns a similarity measure per model point. Ideally for an image window, points

corresponding to visible object parts should have higher similarity than those that are

occluded. Given the groundtruth occlusion labels for every image, we partition the sim-

ilarity scores into visible and occluded scores, and report the F-measure (i.e., maximum

geometric mean of precision and recall) in Table 4.1. We do not include HOG in this

evaluation because it does not return point confidences, and thus cannot be compared

fairly with the other methods. Figure 4.8 shows some qualitative results.

From the table, GN outperforms all the baseline algorithms. L2D, rL2D and OCM

consider information very locally resulting in many incorrect point confidences. rL2D-

gPb removes spurious texture responses by using gPb, but performs poorly because its

similarity measure is not indicative of how well the shape matches (e.g., high contrast

edges have high gPb probabilities irrespective of shape). By considering long connected

paths in gPb which match the shape, GN-gPb performs significantly better than rL2D-

gPb. However, it performs slightly worse than GN, because gPb often gives low proba-

bility to interior object edges, resulting in incorrect confidences in these areas. The table

also shows, importantly, that both the orientation and color appearance potentials at

edge points are informative for shape matching.

Figure 4.9 shows a scenario where GN performs better than rL2D, OCM and HOG.

In this example, the template is a straight line and the image contains two fragmented

edges of the same orientation. This is a typical scenario in clutter where it is easy to find

fragmented edges which match the template. Ideally, we would want these fragmented

matches to be down-weighted. However, since both rL2D and OCM look at only the

orientation of the edge and its distance to the template, all the points on the template

will match well, leading to high scoring false positives. Similarly, HOG will have a high

score since it looks at coarse statistics of gradient orientations, which in this case, are

all in the same orientation. On the other hand, since the GN method looks for long

connected image gradients, it down-weights these fragmented matches.

In addition, we evaluate the effect of using a soft shape model (GN) versus a hard

shape model (GN-hard). We tuned a Canny edge detector very carefully on the model

images to obtain the best possible contours for GN-hard. Our results show that using

a soft shape model, which does not require any parameter tuning, actually performs on

par and even slightly better than a hard shape model.
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combined orientation color

naive (label all visible) 0.78 - -
L2D 0.83 - -
rL2D 0.83 - -
rL2D-gPb 0.79 - -
OCM 0.79 - -
GN 0.87 0.85 0.83
GN-hard 0.86 0.85 0.83
GN-gPb 0.85 0.84 0.84

Table 4.1: F-measure characterizing the shape matching. For methods which use GN,
we evaluate the effects of using orientation, color, and their combination for the local
appearance potential, φSA. We also compare soft shape models (GN) with hard shape
models (GN-hard).

Single L2D rL2D rL2D-gPb OCM HOG GN GN-gPb

baking pan 0.46 0.68 0.41 0.66 0.69 0.89 0.86
colander 0.58 0.87 1.00 0.74 0.85 0.92 0.97
cup 0.45 0.80 0.93 0.71 0.86 0.98 0.96
pitcher 0.45 0.84 0.67 0.76 0.77 0.85 0.89
saucepan 0.49 0.82 0.71 0.70 0.69 0.99 1.00
scissors 0.29 0.62 0.27 0.53 0.75 0.87 0.86
shaker 0.29 0.68 0.91 0.49 0.72 0.84 0.93
thermos 0.57 0.80 0.50 0.71 0.80 0.94 0.94

Mean 0.45 0.76 0.68 0.66 0.77 0.91 0.93

Multiple L2D rL2D rL2D-gPb OCM HOG GN GN-gPb

baking pan 0.32 0.41 0.19 0.45 0.65 0.97 0.90
colander 0.53 0.81 0.95 0.31 0.82 0.93 0.94
cup 0.34 0.67 0.78 0.42 0.90 0.97 0.97
pitcher 0.43 0.65 0.11 0.28 0.68 0.86 0.83
saucepan 0.41 0.76 0.64 0.59 0.82 0.99 0.98
scissors 0.37 0.60 0.07 0.17 0.64 0.93 0.80
shaker 0.34 0.61 0.50 0.18 0.59 0.84 0.89
thermos 0.38 0.75 0.40 0.36 0.85 0.93 0.95

Mean 0.39 0.66 0.45 0.35 0.74 0.93 0.91

Table 4.2: Detection rate at 1.0 FPPI on CMU KO8.

4.6.3 Object Detection

Next we evaluate the performance for object detection. An object is correctly detected

if the intersection-over-union (IoU) of the predicted bounding box and the groundtruth

bounding box is greater than 0.5. The CMU KO8 dataset is split into two parts: 800

images for single viewpoint and 800 images for multiple viewpoints. Figure 4.10 and 4.11
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Figure 4.8: Results of shape matching using GN. From left to right, we show: 1) template,
2) window, 3) ΦS, and 4) probability that each pixel matches the template.

Template shape 
Image edge 

Figure 4.9: Typical example of when GN performs better than rL2D, OCM and HOG.
The fragmented image edges in black, which are common in cluttered background, should
not match well to the template shape in blue. However, since the image edges have the
same orientation as the template and they are sufficiently close to it, both rL2D and
OCM will have a high matching score. Similarly, because HOG only looks at the local
orientation statistics, it will have a high matching score as well. Our GN method looks
for image edges which are long, connected and match the shape. The fragmented match
in this example would be down-weighted.
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Single combined orientation color

GN 0.91 0.88 0.76
GN-hard 0.92 0.87 0.77
GN-gPb 0.93 0.85 0.86

Multiple combined orientation color

GN 0.93 0.74 0.88
GN-hard 0.93 0.73 0.87
GN-gPb 0.91 0.65 0.66

Table 4.3: Average detection rate at 1.0 FPPI on CMU KO8.

show the false positive per image (FPPI) versus the detection rate (DR) for these parts

respectively. Table 4.2 summarizes the performance with the detection rate at 1.0 FPPI.

From the tables, GN significantly outperforms the other algorithms. The relative

performance of the algorithms is similar to the shape matching evaluation. For objects

with vibrant colors, such as the shaker (red) and colander (orange), GN-gPb performs

slightly better than GN because these objects receive high gPb edge potentials. However

for typical, un-colorful objects, gPb gives less confident edge potentials and this results

in worse overall performance of GN-gPb for these objects. In addition, HOG performs

worse than GN because it only captures the shape very coarsely and the cells covering the

object boundary are easily corrupted by background clutter and occlusions. Figure 4.12

shows the detector responses for rL2D, OCM, HOG and GN. The response of the GN

algorithm is more peaked at the correct location, while the other methods have many

spurious responses leading to high scoring false positives.

Figure 4.13 shows the performance under different levels of occlusions. While many of

the systems perform fairly well at low occlusion levels (0-15%), they perform significantly

worse at high occlusion levels (>35%). L2D, rL2D and OCM often incorrectly have high

point confidences in background clutter which result in false positives with higher score

than true positives under heavy occlusion. HOG performs especially poorly because oc-

clusions severely corrupt the descriptors of HOG cells. Our GN and GN-gPb algorithms

are more robust to object occlusions, since they predict better shape similarities.

Table 4.3 analyzes the performance of soft versus hard shape model, different edge

potentials and the effects of gradient orientation and color. Again, a soft shape model

performs equivalently to the hard model, and both the orientation and color contribute

to the detection accuracy.

Figure 4.14 shows typical false positives of GN. These detections have long contours

which align well to the image. Additional information such as occlusion reasoning [49] or

interior appearance of the object is needed to filter these false positives. Another failure
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Figure 4.10: FPPI/DR results for single view on CMU KO8.
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Figure 4.11: FPPI/DR results for multiple view on CMU KO8.
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(a) image (b) rL2D (c) OCM (d) HOG (e) GN

Figure 4.12: Response maps for detecting a cup. The response of GN is more peaked at
the true detection than the other methods.
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Figure 4.13: Detection rate under different occlusion levels. GN and GN-gPb are more
robust to occlusions.

mode of GN is at junctions shown by the example in Figure 4.15. When the flow of

the image gradients is broken, the shape matching information can not be propagated

correctly by the message passing algorithm. This results in a fragmented match shown

in Figure 4.15d.
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Figure 4.14: False positives of GN. Each triplet shows (1) template, (2) false positive
window and (3) predicted match in red overlaid on the Canny edgemap.

(a) template (b) input window (c) flow field (d) GN output

Figure 4.15: GN and junctions. The GN method is unable to propagate information
past a junction if there is a significant change in the gradient orientation. As shown in
(d), there is a gap in the shape match. Another level of reasoning is necessary to handle
junctions.

4.7 Discussion

The main contribution of this chapter is to demonstrate that shape matching can incor-

porate edge connectivity directly on low-level gradients without extracting contours. We

create a gradient network where each pixel is connected with its neighbors in the local

tangent direction. Long paths which match the template shape are found using a mes-

sage passing algorithm. Our results on a challenging dataset of feature-poor objects in

realistic environments with severe occlusions demonstrate significant improvement over

state-of-the-art methods for shape matching and object instance detection.



Chapter 5

Combining Boundary and Region

Information

Even though feature-poor objects are primarily defined by their shape, many common

objects have simple shape which can be easily confused with background clutter, result-

ing in false positives as shown in Figure 5.1. These objects often have large uniform

regions which have typically been viewed as uninformative. However, from the figure,

it can be seen that the appearance of the object, in particular the lack of texture, can

be used to filter these false positives. In this chapter, we explore the benefits of com-

bining both an explicit boundary representation with region appearance information

using Boundary and Region Templates (BaRT). We show that the BaRT representation

(Figure 5.2) achieves significant improvement over state-of-the-art methods for object

instance detection.

5.1 Boundary Representation

While some current approaches, such as the popular HOG method, do implicitly capture

both boundary and region information using grid of coarse gradient statistics, they are

unable to capture the fine details of the shape. In addition, grid cells located on the

object boundary are easily corrupted by background gradients (Figure 5.3). Thus, in our

BaRT representation, we capture the shape explicitly. In the evaluation, we compare

using an explicit representation of the boundary with a coarse representation.

We incorporate the boundary explicitly with BaRT using two methods. The first is

the robust-LINE2D (rLINE2D) method [49] and the second is the Gradient Networks

(GN) [50] approach from the previous chapter. Both methods are based on sparse edge

templates which have been shown to be efficient at recognizing objects under arbitrary

viewpoint. For a template with NB sampled edge points P , the boundary descriptor is

B = [b1, . . . , bNB ], where bi the similarity measure return by rLINE2D and GN.
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Figure 5.1: Example of false positives when using shape only. The edge information
aligns well to the image but the interior does not match well. From left to right, we
show (1) the model object, (2) a false positive detection, (3) the zoomed in view of the
false positive, and (4) the edge points matched using Gradient Networks on top of the
edgemap. The hotter the color, the better the match.

Boundary Region BaRT Object 

Figure 5.2: Boundary and Region Templates (BaRT). We propose to model an object
by using an explicit boundary representation and a coarse representation of the interior
region. The boundary is captured by a sparse set of edge points (red), each with an
oriented gradient. The region is modeled using Histogram of Oriented Gradient (HOG)
cells inside the object mask (blue). We modify HOG to handle large uniform regions.

5.2 Region Representation

As shown previously, there is information in the object interior even if the appearance

is uniform. While the interior region of an object is unaffected by background clutter,

its appearance can change due to lighting effects such as specularities and shadows.

Computing statistics at a coarse resolution can mitigate these lighting effects, since they

are either isolated or low frequency.

To demonstrate the importance of representing the object interior, we propose to

explore the use of HOG and color for capturing region information, although other

approaches and information may be used as well. We use rectangular cells and since

cells on the boundary can be corrupted by the background, we consider only grid cells
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Figure 5.3: Effect of strong gradients on the object boundary. The object behind the
cup causes many of the cells near the boundary of the object, especially on the handle,
to have low activation scores. The correct gradients are at those locations as shown by
the edge point matches, but the overall statistics of those cells are incorrect.

that lie within the interior of an object which is specified by a mask. For a template of

N×M cells, let hi,j be a 39-dimensional vector (36 dimensions for HOG and 3 dimensions

for the L*a*b color) for the spatial cell (i, j), for i = 1 . . . N and j = 1 . . .M . Let Iα
be the set of cells (i, j) that are completely contained within the object mask. Then

the region descriptor, R, is a 39 · |Iα| dimensional vector obtained by concatenating the

histogram of gradients and color for all cells in Iα:

R = [hi,j : (i, j) ∈ Iα]. (5.1)

5.2.1 Grid Optimization

Since we are using a rectangular grid, the position of the grid on the object can have a

major effect on performance. For some grid positions, there may be very few cells that

lie completely within the object. To capture the most information about the interior,

we want to maximize the number of cells inside the object.

We perform a search over all grid positions X to maximize the number of cells. Let

X0 = (x0, y0) be the position of the grid such that the top left corner is aligned with

object mask as shown in Figure 5.4, and let w be the width in pixels of each cell. Then

the set of grid positions we enumerate is:

X = {(x0 − dx, y0 − dy) : dx ∈ [0, w − 1], dy ∈ [0, w − 1]}. (5.2)

We define Iα(X) to be the set of cells (i, j) that are contained entirely inside the object

at grid position X, and Iβ(X) to be the set of cells (i, j) that overlap some portion of

the object. Then the optimum grid position X∗ is:

X∗ = argmax
X∈X

|Iα(X)|. (5.3)

If there are multiple grid positions that maximize |Iα(X)|, we choose the one that mini-

mizes |Iβ(X)|. This maximizes the number of cells that are completely inside the interior

and minimizes the overall number of grid cells used.
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Figure 5.4: Grid optimization for region template. (left) Initial grid position X0 with
the top left corner of the grid aligned to the object. (center) Non-optimized grid position
centered on the object contains 57 interior cells. (right) Optimized grid position contains
60 interior cells.

5.2.2 Uniform Regions

A HOG descriptor normalizes the gradient histogram of a cell with respect to the gradi-

ent magnitude of its neighbors. While normalization has been shown to be essential for

good recognition performance [23], Figure 5.5 shows that it effectively amplifies noise in

uniform regions when the neighboring cells are also uniform. If many training images

of an object are provided, the HOG descriptor in these regions will essentially be ran-

dom and the SVM will give zero weights to these regions. This essentially ignores these

areas when performing recognition. For category recognition, where the interior appear-

ance changes due to intraclass variations, such as from clothes on humans or materials

differences of furniture, these regions are not very informative and should be ignored.

However, for instance recognition these regions are from the exact same object and are

informative. In the case of ESVMs with one training instance, the noise in these regions

will just add random noise to the detection scores. Due to lighting effects, the descriptor

in these regions will rarely match the model.

Ideally for uniform regions, the gradient magnitude for all orientations are 0, and neg-

ative weights are learned to penalize any gradient in these regions. Since HOG performs

four different normalizations, we simply consider the magnitude of each normalization

factor. Let hi,j,k be the histogram of gradients for the kth normalization of cell (i, j),

and ni,j,k be the normalization factor. For ni,j,k > τ , the relative gradient is useful,

and we keep the normalization. However, for ni,j,k < τ , the normalization is effectively

just amplifying the noise. In this case, we set the histogram of gradient with that nor-

malization hi,j,k to be 0. Figure 5.6 shows the activation scores of individual cells with

and without handling uniform regions. Accounting for uniform regions results in better

cell-wise confidences of the object interior. For images with pixel values between 0 and

1, we choose τ using an average gradient magnitude of 0.2. This value was tuned on a

pair of model images and kept constant for all the experiments.
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Figure 5.5: Modification of HOG to handle uniform regions. We show (left) the model
image of a pitcher, (center) the original HOG descriptor, and (right) our HOG descriptor
which accounts for uniform regions. The original HOG descriptor has random gradients
from lighting effects in the uniform regions.

Figure 5.6: Comparison of HOG with and without uniform handling. We show the
activation scores of individual cells computed using the method of Wang et al. [120].
From left to right, we show (1) a test image window, (2) the HOG descriptor and cell
activation scores without uniform handling and (3) with uniform handling. The cell-
wise confidences are much more representative of the visible portions of the object with
uniform handling.

5.3 Implementation Details

For object instance detection, we assume that only one model image per viewpoint of an

object is provided for training, similar to [22, 44, 58, 94, 98]. Unlike category recognition

where training data for a given category can be mined from the Internet, obtaining

multiple training images and ground truth for each object viewpoint is significantly

more time consuming.

While positive data is very difficult to obtain, negative images are readily available

from image search engines such as Flickr and Google Images. For training, it has been

shown that the negative set can simply be a large set of random images [73]. For
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evaluation, we use the background images provided by the datasets as the negative set.

To train BaRT for object detection, we concatenate the descriptors of boundary, B,

and region, R, into a BaRT descriptor, D = [B,R]. We learn the weight of individ-

ual features for object detection using an ESVM. Object detection on a new image is

performed by using a sliding window detector. We scan the boundary portion of the

template at the pixel resolution, and we scan HOG at the standard cell resolution. Both

sources of information are combined by resizing the output to the resolution of the im-

age, and summing the boundary and region scores. Finally, detections are obtained by

using mean-shift to perform non-maximal suppression.

5.4 Evaluation

In order to validate our BaRT representation for object instance detection, we compare

our method with the baseline approaches of HOG+ESVM [73], rLINE2D [49], Gradient

Networks [50] and using color only. We also systematically analyze the performance of

each component of our representation, evaluating different combinations of boundary

and region templates. In addition, we analyze the effect of using only the cells inside the

object mask (+I) for HOG and color, and incorporating uniform region handling (+U)

for HOG.

5.4.1 Object Detection

We evaluate the performance of BaRT for object instance detection. In the following

experiments, an object is correctly detected if it satisfies the PASCAL overlap crite-

rion [28, 58] with the ground truth bounding box. Figure 5.8 shows the Precision/Recall

curves for each object and Table 5.1 summarizes the performance for each object using

the Mean Average Precision (mAP). Example detection results are shown in Figure 5.7

using our full representation HOG+GN+color+I+U. For these experiments, we fix the

size of each HOG and color cell to be the standard 8 × 8 for all objects. The object

interior is specified by the object masks provided in the dataset.

From the table, using boundary alone with GN already performs significantly bet-

ter than HOG. HOG cells on the boundary are easily corrupted by background clutter.

By considering only the interior cells, HOG+I already perform significantly better than

HOG. Combining explicit boundary information of rLINE2D and GN with HOG+I pro-

vides substantial improvement of 12% and 19% respectively over HOG. This validates our

hypothesis that an explicit representation of boundary information is better than gradi-

ent statistics for specific objects. Using color by itself is not very good as many objects

in cluttered scenes have similar colors. Combining color with the baseline templates pro-

vides 4-7% improvement, but only minimal gains when combined with HOG+rLINE2D
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Figure 5.7: Example detections using HOG+GN+color+I+U in cluttered household
environments. From left to right, we show (1) the original image with bounding box of
detection, (2) the zoomed in view of the detection with HOG grid in white, (3) the HOG
descriptor modified to handle uniform regions, (4) the boundary point matches, and (5)
the region activation scores. Using our representation, the confidences of the boundary
points and region cells correlate to whether they are visible or not.
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Single baseline +I +U +I+U

HOG 0.49 0.59 0.46 0.55
LINE2D 0.16 - - -
rLINE2D 0.49 - - -
GN 0.65 - - -
color 0.06 0.05 - -
HOG+rLINE2D 0.68 0.71 0.68 0.72
HOG+GN 0.78 0.78 0.75 0.77
HOG+color 0.53 0.65 0.50 0.63
rLINE2D+color 0.56 0.56 - -
GN+color 0.72 0.71 - -
HOG+rLINE2D+color 0.72 0.74 0.72 0.74
HOG+GN+color 0.78 0.78 0.77 0.77

Multiple baseline +I +U +I+U

HOG 0.46 0.53 0.40 0.50
LINE2D 0.09 - - -
rLINE2D 0.29 - - -
GN 0.70 - - -
color 0.07 0.12 - -
HOG+rLINE2D 0.56 0.56 0.52 0.56
HOG+GN 0.80 0.80 0.78 0.80
HOG+color 0.51 0.59 0.44 0.55
rLINE2D+color 0.37 0.36 - -
GN+color 0.76 0.77 - -
HOG+rLINE2D+color 0.58 0.58 0.56 0.58
HOG+GN+color 0.80 0.80 0.78 0.80

Table 5.1: Object detection: Mean Average Precision. We show the performance of
different combination of HOG, rLINE2D, GN and color templates. In addition, we
evaluate the effect of using only interior cells (+I), handling uniformity (+U) as well as
their combination (+I+U).

and HOG+GN as these templates are already able to reject most false positives.

Finally, we augment HOG to handle uniform regions. The performance was essen-

tially the same when augmenting HOG+rLINE2D+color and HOG+GN+color. How-

ever, a benefit of correctly handling uniform regions is increased accuracy of cell-wise

confidences for uniform regions as shown in Figure 5.6. Figure 5.7 shows that the scores

of individual cells and the boundary correlate to whether the cell is visible or not. This is

important for additional post-processing steps such as object segmentation and occlusion

reasoning, where incorrect activation scores will negatively affect performance.

Figure 5.10 shows typical false positives of HOG+GN+color+I+U. In these cases,

both the boundary and region align well to the image. Additional information such as

depth or color would be needed to filter these false positives.
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Figure 5.8: Precision/Recall curves for single view of CMU KO8.
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Figure 5.9: Precision/Recall curves for multiple view of CMU KO8.
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Figure 5.10: Example false positives of HOG+GN+color+I+U. From left to right, we
show (1) the model image, (2) a false detection, (3) the zoomed in view of the false
detection, (4) the boundary matches, and (5) the activation scores of region cells. These
false detections have high scores for both boundary and region.

5.5 Discussion

In this chapter, we propose BaRT, a more complete representation for tackling the chal-

lenging problem of detecting feature-poor objects in cluttered environments. This repre-

sentation improves over existing state-of-the-art approaches which represent feature-poor

objects by using only boundary [44, 49] or coarse gradient statistics [24, 73]. The main

contribution of this chapter is to demonstrate that combining the strengths of an ex-

plicit representation of the boundary and a coarse representation of the interior region

results in a significantly better representation of feature-poor objects. We model the

boundary of an object using a sparse set of edge points and the region using HOG cells

contained within the silhouette of the object. Since HOG does not correctly capture

uniform regions, we modify HOG to represent both textured and untextured informa-

tion. Our results demonstrate that the BaRT representation can significantly improve

performance over state-of-the-art systems for object instance detection.





Part IV

Occlusion Reasoning





Chapter 6

Representation under

Arbitrary Viewpoint

Occlusions are common in real world scenes and are a major obstacle to robust object

detection. In particular, instance detection requires recognizing objects under arbitrary

viewpoint with severe occlusions as shown in Figure 6.1. For feature-poor objects, oc-

clusions increase the shape ambiguity leading to false positives with higher scores than

true positives that are severely occluded. In this chapter, we propose (i) a concise model

of occlusions under arbitrary viewpoint without requiring additional training data and

(ii) a method to capture global visibility relationships without combinatorial explosion.

In the past, occlusion reasoning for object detection has been extensively studied [41,

89, 108]. One common approach is to model occlusions as regions that are inconsistent

with object statistics. Girshick et al. [38] use an occluder part in their grammar model

when all parts cannot be placed. Wang et al. [120] use the scores of individual HOG

filter cells, while Meger et al. [75] use depth inconsistency from 3D sensor data to classify

occlusions. Local coherency of occlusions are often enforced with a Markov Random

Field [33] to reduce noise in these classifications. Li et al. [66] use RANSAC to generate

a large set of hypotheses and hallucinate points at positions where there is high error.

While assuming that any inconsistent region is an occlusion is valid if occlusions

happen uniformly over an object, it ignores the fact there is structure to occlusions for

many objects. For example, in real world environments, objects are usually occluded by

other objects resting on the same surface. Thus it is often more likely for the bottom of

an object to be occluded than the top of an object [27].

Recently, researchers have attempted to learn the structure of occlusions from data [36,

57]. With enough data, these methods can learn an accurate model of occlusions. How-

ever, obtaining a broad sampling of occluder objects is usually difficult, resulting in biases

to the occlusions of a particular dataset. This becomes more problematic when consid-

ering object detection under arbitrary view [44, 109, 112]. Learning approaches need to
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Figure 6.1: Example detections of (left) cup and (right) pitcher under severe occlusions
after occlusion reasoning.

learn a new model for each view of an object. This is intractable, especially when recent

studies [44] have claimed that approximately 2000 views are needed to sample the view

space of an object. A key contribution of our approach is to represent occlusions under

arbitrary viewpoint without requiring additional training data of occlusions. We demon-

strate that our approach accurately models occlusions, and that learning occlusions from

data does not give better performance.

Researchers have shown in the past that incorporating 3D geometric understanding

of scenes [7, 47] improves the performance of object detection systems. Following these

approaches, we propose to reason about occlusions by explicitly modeling 3D interactions

of objects. For a given environment, we compute physical statistics of objects in the scene

and represent an occluder as a probabilistic distribution of 3D blocks. The physical

statistics need only be computed once for a particular environment and can be used to

represent occlusions for many objects in the scene. By reasoning about occlusions in 3D,

we effectively provide a unified occlusion model for different viewpoints of an object as

well as different objects in the scene.

We incorporate occlusion reasoning with object detection by: (i) a bottom-up stage

which hypothesizes the likelihood of occluded regions from the image data, followed by

(ii) a top-down stage which uses prior knowledge represented by the occlusion model to

score the plausibility of the occluded regions. We combine the output of the two stages

into a single measure to score a candidate detection.

The focus of this chapter is to demonstrate that a relatively simple model of 3D

interaction of objects can be used to represent occlusions effectively for instance detec-

tion of feature-poor objects under arbitrary view. Recently, there has been significant

progress in simple and efficient template matching techniques [44, 45] for instance detec-

tion. These approaches work extremely well when objects are largely visible, but degrade
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rapidly when faced with strong occlusions in heavy background clutter. We evaluate our

approach by incorporating occlusion reasoning with the Boundary and Region Templates

of Chapter 5, and demonstrate significant improvement in detection performance on a

challenging occlusion dataset.

6.1 Occlusion Model

Occlusions in real world scenes are often caused by a solid object resting on the same

surface as the object of interest. In our model, we approximate occluding objects by their

3D bounding box and demonstrate how to compute occlusion statistics of an object under

different camera viewpoints, c, defined by an elevation angle ψ and azimuth θ.

Let the 2D view of an object under camera c be represented by K markers1 Z =

{Z1, ..., ZK}. Each marker Zi captures the local information centered around coordinate

(xi, yi) on the object. These markers can capture any type of information from local

shape to texture and color. A marker, for example, can be the center of a HOG cell [23],

a SIFT keypoint [70], a LINE2D edge point [44], or a Hough voting patch [35]. By using

this object representation, our occlusion model can augment any object detector which

returns the probability, pi, that each marker, Zi, matches an image location. Here,

we follow previous research and assume that the matching probability, pi, is a good

indicator of how likely a marker is visible [38, 120]. In addition, let each marker, Zi,

have a weight, wi, which indicates its importance and influence. We define the set of

tuples M = {(Zi, pi, wi)|1 ≤ i ≤ K} as the matching pattern.

In this chapter, we begin by assuming that the matching probabilities are binary

(i.e., p ∈ {0, 1}) and that the weights are 1. We show how to relax these assumptions in

the next chapter. For conciseness of notation, let the visibility states of the K markers

be represented by a set of binary variables V = {V1, ..., VK} such that if Vi = 1, then Zi

is visible. For occlusions Oc under a particular camera viewpoint c, we want to compute

occlusion statistics for each marker in Z. Unlike other occlusion models which only

compute an occlusion prior P (Vi|Oc), we propose to also model the global relationship

between visibility states, P (Vi|V-i, Oc) where V-i = V\Vi. Through our derivation, we

observe that P (Vi|Oc) captures the classic intuition that the bottom of the object is more

likely to be occluded than the top. More interesting is P (Vi|V-i, Oc) which captures the

structural layout of an occlusion. The computation of these occlusion properties reduce

to integral geometry [100] (an entire field dedicated to geometric probability theory).

We make a couple of approximations to tractably derive the occlusion statistics.

Specifically, since objects which occlude each other are usually physically close together,

1We introduce the term marker to deliberately avoid using the term feature which has been signifi-
cantly overloaded in the literature.
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Figure 6.2: Occlusion model under arbitrary viewpoint. (left) Example camera view
of an object (gray) and occluder (red). (center) Projected width of occluder, ŵ, for a
rotation of θ. (right) Projected height of occluder, ĥ, and projected height of object,
Ĥobj , for an elevation angle of ψ. An occluder needs a projected height of ĥ ≥ Ĥobj to
fully occlude the object.

we approximate the objects to be on the same support surface. and we approximate the

perspective effects over the range of object occlusions to be negligible.

6.1.1 Representation Under Different Viewpoints

The likelihood that a marker on an object is occluded depends on the angle the object is

being viewed from. Most methods that learn the structure of occlusions from data [36]

require a separate occlusion model for each view of every object. These methods do not

scale well when considering detection of many objects under arbitrary view.

In the following, we propose a unified representation of occlusions under arbitrary

viewpoint of an object. Our method requires only the statistics of object dimensions,

which is obtained once for a given environment and can be shared across many objects

for that environment.

The representation we propose is illustrated in Figure 6.2. For a specific viewpoint,

we represent the portion of a block that can occlude the object as a bounding box with

dimensions corresponding to the projected height ĥ and the projected width ŵ of the

block. The projected height and width are the observed height and width of a block to

the viewer.

The object of interest, on the other hand, is represented by its silhouette in the image.

Initially, we derive our model using the bounding box of the silhouette with dimensions

Ĥobj and Ŵobj , and then relax our model to use the actual silhouette (Section 6.1.4).

First, we compute the projected width ŵ of an occluder with width w and length l

as shown by the top-down view in Figure 6.2. In our convention, ŵ = w for an azimuth
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of θ = 0. Using simple geometry, the projected width is:

ŵ(θ) = w · | cos θ|+ l · | sin θ|. (6.1)

Since θ is unknown for an occluding object, we obtain a distribution of ŵ assuming all

rotations about the vertical axis are equally likely. The distribution of ŵ over θ ∈ [0, 2π] is

equivalent to the distribution over any π
2 interval. Thus, the distribution of ŵ is computed

by transforming a uniformly distributed random variable on [0, π2 ] by Equation 6.1. The

resulting probability density of ŵ is given by:

pŵ(ŵ) =


2
π

(
1− ŵ2

w2+l2

)- 1
2
, w ≤ ŵ < l

4
π

(
1− ŵ2

w2+l2

)- 1
2
, l ≤ ŵ <

√
w2 + l2.

(6.2)

The full derivation of this density is provided in Appendix B.1.

Next, we compute the projected height ĥ of an occluder as illustrated by the side

view of Figure 6.2. For an elevation angle ψ and occluding block with height h, the

projected height ĥ is:

ĥ(ψ) = h · cosψ. (6.3)

This corresponds to the maximum height that can occlude the object given our assump-

tions.

The projected height of the object, Ĥobj , is slightly different in that it accounts for

the apparent height of the object silhouette. An object is fully occluded vertically only

if ĥ ≥ Ĥobj . To compute Ĥobj , we need the distance, Dobj , from the closest edge to the

farthest edge of the object. Following the computation of the projected width ŵ, we

have Dobj(θ) = Wobj · | sin θ| + Lobj · | cos θ|. The projected height of the object at an

elevation angle ψ is then given by:

Ĥobj(θ, ψ) = Hobj · | cosψ|+Dobj(θ) · | sinψ|. (6.4)

Finally, the projected width of the object Ŵobj is computed using the aspect ratio of the

silhouette bounding box.

6.1.2 Occlusion Prior

Given the representation derived in Section 6.1.1, we want to compute a probability

for a marker on the object being occluded. Many systems which attempt to address

occlusions assume that they occur randomly and uniformly across the object. However,

recent studies [27] have shown that there is structure to occlusions for many objects.

We begin by deriving the occlusion prior using an occluding block with projected

dimensions (ŵ, ĥ) and then extend the formulation to use a probabilistic distribution of

occluding blocks. The occlusion prior specifies the probability P (Vi|Oc) that a marker,
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Figure 6.3: Computation of the occlusion prior. (a) We consider the center positions of
a block (red) which occlude the object. The base of the block is always below the object,
since we assume they are on the same surface. (b) The set of positions is defined by the
yellow rectangle which has area AOc . (c) The set of positions which occlude the object
while keeping Zi visible is defined by the green region which has area AVi,Oc .

Zi, on the object at position (xi, yi) is visible given an occlusion of the object. This

involves estimating the area, AOc , covering the set of block positions that occlude the

object (shown by the yellow region in Figure 6.3b), and estimating the area, AVi,Oc ,

covering the set of block positions that occlude the object while keeping Zi visible (shown

by the green region in Figure 6.3c). The occlusion prior is then just a ratio of these two

areas:

P (Vi|Oc) =
AVi,Oc
AOc

. (6.5)

From Figure 6.3b, a block (red) will occlude the object if its center is inside the

yellow region. The area of this region, AOc , is:

AOc = (Ŵobj + ŵ) · ĥ. (6.6)

Next, from Figure 6.3c, this region can be partitioned into a region where the occlud-

ing block occludes Zi (blue) and a region which does not (green). AVi,Oc corresponds to

the area of the green region and can be computed as:

AVi,Oc = Ŵobj · ĥ+ ŵ ·min(ĥ, yi). (6.7)

The derivation is provided in Appendix B.2.

Now that we have derived the occlusion prior using a particular occluding block, we

extend the formulation to a distribution of blocks. Let pŵ(ŵ) and pĥ(ĥ) be distributions

of ŵ and ĥ respectively. To simplify notation, we define µŵ = Epŵ(ŵ)[ŵ] and µĥ =

Epĥ(ĥ)[ĥ] to be the expected width and height of the occluders under these distributions,

and define βy(yi) =
∫

min(ĥ, yi) · pĥ(ĥ) dĥ. The average areas, AOc and AVi,Oc , are then
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Figure 6.4: Example of (a) occlusion prior P (Vi|Oc), (b,c) conditional likelihood
P (Vi|Vj , Oc) and P (Vi|Vk, Oc) given two separate markers Zj and Zk individually, (d)
approximate conditional likelihood P (Vi|Vj , Vk, Oc) from Equation 6.12, and (e) explicit
conditional likelihood P (Vi|Vj , Vk, Oc) from Equation 6.10.

given by:

AOc = (Ŵobj + µŵ) · µĥ, (6.8)

AVi,Oc = Ŵobj · µĥ + µŵ · βy(yi). (6.9)

This derivation assumes that the distribution pŵ,ĥ(ŵ, ĥ) can be separated into pŵ(ŵ) and

pĥ(ĥ). For household objects, we empirically verified that this approximation holds. In

practice, the areas are computed by discretizing the distributions and Figure 6.4(a) shows

an example occlusion prior. Figures 6.5 and 6.6 show how the distribution changes under

different camera viewpoints. Our model is able to capture that the top of the object is

much less likely to be occluded when viewed from a higher elevation angle than from a

lower one. This is because the projected height of occluders is shorter the higher the

elevation angle.

6.1.3 Occlusion Conditional Likelihood

Most occlusion models only account for local coherency and the prior probability that a

marker on the object is occluded. Ideally, we want to compute a global relationship be-

tween all visibility states V on the object. While this is usually infeasible combinatorially,

we show how a tractable approximation can be derived in the following section.

Let ZV-i be the visible subset of Z according to V-i. We want to compute the

probability P (Vi|V-i, Oc) that a marker Zi is visible given the visibility of ZV-i . Following

Section 6.1.2, the conditional likelihood is given by:

P (Vi|V-i, Oc) =
AVi,V-i,Oc
AV-i,Oc

. (6.10)
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Figure 6.5: The occlusion prior and conditional distribution under different camera
viewpoints for a pitcher. We show the (left) model viewpoint, (center) occlusion prior
and (right) occlusion conditional likelihood.

Figure 6.6: The occlusion prior and conditional distribution under different camera
viewpoints for a cap. We show the (left) model viewpoint, (center) occlusion prior and
(right) occlusion conditional likelihood.
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Figure 6.7: Using an arbitrary object silhouette. (left) Object. (right) Two blocks in
red which occlude the object bounding box in gray, but not the silhouette in black.

We first consider the case where we condition on one visible marker, Zj (i.e., ZV-i =

{Zj}). To compute P (Vi|Vj , Oc), we already have AVj ,Oc from Equation 6.9, so we just

need AVi,Vj ,Oc . The computation follows from Section 6.1.2, so we omit the details and

just provide the results below. The detailed derivation is provided in Appendix B.3. If

we let βx(xi, xj) =
∫

min(ŵ, |xi − xj |) · pŵ(ŵ) dŵ, then:

AVi,Vj ,Oc = (Ŵobj − |xi − xj |) · µĥ

+

(∫ |xi−xj |
0

(|xi − xj | − ŵ) · pŵ(ŵ) dŵ

)
· µĥ

+βx(xi, xj) · βy(yi) + µŵ · βy(yj). (6.11)

We can generalize the conditional likelihood to k visible markers (i.e., |ZV-i | = k) by

counting as above, however, the number of cases increases combinatorially. We make

the approximation that the marker Zj ∈ ZV-i with the highest conditional likelihood

P (Vi|Vj , Oc) provides all the information about the visibility of Zi. This observation

assumes that Vi ⊥ {V-i\Vj}|Vj and allows us to compute the global visibility relationship

P (Vi|V-i, Oc) without combinatorial explosion. The approximation of P (Vi|V-i, O-i) is

then:

P (Vi|V-i, Oc) ≈ P (Vi|V ∗j , Oc), (6.12)

V ∗j = argmax
Vj∈V-i

P (Vi|Vj , Oc). (6.13)

For example, Figure 6.4(d,e) shows the approximate conditional likelihood and the exact

one for |ZV-i | = 2. Figures 6.5 and 6.6 show how the distribution changes under different

camera viewpoints.
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(a) True positive (b) False positive

Figure 6.8: Examples of occlusion hypotheses. (a) For a true detection, the occluded
markers (red) are consistent with our model. (b) For a false positive, the top of the
object is hypothesized to be occluded while the bottom is visible, which is highly unlikely
according to our model.

6.1.4 Arbitrary Object Silhouette

The above derivation can easily be relaxed to use the actual object silhouette. The idea

is to subtract the area, As, covering the set of block positions that occlude the object

bounding box but not the silhouette from the areas described in Sections 6.1.2 and 6.1.3.

Figure 6.7 shows two example block positions. An algorithm to compute As is provided

in Appendix B.4. The occlusion prior and conditional likelihood are then given by:

P (Vi|Oc) =
AVi,Oc −As
AOc −As

, (6.14)

P (Vi|V-i, Oc) =
AVi,V-i,Oc −As
AV-i,Oc −As

. (6.15)

6.2 Combining with Object Detection

Given our occlusion model from Section 6.1, we augment an object detection system by

(i) a bottom-up stage which hypothesizes occluded regions using the object detector,

followed by (ii) a top-down stage which measures the consistency of the hypothesized

occlusion with our model. We explore using the occlusion prior and occlusion conditional

likelihood for scoring and show in our evaluation that both are informative for object

detection.

6.2.1 Occlusion Hypothesis

Our algorithm can be used to score the matching patterns of any object detector which

returns a binary prediction that markers on the object are matched. Obtaining the

matching pattern depends on the individual object detector. Some detectors, such as our
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Gradient Network method, return marker scores that can be interpreted as probabilities.

This interpretation is important for our model as we need to know when a marker is more

likely to be matched than not matched. For these detectors, we can simply threshold

the matching probabilities at 0.5 to obtain the occlusion hypothesis.

However, many detectors do not return marker scores which can be interpreted as

matching probabilities (e.g., the decomposed cell-wise score [120] of HOG and the point-

wise similarity metrics of LINE2D [44] and rLINE2D [49]). To calibrate the raw marker

scores, we use the Extreme Value Theory [101] because obtaining many positive examples

of occlusions is tedious and the method only requires the distribution of scores on negative

examples. We calibrate each marker independently using its raw matching scores on

randomly sampled detections in background clutter as negatives. Once the marker scores

are calibrated, we obtain the occlusion hypothesis by thresholding at 0.5.

6.2.2 Occlusion Scoring

Given the hypothesized visibility labeling Vζ for a sliding window location ζ from Sec-

tion 6.2.1, we want a metric of how well the occluded regions agree with our model.

Intuitively, we should penalize markers that are hypothesized to be occluded by the ob-

ject detector (Section 6.2.1) but are highly likely to be visible according to our occlusion

model. From this intuition, we propose the following detection score:

scoref (Vζ) =
1

K

K∑
i=1

V ζ
i − f(Vζ), (6.16)

where f(V) is a penalty function for occlusions. A higher score indicates a more confident

detection, and for detections with no occlusion, the score is 1. For detections with occlu-

sion, the penalty f(V) is higher the more occluded markers which are inconsistent with

the model. In the following, we propose two penalty functions, fOPP(V) and fOCLP(V),

based on the occlusion prior and occlusion conditional likelihood of Section 6.1.

Occlusion Prior Penalty

The occlusion prior penalty (OPP) gives high penalty to locations that are hypothesized

to be occluded but have a high prior probability P (V ζ
i |Oc) of being visible. Intuitively,

once the prior probability drops below some level λ, the marker should be considered

part of a valid occlusion and should not be penalized. This corresponds to a hinge loss

function Γ(P, λ) = max
(
P−λ
1−λ , 0

)
. The linear penalty we use is then:

fOPP(V) =
1

K

K∑
i=1

[(1− Vi) · Γ (P (Vi|Oc), λp)] . (6.17)
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Figure 6.9: Distribution of (left) heights and (right) length and width of occluders in
household environments.

Occlusion Conditional Likelihood Penalty

The occlusion conditional likelihood penalty (OCLP), on the other hand, gives high

penalty to locations that are hypothesized to be occluded but have a high probability

P (Vi|V-i, Oc) of being visible given the visibility labeling of all other markers V-i. Using

the same penalty function formulation as the occlusion prior penalty, we have that:

fOCLP(V) =
1

K

K∑
i=1

[(1− Vi) · Γ (P (Vi|V-i, Oc), λc)] . (6.18)

6.3 Evaluation

We evaluate our occlusion model’s performance for object instance detection on the CMU

Kitchen Occlusion Dataset by incorporating occlusion reasoning with the Boundary and

Region Template representation of Chapter 5. We explore the benefits of (i) using only

the bottom-up stage and (ii) incorporating prior knowledge of occlusions with the top-

down stage. When evaluating the bottom-up stage, we hypothesize the occluded region

and consider the score of only the visible portions of the detection.

The parameters of our occlusion model were calibrated on images not in the dataset

and were kept the same for all objects and all experiments. The occlusion parameters

were set to λp = 0.5 and λc = 0.95. We show in Section 6.3.5 that our model is not

sensitive to the exact choice of these parameters.

6.3.1 Distribution of Occluder Sizes

The distribution of object sizes varies in different environments. For a particular scenario,

it is natural to only consider objects as occluders if they appear in that environment.

The statistics of objects can be obtained from the Internet [59] or, in the household
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Figure 6.10: Validity of occlusion model. (left) We show in blue, the occluded pixels
which satisfy our approximation, and in red, those that do not. (right) For each object
instance in the CMU KO8 dataset [49], we evaluate the percentage of occluded pixels
which satisfy our approximation that they can be explained by a bounding box with a
base lower than the object. For 80% of the images, over 90% of the occluded pixels can
be explained with our model.

Figure 6.11: Example detection results under severe occlusions in cluttered household
environments.
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scenario, simply from 100 common household items. Figure 6.9 shows the distributions

for household objects.

From real world dimensions, we can compute the projected width and height distribu-

tions, pŵ(ŵ) and pĥ(ĥ), for a given camera viewpoint. The projected width distribution

is the same for all viewpoints and is obtained by computing the probability density

from Equation 6.2 for each pair of width and length measurement. These densities are

discretized and averaged to give the final distribution of ŵ.

The projected height distribution, on the other hand, depends on the elevation angle

ψ. From Equation 6.3, ĥ is a factor cosψ of h. Thus, the projected height distribution,

pĥ(ĥ), is computed by subsampling ph(h) by cosψ.

6.3.2 Validity of Occlusion Model

To derive the occlusion probabilities, we approximated occluder objects to be bounding

boxes which are on the same surface as the object. While this approximation is con-

sistent with the occlusion types observed by Dollar et al. in [27], we further validate

the approximation on the CMU Kitchen Occlusion Dataset. Given the groundtruth oc-

clusion labels in the dataset, we consider an occluded pixel to be consistent with the

approximation if there are no un-occluded object pixels below it. From Figure 6.10, for

80% of the images, over 90% of the occluded pixels are consistent.

6.3.3 Object Detection

We evaluate the performance for object instance detection. An object is correctly de-

tected if the intersection-over-union (IoU) of the predicted bounding box and the ground

truth bounding box is greater than 0.5. Figure 6.12 and 6.13 shows the Precision/Recall

plot for single and multiple view respectively and Table 6.1 summarizes the performance

with the Mean Average Precision. A few example detections are shown in Figure 6.11.

From the table, OPP improves the performance for some templates, but hurts per-

formance for others. OCLP, on the other hand, provides significant gains for all of the

templates except for color and GN+color. Contrary to what one would naturally believe,

color is actually not a very good cue for whether a marker is occluded or not because

many objects have very similar colors. When the color of the occluder is similar to the

object, the matching probability and thus the occlusion hypothesis will be incorrect.

The disparity between the gains of OPP and OCLP suggests that accounting for

global occlusion layout by OCLP is more informative than considering the a priori oc-

clusion probability of each point individually by OPP. In particular, OCLP improves

over OPP for cases such as the example shown in Figure 6.15 where one side of the

object is completely occluded. Although the top of the object is validly occluded, OPP

assigns a high penalty and over-penalizes the true detections.
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Single baseline +OPP +OCLP

HOG 0.55 0.56 0.55
rLINE2D 0.49 0.53 0.61
GN 0.65 0.65 0.73
color 0.05 0.04 0.03
HOG+rLINE2D 0.72 0.73 0.76
HOG+GN 0.77 0.78 0.81
HOG+color 0.63 0.64 0.64
rLINE2D+color 0.56 0.59 0.62
GN+color 0.71 0.71 0.74
HOG+rLINE2D+color 0.74 0.75 0.78
HOG+GN+color 0.77 0.78 0.81

Multiple baseline +OPP +OCLP

HOG 0.50 0.48 0.55
rLINE2D 0.29 0.33 0.37
GN 0.70 0.69 0.76
color 0.12 0.02 0.02
HOG+rLINE2D 0.56 0.58 0.60
HOG+GN 0.80 0.81 0.83
HOG+color 0.55 0.54 0.61
rLINE2D+color 0.36 0.42 0.43
GN+color 0.77 0.76 0.76
HOG+rLINE2D+color 0.58 0.61 0.64
HOG+GN+color 0.80 0.81 0.83

Table 6.1: Object detection performance. Mean Average Precision.

Figure 6.14 shows the performance under different levels of occlusion for all the

templates. Here, the performance is the percentage of top detections which are correct.

Our occlusion reasoning improves object detection under both low (0-35%) and high

levels (>35%) of occlusions, but provides significantly larger gains for heavy occlusions.

Figure 6.8 shows a typical false positive that can only be filtered by our occlusion

reasoning. Although a majority of the points match well and the missing parts are

largely coherent, the detection is not consistent with our occlusion model and is thus

heavily penalized and filtered.

Figure 6.16 shows a couple of failure cases where our assumptions are violated. In the

first image, the pot occluding the pitcher is not accurately modeled by its bounding box.

In the second image, the occluding object rests on top of the scissor. Even though we

do not handle these types of occlusions, our model represents the majority of occlusions

and is thus able to increase the overall detection performance.
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Figure 6.12: Precision/Recall plots for single view on CMU KO8 for all templates.
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Figure 6.13: Precision/Recall plots for multiple views on CMU KO8 for all templates.
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Figure 6.14: Performance under different occlusion levels. While our methods improve
performance under all levels of occlusions, we see larger gains under heavy occlusions.

6.3.4 Learning From Data

To verify that our model accurately represents occlusions in real world scenes, we rerun

the above experiments with occlusion priors and conditional likelihoods learned from

data. We use the detailed groundtruth occlusion masks in the single view portion of the

dataset to obtain the empirical distributions. Figure 6.17 compares learning the occlusion

prior and occlusion likelihood using 10, 20, 40 and 80 images with our analytical model.
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Figure 6.15: A typical case where OCLP performs better than OPP. (left) For OPP, the
false positives in red have higher scores than the true detection in green. The occluded
region at the top of the true detection is over-penalized. (right) For OCLP, the true
detection is the top detection.

Figure 6.16: Typical failure cases of OCLP. (left) The pitcher is occluded by the handle
of the pot which is not accurately modeled by a block. (right) The scissor is occluded
by a plastic bag resting on top of it. In these cases, OCLP over penalizes the detections.

The distributions from the the empirical and analytical model are very similar.

We use 5-fold cross-validation for quantitative evaluation and Figure 6.18 shows the

results using different number of images for learning. The learned occlusion proper-

ties, lOPP and lOCLP, correspond to their explicit counterparts, OPP and OCLP. The

learned occlusion prior, lOPP, performs slightly better than OPP. This is a result of

the slightly different distribution seen in Figure 6.17 where the sides of the object are

more likely to be occluded in the dataset. The learned occlusion conditional likelihood,

lOCLP, performs essentially the same as OCLP, but requires 80 images for every view

of every object to achieve the same level of performance.
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(a) 10 images (b) 20 images (c) 40 images (d) 80 images (e) analytical

Figure 6.17: Visualization of occlusion distributions learned using different amounts of
data. From left to right, columns 1-4 show using 10, 20, 40, and 80 images for learning
the occlusion prior (top) and the occlusion conditional likelihood (bottom). The last
column shows the distribution of our analytical model.
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Figure 6.18: Learning the occlusion prior and conditional likelihood from data. The
dotted lines show the performance of our analytic approach, which does not depend on
the number of training images. We show the learned occlusion properties, lOPP (red)
and lOCLP (blue), corresponding to OPP and OCLP. While lOPP performs slightly
better than OPP, it needs about 20 images and is only slightly better. lOCLP needs
about 60 to 80 images to achieve the same level of performance as OCLP.

6.3.5 Parameter Sensitivity

The two parameters of our occlusion reasoning approach are λp and λc, corresponding

to the hinge loss parameters for OPP and OCLP. To verify that our approach is not

sensitive to the exact choice of these parameters, we evaluated the performance of the

occlusion reasoning for a range of parameter values. Figure 6.19 shows the sensitivity of

λp and λc when augmenting both rLINE2D and GN. From the figure, the performance is

relatively constant for a wide range of parameter values and is thus robust to the exact

choice.
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Figure 6.19: Parameter sensitivity for (left) OPP and (right) OCLP. The exact choice
of the parameter does not affect the performance of the methods significantly.

6.4 Discussion

The main contribution of this chapter is to demonstrate that a simple model of 3D

interaction of objects can be used to represent occlusions effectively for object detection

under arbitrary viewpoint without requiring additional training data. We propose a

tractable method to capture global visibility relationships and show that it is more

informative than the typical a priori probability of a point being occluded. Our results

on a challenging dataset of feature-poor objects under severe occlusions demonstrate

that our approach can significantly improve object detection performance.





Chapter 7

Coherent Reasoning through

Efficient Search

In the previous chapter, we proposed an occlusion model for object detection under

arbitrary viewpoint to score binary matching patterns. One drawback of requiring the

object detector to return a binary decision on whether a boundary point is matched or

not matched is that a small set of misclassifications can significantly affect the occlusion

distribution as shown in Figure 7.1. In this chapter, we take the core idea of representing

occluders as bounding boxes which are on the same surface as the object of interest and

reformulate the problem of occlusion reasoning as efficient search. Our approach directly

operates on probabilities and thus does not require any hard commitment by the object

detector. We also return the predicted occlusion mask which can be used to better

understand the layout of the scene.

The main contributions of this chapter are three-fold: 1) formulating occlusion rea-

soning as efficient search, 2) providing a coherent method for probabilistic reasoning on

multiple cues, and 3) scoring the matching pattern of an object detector. Our approach

provides a more accurate estimate of the occlusion mask (Figure 7.2) and improves object

detection performance.

7.1 Occlusion Model

The occlusion model from the previous chapter marginalized over all possible occluders

to compute an occlusion likelihood which was then used to score an occlusion hypothesis.

In this chapter, we propose to directly search for a set of valid occluders to explain the

matching pattern, M, from Section 6.1. The hypothesis is that if M can be explained

well by a set of valid occluders, it is more likely to be a true detection than those matching

patterns that cannot. Instead of requiring that the matching probabilities of markers be

binary, we allow pi ∈ [0, 1] and the weights to be arbitrary.
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Figure 7.1: Example of OCLP’s sensitivity to misclassifications. (top) We show the
conditional likelihood distribution for an ideal case. (bottom) We show the conditional
likelihood distribution when a single point is misclassified. The distributions are signifi-
cantly different.

We follow the previous chapter and approximate objects occluding objects as bound-

ing boxes and consider valid occluders as those boxes which touch the base of the object.

Boxes with a base lower than this do not need to be considered as we only care about

matching probabilities on the object.

Given this model of occluders, the goal is to search for the best set of occluder

boxes b∗ (oboxes) to explain M. Each obox is parameterized by its top, left and right

coordinates (t, l, r) with the bottom fixed to the base of the object.

7.1.1 Formulation

We define the value of each marker Zi to be:

vi = wi · (2pi − 1). (7.1)

For uniform marker weights (i.e., wi = 1), definitely visible markers have a value of

vi = 1 and definitely occluded markers have a value of vi = −1. When a marker Zi falls

inside any obox, b, its value is negated, essentially rewarding markers more likely to be

occluded and penalizing markers more likely to be visible. An object occlusion is thus

represented by a set of oboxes, b. We define the occlusion quality function q : B → R to

be:

q(b) =
∑
Zi /∈b∪

vi −
∑
zj∈b∪

vj , (7.2)
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Figure 7.2: Example occlusion predictions. Given a hypothesis detection from a cup
detector, the proposed Occlusion Efficient Subwindow Search (OESS) method predicts
the occlusion mask and determines how likely it belongs to a true detection. From left
to right we show (1) detection, (2) predicted occluder boxes and (3) predicted occlusion
mask.

where B is the set of all possible oboxes, b ⊂ B, and b∪ is the union of all oboxes b ∈ b.

The first term considers all markers outside the union of the obox set, giving positive

score to visible markers and penalizing occluded markers. The second term considers all

markers inside the union of the obox set, giving positive score to occluded markers that

are explained and penalizing visible markers. The best obox set is given by:

b
∗ = argmax

b⊂B
q(b). (7.3)

For an m × n pixel sized object, B has on the order of O(mn2) elements which would

be time consuming to exhaustively search, even for a single obox. In addition, it is

difficult to determine the number of oboxes a priori. We extend the branch and bound

scheme of Efficient Subwindow Search (ESS) [60] to find b
∗. Table 7.1 shows that our

proposed approach, Occlusion Efficient Subwindow Search (OESS), is significantly faster

than applying brute force search for a single obox iteratively.

7.1.2 Occlusion Efficient Subwindow Search (OESS)

Instead of an exhaustive search over all possible obox sets, we formulate the problem

as a greedy global branch-and-bound search [60]. Each search iteration returns a single

globally optimal obox for the current set of markers Z. In the following, we describe

how to find a single obox.

The branch-and-bound search is performed by hierarchically splitting the parameter

space into disjoint sets while maintaining the upper bound of performance for each

subset. The most promising subsets of the space are explored first. Sets of oboxes in

the search are represented by intervals over each of the coordinates [T, L,R], where for

example T = [tlo, thi].

For each obox set b, we compute an upper bound q̂(b) on the occlusion quality q(b)

in Equation 7.2 for any obox b ∈ b. The search is performed by always looking at the
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Algorithm 1 Occlusion Efficient Subwindow Search

Require: markers Z, values vi and bounding function q̂
1: initialize b∗ = ∅
2: while Z 6= ∅ do
3: initialize priority queue P to empty
4: set x̂ and ŷ to be the unique coordinates of Z
5: set b = [T, L,R] = ŷ × x̂× x̂
6: repeat
7: split b into b1 and b2

8: push [b1, q̂(b1)] onto P
9: push [b2, q̂(b2)] onto P

10: retrieve b with highest upper bound from P
11: if q̂(b) ≤

∑
Zi /∈b∗∪ vi then

12: return b
∗

13: end if
14: until b is a single rectangle
15: add b to b∗

16: remove markers Zi ∈ b∪ from Z
17: end while
18: return b

∗

set with the highest upper bound. If the most promising set contains a single obox, the

search is terminated as its quality will be at least as good as all remaining sets. If the set

contains more than one obox, it is split into two disjoint sets along the largest coordinate

and upper bounds are computed for each. To avoid having many thin oboxes, we require

that each obox have at least a minimum width of γ. After each split, we enforce that

lhi = min(lhi, rhi − γ) and rlo = max(rlo, llo + γ). A priority queue is used to maintain

the ordering of the obox sets. Since the markers are often sparse, we speed up the search

by considering only unique marker coordinates instead of all the values in the interval.

Once the branch-and-bound search terminates, a single obox with the maximum

quality is returned. Since many objects have multiple occluders, we continue the search

by removing all markers in Z covered by the current predicted obox set b∗ and rerun

the search on the remaining markers. We iterate until either the upper bound of the

quality function for any b is less than or equal to not putting an obox at all (i.e.,

q̂(b) ≤
∑

Zi /∈b∗∪ vi), or Z is empty. Algorithm 1 shows the pseudocode for OESS.

7.1.3 Occlusion Quality Bound

The bounding function q̂ is an upper bound on the occlusion quality for any obox b ∈ b.

It has to satisfy two properties: 1) q̂(b) ≥ maxb∈b q(b), and 2) q̂(b) = q(b) if b is the

only element in b. In ESS, only markers contained within the box matter. However

for occlusion reasoning, we care about whether markers outside the obox are correctly
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lot

hit

lol hil lor hir

Figure 7.3: Illustration of the upper bound q̂ of the occlusion quality for b = [T, L,R] on
a binary visibility hypothesis with w = 1. In this example, qpout(b∩) = 6, qnout(b∪) = −1,
qpin(b∩) = 1 and qnin(b∪) = −4. Thus, q̂ = 6 + (-1)− 1− (-4) = 8.

# of markers brute force (ms) OESS (ms) speedup

100 58.1 2.1 28x
250 1106.4 11.8 94x
500 10365 54.6 190x
1000 77548 221.2 351x

Table 7.1: OESS vs. brute force speed. Times were averaged over 10 trials using random
points and matching probabilities.

classified as well. We can partition Equation 7.2 into q = qout − qin, where qout contains

the markers outside b and qin contains the markers inside b. We can further partition

qin = qpin + qnin and qout = qpout + qnout, where qpin and qpout contain the positive terms and

qnin and qnout contain the negative terms. Thus, we have that:

q = qpout + qnout − q
p
in − q

n
in. (7.4)

An upper bound for b that satisfies the two properties is:

q̂(b) = qpout(b∩) + qnout(b∪)− qpin(b∩)− qnin(b∪), (7.5)

where b∪ is the union of all b ∈ b and b∩ is their intersection. When b is a single

obox, b = b∪ = b∩ and property 2 is satisfied. To show that property 1 is true, we first

consider markers outside b. The markers outside any b ∈ b is a subset of markers outside

b∩ and a superset of markers outside b∪. Since qpout contains only positive elements and
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qnout contains only negative elements, qpout(b∩) ≥ qpout(b) and qnout(b∪) ≥ qnout(b) for all

b ∈ b. The converse is true for markers inside the obox, and it can be shown that

qpin(b∩) ≤ qpin(b) and qnin(b∪) ≤ qnin(b). Combining these inequalities, we have that for

any rectangle in b:

q̂(b) = qpout(b∩) + qnout(b∪)− qpin(b∩)− qnin(b∪) ≥ q(b). (7.6)

The intersection b∩ and union b∪ can be computed efficiently as b∩ = [tlo, lhi, rlo] and

b∪ = [thi, llo, rhi]. If lhi > rlo, then b∩ = ∅. The computation of qpin, qnin, qpout and qnout

can be done efficiently using integral images [118]. Figure 7.3 shows an illustration of

the upper bound.

7.2 Combining with Object Detection

Given the matching patternM, our OESS method returns the best obox set, b∗, and its

occlusion quality q(b∗). While this occlusion quality can be used by itself as the score

of the detection, it does not account for how well the object is matched. A detection

with all the markers being occluded (i.e., pi = 0) would receive a very high occlusion

quality score since it can be fully explained with an obox that covers the whole object.

However, no object markers are matched. To incorporate the OESS occlusion quality q

with the raw score s returned by the object detector, we learn a linear weighting using

an Exemplar SVM (ESVM) [73] between, s, q and their product sq:

score = α1s+ α2q + α3sq. (7.7)

The single positive example (s+, q+) is the ideal detection where s+ is the score of the

detector on the training image, and q+ =
∑
wi is the maximum occlusion quality when

all points are visible. The goal of the ESVM is to determine the weighting which best

separates the false positives from this point. An ideal detection would thus have both a

high matching score as well as a high occlusion quality. The parameters for training the

ESVM are the same as [73] and we use three iterations of hard negative mining. Since the

ESVM output is not calibrated between different detectors, it is difficult to choose the

best scoring template for object recognition. We calibrate the scores using the Extreme

Value Theory [101], as it does not require positive examples, which are often difficult to

obtain. Negative data are easily obtained by sampling background images.

The OESS method can be used to rank the matching patterns of any object de-

tector which returns the probability that markers on the object are matched. We use

the method described in Section 6.2.1 to obtain the matching probabilities. The only

difference is that we do not threshold the probabilities here.

In addition, our method can easily integrate multiple cues. Different marker types,

however, capture different spatial extent of information around their positions. Boundary
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Figure 7.4: Example detections and occlusion reasoning using OESS on CMU KO8.
From left to right, we show (1) the original image with bounding box of detection, (2)
the zoomed in view of the detection, (3) boundary matches, (4) activation scores of
region cells using texture and color, (5) hypothesized oboxes, (6) predicted occlusion
mask, and (7) groundtruth occlusion mask. For columns 3 and 4, the hotter the color,
the better the match. To be consistent, red points indicate matched boundary points
and blue points indicate points that are not matched.

cues, such as LINE2D, use sampled edge points which only consider information very

locally. Grid-based approaches, such as HOG, cover a much larger area for each grid cell.

Intuitively, we want to give more weight to points that have a larger region of influence.

We weight each marker by the area in pixels of the region it represents. For grid based

methods, this is the area of the cell. For point-based methods, this is the area of the

sampling circle.
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7.3 Evaluation

We evaluate our occlusion model’s performance in object instance detection by conduct-

ing two sets of experiments. The first evaluates the algorithm’s accuracy in predict-

ing occlusions, and the second evaluates the algorithm’s ability to detect objects. We

systematically analyze the combination of boundary, texture, and color cues with our

Boundary and Region Templates of Chapter 5 and their effect on occlusion reasoning.

We set γ = 16 for all of the experiments. We evaluate our approach on the CMU Kitchen

Occlusion Dataset.

7.3.1 Occlusion Prediction

First, we evaluate the performance in predicting the occluded region. We convert the

best obox set, b∗, of each detection window into a binary occlusion mask (Figure 7.4).

The performance is evaluated using the standard intersection-over-union (IoU) metric

between the predicted mask and the groundtruth mask from the dataset. We average the

IoU for all the images of all the objects. We compare our method against thresholding the

matching probabilities at 0.5, the mean-shift occlusion reasoning approach of [120] which

enforces local coherency, and OCLP [49]. Since thresholding and mean-shift on B produce

only point classifications, we dilate the classifications by the sampling radius of rLINE2D

to produce an occlusion mask. This dilation captures the local region of influence of each

point. In addition, OCLP is a scoring mechanism and does not predict an occlusion mask.

We generate a mask by first thresholding the matching probabilities at 0.5 to get the

matched points. Then, we evaluate the occlusion conditional likelihood [49] at all points

on the object mask given these matched points and threshold it to predict the occlusion.

Figure 7.5 shows a bar graph comparing the different occlusion prediction approaches.

From the figure, OESS significantly outperforms the other methods for all templates

except for color. Again, poor confidences by using color hurt the occlusion reasoning

performance. This suggests that most of the information is contained in texture and

boundary.

In addition, thresholding and mean-shift perform significantly worse since they do not

account for occlusion structure in the real world. OCLP captures some structure and

works well for rLINE2D, but is sensitive to binary misclassifications, especially when

applied to approaches that use a dense grid. OESS operates directly on probabilities

and captures higher level occlusion structure which results in more accurate occlusion

prediction.

Figure 7.6 shows example failure cases of the full system (HOG+GN+color with

OESS). In the first case, the occluding object violates our bounding box assumption and

we are unable to recover a good occlusion mask. In the second case, the matching prob-
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Figure 7.5: Occlusion prediction performance on CMU KO8. We compare OESS with
thresholding the matching probabilities, using the mean-shift approach of [120] to enforce
local occlusion coherency, and OCLP. We report the average intersection-over-union
(IoU) between the predicted mask and the groundtruth. OESS significantly outperforms
all the approaches.

Figure 7.6: Example failure cases using OESS for occlusion segmentation of a pitcher. In
the first row, the occlusion does not satisfy the bounding box approximation of occluders.
In the second row, the region template produces inaccurate activation scores.

abilities are inaccurate. More robust templates which obtain more accurate matching

probabilities will aid in improving the performance of occlusion reasoning and OESS.

7.3.2 Object Detection

We also need to verify that our method maintains or improves the detection performance

while significantly improving the occlusion prediction. In the following experiments, an

object is correctly detected if it satisfies the PASCAL overlap criterion [28] with the

ground truth bounding box. We compare our occlusion reasoning approach with the OPP

and OCLP approaches. Since these methods require binary matching classifications, we

threshold the matching probabilities at 0.5.

We compare the occlusion reasoning on different combinations of boundary (rLINE2D

and GN), texture (HOG), and color cues. Figure 7.7 shows the Precision/Recall curves.

Table 7.2 summarize these curves using the Mean Average Precision (mAP).

From the tables, OESS improves the performance over the baseline for all the cues.
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Single baseline +OPP +OCLP +OESS

HOG 0.55 0.56 0.55 0.56
rLINE2D 0.49 0.53 0.61 0.61
GN 0.65 0.65 0.73 0.73
color 0.05 0.04 0.03 0.04
HOG+rLINE2D 0.72 0.73 0.76 0.75
HOG+GN 0.77 0.78 0.81 0.81
HOG+color 0.63 0.64 0.64 0.64
rLINE2D+color 0.56 0.59 0.62 0.60
GN+color 0.71 0.71 0.74 0.75
HOG+rLINE2D+color 0.74 0.75 0.78 0.78
HOG+GN+color 0.77 0.78 0.81 0.80

Multiple baseline +OPP +OCLP +OESS

HOG 0.50 0.48 0.55 0.54
rLINE2D 0.29 0.33 0.37 0.47
GN 0.70 0.69 0.76 0.85
color 0.12 0.02 0.02 0.17
HOG+rLINE2D 0.56 0.58 0.60 0.61
HOG+GN 0.80 0.81 0.83 0.85
HOG+color 0.55 0.54 0.61 0.61
rLINE2D+color 0.36 0.42 0.43 0.43
GN+color 0.77 0.76 0.76 0.79
HOG+rLINE2D+color 0.58 0.61 0.64 0.64
HOG+GN+color 0.80 0.81 0.83 0.85

Table 7.2: Object detection on CMU KO8: Mean Average Precision.

Importantly, it never performs worse, unlike OPP and OCLP. In addition, OESS out-

performs OPP and OCLP in all cases for the typical recognition scenario with multiple

object viewpoints. By reasoning on matching probabilities instead of hard classifications,

our approach is more robust when fusing multiple cues.

Figure 7.9 shows the images containing the hardest true positives to detect for each

object. The detections in these images have the lowest score among all the true positives.

For these images, the objects are heavily occluded, making it difficult even for humans

to find them.

Figure 7.10 shows the highest scoring false positives using HOG+GN+color and

OESS. These detections have large coherent portions which match the shape and interior

appearance of the object well, and which also largely obey the occlusion model. To

reject these false positives, additional information such as image segmentations [115]

and geometric context [47] are needed.
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Figure 7.7: Precision/Recall plots on CMU KO8 for single view for all templates.
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Figure 7.8: Precision/Recall plots on CMU KO8 for multiple views for all templates.
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(a) baking pan (b) colander (c) cup (d) pitcher

(e) saucepan (f) scissors (g) shaker (h) thermos

Figure 7.9: Images containing the hardest true positives to detect. The objects in these
images are heavily occluded and have scores lower than many false positives.

7.4 Discussion

The main contribution of this chapter is to formulate occlusion reasoning as an efficient

search over occluding blocks which best explain a probabilistic matching pattern. Our

approach is able to coherently reason on matching patterns returned from multiple cues.

Given a set of hypothesis object detections, we effectively score them based on how well

the matching pattern can be explained by a set of valid occluding boxes. Our results

on a challenging dataset of objects under severe occlusions and in heavy clutter demon-

strate significant improvement over state-of-the-art methods for occlusion prediction and

instance detection.
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Figure 7.10: Highest scoring false positives. These false positives have large portions
which match the object of interest. Additional information is needed to filter these
windows.



Part V

Conclusion





Chapter 8

Contributions

In this dissertation, we have explored techniques for addressing ambiguity when detecting

objects in scenes with severe clutter and occlusions. Our work has focused on the three

key components of this problem: similar features, feature-poor objects, and occlusions.

In this chapter, we summarize our findings in these areas.

Our main contributions are as follows:

• Similar Features: We address the problem of similar/repeated features when using

discriminative keypoints for 3D object detection. Our Discriminative Hierarchical

Matching (DHM) method preserves feature ambiguity at the matching stage, and

disambiguates the correspondences at hypothesis testing using View-constrained

RANSAC. We show that adding Simulated Affine features to the 3D model al-

lows the system to handle viewpoints significantly different from the model images

and that the quantization framework addresses matching these Simulated Affine

features which can often be very similar.

• Gradient Networks: We address the problem of detecting feature-poor objects

based on shape. Our approach captures contour connectivity directly on low-level

image gradients without having to extract edges. Our shape matching framework

seamlessly incorporates local appearance information around the shape such as

gradient orientation, color and texture, and can utilize arbitrary edge potentials.

We demonstrate an overall improvement of 19% in Average Precision over HOG

and other shape matching methods, and we show that our approach is more robust

when objects are under severe occlusions.

• Boundary and Region Templates: We introduce a framework for detecting feature-

poor objects which incorporates both an explicit representation of the boundary as

well as the appearance of the interior (e.g., texture and color). We demonstrate that

the lack of texture is actually informative and that while approaches such as HOG
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do capture a coarse representation of the boundary, using an explicit representation

can significantly improve the detection performance. Our full representation yields

an improvement of 34% in Average Precision over HOG and 10% over Gradient

Networks which uses shape alone.

• Occlusion Reasoning : We introduce two methods for increasing the robustness of

object detection under arbitrary viewpoint when objects are under severe occlu-

sions. Our first approach models the structure of occlusions with an Occlusion

Conditional Likelihood by computing the probability a marker on the object is vis-

ible given the visibility labelings of all the other markers. We derive the likelihood

under arbitrary viewpoint analytically by approximating objects as 3D bounding

boxes and using a distribution of occluder dimensions. We score hypothesis de-

tections based on how likely they conform to our occlusion model by penalizing

markers which are inconsistent with the Occlusion Conditional Likelihood.

Our second approach takes the core idea of representing occluders as bounding

boxes and reformulates the problem of occlusion reasoning as efficient search. Our

Occlusion Efficient Subwindow Search (OESS) method searches for a set of valid

occluders which best explain a matching pattern from the detector and scores a

detection based on how well the occlusions can be explained. The approach oper-

ates directly on matching probabilities and seamlessly incorporates many different

types of cues.
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Future Directions

Despite our contributions, this work is only a small step towards detecting object in-

stances robustly in cluttered scenes. The system we propose is not perfect and its per-

formance is still far from that of human perception. In this chapter, we discuss several

areas which may be useful for further investigation as follow-up works to this thesis.

9.1 Fine-grained Verification

The ultimate goal of object instance detection is to find an exact object in an image.

However current state-of-the-art systems, as well as our own, can at best only produce

hypotheses which look similar to the object of interest. In general, many man-made

objects belonging to the same category have similar appearance. For example, almost

all mugs are composed of a handle attached to a cylinder, and all laptops have a screen

with a keyboard. The difference which separate two objects of the same category lie in the

fine-grained details (Figure 9.1). Mugs, for example, may differ in properties such as the

shape of the handle, the size of the cylinder, or the materials they are made from. Current

approaches are unable to separate these details well. While matching templates pixel

for pixel could capture fine-grained details, objects appearing under slightly different

viewpoints and lighting conditions would make these approaches intractable. Allowing

for variation on the other hand would implicitly allow for objects which may not be

exactly the same.

The problem becomes significantly more challenging when objects are occluded. In

these cases, the score of similar objects are likely to be higher than the correct object

under high levels of occlusion. While humans can usually still discriminate the fine-

grained details and correctly identify an object, there reaches a point where there is just

not enough information since the occluded area is inherently ambiguous. If the entire

set of possible objects in the world are known, it may be possible to determine if the

occluded region is informative. But in general, this is not the case and the occluded



114 CHAPTER 9. FUTURE DIRECTIONS

Figure 9.1: Fine-grained discrimination of mugs. The differences between these mugs
are in the fine-grained details.

region can contain anything.

Recently, there has been a surge in interest in fine-grained discrimination within

object categories such as birds [121], plant leafs [56], and dogs [54]. The key component

of these algorithms is to obtain good alignment with a generic category model to perform

the separation. However, even with good alignment, the problem of separating noise from

distinctiveness remains, and there is still much work left to be done.

9.2 Scalable Representation

Currently, our object representation is primarily based on templates. While view-

invariant techniques exist, we choose non-invariant methods as they are able to directly

observe the projection of the object for each view. This is important for capturing the

fine-grained details. However brute force template matching requires a large number of

templates to cover all the object viewpoints. While approaches such as LINE2D have

shown that thousands of templates can be matched in near real-time, the method is only

able to scale linearly with the number of templates. In the real world, there exist billions

of distinct objects, making methods which scale linearly intractable.

However objects in the real world often share very similar properties. For example

many objects within the same category usually look very similar. One possibility is

to design a hierarchy of templates where initial templates separate a broad class of

similar objects from the background, and each level of the hierarchy performs further

discrimination. For a well-balanced hierarchy, the computation complexity would on the

order of the logarithm of the number of templates, making it more tractable.

Another possibility is to share features between the objects, such as the boosting

method of Torralba et al. [114] and the steerable basis of Pirsiavash and Ramanan [88].

Shape grammar [129] methods have also been used to build a hierarchy of feature parts

where each successive level uses the features from the previous level. However one draw-

back of feature sharing is controlling the level of variation within each shared feature. If

too much variation is allowed, the object instance will not be the same. If not enough
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variation is allowed, there may be no sharing at all. One possible solution may be to do

an initial coarse matching by sharing features and then perform fine-grained verification

as proposed in the previous section.

9.3 Incorporating Depth Information

In this thesis, we focused on recognizing object instances from a single 2D image. How-

ever for many applications, such as robotic manipulation, depth information from sensors

such as laser scanners and stereo cameras are available as well. Particularly with the

introduction of the Microsoft Kinect [105], the access to RGB-D and 3D data is be-

coming more pervasive. A possible extension of our work is to try and incorporate 3D

information with the object representation and occlusion reasoning.

There has already been work on representing objects using RGB-D information such

as by Hinterstoisser et al. [44] and Lai et al. [58]. These are primarily extensions of

popular approaches such as sparse edge point matching methods and HOG from 2D

to 3D. One possibility in our representation is to not only incorporate surface normal

information such as in LINEMOD [44], but to incorporate smoothness using an approach

similar to Gradient Networks. Instead of only matching based on local information, we

can find smooth connected surfaces which match the object as well.

Having depth information can also significantly improve occlusion reasoning. Not

only can we use it to classify occlusions based on whether the surface normals and depth

match, we can determine which objects are in front of others. This information can

then be used to obtain better segmentations of the object for ranking the hypothesis and

fine-grained verification.

In addition, we can also use the depth to constrain the scale of the templates. By

doing so, we only need to scan a template at one scale per image location instead of at all

scales on a scale pyramid. This can potentially save a significant amount of computation.





Chapter 10

Closing Thoughts

Objects which lack discriminative features are the most difficult objects for Computer

Vision systems to detect automatically. In cluttered environments, the lack of distinctive

features makes it impossible to avoid some accidental alignment between the object and

the background. Occlusions in these scenes further exacerbate the problem by increasing

the overall ambiguity, resulting in false positives that have higher scores than occluded

true positives. The work presented in this thesis is a step towards detecting objects

robustly in these challenging scenarios. While object instance detection still remains an

open area of research, the primary challenges we foresee moving forward are fine-grained

discrimination and scalability.

We conclude this thesis with the three guiding principles which have been the driving

forces behind this research. First, be non-committal; procrastinate hard decisions until

as late as possible. Second, there is structure to the world; exploit it. Lastly, one man’s

noise is another man’s signal1; use every piece of information available.

1Edward W. Ng, New York Times, 1990.
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Appendix A

Datasets

While there exist many vision datasets for object categories (e.g., PASCAL [28], Ima-

geNet [25], LabelMe [99], SUN [126]), there are very few for evaluating object instance

detection in natural scenes. Early work in object instance detection [41, 68] primarily

evaluated their algorithms in controlled setups. While large datasets were collected, such

as the Columbia University Image Library (COIL-100) [83] and the Amsterdam Library

of Object Images (ALOI) [37], they primarily contained objects on simple, monotone

backgrounds with very little clutter. Many recent datasets, such as the Table Top Ob-

ject Dataset [7], often still contain objects only on simple backgrounds.

To evaluate feature-based methods in more cluttered environments, Rothganger et

al. [98] proposed a database of eight objects. However, their evaluation set contains only

51 images and many of the scenes are staged and not natural. In addition, all of the

algorithms they evaluated on the dataset achieve well over 90% performance. To perform

detailed analysis of the failure modes of object detection systems, synthetic datasets such

as NORB [61] have been used. However, results on images with synthetic backgrounds

and lighting conditions can not be directly transferred to natural images.

Recently, Lai et al. [58] proposed an RGB-D object dataset collected in household

environments. While their dataset contains objects in scenes that are more natural

than previous datasets, the majority of objects are well spread out on a table with very

little clutter and occlusions. The state-of-the-art LINE2D and LINEMOD algorithms

by Hinterstoisser et al. [44] were evaluated on their self-collected dataset of six objects,

where the test set for each object was a single video sequence. While the images are

very cluttered, the clutter was the same for all the images and the objects have little to

no occlusion. In addition, their template matching methods already achieve over 90%

on the dataset. This high level of performance is consistent with our observation in

Chapter 4 that many algorithms work well when objects are unoccluded, but degrade

rapidly in natural scenes where occlusions are common. While we evaluated on a subset

of these datasets, we collected two datasets: 1) CMU Grocery Dataset (CMU10 3D) for
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Figure A.1: CMU Grocery Dataset (CMU10 3D). (top) 10 feature-rich kitchen objects
in the dataset. (bottom) Example images showing objects in severe clutter with lighting
variation and occlusions.

feature-rich objects and 2) CMU Kitchen Occlusion Dataset (CMU KO8) for feature-

poor objects, to perform detailed analysis in more natural scenes with severe clutter and

occlusions. Our datasets contain groundtruth object pose and occlusion labels.

A.1 CMU Grocery Dataset (CMU10 3D)

This dataset contains 10 feature-rich household objects (clam chowder can, soymilk can,

tomato soup can, orange juice carton, soy milk carton, diet coke can, pot roast soup,

juice box, rice tuscan box, rice pilaf box) with 62 images per object, for a grand total of

620 images. Figure A.1 shows the objects in the dataset as well as a few example images.

For each object, three types of images were taken. 25 images contain one instance of the

object, and 25 images contain two instances, both with their ground truth marked as

regions and ID within the image. Finally, 12 more images were collected in a calibrated

setup and their full 6D poses were groundtruthed.
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Figure A.2: CMU Kitchen Occlusion Dataset (CMU KO8). (top-left) 8 feature-poor
kitchen objects in the dataset. (top-right) The dataset contains roughly equal amount
of partial occlusions (1-35%) and heavy occlusions (35-80%). (bottom) Example images
showing objects in cluttered environment under severe occlusions.

A.2 CMU Kitchen Occlusion Dataset (CMU KO8)

This dataset contains 1600 images of 8 feature-poor household objects and is split evenly

into two parts; 800 for a single view of an object and 800 for multiple views of an object.

Figure A.2 shows the 8 objects with a few example images.

The single-view part contains groundtruth labels of the occlusions and Figure A.2

shows that our dataset contains roughly equal amounts of partial occlusion (1-35%) and

heavy occlusions (35-80%) as defined by [27], making this dataset very challenging.

For multiple-view evaluation, we focus our viewpoint variation to primarily the ele-

vation angle as relative performance under different azimuth angles is similar. We use

25 model images for each object which is the same sampling density as [44]. Each model

image was collected with a calibration pattern to groundtruth the camera viewpoint and

to rectify the object silhouette to be upright. The test data was collected by changing

the camera viewpoint and the scene around a stationary object. A calibration pattern

was used to ground truth the position of the object.





Appendix B

Computing Occlusion

Distributions

Many of the results derived for the Occlusion Prior and Occlusion Conditional Likelihood

in Chapter 6 are from the classic field of integral geometry [100]. In the following, we

show the detailed derivations.

B.1 Probability Density of ŵ

We show how to transform a uniform variable over a π
2 interval by Equation 6.1 using the

distribution function technique [46]. First, let’s simplify the equation for the projected

width:

ŵ(θ) = w · cos θ + l · sin θ (B.1)

=
√
w2 + l2 ·

{
w√

w2 + l2
· cos θ

+
l√

w2 + l2
· sin θ

}
(B.2)

=
√
w2 + l2 ·

{
cos

[
tan-1

(
l

w

)]
· cos θ

+ sin

[
tan-1

(
l

w

)]
· sin θ

}
(B.3)

=
√
w2 + l2 · cos

[
θ − tan-1

(
l

w

)]
. (B.4)

Since the transformation over any π
2 interval is equivalent, the shift by tan-1

(
l
w

)
is irrele-

vant. For simplicity of derivation, consider the interval [θ1, θ2], where θ1 = cos-1
(

l√
w2+l2

)
and θ2 = cos-1

(
w√
w2+l2

)
. We define the random variable Θ to have a uniform density
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over this interval:

pΘ(θ) =

2/π, θ1 ≤ θ ≤ θ2

0, else.
(B.5)

To compute the probability density of ŵ, we apply the transformation:

g(θ) = ŵ(θ)/
√
w2 + l2 = cos θ, (B.6)

to Θ to produce the random variable Y (i.e., Y = g(Θ)). The distribution function

technique calculates the density pY (y) of Y by first finding the cumulative distribution

function PY (y) and then taking the derivative. There are two cases.

Case 1: cos θ2 < y < cos θ1

PY (y) =

∫ θ2

cos-1 y

2

π
· dθ (B.7)

= − 2

π
cos-1 y +

2

π
θ2 (B.8)

pY (y) =
2

π
√

1− y2
(B.9)

Case 2: cos θ1 < y < 1

PY (y) =

∫ − cos-1 y

−θ1

2

π
· dθ +

∫ θ2

cos-1 y

2

π
· dθ (B.10)

= − 4

π
cos-1 y +

2

π
(θ1 + θ2) (B.11)

pY (y) =
4

π
√

1− y2
(B.12)

Thus we have that:

pY (y) =


2

π
√

1−y2
, cos θ2 < y < cos θ1

4

π
√

1−y2
, cos θ1 < y < 1

(B.13)

Substituting in θ1, θ2 and y, we obtain the probability density function pŵ(ŵ) in Equa-

tion 6.2.

B.2 Occlusion Prior

We show how to compute the area AVi,Oc covering all the possible positions of the red

block in Figure 6.3a which occlude the object but keep the point Xi visible. This region

is specified in green in Figure B.1. To compute the area AVi,Oc , we break it up into the

area of three parts:

AVi,Oc = ∆1,1 + ∆1,2 + ∆2. (B.14)
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iX iX

wWobj ˆˆ +
ŵ

ĥ
1,1∆ 2∆ 2,1∆𝐴𝑉𝑖,𝑂𝑐  

Figure B.1: Detailed illustration of how to compute the area AVi,Oc covering all the
possible positions where the red block in Figure 6.3a occludes the object while keeping
Xi visible.

From the figure, we can see that the purple region has area:

∆1,1 + ∆1,2 = Ŵobj · ĥ. (B.15)

Note that this area does not depend on the position of Xi. On the other hand, the area

of yellow region does depend on the y coordinate of Xi. If the projected height of the

block ĥ is shorter than yi, the height of the yellow region is ĥ. If it is taller, there are

less possible positions of the red block and the height of the yellow region is yi. Thus its

area is:

∆2 =

ŵ · ĥ, ĥ ≤ yi
ŵ · yi, ĥ > yi

(B.16)

Combining Equations B.15 and B.16, we get the area AVi,Oc in Equation 6.7.

B.3 Occlusion Conditional Likelihood

We show how to compute the area AVi,Vj ,Oc covering all the possible positions of the red

block in Figure 6.3a which occlude the object but keep both points Xi and Xj visible.

Without loss of generality, assume that Xi is lower than Xj (i.e., yi ≤ yj). If this is not

the case, we can simply switch the points. The region is specified in green in Figure B.2.

To compute the area AVi,Vj ,Oc , we break it up into the area of five parts:

AVi,Vj ,Oc = Λ1,1 + Λ1,2 + Λ2 + Λ3 + Λ4 (B.17)

From the figure, we can see that the purple region has area:

Λ1,1 + Λ1,2 = (Ŵobj − |xi − xj |) · ĥ (B.18)



128 APPENDIX B. COMPUTING OCCLUSION DISTRIBUTIONS

iX

1,1Λ 2,1Λ

wWob j ˆˆ +
ŵ
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Figure B.2: Detailed illustration of how to compute the area AVi,Vj ,Oc covering all the
possible positions where the red block in Figure 6.3a occludes the object while keeping
both Xi and Xj visible.

The area of the yellow region is the same as for the occlusion prior, and it does not

depend on the location of Xj :

Λ2 =

ŵ · ĥ, ĥ ≤ yi
ŵ · yi, ĥ > yi

(B.19)

The blue region covers the positions of the block which can fit in between Xi and Xj . If

the projected width ŵ is greater than |xi − xj |, it can not fit in this region and the area

is 0. However, if it is less than |xi − xj |, the width of the blue region is |xi − xj | − ŵ.

Thus the area is:

Λ3 =

(|xi − xj | − ŵ) · ĥ, ŵ ≤ |xi − xj |

0, ŵ > |xi − xj |
(B.20)

The orange region covers the positions of the block that are below Xj . When the

projected width ŵ is less than |xi − xj |, the computation of the area is similar to Λ2.

However, when it is greater, the possible horizontal positions of the block is restricted

by point Xi. In this case, instead of ŵ positions, there are only |xi−xj | positions. Thus

the area is:

Λ4 =



ŵ · ĥ, ŵ ≤ |xi − xj |, ĥ ≤ yj
ŵ · yj , ŵ ≤ |xi − xj |, ĥ > yj

|xi − xj | · ĥ, ŵ > |xi − xj |, ĥ ≤ yj
|xi − xj | · yj , ŵ > |xi − xj |, ĥ > yj .

(B.21)
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Combining Equations B.18, B.19, B.20, B.21 and simplifying it, we get:

AVi,Vj ,Oc = (Ŵobj − |xi − xj |) · ĥ

+ŵ ·min(ĥ, yi)

+δ(ŵ ≤ |xi − xj |) · (|xi − xj | − ŵ) · ĥ

+ min(ŵ, |xi − xj |) ·min(ĥ, yi) (B.22)

Integrating over the projected width and height distributions pŵ and pĥ, we get the

average area in Equation 6.11.

B.4 Computing Area for Silhouette

We show how to compute the area of the silhouette As used in Equation 6.14 and 6.15.

Given a mask M , we extract the height of the lowest point YM (x) relative to bottom of

the mask for each unique position x ∈ XM . Then for an occluder with projected width

and height (ŵ, ĥ), the area covering all the positions that intersect the bounding box but

not the silhouette is given by,

As =

∫
Ω(XM ,YM , ŵ, ĥ) · dx, (B.23)

where Ω(XM ,YM , ŵ, ĥ) is the Mask Sliding Min shown in Algorithm 2. This function

considers the highest position to place an occluder at position x while not intersecting

the mask. The position is lower than than height of the occluder and lower than the

height of all mask points within an interval [−ŵ/2, ŵ/2] of x.

Algorithm 2 Mask Sliding Min, Ω(XM ,YM , ŵ, ĥ)

Require: bottom of mask (XM ,YM ), projected width ŵ, projected height ĥ
1: YM = min(YM , ĥ)
2: for x = min(XM )− ŵ

2 → max(XM ) + ŵ
2 do

3: Z(x) = minx̂∈[x−ŵ/2,x+ŵ/2] YM (x̂)
4: end for
5: return Z

For a distribution of occluding blocks pŵ(ŵ) and pĥ(ĥ) for ŵ and ĥ respectively, the

average areas are then given by:∫∫∫
Ω(XM ,YM , ŵ, ĥ) · pŵ(ŵ) · pĥ(ĥ) · dx · dŵ · dĥ. (B.24)
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