
Using Feature Construction to Avoid Large Feature Spaces
in Text Classification

Elijah Mayfield
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213
elijah@cmu.edu

Carolyn Penstein-Rosé
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213

cprose@cs.cmu.edu

ABSTRACT
Feature space design is a critical part of machine learning.
This is an especially difficult challenge in the field of text
classification, where an arbitrary number of features of vary-
ing complexity can be extracted from documents as a pre-
processing step. A challenge for researchers has consistently
been to balance expressiveness of features with the size of
the corresponding feature space, due to issues with data
sparsity that arise as feature spaces grow larger. Drawing
on past successes utilizing genetic programming in similar
problems outside of text classification, we propose and im-
plement a technique for constructing complex features from
simpler features, and adding these more complex features
into a combined feature space which can then be utilized
by more sophisticated machine learning classifiers. Apply-
ing this technique to a sentiment analysis problem, we show
encouraging improvement in classification accuracy, with a
small and constant increase in feature space size. We also
show that the features we generate carry far more predictive
power than any of the simple features they contain.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text analysis

General Terms
Algorithms

Keywords
feature space design, text classification, sentiment analysis

1. INTRODUCTION
Supervised learning algorithms are able to learn to predict

class values based on stable patterns in vector representa-
tions of labeled examples [24]. However, they are only able
to do this if there are stable patterns to be found. Thus,
the representational power of the features that make up the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

feature space is a major limiting factor in their effectiveness.
Since the mid-90s, there has been work in the Genetic Pro-
gramming community on using genetic search to evolve pow-
erful features to be used in supervised learning approaches.
The complex features that are evolved have the potential to
have far more predictive value than the primitives that make
them up. An excellent review of recent work on this prob-
lem is presented in [21]. In this paper, we present a novel
approach to evolutionary feature creation and selection for
text classification problems.

Text classification has been an active research area in the
field of natural language processing for decades [25]. Typ-
ically, supervised learning approaches are used. Very com-
mon approaches include Naive Bayes, Decision Trees, and
Support Vector Machines (SVM) [9]. Normally, a large num-
ber of labeled training example documents are collected into
a set (termed a corpus). In order to apply typical supervised
learning approaches to these corpora, each document must
first be transformed into a vector representation, which is an
ordered set of feature-value pairs. Early work in text classi-
fication utilized very simplistic vector representations where
the features each corresponded to individual words, termed
unigrams. These simple vector representations were effec-
tive for simple, topically oriented text classification tasks,
such as identifying which newsgroup a post was from [18] or
classifying webpages as being faculty or student pages [7].

Recent work in text classification has focused on more
sophisticated problems, such as sentiment analysis, where
the goal of the classification task is to assess the attitude
that is conveyed by a text. For problems like these, low
level features like unigrams are notorious for not generalizing
well, and thus the models are often evaluated with very poor
performance. On the other hand, if even moderately more
complex features are added to the feature space, such as the
class of features that describe grammatical relationships that
might hold between pairs of words within a sentence, the size
of the feature space drastically expands, which frequently
reduces rather than improves the effectiveness of the feature
space representation [10]. At the same time, moderately
more complex features such as these do very little to improve
the representational power of the feature space. What is
needed is dramatically more complex features. However, if
even expanding to moderately more complex features is on
the edge of computational feasibility, then expanding to this
greater level of sophistication is clearly beyond reach.

We argue in this paper that Genetic Programming offers
a unique and powerful solution to this problem. The genetic
programming paradigm allows us to search a very large space

of possible new features very efficiently, strategically choos-
ing a few very powerful features from this space. Genetic
search offers us control over how much exploration we do
in order to find these choice features. We then have control
over how many features we add to our baseline feature space.
Thus, we are able to search for very sophisticated features
without being committed to a computational explosion ei-
ther in terms of time to search for potential features or in the
size of the feature space we ultimately use in our supervised
learning text classification approach.

In the remainder of the paper, we first review related work
in the genetic programming community on feature creation.
We then detail our technical approach to feature evolution
and our experimental framework. Next we describe how
we have explored the space of potential fitness functions in
order to optimize the effectiveness of our feature evolution
approach. Finally we discuss our promising results and di-
rections for continued research.

2. RELATED WORK
We situate our work most closely with the extensive body

of prior work related to evolutionary approaches to feature
creation and selection [21]. An application of this approach
to computer vision was discussed in [4], and another appli-
cation to chromatography was shown to be effective in [19].
Genetic algorithms are commonly used for the feature selec-
tion process when using an evolutionary approach to feature
construction. The results from [11] and [15] are most sim-
ilar to our approach in that they use genetic programming
to build trees as feature representations.

The key difference in our work from this past work is
the nature of the data being classified. We are applying Ge-
netic Programming to a language processing task. Attempts
to use genetic programming for natural language processing
are uncommon, although early applications to language pro-
cessing tasks can be found as early as our work using GP to
aid in recovery from parser failure in speech-to-speech ma-
chine translation in the late 90s [20]. Lately, there has been
a large body of work for applying genetic programming to
query generation for information retrieval [6], in uses related
to ours, such as query expansion [1] and tree-based genetic
programming for query generation [22].

To our knowledge, the most similar work to ours in lan-
guage processing is [8], which attempted to classify newswire
documents based on their topic using complex boolean search
queries. There are several notable differences between their
task and ours, the most important being that their system
was designed to act as a fully-fledged classifier. In our work,
on the other hand, we will be building features in a similar
style to those used in their work, but with much shallower
trees, where each evolved tree is just one feature, in other
words one piece of evidence a trained classifier will use. An-
other difference between their work and ours is that we use
whole word n-grams, i.e., sequences of whole words, as ter-
minals, while the prior work uses character n-grams, i.e.,
sequences of characters.

Much of the prior work in feature construction makes use
of purely numeric data; most (though not all) optimize their
performance for use in Decision Tree learning. Decision trees
typically perform best in tasks where there are a few very
strongly predictive features within the feature space, which
can be combined in a powerful way within the learned trees.
Text classification differs from these tasks in key respects.

Normally, text classification tasks involve very large feature
spaces made up almost entirely of very weak predictors. Be-
cause of this, Decision Tree learning algorithms tend not
to perform nearly as well as SVM, which has been designed
specifically to be able to combine large spaces of weak predic-
tors without overfitting. The main disadvantage of standard
SVM, with a linear kernel, is that it is not able to represent
interactions between features, which Decision Trees are able
to represent very naturally, since each decision is conditioned
upon the series of decisions leading up to it.

Support vector machines have been shown to excel at the
problem of text classification based on their ability to ag-
gregate evidence from numerous weakly predictive features.
In order to process a document using SVM, that document
must be transformed into a vector of numeric attributes.
The most common way to do this is by way of a “bag of
words” approach. In this representation, a vector is created
with one attribute for each word that could possibly occur
in a document. For each word that actually does occur in
that document, the corresponding attribute is set to a value
of 1; all other attributes are set to a value of 0. This is also
known as a unigram model1.

Interactions between simple features are useful to capture
in language processing tasks. For example, consider that if
each word in a sentence is treated as an independent piece
of evidence, sentences like “The dog bit John.” and “John
bit the dog.” would be treated as identical. What distin-
guishes them is the grammatical role the dog and John each
play. Grammatical relations are a specific type of interaction
between features, although this type of interaction is more
powerful than what you get with higher order polynomial
kernels in SVM. These kernels are only able to capture the
fact that pairs or sets of features occurring together means
something particular, which is distinct from the occurrence
of each feature on its own. In the absence of grammatical
features, grammatical analysis can be approximated using
what are known as bigram features, which are pairs of words
that appear next to one another in the text, for example“dog
bit” in the example above. This simple way of approximat-
ing grammatical analysis can only go so far, however, For
example, “The dog bit the other dog that John pet.” could
not be distinguished from ”The other dog bit the dog that
John pet.” using these features. Furthermore, bigram and
higher order ngram features cannot be captured directly in
standard higher order polynomial kernels. Instead, either
the feature space must be elaborated with more powerful
features, or specialized structural kernels must be used that
are capable of capturing these richer interactions. Structural
kernels such as those proposed in early work [5] and elabo-
rated on in recent years [14] have shown promise, and such
feature space enhancement is feasible in an SVM based ap-
proach, and is in fact common in many language processing
applications. However, either approach can easily lead to a
computational explosion, as we will illustrate below.

Some text classification tasks can benefit from the simpler
types of interactions between unigram features that higher
order polynomial kernels can capture. For example, con-
sider a newsgroup classification task. A post that mentions

1It is important to make the distinction here that unlike
many tasks where an n-gram refers to a series of n characters
in sequence, the meaning in the natural language processing
community generally refers to a series of n consecutive words
in a document.

dolphins could be either for a newsgroup about animals or a
newsgroup about football. And a post that mentions foot-
ball may be from a newsgroup related to any team. However,
a post that mentions dolphins and football is likely to be for
the Miami Dolphins newsgroup. In this case, the simple in-
teraction between features is sufficient. However, sentiment
analysis requires more sophistication. Research in the field
of Systemic Functional Linguistics [13] illustrates how atti-
tude is encoded in language using syntax and cue phrases in
strategic combination. For example, in the sentence, “Natu-
rally I recommend sweetening.” as a comment on a cooking
blog makes a much stronger recommendation than “I rec-
ommend sweetening naturally.” In the first case, “naturally”
is a sentential modifier that serves as a persuasive device,
whereas in the second sentence it only describes a manner
of sweetening.

From this line of reasoning, we can draw a number of con-
clusions. First, increasing the complexity of the kernel for
SVMs is not a viable solution for achieving the level of repre-
sentational power sophisticated languague processing tasks
require. The feature space for non-trivial text classification
tasks is already too large even with just unigrams to feasibly
apply a Decision Tree learning approach. And even there,
the representational power is not sufficient for making some
of the types of distinctions that are desired, especially at the
sentene level. Thus, adding more sophisticated features to
make desired distinctions is what is required.

Initially, this added level of detail is very attractive. How-
ever, it comes at a high price. For example, consider the
corpus from [16], a collection of 2,000 relatively short docu-
ments (several hundred words each, on average). This small
collection contains 65,044 unique unigrams, and 500,137 unique
bigrams2. This order of magnitude difference in feature
space size has a huge impact on the effectiveness of machine
learning classifiers, almost always detrimental. Because of
the sparsity of useful predictive words for any given clas-
sification task, the signal is drowned out in noise. Adding
even more complex features quickly leads to an undesirable
computational blow up.

3. FEATURE CONSTRUCTION
Our goal is to construct features which can capture infor-

mation that a unigram model cannot, without a significant
change to the size of the feature space. We do this by com-
bining unigrams into boolean query-like statements. These
combinations allow already-present information to be for-
mulated and recombined in ways that bring to light clues
that unigrams alone would not have uncovered. In this sec-
tion, we first detail the task that we are using as an example
application of our GP features. We then describe the struc-
ture of individual features as we are generating them. We
describe our full process for generating features and combin-
ing them with a unigram model for our classification task,
and then we conclude this section with a high-level descrip-
tion of our fitness function and the choices that were made
in its design.

3.1 Task description
Our experiments deal with the problem of sentiment anal-

2Incidentally, this increase in feature space size does not stop
at bigrams. The same corpus contains 1,063,137 unique 3-
grams and 1,347,584 unique 4-grams.

ysis, which is a broad class of problems related to detection
of subtle shades of meaning such as attitude, emotion, per-
spective, or even personal identification. A nice review of
work related to sentiment analysis in the computational lin-
guistics community can be found elsewhere [17]. Our ex-
periments in this paper focus on the task of determining
whether the author of a movie review recommends a movie
or not. Other example tasks include opinion mining of prod-
uct reviews or trend analysis in on-line political discussions.
We used the corpus from [16] to test our system’s ability
to perform this task. This corpus contains 2,000 movie re-
views collected from an online review aggregator, comprised
of 1,000 positive reviews and 1,000 negative reviews.

To provide an understanding of the body of work using
this corpus, we present below results that others have pre-
sented using different approaches on this data set. A direct
comparison between results reported in other work on this
data is not possible since no standard evaluation methodol-
ogy has been used, and thus the performance numbers are
not directly comparable. For example, there is a discrepency
between authors on the size of the training set used (70%,
80%, or 90%) and method of evaluation (using a held out
set, or using cross validation). Therefore, we do not report
performance improvements, only methods used, to give con-
text to our work.

What sets our approach apart from prior work on senti-
ment analysis with this corpus is that our approach is fully
automatic, inducing the features empirically from the data
itself, whereas the other approaches require human anno-
tation and a pre-existing lexicon of polarity words. Thus,
it is not surprising that our results do not rise to the level
reported in those papers. Nevertheless, we see our work as
one important step towards replacing that manual effort.

An attempt to perform sentiment analysis using advanced
features crafted by expert linguists is presented in [2]. This
paper drew on theoretical concepts in the field of systemic
functional linguistics, a theoretical framework which is de-
signed to model author intent for communication and dis-
course between speakers [13]. Using this framework, an ex-
pert built a hierarchical lexicon of words specifically repre-
sentative of the rhetorical devices formalized in that theory,
and scored documents using a formula based on that lexicon.

A more traditional machine learning approach was taken
by [23]. This work developed a voted combination of several
machine learning classifiers, including SVM, a maximum en-
tropy model, and a polarity scoring model based on a lexicon
of positive and negative words. While it is unclear from their
work whether this scoring method was fully automated, it
appears that it required at least some human intervention
to build the polarity lexicon.

Incorporation of even more explicit human effort into the
machine learning process was taken by [26]. This work asked
human annotators to read reviews and mark the “rationales”
for a review’s polarity - segments of the reviews that they
judged important in determining the polarity of the docu-
ment. Machine learning was then performed using only fea-
tures extracted from the highlighted segments. This could
be considered a manual form of feature selection.

While there have been efforts to reduce annotation costs,
such as the work presented in [3], this is still impractical
for large-scale systems. We consider our work a preliminary
step towards building fully automated systems which can
extract more detailed knowledge from texts.

�� ��dull

�� ��ridiculous

�� ��rip-off
�� ��nicolas

�� ��XOR

�� ��unfunny

�� ��XOR

�� ��XOR

�� ��XOR

Figure 1: A simple example of a generated feature.

3.2 Design of Constructed Features
Our features are equivalent to boolean statements describ-

ing the presence or absence of unigrams in a document.
We use two operators, AND and XOR. Experiments with
a larger selection of boolean queries, such as NOT AND or
an inclusive OR, did not appear to be more effective, so for
simplicity we constrict our options to these two. For some
insight into the process, it is best to look at example fea-
tures. Consider a feature like:

(AND best (XOR thrilling subtle))

This feature is going to appear in two sets of movies which
will rarely overlap - subtlety is rare in a thrilling movie, and
vice versa - but either may still be describing a positive
opinion. Alternatively, consider a feature such as:

(XOR diminished ambitious)

This is a subtree from a positive feature. The term “am-
bitious” is highly predictive when it occurs - it is a positive
adjective. On the other hand, “diminished” is rarer, and is
not strongly predictive of either positive or negative reviews.
However, consider this portion of a review:

this is a promising premise, and mr. taylor’s
film could have gone any number of ambitious
ways from this point [...however] this is not a film
which has the wherewithal to kill off its leading
star in the opening ten minutes. the entire se-
quence is, then, clearly an exercise for character
exposition, with attempts at humour terribly di-
minished by utter predictability .

This is a negative review which is ruled out by this fea-
ture’s subtree. This style of feature occurs occasionally in
our generated features - a common and predictive feature is
paired with a rarer and less predictive feature, which further
refines the predictive feature.

These features do occur in our system and appear to be
effective, but they are rare. Frequently, we see features sim-
ilar to the one shown in Figure 1. These features often
come down to being nearly equivalent to simple lists of posi-
tive or negative words, with little interaction between them.
However, even this carries descriptive content that is more
concise and powerful than any one of the words alone.

3.3 Feature Construction Workflow
Our process of feature construction and evaluation is shown

in Figure 2. The high-level process can be understood by
first breaking documents down into unigram models, strip-
ping out infrequent words to make the feature space more
manageable and removing noise. From these models we can
build a list of all possible candidate words for terminal nodes
in GP trees. We construct features based on these lists using
boolean operators, and build a set of features to be added
onto our unigram space. Each of these features is then also
converted to a binary form (equaling 1 if the boolean fea-
ture is true of the corresponding document). This combined
feature space is then passed to an SVM classifier, which is
trained on both the unigrams and GP features.

For our genetic programming module we use the ECJ
toolkit [12]. Our population is comprised of 2,048 individ-
uals, initiated using ramped half-and-half. For a selection
function we use 7-individual tournament selection, with sub-
tree crossover and subtree mutation equally likely to occur
during breeding. As a simplifying assumption, we assert that
alterations to the selection, mutation, and crossover settings
are not likely to affect the performance outcome of our ap-
proach. Each run ends after 15 generations. This GP stage
is repeated 15 times, with a different seed for random num-
ber generation in each run, in order to develop heterogenous
features. Each GP run is repeated once for each possible
value of the class we are trying to classify; the top individ-
ual from each variant of each run is selected as a feature
to be appended to our baseline model. For a binary classi-
fication problem, therefore, our approach generates 30 new
features. Once the combined feature space is built, we use
SVMlight [9] for all experiments.

A systemic problem in genetic programming is increas-
ing solution complexity over time. Often, we see in evalua-
tion that the features that we generate reached a maximum
performance at an early generation and then overfit, poten-
tially decreasing performance on held-out data. Therefore,
we must determine some way of choosing the best generation
stopping point for evaluating our features. In this paper, our
overall results are given by selecting, for each fold in cross-
validation, the generation that provides the most improve-
ment to our unigram model on the data that the features
were trained on - note that this still makes no use of held-out
data, to ensure that we maintain the complete separation be-
tween data used for feature generation and classifier training
and our held-out test data. The actual performance of our
system on held-out data is guaranteed to be lower than this,
but we observe that this gives us an adequate way of avoid-
ing one potential source of overfitting.

3.4 Defining fitness
The primary challenge that we address in our experiments

centers on how to define the fitness function for these indi-
viduals. This is not a straightforward problem, and many
different factors could conceivably be introduced into the
equation. Details of our implementation of some of these
factors are given in Section 4; we now give a high-level un-
derstanding of our goals in choosing the factors that we did.

Our definition of fitness is based on the concepts of pre-
cision and recall, borrowed from information retrieval. This
balances the tradeoff between the predictive value of a fea-
ture (how likely it is to appear in one class of documents,
compared to another) and the rarity of the feature (features

Figure 2: Workflow diagram of our feature generation process. For evaluation, this process is followed five
times, once for each fold of cross-validation.

which are highly predictive but almost never occur are of
little value). These two factors must be balanced in a way
that makes sense for the problem at hand. The unigrams
that are competing for weight against our constructed fea-
tures are usually sparsely distributed throughout training
data, so low recall is not a significant drawback. We there-
fore want to set precision to be significantly more heavily
weighted than recall.

In addition to these measures, there are a number of penal-
ties that we can add. This includes penalizing overly com-
plex trees, which are more likely to overfit to training data;
adding a constraint to fitness based on correlation with un-
igrams, which would encourage exploration of new informa-
tion above and beyond that captured by unigrams alone;
finding the most difficult training examples and weighting
them more heavily in our fitness function; and last, avoiding
overfitting by building our features based on only a portion
of the examples in our training data. With this high-level
understanding of our goals for the fitness function, we can
now describe the ways in which these various penalties were
implemented.

We define our set of documents as being comprised of a
set of positive documents P1, P2, ...Pu and a set of negative
documents N1, N2, ...Nv. For a given individual I and docu-
ment D, we define hit(I,D) to equal 1 if the statement I is
true of that document and 0 if it is not. Precision and recall
of an individual feature for predicting positive documents3

is then defined as follows:

Prec(I) =

u∑
i=0

hit(I, Pi)

u∑
i=0

hit(I, Pi) +

v∑
i=0

hit(I,Ni)

(1)

3Negative precision and recall are defined identically, with
obvious adjustments to test for negative documents instead
of positive.

Rec(I) =

u∑
i=0

hit(I, Pi)

u
(2)

We then weight these values to give significantly more
importance to precision, using the Fβ measure, which gives
the harmonic mean between precision and recall:

Fβ(I) =
(1 + β2) × (Prec(I) ×Rec(I))

(β2 × Prec(I)) +Rec(I)
(3)

To constrain the size of features being generated, we follow
the lead of [15] in penalizing trees based on the number of
nodes they contain, rather than setting a maximum depth.
This penalty is labeled P .

We define the correlation between two prediction vectors
using Pearson’s product moment correlation. For two vec-
tors X,Y with elements µ1, µ2, ... and with standard devia-
tions ρx and ρy, the correlation is defined as:

ρx,y =
E[(X − µX)(Y − µY)]

σXσY
(4)

This equation results in a value between 1 (representing
perfect alignment) and -1 (representing completely inverse
alignment). Our penalty for correlation with a unigram is
equal to the extent over a preset threshold that the gener-
ated feature correlates with any unigram it contains. This
penalty is labeled C in our results.

We identify problem areas in our training data by cross-
validation on that training data. By this process, each train-
ing document is classified exactly once, and in our experi-
ments, around 15% of the documents are classified incor-
rectly. These documents can therefore not be our only source
of fitness evaluation - the set is too small to attempt to match
while expecting wide coverage. We solve this simply by
weighting instances labelled incorrectly in cross-validation
as being twice as important as other training documents -

it is assumed that this doubling formally happens at some
stage prior to fitness calculation. This is not a penalty in the
same sense as the other two, but for consistency in labeling,
our results table shows this addition as W . We can label an
Fβ-measure that takes into account this instance weighting
as Fw.

Finally, we know that the features we construct are nat-
urally going to fit very well to training data, and may not
generalize to other data sets. What we would want to do
ideally is test each of our features against some validation
set, separate from the set of data that is being trained on.
However, our data set is not infinitely large. What we can
do instead is to construct the features based only on their
performance on a subset of the training data. In this config-
uration, precision and recall values, along with correlation
penalties, are altered to only measure a feature over half of
our training set.

Intuitively this would suggest that the features we gain
are more likely to overfit, not less, because they are being
trained on less data. However, because we are still training
our SVM model on the entire 1,600 document training set,
only those features which are more loosely fit to the training
data there were induced from will generalize to the other half
of the set. This results in those more generalizable features
being given higher weight in the classifier. This can be used
as a verification that the features being given high weight
are not overly idiosyncratic to the variance of the training
set. In our fitness function, we label F-measure which uses
this training set division as Fh, and in our results tables,
this is listed as H.

Combined, these aspects of our fitness function give a final
equation of:

Fitness = Fwh + P + C (5)

4. EXPERIMENT DESIGN AND RESULTS
We now need to test the ability of our fitness function

to find powerful new features. To determine how promising
the features that we describe are, we present an application
of this approach to sentiment analysis, and show two re-
sults of that application. The first demonstrates that with
a well-defined fitness function, our features can improve the
quality of a unigram model with very little change in fea-
ture space size. We also show that our set of evolved fea-
tures are more powerful than the component parts they are
constructed from, by restricting that space to the same size
through χ2 feature selection.

For all experiments we performed 5-fold cross validation.
In each fold, we take as input a corpus of documents and
partition it into a training set (comprising 80% of the doc-
uments, evenly divided between all possible classes) and a
testing set for evaluation (consisting of the remaining 20%
of the documents). We report on results for each incremen-
tal part of our fitness function being included, to show what
effect different options have on performance.

4.1 Experimental parameters
One question which we do not address here with regards

to the model we have described is one of tuning. There
are several parameters that are held constant in our experi-
ments. The penalty of parsimony pressure is set to 0.005 per
node. This penalty is approximately equal to the accuracy

Features Accuracy ∆ Oracle ∆
unigrams 85.5 - - -
GP 86.0 +0.5 87.2 +1.7
GP+C 86.1 +0.6 86.65 +1.15
GP+CW 86.0 +0.5 86.65 +1.15
GP+CH 86.25 +0.75 87.25 +1.75
GP+CWH 86.3 +0.8 87.15 +1.65

Table 1: Results for different configurations of GP
features added to a unigram feature space, averaged
over 5-fold cross validation.

gain of three correctly classified documents. For example, if
an individual changes by extending the depth of one branch
by one level (adding two new leaves), it would have to cor-
rectly classify roughly six additional documents to make up
for the penalty. Our correlation threshold is set to 0.5. We
use this threshold such that a constructed feature with a 0.8
correlation would have its fitness penalized by 0.3. The β
ratio for F -measure is set to 1

8
for configurations with fitness

based on all training data, and 1
6

for configurations based on
only half of the training data (labeled +H in our results).

4.2 Results
Results of our experiments are detailed in Table 1. To

quantify our performance we give a simple percent accuracy
- the percent of classifications made by our system on held-
out reviews that were the same as the actual classification of
those reviews. For evaluation, we also make use of Tukey’s
significance test to determine what differences we’ve made
that are statistically significant. We report two numbers for
each GP configuration. The first is the performance where
the number of generations to stop at is decided by perfor-
mance on training data. This decision is made for each fold
of cross-validation separately, and the average of the five
folds is given. This is the most stringent evaluation pos-
sible on our performance, and our results do not show a
statistically significant difference from unigrams. The sec-
ond number that we report is the best observed result for
each fold on test data - we refer to this as our oracle result.
This performance change is statistically significant but acts
for us solely as an upper bound on the improvement that
can be gained from our features, and not as a fully realized
result.

In addition to measuring the performance of our features
when added to a unigram model, we would also like to know
the strength of the features individually (with a feature
space size of only 30 features). It is known that in general,
an individual unigram is a very weak predictor of a docu-
ment’s classification. We would like to know to what extent
our constructed features are more predictive than unigrams.
To test this, we compare performance of our evolved fea-
tures with performance of the 30 most predictive unigrams,
selected using χ2 feature selection. In addition to this mea-
sure, we also compare our performance against the top 30
most predictive features when bigrams are also available for
selection. The results of this comparison are shown in Ta-
ble 2. The difference here is very clearly significant.

5. DISCUSSION
Figure 3 provides some insight into the performance of

our features across generations. We see high variability be-

Figure 3: Results for GP features in the GP+CH configuration. Each line graph represents one fold’s
performance in each generation. The solid horizontal line represents the tuned performance as reported, and
the dashed line is the theoretical “oracle” performance. To allow folds to be compared directly, each fold’s
performance is given as the difference from the unigram baseline for that fold.

Features Accuracy ∆
unigrams 56.25 -
unigrams + bigrams 61.6 +5.35
GP 69.0 +13.75
GP+C 68.95 +13.7
GP+CW 67.9 +11.65
GP+CH 71.8 +15.55
GP+CWH 69.0 +13.75

Table 2: Accuracy of GP features alone, compared
to baseline models held (through χ2 feature selec-
tion) to exactly 30 features.

tween generations, and we also see that in many cases, per-
formance deteriorates compared to unigrams. While each
fold provides performance improvements at some point, the
time at which this improvement is reached differs - improve-
ment comes early and then is reduced in folds 1 and 4, while
folds 3 and 5 show a more steady and gradual improvement.
However, we are able to consistently and fully automati-
cally choose stopping points that avoid these negative gen-
erations. What is likely to be more interesting is what is
different between the sets of features that are consistently
better or worse than unigrams. For instance, performance
of the GP features with no fitness constraints (labeled GP
in Table 1) was highly variable between folds, with one fold
performing significantly better than others. However, when
the GP features generated are compared individually, with-
out being added to a unigram space, this fold was not no-
tably different from the other folds for that configuration.

Part of this can be attributed to the large search space -
with many different shapes and sizes of trees and the large
number of potential terminal unigrams, it is common for ge-
netic programming to become trapped in a local maximum.
However, this is not the whole story behind the performance
we observe.

What this means is that there is some aspect of the text
that is being captured by the features in that fold that is not
represented by unigrams. It is exactly this that we would
like to capture with our features, and our approach presented
here does that in some cases. One very important aspect of
future work, however, centers on finding what is different
between the features which contribute new information to
the unigram space, and those which, while highly predictive
on their own, add no new predictive power to the model as
a whole. One implication of this is that our performance
is likely to improve dramatically if our fitness function used
some way of taking into account the contribution that each
unigram feature makes to the baseline feature space.

6. CONCLUSIONS AND FUTURE WORK
We have shown that a unigram feature space can be im-

proved by introducing new constructed features, which rely
on no other source of information. We provided a process
for doing this through use of genetic programming, build-
ing features which resemble boolean queries of documents.
The resulting features are far more predictive and wider in
coverage than unigrams alone are, and are with proper con-
straints, are not subject to overfitting. This complexity has
been added with a mere 30 features added to the baseline
feature space for machine learning, compared to the hun-

dreds of thousands of features that are added with a blan-
ket addition of high complexity features. These results are
very promising and suggest that with further effort, genetic
programming applications in text classification may be com-
petitive with or superior to human annotated results.

We are also limiting our performance greatly by the termi-
nal set and function set that we are using. While this reduces
search space size, meaning it is useful as a proof of concept,
the information that we are rearranging is already very de-
generated from the documents that we are classifying. That
we see improvement means that genetic programming can be
used to gain more information from these simple features;
however, a deeper representation of the meaning in the text
would give the potential for more significant gains. Work on
more complex features such as graphical models of sentences
[10] is likely to provide a more powerful base for describing
the content of a text. We also intend to explore the use of
features representing rhetorical structure and discourse-level
actions that an author can take, utilizing existing linguistic
theory.

Acknowledgements
This research was supported by NSF Grant HCC-0803482.

7. REFERENCES
[1] L. Araujo and J. Pérez-Aguéra. Improving query

expansion with stemming terms: A new genetic
algorithm approach. In Evolutionary Computation in
Combinatorial Optimization, 2008.

[2] S. Argamon, C. Whitelaw, P. Chase, S. Hota, N. Garg,
and S. Levitan. Stylistic text classification using
functional lexical features. Journal of the American
Society for Information Science and Technology, 2007.

[3] S. Arora and E. Nyberg. Interactive annotation
learning with indirect feature voting. In Proceedings of
NAACL-HLT, 2009.

[4] J. Bala, K. D. Jong, J. Huang, H. Vafaie, and
H. Wechsler. Using learning to facilitate the evolution
of features for recognizing visual concepts. In
Evolutionary Computation, 1997.

[5] M. Collins and N. Duffy. Convolution kernels for
natural language. In Advances in Neural Information
Processing Systems 14, 2001.

[6] O. Cordon, E. Herrera-Viedma, C. Lopez-Pujalte,
M. J. Luque, and C. Zarco. A review on the
application of evolutionary computation to
information retrieval. 2003.

[7] J. Furnkranz, T. Mitchell, M. Mitchell, and E. Riloff.
A case study in using linguistic phrases for text
categorization on the www. In AAAI/ICML Workshop
on Learning for Text Categorization, 1998.

[8] L. Hirsch, R. Hirsch, and M. Saeedi. Evolving lucene
search queries for text classification. In Proceedings of
GECCO, 2007.

[9] T. Joachims. Making large-scale support vector
machine learning practical, 1998.

[10] M. Joshi and C. Penstein-Rosé. Generalizing
dependency features for opinion mining. In
Proceedings of the ACL-IJCNLP, 2009.

[11] K. Krawiec. Genetic programming-based construction
of features for machine learning and knowledge

discovery tasks. In Genetic Programming and
Evolvable Machines, 2002.

[12] S. Luke. Ecj: A java-based evolutionary computation
research system.
http://cs.gmu.edu/ eclab/projects/ecj/.

[13] J. Martin and P. White. The Language of Evaluation:
The Appraisal Framework. 2005.

[14] A. Moschitti. Efficient convolution kernels for
dependency and constituent syntactic trees. In
Proceedings of the 17th European Conference on
Machine Learning, 2006.

[15] F. Otero, M. Silva, A. Freitas, and J. Nievola. Genetic
programming for attribute construction in data
mining. In Proceedings of GECCO, 2002.

[16] B. Pang and L. Lee. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the ACL,
pages 271–278, 2004.

[17] B. Pang and L. Lee. Opinion Mining and Sentiment
Analysis. 2008.

[18] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling
the poor assumptions of naive bayes text classifiers. In
Machine Learning, 2003.

[19] O. Ritthoff, R. Klinkenberg, S. Fischer, and
I. Mierswa. A hybrid approach to feature selection and
generation using an evolutionary algorithm. 2002.

[20] C. Rose. A genetic programming approach for robust
language interpretation. In Advances in Genetic
Programming, Volume 3, 1999.

[21] M. Smith and L. Bull. Genetic programming with a
genetic algorithm for feature construction and
selection. In Genetic Programming and Evolvable
Machines, 2005.

[22] M. P. Smith and M. Smith. The use of genetic
programming to build boolean queries for text
retrieval through relevance feedback. 2003.

[23] K. Tsutsumi, K. Shimada, and T. Endo. Movie review
classification based on a multiple classifier. 2007.

[24] I. Witten and E. Frank. Data mining: practical
machine learning tools and techniques with Java
implementations. 2002.

[25] Y. Yang and J. Pedersen. A comparative study on
feature selection in text. 1997.

[26] O. F. Zaidan and J. Eisner. Using “annotator
rationales” to improve machine learning for text
categorization. In Proceedings of NAACL-HLT, 2007.

