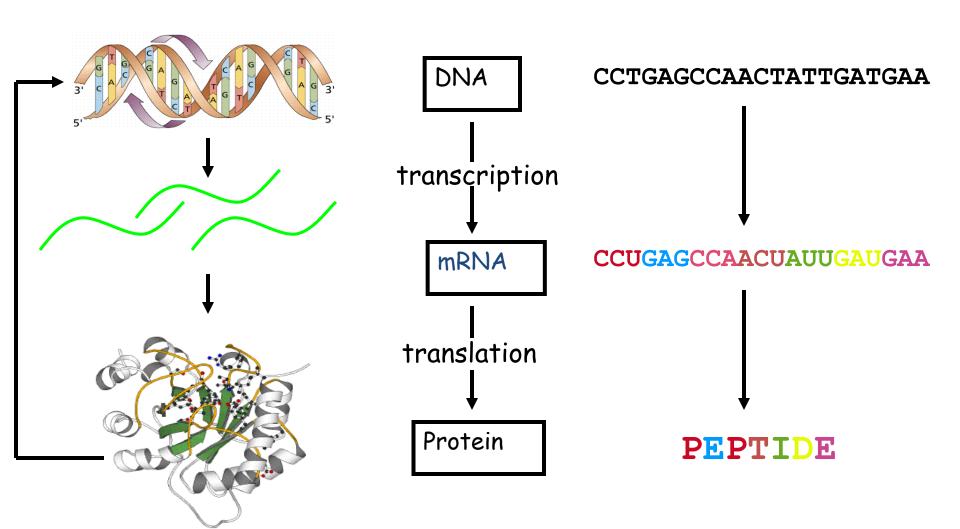
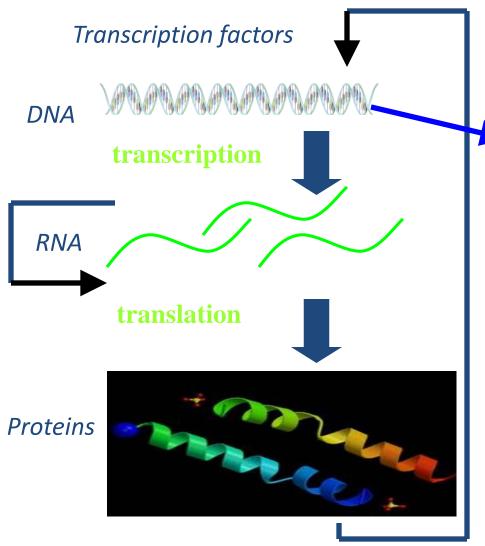
10-701 Machine Learning

HMM applications in computational biology

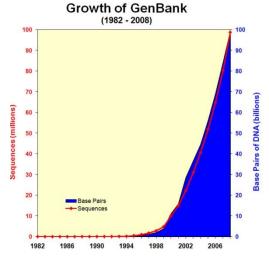
Central dogma



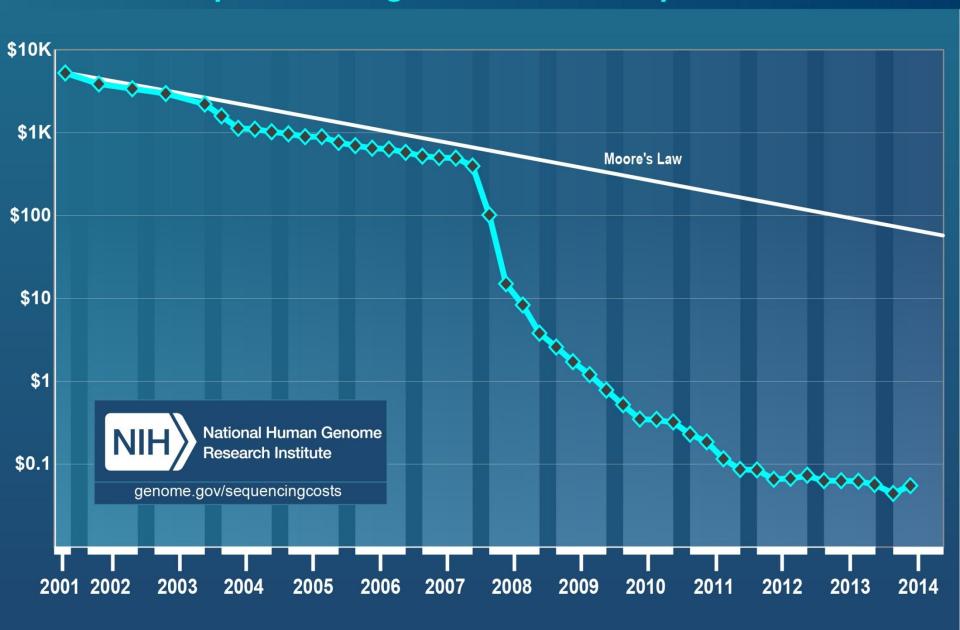
Biological data is rapidly accumulating



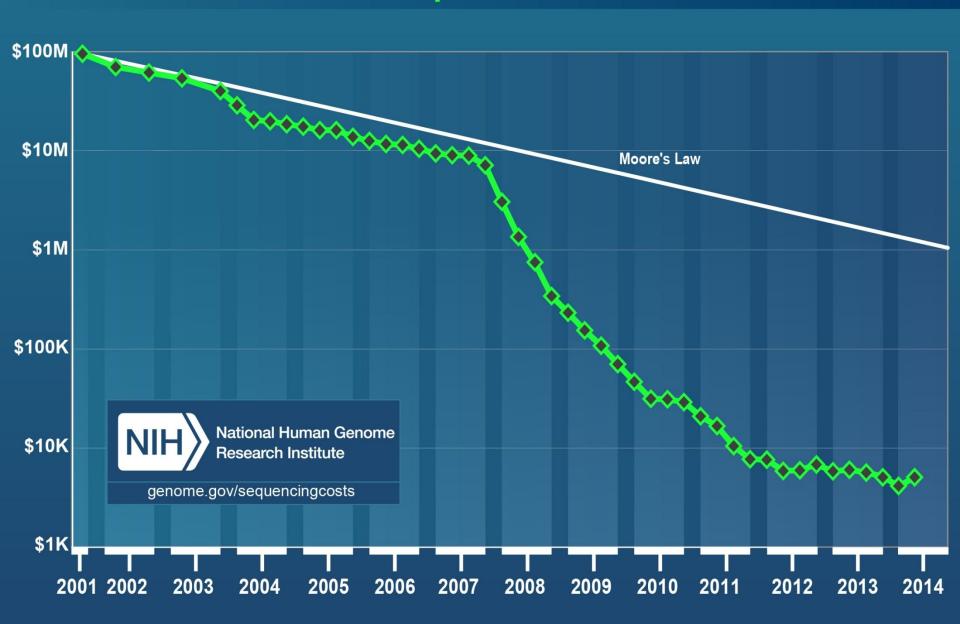
Next generation sequencing



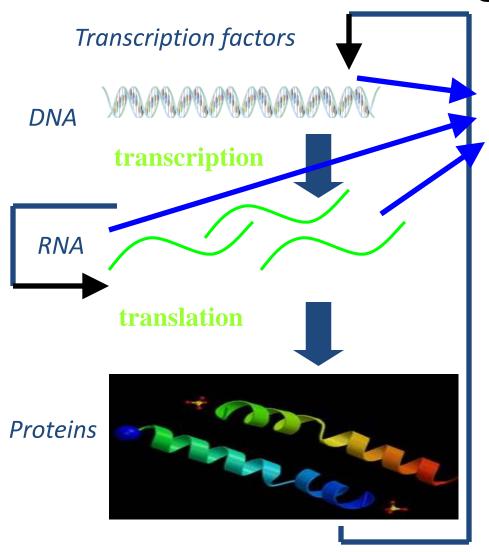
Cost per Raw Megabase of DNA Sequence



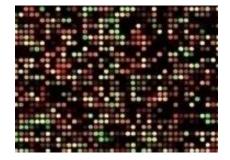
Cost per Genome

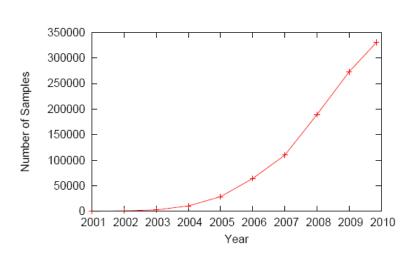


Biological data is rapidly accumulating

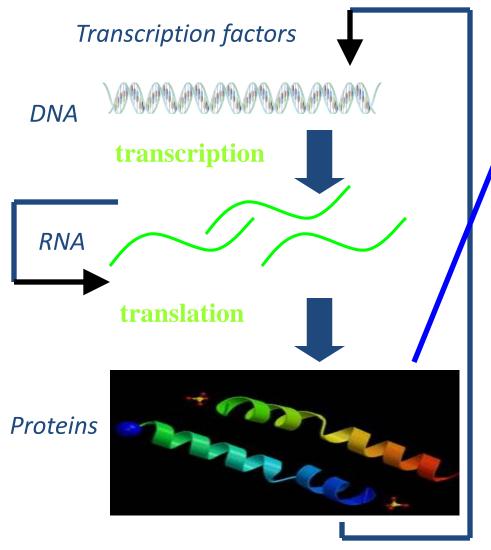


Array / sequencing technology

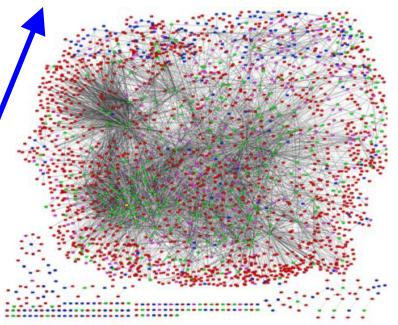




Biological data is rapidly accumulating



Protein interactions



- 38,000 identified interactions
- Hundreds of thousands of predictions

The New York Times

Health

Company Unveils DNA Sequencing Device Meant to Be Portable, Disposable and Cheap

By ANDREW POLLACK

Published: February 17, 2012

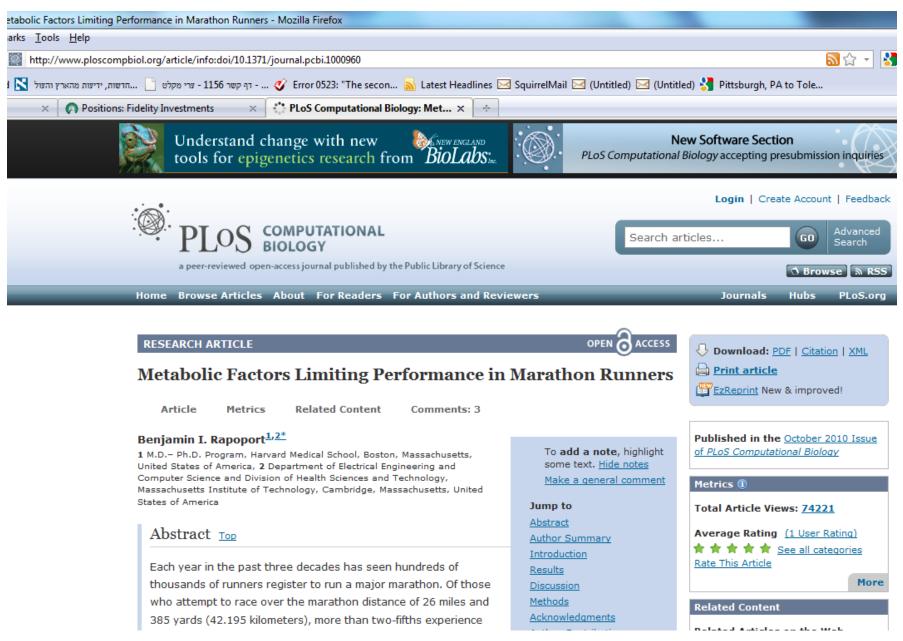
DNA sequencing is becoming both faster and cheaper. Now, it is also becoming tinier.

A British company said on Friday that by the end of the year it would begin selling a disposable gene sequencing device that is the size of a USB memory stick and plugs into a laptop computer to deliver its

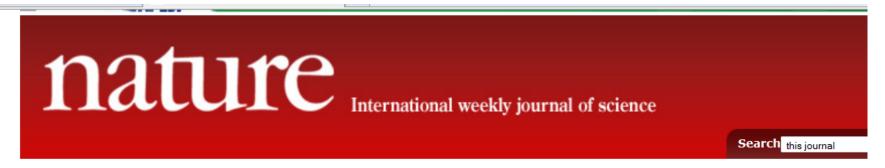
FDA Approves Gene-Based Breast Cancer Test*

"MammaPrint is a DNA microarray-based test that measures the activity of 70 genes in a sample of a woman's breast-cancer tumor and then uses a specific formula to determine whether the patient is deemed low risk or high risk for the spread of the cancer to another site."





Active Learning



Journal home > Archive > Letters to Nature > Abstract

Journal content

- Journal home
- Advance online publication
- Current issue
- Nature News
- + Archive
- Supplements
- Web focuses
- Podcasts
- Videos

Letters to Nature

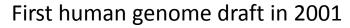
Nature **427**, 247-252 (15 January 2004) | <u>doi</u>:10.1038/nature02236; Received 24 July 2003; Accepted 14 November 2003

Functional genomic hypothesis generation and experimentation by a robot scientist

Ross D. King 1 , Kenneth E. Whelan 1 , Ffion M. Jones 1 , Philip G. K. Reiser 1 , Christopher H. Bryant 2 , Stephen H. Muggleton 3 , Douglas B. Kell 4 & Stephen G. Oliver 5

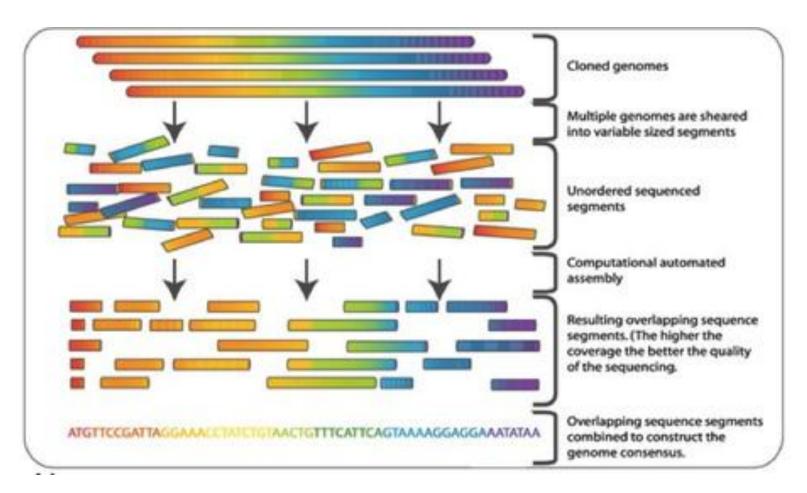
- 1. Department of Computer Science, University of Wales, Aberystwyth SY23 3DB, UK
- 2. School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK
- 3. Department of Computing, Imperial College, London SW7 2AZ, UK
- 4. Department of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK

Sequencing DNA



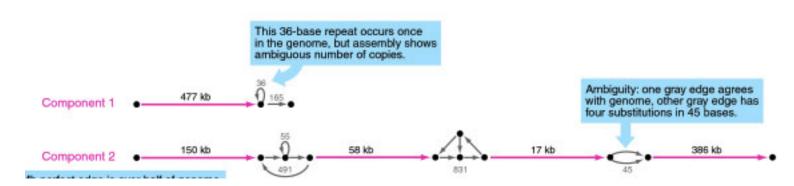
Due to *accumulated errors*, we could only reliably read at most **300-500 nucleotides**.

Shotgun Sequencing



Caveats

- Errors in reading
- Non-trivial assembly task: repeats in the genome

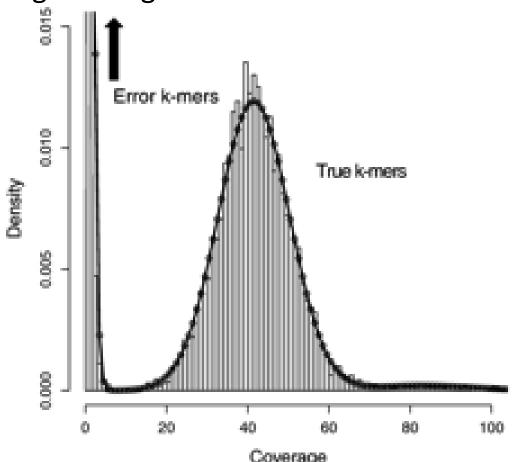


MacCallum et al., GB 2009

Error Correction in DNA sequencing

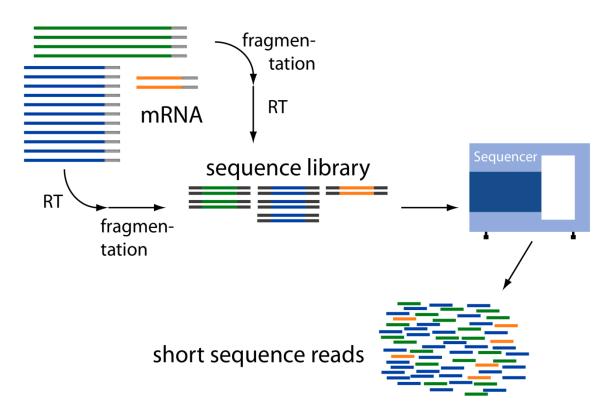
• The fragmentation happens at random locations of the molecules. We expect all positions in the genome to have the same # number of reads

K-mers = substrings of length K of the reads. Errors create error k-mers.



Kellly et al., GB 2010

Transcriptome Shotgun Sequencing (RNA-Seq)



Sequencing RNA molecule transcripts.

@Friedrich Miescher Laboratory

Reminder:

- (mRNA) Transcripts are "expression products" of genes.
- Different genes having different expression levels so some transcripts are more or less abundant than others.

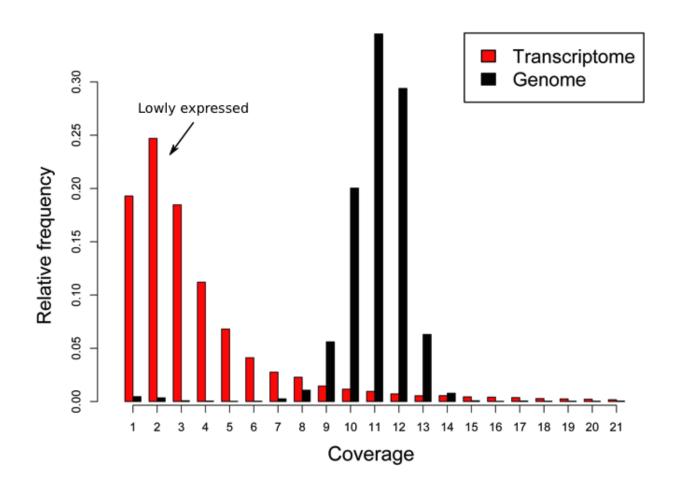
Challenges

- Large datasets: 10-100 millions reads of 75-150 bps.
- Memory efficiency: Too time consuming to perform outmemory processing of data.

DNA Sequencing + **others**: alternative splicing, RNA editing, post-transcription modification.

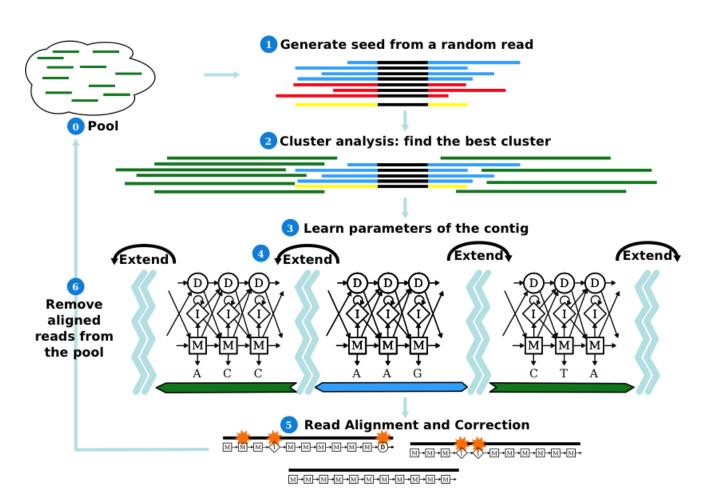
Errors are non uniformly distributed

- Some transcripts are more prone to errors
- Errors are harder to correct in reads from lowly expressed transcripts



SEECER

Error Correction + Consensus sequence estimation for RNA-Seq data



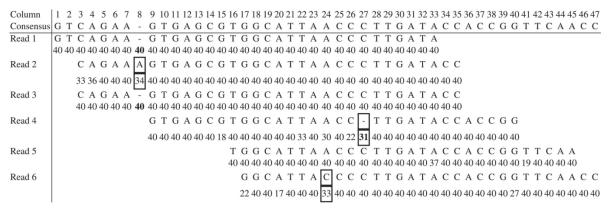
Key idea: HMM model

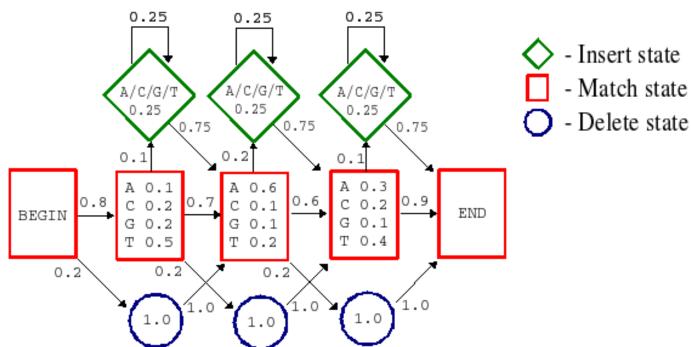
```
Column
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Consensus G T C A G A A - G T G A G C G T G G C A T T A A C C C T T G A T A C C A C C G G T T C A A C C
Read 1
    G T C A G A A - G T G A G C G T G G C A T T A A C C C T T G A T A
    CAGAAAAGTGAGCGTGGCATTAACCCTTGATACC
Read 2
      Read 3
      C A G A A - G T G A G C G T G G C A T T A A C C C T T G A T A C C
      GTGAGCGTGGCATTAACC|-|TTGATACCACCGG
Read 4
             T G G C A T T A A C C C T T G A T A C C A C C G G T T C A A
Read 5
                      CCCTTGATACCACCGGTTCAACC
Read 6
```

Salmela et al., Bioinformatics 2011

The way sequencers work:

- Read letter by letter sequentially
- Possible errors: Insertion, Deletion or Misread of a nucleotide





Building (Learning) the HMMsand Making Corrections (Inference)

Learning = Expectation-Maximization Inference = Viterbi algorithm

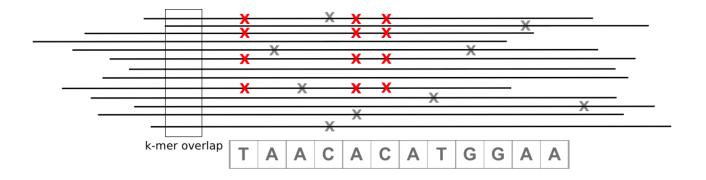
Seeding:

Guessing possible reads using k-mer overlaps. Constructing the HMM from these reads.

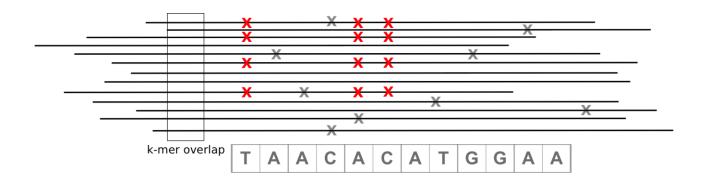
Speed up:

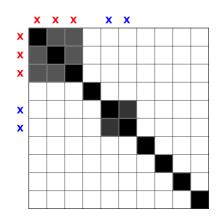
The k-mer overlaps yield approximate multiple alignments of reads. We can learn HMM parameters from this directly.

Clustering to improve seeding



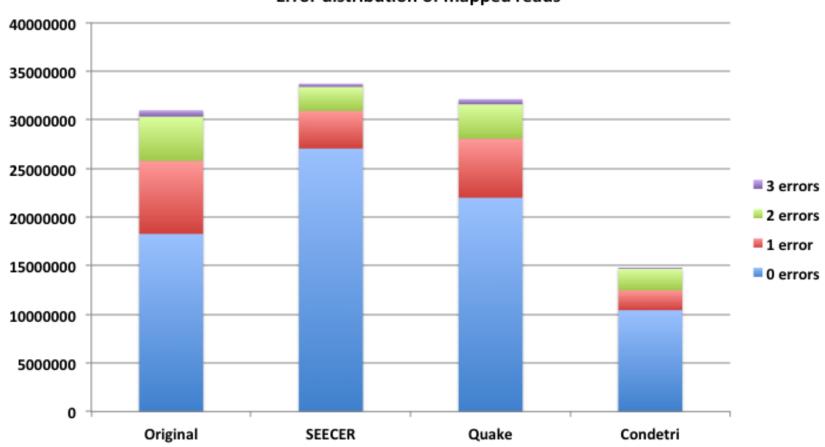
Real biological differences should be supported by a set of reads with similar mismatches to the consensus



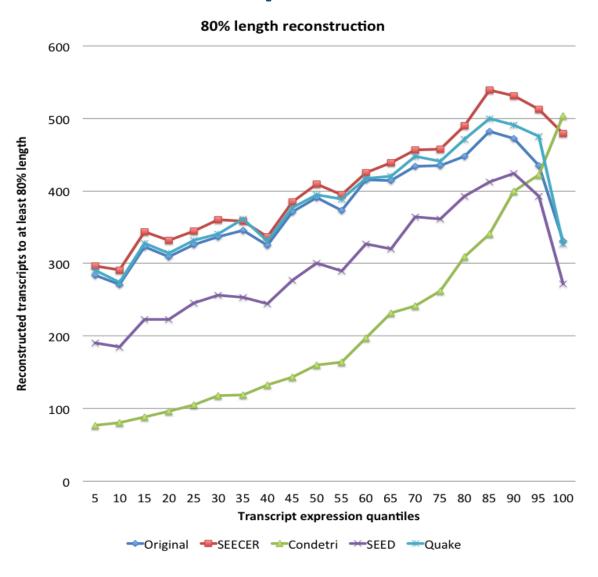


- 1. Clustering positions with mismatches to identify clusters of correlated positions.
- 2. Build a similarity matrix between these positions.
- Use Spectral clustering to find clusters of correlated positions.
- 4. Filter reads have mismatches in these clusters.

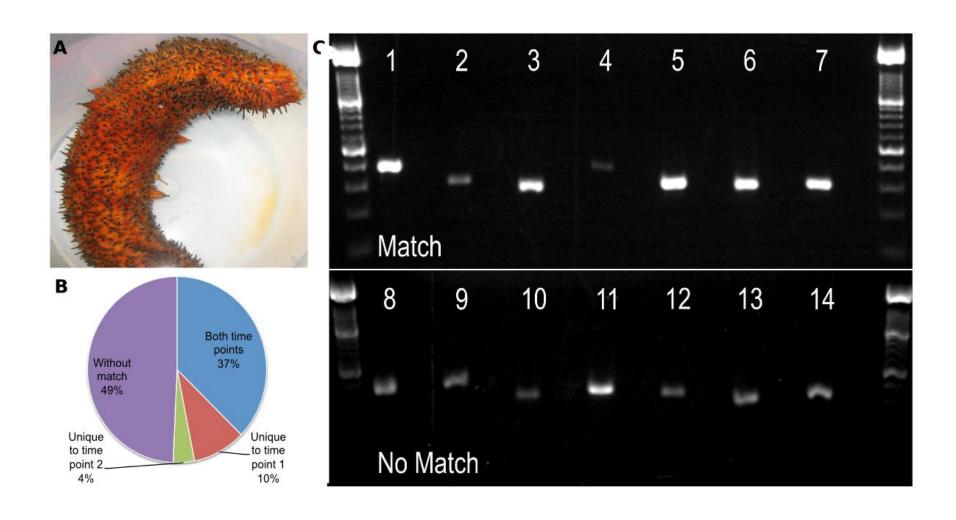
Comparison to other methods



Using the corrected reads, the assembler can recover **more** transcripts

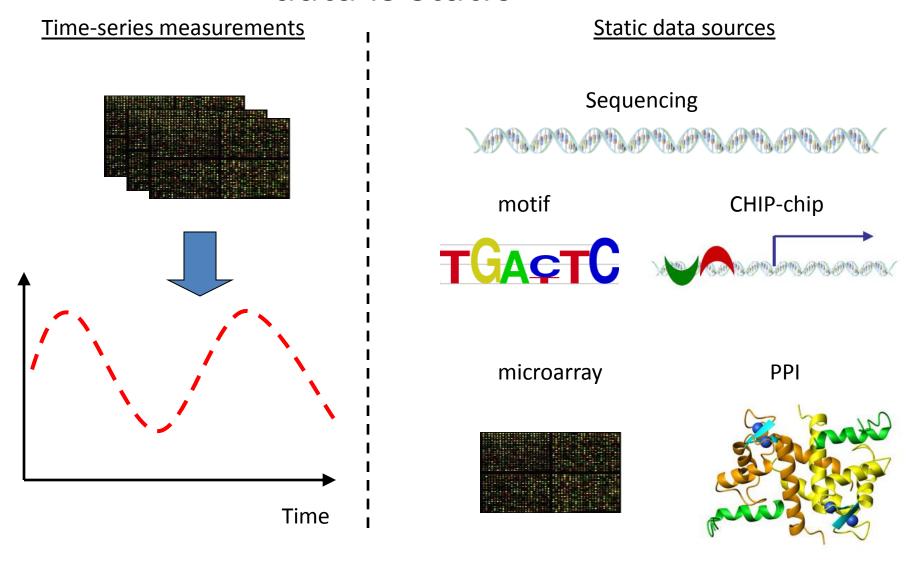


Analysis of sea cucumber data

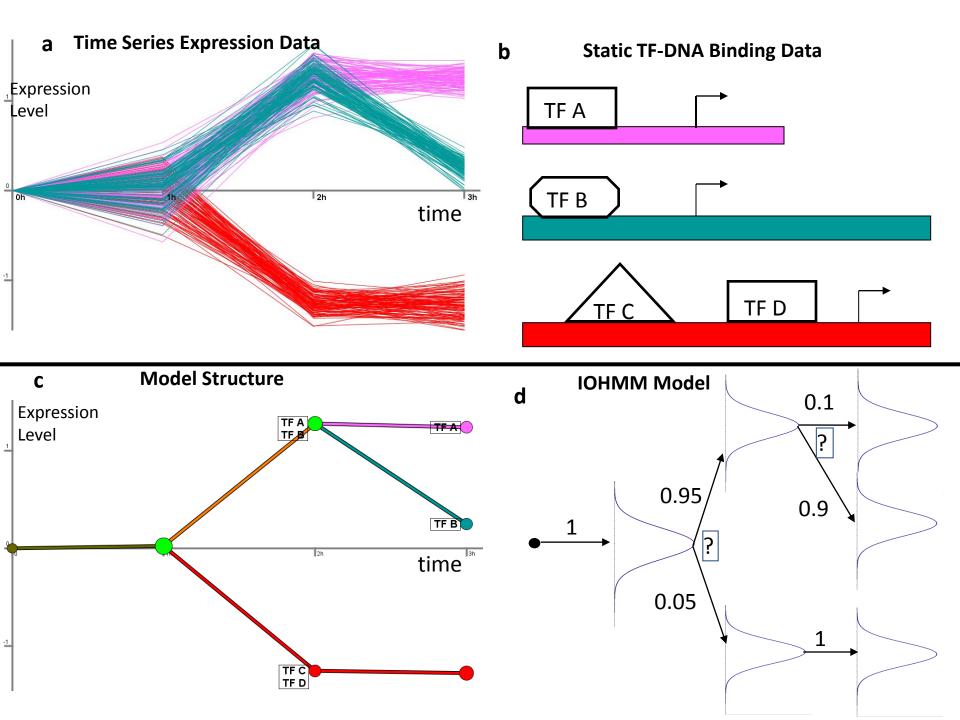


Data integration in biology

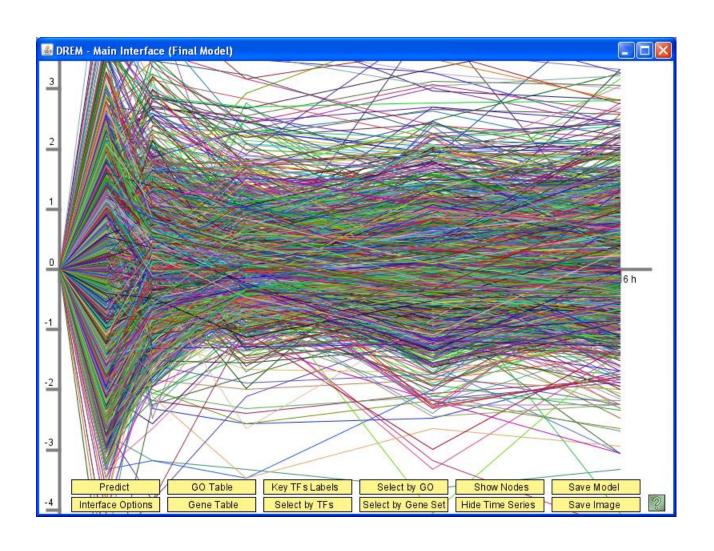
Key problem: Most high-throughput data is static



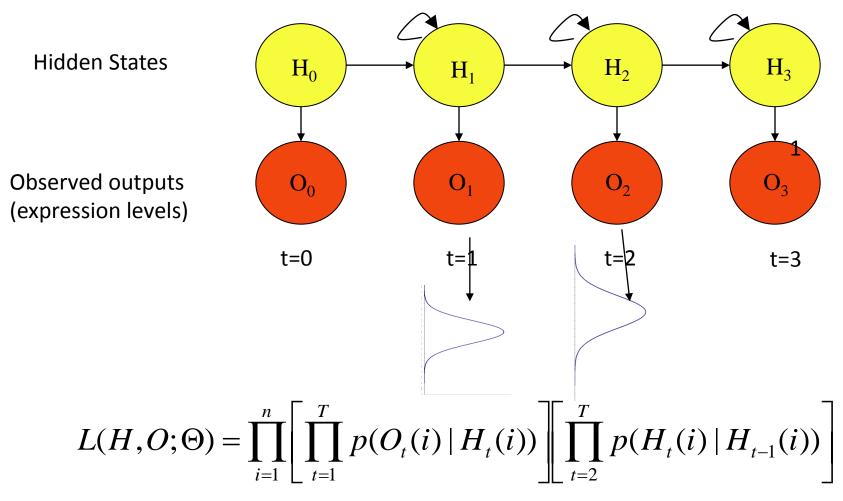
DREM: Dynamic Regulatory Events Miner



Things are a bit more complicated: Real data



A Hidden Markov Model



Schliep et al *Bioinformatics* 2003

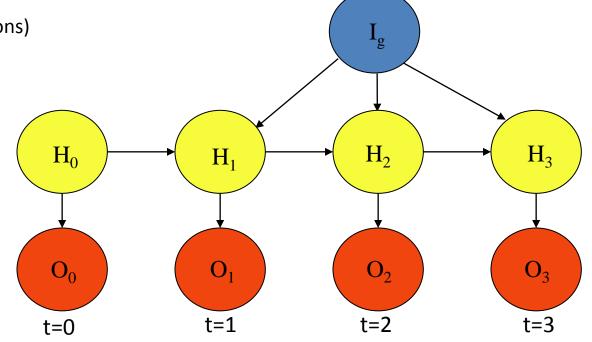
Input – Output Hidden Markov Model

Input (Static TF-gene interactions)

Hidden States (transitions between states form a tree structure)

Emissions (Distribution of expression values)

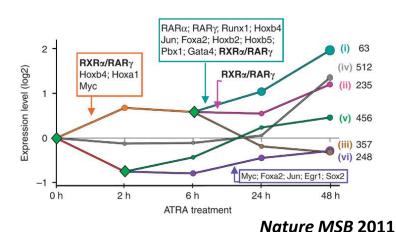
Log Likelihood



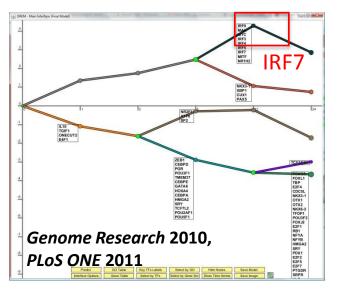
$$r(G|M) = \sum_{g \in G} \log \sum_{q \in Q} \prod_{t=1}^{n-1} \underbrace{f_{q(t)}(o_g(t))}_{\text{for emission density values}} \prod_{t=1}^{n-1} \underbrace{P(H_t = q(t)|H_{t-1} = q(t-1), I_g)}_{\text{Product over all Gaussian emission density values}} \prod_{t=1}^{n-1} \underbrace{P(H_t = q(t)|H_{t-1} = q(t-1), I_g)}_{\text{Product over all transition probabilities on path on path}}$$

E. coli. response FNR 1 CRP 1 NARL -1 IHF -1 TDCA 1 TDCR 1 DCUR 1 FNR 1 NARP 1 NARP 1 CRP 1 NARL -1 NARP ' MODE 1 NARL -1 FHLA 1 H-NS -1 FIS 1 ARCA -1 IHF -1 FNR -1 PHOB 1 PHOP 1 FIS 1 ARCA -IHF -1 DNAA -1 PLoS Comp. Bio. ARCA -1 2008

Stem cells differentiation

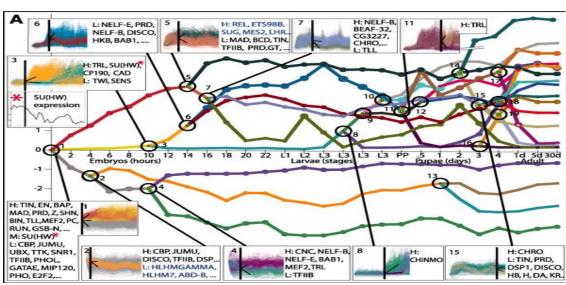


Mouse Immune response



Fly development

Science 2010



Things that work

- Approximate learning to speed up on large datasets.
- In real world, one technique is not enough. A solution involves using many techniques.
- Precision and Recall are trade-offs.