Latest Preprints:
[AI4Bio]
- Caleb N. Ellington, Ning Sun, Nicholas Ho, Tianhua Tao, Sazan Mahbub, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, E. P. Xing, Accurate and General DNA Representations Emerge from Genome Foundation Models at Scale,
NeurIPS AIDrugX Workshop, 2024. (bioRXiv:10.1101/2024.12.01.625444)
- Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb N. Ellington, Robin Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, E. P. Xing, A Large-Scale Foundation Model for RNA Function and Structure Prediction,
NeurIPS AIDrugX Workshop, (Spotlight), 2024. (bioRXiv:10.1101/2024.11.28.625345)
- Nicholas Ho, Caleb N. Ellington, Jinyu Hou, Sohan Addagudi, Shentong Mo, Tianhua Tao, Dian Li, Yonghao Zhuang, Hongyi Wang, Xingyi Cheng, Le Song, E. P. Xing, Scaling Dense Representations for Single Cell with Transcriptome-Scale Context,
NeurIPS AIDrugX Workshop, 2024. (bioRXiv:10.1101/2024.11.28.625303)
- Jiayou Zhang, Barthelemey Meynard-Piganeau, James Gong, Xingyi Cheng, Yingtao Luo, Hugo Ly, Le Song, E. P. Xing, Balancing Locality and Reconstruction in Protein Structure Tokenizer,
NeurIPS Machine Learning in Structural Biology Workshop, 2024. (bioRXiv:10.1101/2024.12.02.626366)
- Caleb Ellington, Benjamin Lengerich, Thomas B.K. Watkins, Jiekun Yang, Abhinav K Adduri, Sazan Mahbub, Hanxi Xiao, Manolis Kellis, E. P. Xing Learning to estimate sample-specific transcriptional networks for 7000 tumor,
bioRxiv, 2023.12.01.569658, under review at PNAS, 2024.
- Ding Bai, Shentong Mo, Ruiyi Zhang, Yingtao Luo, Jiahao Gao, Jeremy Yang, Qiuyang Wu, Digvijay Singh, Hamidreza Rahmani, Tiffany Amariuta, Danielle Grotjahn, Sheng Zhong, Nathan Lewis, Wei Wang, Trey Ideker, Pengtao Xie, E. P. Xing, scLong: A Billion-Parameter Foundation Model for Capturing Long-Range Gene Context in Single-Cell Transcriptomics,
bioRxiv, 2024.11. 09.622759, under review at Nature Methods, 2024.
- Li Zhang, Han Guo, Leah Schaffer, Young Su Ko, Digvijay Singh, Hamid Rahmani, Danielle Grotjahn, Michael Gilson, Wei Wang, Trey Ideker, E. P. Xing, Pengtao Xie, ProteinAligner: A Multi-modal Pretraining Framework for Protein Foundation Models,
bioRxiv, 2024.10. 06.616870, In review at Nature Communications, 2024.
- Charlotte Bunne, Yusuf Roohani, Yanay Rosen, Ankit Gupta, Xikun Zhang, Marcel Roed, Theo Alexandrov, Mohammed AlQuraishi, Patricia Brennan, Daniel B. Burkhardt, Andrea Califano, Jonah Cool, Abby F. Dernburg, Kirsty Ewing, Emily B. Fox, Matthias Haury, Amy E. Herr, Eric Horvitz, Patrick D. Hsu, Viren Jain, Gregory R. Johnson, Thomas Kalil, David R. Kelley, Shana O. Kelley, Anna Kreshuk, Tim Mitchison, Stephani Otte, Jay Shendure, Nicholas J. Sofroniew, Fabian Theis, Christina V. Theodoris, Srigokul Upadhyayula, Marc Valer, Bo Wang, Eric Xing, Serena Yeung-Levy, Marinka Zitnik, Theofanis Karaletsos, Aviv Regev, Emma Lundberg, Jure Leskovec, Stephen R. Quake, How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities, to appear, Cell, 2024.
[Artificial General Intelligence]
- Z. Hu and E. P. Xing, World Model,
In preparation, 2024.
- Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua Tao, Shibo Hao, Yemin Shi, Zhengzhong Liu, E. P. Xing and Zhiting Hu, Pan: Towards General World Model with Natural Language Actions and Video States,
arXiv:2406.09455, 2024.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, Ion Stoica, E. P. Xing, Vicuna: An open-source chat-bot impressing gpt-4 with 90% chatgpt quality,
Blog, 2023.
Selected Publications:
- Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Timothy Baldwin, E. P. Xing, LLM360: Towards Fully Transparent Open-Source LLMs,
Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, E. P. Xing, Hao Zhang, Joseph E Gonzalez, Ion Stoica, Judging LLM-as-a-judge with MT-bench and Chatbot Arena,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23)
(NeurIPS 23)
- Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation,
The 34th International Conference on Machine Learning.
(ICML 2017).
ALL Publications (in Chronical Order):
2024
- Xi Fu, Shentong Mo, Alejandro Buendia, Anouchka Laurent, Anqi Shao, Maria del Mar Alvarez-Torres, Tianji Yu, Jimin Tan, Jiayu Su, Romella Sagatelian, Adolfo Ferrando, Alberto Ciccia, Yanyan Lan, David Owens, Teresa Palomero, E. P. Xing, Raul Rabadan, A foundation model of transcription across human cell types,
Nature, to appear, 2024.
- Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang, Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy Baldwin, Zhengzhong Liu, E. P. Xing, Xiaodan Liang, Zhiqiang Shen, Web2Code: A Large-scale Webpage-to-
Code Dataset and Evaluation Framework for Multimodal LLMs.,
Advances in Neural Information Processing Systems 38, MIT Press, 2024. (NeurIPS '24)
- Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Timothy Baldwin, E. P. Xing, LLM360: Towards Fully Transparent Open-Source LLMs.,
Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
- Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang, William Marshall, Bhargav M Kanakiya, Joel Hestness, Natalia Vassilieva, Zhiqiang Shen, E. P. Xing, Zhengzhong Liu, Crystal: Illuminating LLM Abilities on Language and Code.,
Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
- Guangyi Liu, Yu Wang, Zeyu Feng, Qiyu Wu, Liping Tang, Yuan Gao, Zhen Li, Shuguang Cui,Julian McAuley, E. P. Xing, Zichao Yang, Zhiting Hu,Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding.,
Proceedings of the 41st International Conference on Machine Learning, 2024. (ICML '24)
- Hanlin Zhang, YiFan Zhang, Yaodong Yu, Dhruv Madeka, Dean Foster, E. P. Xing, Himabindu
Lakkaraju, Sham M. Kakade, A Study on the Calibration of In-context Learning.,
The 2024 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL '24)
- Hanoona Abdul Rasheed, Muhammad Maaz, Sahal Shaji Mullappilly, Abdelrahman M Shaker, Salman
Khan, Hisham Cholakkal, Rao Muhammad Anwer, E. P. Xing, Ming-Hsuan Yang, Fahad Khan, GLaMM: Pixel Grounding Large Multimodal Model.,
Proceedings of the 37th IEEE Conference on Computer Vision and Pattern Recognition, 2024. (CVPR '24)
- X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. P. Xing, Z. Hu, PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization,
Proceedings of 12th International Conference on Learning Representations, 2024. (ICLR 24).
- L. Zheng, W. L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang, Z. Li, Z. Lin, E. P. Xing, J. E. Gonzalez, I. Stoica, H. Zhang, Lmsys-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset,
Proceedings of 12th International Conference on Learning Representations, 2024. (ICLR 24).
2023
- F. Zhan, Y. Yu, R. Wu, J. Zhang, S. Lu, L. Liu, A. Kortylewsk, C. Theobalt, E. P. Xing, Multimodal Image Synthesis and Editing: A Survey and Taxonomy,
IEEE Transaction on Pattern Analysis and Machine Intelligence, 2023.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, E. P. Xing, Hao Zhang, Joseph E Gonzalez, Ion Stoica, Judging LLM-as-a-judge with MT-bench and Chatbot Arena.,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23).
- X. Song, W. Yao, Y. Fan, X. Dong, G. Chen, J. C. Niebles, E. P. Xing, K. Zhang, Temporally Disentangled Representation Learning under Unknown Nonstationarity,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23).
- K. Liu, F. Zhan, J. Zhang, M. Xu, Y. Yu, A. El Saddik, C. Theobalt, E. P. Xing, S. Lu, Weakly Supervised 3D Open-vocabulary Segmentation,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23).
- S. K. Choe, S. V. Mehta, H. Ahn, W. Neiswanger, P. Xie, E. Strubell, and E. P. Xing, Making Scalable Meta Learning Practical,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23)
.
- H. Yan, L. Kong, L. Gui, Y. Chi, E. P. Xing, Y. He, K. Zhang, Counterfactual Generation with Identifiability Guarantee,
Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23).
- S. Hao, B. Tan, K. Tang, B. Ni, X. Shao, h. Zhang, E. P. Xing, and Z. Hu, BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from Pretrained Language Models,
Proceedings of The 61st Annual Meeting of the Association for Computational Linguistics, 2023. (ACL 23).
- K. Liu, F. Zhan, Y. Chen, J. Zhang, Y. Yu, A. El Saddik, S. Lu, and E. P. Xing, StyleRF: Zero-shot 3D Style Transfer of Neural Radiance Fields,
Proceedings of the 35th IEEE Conference on Computer Vision and Pattern Recognition, 2023. (CVPR 23).
- A. Xiao, J. Huang, W. Xuan, R. Ren, K. Liu, D. Guan, A. El Saddik, S. Lu, and E. P. Xing, 3D Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition Point Clouds,
Proceedings of the 35th IEEE Conference on Computer Vision and Pattern Recognition, 2023. (CVPR 23).
- S. Lin, C. Liu, Z. Hu, P. Zhou, S. Wang, R. Zhao, Y. Zheng, L. Lin, E. P. Xing, X. Liang, Prototypical Graph Contrastive Learning,
IEEE Transactions on Neural Networks and Learning Systems, 2022.
- J. Huang, K. Cui, D. Guan, A. Xiao, F. Zhan, S. Lu, S. Liao, and E. P. Xing, Masked Generative Adversarial Networks are Robust Generation Learners,
Advances in Neural Information Processing Systems 36, MIT Press, 2022. (NeurIPS 22).
- K. Sreenivasan, J. Sohn, L. Yang, M. Grinde, A. Nagle, H. Wang, E. P. Xing, K. Lee, and D. Papailiopoulos, Rare Gems: Finding Lottery Tickets at Initialization,
Advances in Neural Information Processing Systems 36, MIT Press, 2022. (NeurIPS 22).
- Z. Shen, Z. Liu and E. P. Xing, Sliced Recursive Transformer,
Proceeding of the 18th European Conference of Computer Vision, 2022. (ECCV 22).
- X. Huang, Z. Shen, S. Li, Z. Liu, X. Hu, J. Wicaksana, E. P. Xing, K-T. Cheng, SDQ: Stochastic Differentiable Quantization with Mixed Precision,
Proceedings of the 39th International Conference on Machine Learning, 2022. (ICML 22).
- M. Zhou, Z. Li, B. Tan, G. Zeng, W. Yang, X. He, Z. Ju, S. Chakravorty, S. Chen, X. Yang, Y. Zhang, Q. Wu, Z. Yu, K. Xu, E. P. Xing, and P. Xie, On the Generation of Medical Dialogs for COVID-19,
Proceedings of The 59th Annual Meeting of the Association for Computational Linguistics, 2021. (ACL '21).
- B. Tan, Z. Yang, M. AI-Shedivat, E. P. Xing, Z. Hu, Progressive Generation of Long Text,
The 2021 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL '21).
- K. Kandasamy, K. Vysyaraju, W. Neiswanger, B. Paria, C. Collins, J. Schneider, B. Poczos, and E.
P. Xing Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly,
Journal of Machine Learning Research, 21 (81), 1-27, 2020.
- K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. P. Xing, Z. Ulissi, Methods for comparing uncertainty
quantifications for material property predictions,
Machine Learning: Science and Technology, Volume 1, Number 2, 2020.
- Z. Liu, G. Ding, A. Bukkittu, M. Gupta, P. Gao, A. Ahmed, S. Zhang, X. Gao, S. Singhavi, L. Li, W. Wei, Z. Hu, H. Shi, X. Liang, T. Mitamura, E. Xing and Z. Hu. A Data-Centric Framework for Composable NLP Workflows,
Proceeding of the 2020 Conference on Empirical Methods on Natural Language Processing. (EMNLP 2020 Demo).
- X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. P. Xing Learning Sparse Nonparametric DAGs,
Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, 2020.
(AISTATS 20)
- K. Xu, M. Lam, J. Pang, X. Gao, C. Band, P. Mathur, F. Papay, A. K. Khanna, J. B. Cywinski, K.
Maheshwari, P. Xie, E. P. Xing, Multimodal Machine Learning for Automated ICD Coding,
Conference on Machine Learning for Healthcare, 2019
(MLCH 2019).
- Y. Li, X. Liang, Z. Hu, Y. Chen, and E. P. Xing, Graph Transformer,
Proceedings of Seventh International Conference on Learning Representations
(ICLR 2019).
- J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. P. Xing and J. Schneider Transformation Autoregressive Networks,
Proceedings of the 35th International Conference on Machine Learning
(ICML '18)
- L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing and R. Salakhutdinov Gated Path Planning Networks,
Proceedings of the 35th International Conference on Machine Learning
(ICML '18)
- Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, On Unifying Deep Generative Models,
Proceedings of 6th International Conference on Learning Representations
(ICLR'18)
2017
- S. Lee, N. Gornitz, E. P. Xing, D. Heckerman, C. Lippert Ensembles of Lasso Screening Rules,
IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017 (10.1109/TPAMI.2017.2765321)
- H. Zhang, Z. Deng, X. Liang, L. Yang, S. Xu, J. Zhu, and E. P. Xing, Structured Generative Adversarial Networks,
Proceedings of Advances in Neural Information Processing Systems 31
(NIPS '17). (Recipient of the Nvidia Pioneering Research Award)
- Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation,
The 34th International Conference on Machine Learning.
(ICML 2017).
- X. Liang, L. Lin, X. Shen, J. Feng, S. Yan and E. P. Xing, Interpretable Structure-Evolving LSTM,
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2017).
- A. Dubey, J. Oliva, A. Wilson, E. P. Xing, B. Poczos, and J. Schneider, Bayesian Nonparametric Kernel-Learning,
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.
(AISTATS 2016).
- J. Howrylak, M. Moll, B. Raby, S. Weiss, W. Wu, and E. P. Xing, Gene Expression Profiling of Asthma Phenotypes Demonstrates Molecular Signatures of Atopy and Asthma Control, Journal of Allergy and Clinical
Immunology, Volume 137, Issue 5, Pages 1390- 1397, 2016.
- A. Wilson, C. Lucas, C. Dann and E. P. Xing, The Human Kernel,
Advances in Neural Information Processing Systems 29 (eds. Daniel Lee and Masashi Sugiyama), MIT Press, 2015.
(NIPS 2015).
- Z. Hu, P. Huang,
Y. Deng, Y. Gao and E. P. Xing,
Entity Hierarchy Embedding,
53rd Annual Meeting of the Association for Computational Linguistics.
(ACL 2015).
- J. Oliva, W. Neiswanger, B. Poczos, E. P. Xing and J. Schneider, Fast Function to Function Regression,
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics.
(AISTATS 2015).
2014
- J. Eisenstein, B. OÂ’Connor, N. A. Smith, and E. P. Xing, Diffusion of Lexical Change in Social
Media,
PLoS One, volume 9, Issue 11, e113114, 2014. (
arXiv:1210.5268, communicated 18 Oct 2012.)
[pdf
preprint]
- A. Parikh,
R. Curtis, I. Kuhn, S. Becker, M. Bissell, E. P. Xing and W. Wu,
Network Analysis of Breast Cancer Progression and Reversal Using a Tree-evolving Network Algorithm, PLoS Computational Biology, Volume
10, Issue 7, e1003713, 2014. [pdf
preprint].
- E. P. Xing, R. Curtis, G. Schoenherr, S. Lee, J. Yin, K. Puniyani, W. Wu, P. Kinnaird, GWAS in a
Box: Statistical and Visual Analytics of Structured Associations via GenAMap, PLoS One,
Volume 9, Issue 6, e97524, 2014. [pdf
preprint].
- J. B. Oliva, W. Neiswanger, B. Poczos, J. Schneider and E. P. Xing, Fast Distribution To Real Regression,
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics
(AISTATS 2014).
- J. Zhu and E. P. Xing, Sparse Topical Coding, Proceedings of the 27th International Conference on Conference on Uncertainty in Artificial Intelli-
gence (UAI 2011).
-
A. Ahmed, Q. Ho, J. Eisenstein, E. P. Xing, A. Smola and C. H. Teo, Unified
Analysis of Streaming News, Proceedings of the
International World Wide Web Conference (WWW 2011).
- J. A. Howrylak, T. Dolinay, L. Lucht, Z. Wang, D. C. Christiani, J. M. Sethi1, E. P. Xing, M. P. Donahoe and A. M. K. Choi, Discovery of the gene signature for acute lung injury in patients with sepsis, Physiol. Genomics 37: 133-139, 2009.
- A.
F.T. Martins, D. Das, N. A. Smith, and E. P. Xing, Stacking
Dependency Parser,
Proceedings of Conference on Empirical Methods in Natural Language
Processing, (EMNLP 2008).
- A.
Martins, M. Figueiredo, P. Aguiar, N. A. Smith and E. P. Xing,
Nonextensive Entropic Kernels,
Proceedings of the 25th International Conference on Machine Learning (ICML
2008). (A longer version
is available soon in CMU-MLD Technical
Report 08-106 with
the same title.)
- W.
Wu and E. P. Xing, A Survey of cDNA
Microarray Normalization and a Comparison by k-NN Classification,
in Methods in
Microarray Normalization (Ed. S. Phillip), CRC Press. p81-120, 2008.
2006
- F.
Guo, W. Fu, Y. Shi and E. P. Xing,
Reverse engineering temporally
rewiring gene networks,
The NIPS workshop on New Problems and Methods in Computational Biology
(NIPS2006).
- E.M. Airoldi, D.M.
Blei, S.E.
Fienberg, E.P. Xing, Latent mixed-membership
allocation models of relational and multivariate attribute data, Valencia
& ISBA Joint World Meeting on Bayesian
Statistics (2006).
- E.P. Xing, R. Sharan
and M.I
Jordan, Bayesian
Haplotype Inference via the Dirichlet Process. Proceedings
of
the 21st International Conference on Machine
Learning (ICML2004), (eds. Greiner and Schuurmans),
ACM Press, 879-886, [ps].
An earlier version of
this paper also appeared as a book chapter in Lecture Notes in
Bioinformatics, Special
issue
for 2nd RECOMB Satellite Workshop on Computational Methods for
SNPs and Haplotypes, 2004. (ps).
- E.P. Xing, A.Y. Ng,
M.I. Jordan and S. Russell, Distance
Metric Learning, with application to Clustering with side-information,
Advances
in Neural Information Processing
Systems 16 (NIPS2002),
(eds. Becker
et
al.) MIT Press, 521-528, 2002. (ps,
data,
code.)
- E.P. Xing, D. Wolf, I.
Dubchak, S. Spengler, M. Zorn, C.
Kulikowski,
I. Muchnik, Automatic discovery
of sub-molecular
sequence domains in multi-aligned sequences: a dynamic programming
algorithm
for multiple alignment segmentation, Journal of Theoretical
Biology,
21;212(2):129-39, 2001.
pre2000
- E.P. Xing, C.
Kulikowski, I. Muchnik, I. Dubchak, D. Wolf, S. Spengler and M. Zorn, Analysis of
ribosomal RNA sequences by combinatorial clustering, Proceedings, The
Seventh
International Conference on Intelligence Systems for Molecular Biology (ISMB99),
(Eds. T. Lengauer et al.) AAAI/MIT
Press, Menlo
Park, CA. P. 287-296, 1999.
- E.P. Xing, Y. Nie, Y-L
Song, G-Y. Yang, C. C. Cai, L-D.
Wang, C. S. Chung, Mechanisms of
inactivation of p14ARF, p15INK4b and p16INK4a
genes in human esophageal squamous cell carcinoma: p14ARF
is potentially another inactivation hotspot within the 9p21 gene
cluster,
Clinical Cancer Research, 1999 Oct; 5(10): 2704-13.
Back to top
|