PUBLICATION

Year of Publication :
[2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [Pre-2000]

Type of Publication :
[Show all] [Theses] [Book & book chapters] [Journal] [Conference] [Tech reports] [Workshop] [arXiv manuscripts]

Broad Content :
[Show all] [Core Machine Learning] [Systems and ML] [Healthcare and Medicine] [Other Applications]

Research Area :
[AutoML] [SysML] [MetaML] [Trustworthy ML] [Algorithms and Methodologies]
[Healthcare] [Genomics] [Natural Language Processing] [Computer Vision]

  • Charlotte Bunne, Yusuf Roohani, Yanay Rosen, Ankit Gupta, Xikun Zhang, Marcel Roed, Theo Alexandrov, Mohammed AlQuraishi, Patricia Brennan, Daniel B. Burkhardt, Andrea Califano, Jonah Cool, Abby F. Dernburg, Kirsty Ewing, Emily B. Fox, Matthias Haury, Amy E. Herr, Eric Horvitz, Patrick D. Hsu, Viren Jain, Gregory R. Johnson, Thomas Kalil, David R. Kelley, Shana O. Kelley, Anna Kreshuk, Tim Mitchison, Stephani Otte, Jay Shendure, Nicholas J. Sofroniew, Fabian Theis, Christina V. Theodoris, Srigokul Upadhyayula, Marc Valer, Bo Wang, Eric Xing, Serena Yeung-Levy, Marinka Zitnik, Theofanis Karaletsos, Aviv Regev, Emma Lundberg, Jure Leskovec, Stephen R. Quake, How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities, to appear, Cell, 2024.

    [Artificial General Intelligence]

  • Z. Hu and E. P. Xing, World Model, In preparation, 2024.


    Selected Publications:


  • Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Timothy Baldwin, E. P. Xing, LLM360: Towards Fully Transparent Open-Source LLMs, Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
  • Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, E. P. Xing, Hao Zhang, Joseph E Gonzalez, Ion Stoica, Judging LLM-as-a-judge with MT-bench and Chatbot Arena, Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23) (NeurIPS 23)
  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation, The 34th International Conference on Machine Learning. (ICML 2017).


    ALL Publications (in Chronical Order):


    2024

  • Xi Fu, Shentong Mo, Alejandro Buendia, Anouchka Laurent, Anqi Shao, Maria del Mar Alvarez-Torres, Tianji Yu, Jimin Tan, Jiayu Su, Romella Sagatelian, Adolfo Ferrando, Alberto Ciccia, Yanyan Lan, David Owens, Teresa Palomero, E. P. Xing, Raul Rabadan, A foundation model of transcription across human cell types, Nature, to appear, 2024.
  • Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Timothy Baldwin, E. P. Xing, LLM360: Towards Fully Transparent Open-Source LLMs., Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
  • Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang, William Marshall, Bhargav M Kanakiya, Joel Hestness, Natalia Vassilieva, Zhiqiang Shen, E. P. Xing, Zhengzhong Liu, Crystal: Illuminating LLM Abilities on Language and Code., Proceedings of the 1st Conference on Language Modeling, 2024. (CoLM '24)
  • Hanlin Zhang, YiFan Zhang, Yaodong Yu, Dhruv Madeka, Dean Foster, E. P. Xing, Himabindu Lakkaraju, Sham M. Kakade, A Study on the Calibration of In-context Learning., The 2024 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL '24)
  • Hanoona Abdul Rasheed, Muhammad Maaz, Sahal Shaji Mullappilly, Abdelrahman M Shaker, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, E. P. Xing, Ming-Hsuan Yang, Fahad Khan, GLaMM: Pixel Grounding Large Multimodal Model., Proceedings of the 37th IEEE Conference on Computer Vision and Pattern Recognition, 2024. (CVPR '24)

  • Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, E. P. Xing, Hao Zhang, Joseph E Gonzalez, Ion Stoica, Judging LLM-as-a-judge with MT-bench and Chatbot Arena., Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23).
  • S. K. Choe, S. V. Mehta, H. Ahn, W. Neiswanger, P. Xie, E. Strubell, and E. P. Xing, Making Scalable Meta Learning Practical, Advances in Neural Information Processing Systems 37, MIT Press, 2023. (NeurIPS 23) .

  • S. Lin, C. Liu, Z. Hu, P. Zhou, S. Wang, R. Zhao, Y. Zheng, L. Lin, E. P. Xing, X. Liang, Prototypical Graph Contrastive Learning, IEEE Transactions on Neural Networks and Learning Systems, 2022.
  • Z. Shen, Z. Liu and E. P. Xing, Sliced Recursive Transformer, Proceeding of the 18th European Conference of Computer Vision, 2022. (ECCV 22).

  • M. Zhou, Z. Li, B. Tan, G. Zeng, W. Yang, X. He, Z. Ju, S. Chakravorty, S. Chen, X. Yang, Y. Zhang, Q. Wu, Z. Yu, K. Xu, E. P. Xing, and P. Xie, On the Generation of Medical Dialogs for COVID-19, Proceedings of The 59th Annual Meeting of the Association for Computational Linguistics, 2021. (ACL '21).
  • B. Tan, Z. Yang, M. AI-Shedivat, E. P. Xing, Z. Hu, Progressive Generation of Long Text, The 2021 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL '21).

  • Z. Liu, G. Ding, A. Bukkittu, M. Gupta, P. Gao, A. Ahmed, S. Zhang, X. Gao, S. Singhavi, L. Li, W. Wei, Z. Hu, H. Shi, X. Liang, T. Mitamura, E. Xing and Z. Hu. A Data-Centric Framework for Composable NLP Workflows, Proceeding of the 2020 Conference on Empirical Methods on Natural Language Processing. (EMNLP 2020 Demo).
  • X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. P. Xing Learning Sparse Nonparametric DAGs, Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, 2020. (AISTATS 20)

  • Y. Li, X. Liang, Z. Hu, Y. Chen, and E. P. Xing, Graph Transformer, Proceedings of Seventh International Conference on Learning Representations (ICLR 2019).

  • J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. P. Xing and J. Schneider Transformation Autoregressive Networks, Proceedings of the 35th International Conference on Machine Learning (ICML '18)
  • L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing and R. Salakhutdinov Gated Path Planning Networks, Proceedings of the 35th International Conference on Machine Learning (ICML '18)
  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, On Unifying Deep Generative Models, Proceedings of 6th International Conference on Learning Representations (ICLR'18)

    2017

  • S. Lee, N. Gornitz, E. P. Xing, D. Heckerman, C. Lippert Ensembles of Lasso Screening Rules, IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017 (10.1109/TPAMI.2017.2765321)
  • H. Zhang, Z. Deng, X. Liang, L. Yang, S. Xu, J. Zhu, and E. P. Xing, Structured Generative Adversarial Networks, Proceedings of Advances in Neural Information Processing Systems 31 (NIPS '17). (Recipient of the Nvidia Pioneering Research Award)
  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation, The 34th International Conference on Machine Learning. (ICML 2017).
  • X. Liang, L. Lin, X. Shen, J. Feng, S. Yan and E. P. Xing, Interpretable Structure-Evolving LSTM, Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017).

  • A. Dubey, J. Oliva, A. Wilson, E. P. Xing, B. Poczos, and J. Schneider, Bayesian Nonparametric Kernel-Learning, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. (AISTATS 2016).

  • A. Wilson, C. Lucas, C. Dann and E. P. Xing, The Human Kernel, Advances in Neural Information Processing Systems 29 (eds. Daniel Lee and Masashi Sugiyama), MIT Press, 2015. (NIPS 2015).
  • Z. Hu, P. Huang, Y. Deng, Y. Gao and E. P. Xing, Entity Hierarchy Embedding, 53rd Annual Meeting of the Association for Computational Linguistics. (ACL 2015).
  • J. Oliva, W. Neiswanger, B. Poczos, E. P. Xing and J. Schneider, Fast Function to Function Regression, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. (AISTATS 2015).

  • J. B. Oliva, W. Neiswanger, B. Poczos, J. Schneider and E. P. Xing, Fast Distribution To Real Regression, Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS 2014).



  • J. Zhu and E. P. Xing, Sparse Topical Coding, Proceedings of the 27th International Conference on Conference on Uncertainty in Artificial Intelli- gence (UAI 2011).
  • A. Ahmed, Q. Ho, J. Eisenstein, E. P. Xing, A. Smola and C. H. Teo, Unified Analysis of Streaming News, Proceedings of the International World Wide Web Conference (WWW 2011).



  • A. F.T. Martins, D. Das, N. A. Smith, and E. P. Xing, Stacking Dependency Parser, Proceedings of Conference on Empirical Methods in Natural Language Processing, (EMNLP 2008).
  • A. Martins, M. Figueiredo, P. Aguiar, N. A. Smith and E. P. Xing, Nonextensive Entropic Kernels, Proceedings of the 25th International Conference on Machine Learning (ICML 2008). (A longer version is available soon in CMU-MLD Technical Report 08-106 with the same title.)
  • W. Wu and E. P. Xing, A Survey of cDNA Microarray Normalization and a Comparison by k-NN Classification, in Methods in Microarray Normalization (Ed. S. Phillip), CRC Press. p81-120, 2008.


    2006

  • F. Guo, W. Fu, Y. Shi and E. P. Xing, Reverse engineering temporally rewiring gene networks, The NIPS workshop on New Problems and Methods in Computational Biology (NIPS2006).
  • E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing, Latent mixed-membership allocation models of relational and multivariate attribute data, Valencia & ISBA Joint World Meeting on Bayesian Statistics (2006).


  • E.P. Xing, R. Sharan and M.I Jordan, Bayesian Haplotype Inference via the Dirichlet Process. Proceedings of the 21st International Conference on Machine Learning (ICML2004),  (eds. Greiner and Schuurmans), ACM Press, 879-886, [ps]. An earlier version of this paper also appeared as a book chapter in Lecture Notes in Bioinformatics, Special issue for 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes, 2004. (ps).




    pre2000

  • E.P. Xing, C. Kulikowski, I. Muchnik, I. Dubchak, D. Wolf, S. Spengler and M. Zorn, Analysis of ribosomal RNA sequences by combinatorial clustering, Proceedings, The Seventh International Conference on Intelligence Systems for Molecular Biology (ISMB99), (Eds. T. Lengauer et al.) AAAI/MIT Press, Menlo Park, CA. P. 287-296, 1999.

Back to top

Last updated 02/16/2024