A Waypoint Service Approach to Connect Heterogeneous Internet Address Spaces

T. S. Eugene Ng Hui Zhang Ion Stoica Carnegie Mellon University UC Berkeley

The Problem in a Nutshell

32-bit IP (IPv4) address space is too small

Internet becomes a heterogeneous network

Bi-directional connectivity between hosts is lost

Outline

- Formulate the problem
- Solution design goals
- Proposed solution: AVES
- Implementation and performance

The Original IP (IPv4) Internet

- Every host has a globally unique IP address
- Bi-directional connectivity is a fundamental property

32-Bit IP Address Space Is Too Small

- Upper bound: 31% of IP address space is covered by aggregated routing table
- Poor utilization
- Increasing demand
 - Always-on access (e.g., DSL, cable modem)
 - Internet enabled devices (e.g., mobile phones, PDAs)
- Fear of exhaustion leads to aggressive conservation
- IP addresses are increasingly difficult to obtain

Two Trends

- Deploy networks using reusable-IP addresses
 - a.k.a. private-IP addresses
 - IP network prefixes 10/8, 172.16/12, 192.168/16
 - not globally unique, not routable
 - hosts and routers remain running IP
- Deploy networks using IPv6 addresses
 - enormous 128-bit address space
 - globally unique
 - hosts and routers run IPv6

<u>Using Reusable-IP Addresses</u>

- NAT (Network Address Translation) gateway may have only one IP address
 - shared by reusable-IP network hosts
- NAT provides reusable-IP to IP connectivity

The Problem with NAT

 Bob has no globally unique IP address and so Alice cannot directly address Bob

NAT cannot provide bi-directional connectivity

Even Worse

No connectivity between Alice and Bob at all!

<u>Using IPv6 Addresses</u>

- IPv6 can be fully compatible with IP
- Key: every IPv6 host must consume a globally unique IPv4 address!
- In reality, many IPv6 networks will be <u>IPv6-only</u>
 - connect to IP Internet via NAT-Protocol Translation (PT) gateway
 - NAT-PT has the same problem as NAT

Heterogeneous Internet Address Spaces

 NAT and NAT-PT cannot provide bi-directional connectivity

Key problems:

IP to reusable-IP and IP to IPv6 connectivity

- all other cases reduce to these
- For simplicity, only consider
 IP to reusable-IP connectivity

Solution Design Goals

Should provide general connectivity

Solution Design Goals

- Should provide general connectivity
- Should be application independent

Solution Design Goals

- Should provide general connectivity
- Should be application independent
- Should not require changes to existing IP hosts and IP network routers
 - there is no incentive for them to make changes

Key Constraints

- Without IP addresses, reusable-IP hosts cannot be addressed by IP hosts
- IP addresses are a scarce resource
- Existing IP hosts and routers will not change

Must efficiently share IP addresses among many reusable-IP hosts simultaneously

Key Insight:

Design a 3rd-party service provider-based solution

AVES Overview

- Service provider deploys IP agents called waypoints
- Virtualize reusable-IP hosts by the waypoints
- Update customer NAT gateways

AVES Overview (Continued)

- Each initiator has its own unique virtual map
 - Each initiator can connect to 4 reusable-IP hosts simultaneously

Step	Packet sent
1	$[IP_A \rightarrow IP_W]$
2	$[IP_W \rightarrow IP_R [IP_A \rightarrow IP'_B]]$
3	$[IP_A \rightarrow IP'_B]$
4	$[IP'_B \rightarrow IP_A]$
5	$[P_W \rightarrow IP_A]$

Control Path Operations

- How to dynamically create the reusable-IP host to waypoint virtual mapping for each initiator?
- Fundamentally a reusable-IP host still needs to be identified somehow before communications
- Use a name to uniquely identify a reusable-IP host
- Create waypoint mapping during name resolution

DNS Is Not the Perfect Answer

- Want the identity of the initiator during DNS name resolution
- Recursive DNS name lookup hides this identity

Idealistic Solutions

- Modify the DNS protocol to carry the initiator's IP address in a DNS query
 - also useful for DNS based load balancing
- Run local caching-only name servers on end hosts
 - has performance benefit
- Use an alternative naming system

What Can We Do Today?

- In some specific deployment scenarios like Intranet deployment the right incentives exist to overcome the initiator identity problem
- When the incentives do not exist, trade performance for deployability

Scenario 1 -- Intranet Deployment

- CMU can deploy AVES so that people working at school can initiate connections back to their home computers behind NAT gateways
- Solution: CMU will upgrade local DNS servers to become AVES-aware
- Since local DNS servers interact directly with initiators, their identities can be known

Scenario 1 -- Intranet Deployment

Step 1	<u>Action</u>
1	DNS query for B
2	SETUP message (IP_A, IP_R, IP_B)
2 3	ACCEPT message
4	DNS reply for B (IP _W)

Scenario 2 -- General Deployment

- Cannot upgrade the local DNS servers used by initiators
- Solution: Delayed binding
 - serialize requests at waypoint
 - trades performance for deployability

Delayed Binding AVES-aware DNS servers IP Internet for avesnet.net Reusable-IP Network bob-home.avesnet.net В $[IP_A \rightarrow IP_W]$

Delayed Binding Is Imperfect

- Significantly lowers the maximum rate at which names can be resolved
 - e.g. with 50 waypoint IP addresses and a wait period of 2 seconds, 25 host-to-host sessions can be created per second
- This is what we have implemented and deployed
 - quite usable so far
 - see our paper for full details

Connectivity Properties

- Using N IP addresses, every IP initiator can simultaneously reach up to N reusable-IP hosts
- Every reusable-IP host can be reached by an unlimited number of IP hosts

Deployability Properties

- Waypoints can be easily deployed
- NAT gateways need to be extended to process packets
 - necessary and the right incentive exists
- No change to existing IP hosts or IP network routers
- Intranet deployment
 - upgrading existing local DNS servers provide best performance
- General deployment
 - with delayed binding, no existing DNS server upgrade necessary, but performance is reduced significantly

<u>Implementation</u>

- AVES DNS Server
- Modified *named* running on Linux
- AVES Waypoint

Linux user-level daemon (with delayed binding)

AVES NAT

Linux user-level daemon

Performance Measurement Testbed

Data Path Performance

- Theoretical maximum throughput 233Mbps with 1464 byte UDP packets
 - probably higher when overhead is amortized over a train of packets
- End-to-end throughput experiments
 - 96 Mbps with 1464 byte UDP packets
 - 80 Mbps with 1464 byte TCP packets
 - 41 Mbps with 48 byte TCP packets
 - could not get result for 48 byte UDP due to problem with Intel EtherExpress Pro driver

Prototype System

- Registered domain name avesnet.net
- 50 waypoint IP addresses assigned to two PCs
- One AVES-aware DNS server
- 10 trial customers
- Applications tested: telnet, ssh, ftp, scp, NFS, httpd, X windows, VNC, ping, traceroute

Summary

- AVES can provide high connectivity from IP hosts to reusable-IP or IPv6 hosts without
 - consuming many IP addresses
 - changing existing IP hosts or IP network routers
- Can provide connectivity even when both initiator and responder are behind NAT or NAT-PT
 - more sophisticated proposed solutions (IPNL, TRIAD) exist
- Optimized for deployability

Summary (Continued)

- Explore different ways of using 3rd-party agents to add functionality to the difficult to change Internet infrastructure
 - many previous application level services: web caches, CDN
 - AVES provides a fundamental addressing service
- http://www.avesnet.net
 - online demo
 - source code (really really soon)