

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

EUKLAS

Supporting Copy-and-Paste Strategies for

Integrating Example Code

Christian Dörner

Senacor Technologies AG

Erika-Mann-Str. 55

80636 München

christian.doerner@senacor.com

Andrew R. Faulring

HCI Institute

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA

faulring@cs.cmu.edu

Brad A. Myers

HCI Institute

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA

bam@cs.cmu.edu

Abstract

Researchers have paid increasing attention in recent years

to the fact that much development occurs though example

modification. Helping programmers with some of the pit-

falls and vagaries of working with example code is the goal

of our tool, called Euklas. It helps developers to integrate

JavaScript example code into their own projects by using

familiar IDE interaction techniques of the Eclipse IDE. The

Euklas plugin uses static, heuristic source code checks to

highlight potential errors and to recommend potential fixes,

when incomplete sections of code are copied from a work-

ing JavaScript example and pasted into the program being

edited. The most unique feature of the tool is the ability to

automatically import missing variable and function defini-

tions from an example file into a new project file. Our

preliminary user study of Euklas suggests that it supports

users in fixing errors more easily.

Categories and Subject Descriptors D.2.6 [Program-

ming Environments]: Programmer workbench.

General Terms Algorithms, Design, Human Factors

Keywords Code Reuse, Copy-and-Paste, JavaScript,

Eclipse, Natural Programming, Examples

1. Introduction

Leveraging examples is an established technique in design

[1], and has recently received increasing attention from

researchers focusing on programming tools [2-5]. With the

rise of search engines and web repositories of code along

with discussion threads, blogs, and code example websites,

people often create new systems by copying and pasting

code snippets from such sources [6]. Surveys and research

show that looking for examples is often people’s preferred

way to learn how to perform a task or to learn how to use

application programming interfaces (APIs) [7].

Most of the research on reusing examples has focused

on building improved search and data mining tools to help

with finding the examples (e.g., [1, 3, 5, 7, 8]). However,

there has not been much research on assisting users in reus-

ing and integrating the examples after they have been

found, with the exception of [4, 9, 10]. Copy-and-paste has

Figure 1. Euklas supports peoples’ integration attempts as it

enhances Eclipse’s JavaScript editor by (#1) highlighting errors in

the source code, (#2) providing quick fixes including the use of

the context in the origin of any copied code, and (#3) including

explanations for copy-and-paste errors based on the code of the

example snippet that was used.

2

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

been identified as a common usage pattern for reusing code

(e.g., copying several lines, blocks, or even whole methods)

[11-13]. Our aim is to support people’s copy-and-paste

attempts by providing familiar, easy-to-use, and effective

guidance to help them make their copied code work.

This paper introduces our tool, called EUKLAS (Eclipse

Users’ Keystrokes Lessened by Attaching from Samples)1,

which helps users to more successfully employ copy-and-

paste strategies for reuse (see Figure 1). Euklas provides

specific guidance for assisting users in fixing some copy-

and-paste errors that are typically caused by copying only a

part of the required code pattern [11]. The goal is helping

users with reusing working code from others and to fix

resulting errors.

JavaScript is one of the most popular scripting lan-

guages for web programming [15] and is used by a broad

variety of users, from end-user developers [16] such as

interaction designers [6], to professional programmers. In

spite of this widespread use, JavaScript development tools

often provide less programming support for users (e.g., no

static code checking, limited auto-completions), compared

with other, non-scripting languages such as Java. One rea-

son may be that analyzing JavaScript is difficult since it has

weak, dynamic typing that makes it challenging to perform

static analyses at edit-time. We overcome this limitation as

well as provide more sophisticated guidance for correcting

errors resulting from copy-and-paste.

The following example presents a typical use case for

the kind of copy-and-paste reuse of JavaScript code that is

supported by Euklas. Jamie is a JavaScript developer and

has found a code snippet on the web that creates various

types of enhanced combo-boxes from which she wants to

use one in her website. Jamie has to explore the example

code in more detail to separate relevant pieces of code from

irrelevant pieces. That is, she has to identify which func-

tions, variables, and imports of JavaScript and CSS files are

necessary to make her code work the same way as the ex-

ample. This is often a time-consuming and cumbersome

task especially since Jamie’s JavaScript editor does not

provide any help. In contrast, Euklas can help Jamie with

the integration process as it provides her with editing guid-

ance. First, Euklas highlights errors, such as undefined

variables, missing function definitions, and missing imports

of CSS and JavaScript files, in her target code by inserting

error markers and squiggly underlines (see #1 in Figure

1). Second, Euklas also computes quick fixes for the identi-

fied errors to help Jamie easily correct them (see #2 in

Figure 1Fehler! Verweisquelle konnte nicht gefunden

werden.). For example, it suggests copying the missing

variable and function definitions from the source file and

1
 Euklas is German for Euclase, which is a gemstone. Euklas is pro-

nounced oy-class.

offers to insert the missing import statements for the CSS

and JavaScript files.

Euklas makes the following major contribution: It helps

users to integrate JavaScript example code into their own

projects by identifying some of the potential errors in the

pasted code and recommending potential fixes, based on

the consideration of the original code from which sections

were copied. The editing guidance uses familiar interaction

features of the Eclipse IDE and extends it with new detec-

tion and repair algorithms. These algorithms are based on

heuristic edit-time source code checks for JavaScript, such

as checking for uninitialized variables and undefined func-

tions, and the analysis of the example file (from where code

was copied) to provide useful quick fixes for the identified

errors.

We evaluated Euklas in a preliminary user study with 12

people, comparing it to Eclipse’s JavaScript editor. The

results suggest that the features have been implemented in a

usable and effective manner, since participants were not

confused that Euklas can sometimes be wrong or not help-

ful. The study also suggests that participants using Euklas

were able to fix about two times as many errors as people

in the control group, when integrating example code into

their target systems.

2. Related Work

The reuse of example code consists of two main phases: 1)

locating the example code and 2) integrating it into the

target system. There are several systems that assist users in

finding relevant example code (e.g., in repositories or on

the web) [2, 3, 17, 18]. However, more relevant to our work

are tools that support users in integrating code into their

systems.

JDA (JavaScript Dataflow Architecture) aims to enable

users that have no programming skills to build applications

from JavaScript code that was found on the web [10]. Users

write simple HTML commands to connect the different

pieces of JavaScript code in a way similar to “pipes” in

UNIX systems. However, JDA treats the pieces of Java-

Script code as “black-boxes”, which means that users can-

not access or change the internal code structure. In contrast,

Euklas treats all JavaScript code as “glass boxes”, allowing

users to access and copy even incomplete internal pieces of

their code structure.

D.MIX targets web designers that are familiar with

HTML and scripting languages, such as JavaScript. It ena-

bles them to build and share mashups created from pre-

existing web sites. D.MIX inspired the design of Euklas as

it follows a copy-and-paste approach that works on a richer

representation of the selected data [19]. In that way, ele-

ments’ parameters can be changed after pasting them to

D.MIX’s editing environment. We take the idea of D.MIX

one step further, since Euklas provides specific editing

3

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

operations, in the form of quick-fixes, which help users to

integrate their copied pieces of code into their projects.

The Looking Glass IDE helps middle school students to

reuse functionality they find in other programs by helping

them to understand how the code works [4]. It guides stu-

dents to do this by enabling them to 1) record the execution

of the program they are interested in, 2) identify the start

and end of the functionality they are interested in, and 3)

integrate this functionality in their new program. Euklas

uses the idea of guiding users to support their copy-and-

paste-based reuse strategies, but integrates this guidance

with familiar interaction techniques in Eclipse.

JIGSAW is a plug-in for the Eclipse IDE that uses a

copy-and-paste interaction technique for reusing Java code

[9]. It inspired the design of Euklas, since Jigsaw assists

developers with the integration of the reused source code

into the developer’s own source code. Jigsaw compares the

example code and the target code to suggest which pieces

of the example code would fit best in the target code. How-

ever, Jigsaw can only work with pieces of example and

target code that have similar AST (Abstract Syntax Tree)

structures. Jigsaw was tested in a small study with two

developers, which showed that the resolution of conflicts is

cumbersome and not yet well supported by Jigsaw.

JSLINT is a popular tool for detecting errors in JavaS-

cript code. JSLint works on a subset of JavaScript and its

goal is to help programmers to write better code. This

makes it different from Euklas’s error detection, since we

do not restrict which features of the language can be used.

In addition, Euklas supports users in fixing the errors.

Many JavaScript editors do not provide much program-

ming support other than syntax highlighting. At the next

level, IDEs like NetBeans provide simple code inspections,

such as checking whether a variable has been used or not.

One of the most advanced commercial products for pro-

gramming JavaScript is WebStorm, which provides more

advanced code inspections by leveraging JSLint. For ex-

ample, it offers analyses to check whether variables and

functions have been defined. In contrast to JSLint, Web-

Storm also offers quick fixes for the detected errors, allow-

ing users to easily declare and define a variable, or to create

a new empty function definition. However, the provided

quick fixes do not analyze the files from where code was

copied, making it impossible for WebStorm to offer the

kind of quick fixes that Euklas provides.

Euklas’s copy-and-paste design is strongly inspired by

Rosson’s and Carroll’s observations about “the reuse of

uses in Smalltalk programming” [13]. They observed a

reuse strategy where programmers copied and pasted a

piece of code that they considered to be promising for the

functionality that they intended to reuse. After pasting it

into the target context, they let the environment provide

editing directions about what would be necessary to make

the code work. This was often accomplished in several

cycles of fixing and waiting for new editing suggestions,

until all of the copied code was fixed.

Kim et al. report that related code snippets (e.g. refer-

enced fields/constants and caller/callee methods) are usual-

ly copied together because they belong to the same func-

tionality [12]. In addition, Ko et al. provided empirical

evidence that the identification of related code snippets

often fails in the first attempt, requiring programmers to

spend time on identifying all relevant pieces of code [11].

Euklas supports users when they try to reuse code by

copying-and-pasting it into their target code since Euklas

will not only mark errors, but it also provides quick fixes

for some of these errors (which might involve copying and

pasting additional pieces of the example code). These steps

are performed iteratively until all errors in the target code

have been fixed.

3. EUKLAS

In this section we first discuss Euklas’s user interface de-

sign. Afterwards we will present how the system was im-

plemented and integrated into the Eclipse IDE.

3.1 User Interface

Returning to the example discussed in the introduction, we

explain how Euklas helps Jamie to integrate the combo-box

code she found on the web. Jamie identifies that the con-

structor (jawBar(id), see Figure 2) is a promising piece of

code for making the combo-box work. She copies and

pastes the constructor into her target file. Euklas identifies

two errors in the constructor: the two undefined function

calls findMatch(e) and init() (see #1 in Figure 2).

These are undefined because their function definitions are

not available in the target file, since they have not yet been

copied from the example file. Euklas uses Eclipse’s famil-

iar marker system including the squiggle underlines and the

error markers in the margin to indicate these two errors

in the code.

Figure 2. Euklas marks errors in the function jawBar() after

Jamie pastes it into the target file.

4

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

In addition to marking the errors, Euklas also suggests

solutions for fixing them. By clicking on the error marker

 that refers to init(), Jamie gets four options to fix this

error, as shown in Figure 3. Again, Euklas uses Eclipse’s

functionality for showing the quick fix options. The quick

fixes proposed by Euklas (the first two in the list in Figure

3) use Euklas’s icon to distinguish them from the quick

fixes proposed by Eclipse itself (the last two in the list).

The first quick fix that Euklas proposes would copy the

function jawBar.prototype.init() that is defined in

the example file (the file from which Jaime copied the

function jawBar()) to the target file. The second quick fix

that Euklas proposes is a “default fix” that creates a new

function, called init() that would have an empty function

body. This is sufficient to remove the syntax error, but it

would not serve Jamie’s goal of making the enhanced com-

bo-box work in her website. We added this default option

because it resembles the kinds of quick fixes that are of-

fered by Eclipse’s Java editor and by WebStorm with

which programmers may be familiar. The default option is

also a fallback option for cases in which Euklas is not able

to provide a better quick fix based on the example code.

Jamie reads the explanation in the beige window (see

Figure 3) that describes how Euklas proposes to fix the

error by using the example code. She decides that the first

option is probably the correct fix for her situation and se-

lects it. Euklas pastes the function jawBar.proto-

type.init() from the example file into the target file.

This successfully fixes the missing definition of the func-

tion init(). However, the function findMatch(e) is

still undefined and Euklas identified an additional error in

the newly code. Jamie continues to fix the remaining errors

until the code is fixed and the combo-box is working.

3.2 Implementation

Euklas was implemented on top of Eclipse’s JavaScript

editor as a plug-in to the IDE. Eclipse’s JavaScript and

HTML editors do not provide as much programming sup-

port. In particular, they only provide error highlighting for

syntax errors and some basic quick fixes, such as “rename

in file” and “assign statement to new local variable.”

JavaScript is a dynamic language, which makes it hard

to reliably detect errors at edit time. Jensen et al. identify

various situations that can cause runtime errors: invoking a

non-function value (e.g. undefined) as a function, reading

an undefined variable, and accessing a property that is

‘null’ or ‘undefined’ [20]. Starting with this list, we looked

for additional errors that may arise from copy and paste

operations. We identified three additional types of errors

that are specific to JavaScript, and arise from its close rela-

tionship with HTML and CSS code. Our analysis resulted

in the following list of potential copy and paste errors that

can be detected by Euklas: 1) missing parameter definitions

in a function’s parameter list, 2) missing local and global

variable definitions, 3) missing function definitions, 4)

missing CSS style sheet imports (e.g. for general layout

definitions), 5) missing JavaScript file imports (e.g. scripts,

which might be located on remote servers), and 6) missing

HTML elements being accessed by the global JavaScript

function getElementById(HTML_Element_ID).

Euklas employs heuristic, static analyses on the Abstract

Syntax Tree (AST) to find potential errors in JavaScript

code. Euklas’s analysis of the AST is invoked if a user

pastes a piece of code from an example file to the target

file. Euklas provides error highlighting for all six error

types mentioned above. However, Euklas currently only

provides quick fixes for numbers 1-3, which we consider to

be the more important types of errors, since they may cause

runtime errors in the JavaScript code. Numbers 4-6 cause

errors in the HTML part of the source code, which may

cause problems with displaying the webpage correctly but

do not necessarily lead to JavaScript execution-time errors.

Euklas’s code analyses are different from those that are

used in other static code analysis tools, such as FindBugs

[21]. Since JavaScript does not provide static typing of

variables, it is impossible to run certain dataflow analyses.

Euklas instead employs heuristic analyses, which has prov-

en to be a successful alternative approach for JavaScript

[22]. The implementation of Euklas assumes that the code

of the used examples is syntactically and semantically

correct, which means that the code is executable and deliv-

ers a useful result (a limitation of the current Euklas proto-

type). Euklas uses three different algorithms to identify the

errors listed above. The first detection algorithm checks for

undefined variables (error numbers 1 and 2), the second

detection algorithm checks for undefined functions (error

number 3), and the third detection algorithm checks for the

errors in the HTML code (error numbers 4-6).

The heuristics used for identifying errors numbered 4-6

are more fragile than the heuristics used for detecting errors

numbered 1-3. The reason is that content can be loaded

dynamically, e.g. loading CSS code within JavaScript code.

Figure 3. Euklas proposes the top two quick fixes for the unde-

fined function init(). More information about the first (selected)

proposed fix is shown in the beige pop-up at the right. The pop-up

shows a short proposal explaining what Euklas intends to do,

followed by a preview of how the code will look after the selected

fix has been applied. Euklas augments Eclipse’s quick fix feature

which is well-known by many programmers.

5

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

To visualize our confidence level of the more fragile heu-

ristics, error numbers 4, 5, and 6 are marked with a warning

marker instead of an error marker .

There are some cases in which Euklas produces false

positives or false negatives, due to the used heuristics. This

means that the analyses can either mark correct code as an

error, or miss marking some existing errors in the code.

Consider the following example that caused one of the

errors in the evaluation. Euklas cannot detect errors that are

caused by “hiding” variables: var that = this;

that.findMatch(e);. In this case Euklas is not be able

to detect that the function call that.findMatch(e);

could be related to the object this instead of to the object

that. It would produce a false positive because it does not

find the function definition of findMatch(e) that belongs

to the object that .

Euklas not only finds potential errors in the code, but it

also can propose fixes for these errors. Euklas remembers

the links between the position in the example file and the

specific region in the target file when users copy and paste

code. Each target file can have multiple regions and each

region has exactly one link to exactly one corresponding

region in an example file from which the code was copied.

Euklas maintains the meta-data about these connections in

memory. It updates the regions when the target files are

edited to keep the metadata correct. Euklas loads and saves

this metadata as part of the project when Eclipse starts and

shuts down.

Currently, Euklas needs to have access to each of the

example files, i.e., they must be present in Eclipse’s work-

space. We decided that this would be a reasonable limita-

tion for the Euklas prototype, to enable investigation of the

usability and usefulness of its ideas, but a real system

should handle example code from external files or individ-

ual snippets of code (e.g., code copied from the web, or

small pieces of code in blog posts).

The ASTs of the example files are analyzed for potential

solutions for some classes of errors. For example, if the

error in the target file refers to an undefined variable,

Euklas analyzes the example file(s) for a definition of this

variable (under the assumption that the code in the example

file(s) is syntactically and semantically correct). If there is a

suitable definition in an example file, Euklas creates a

quick fix proposal to copy that definition from the example

file into the target file, and adds this quick fix to the error

marker in the target file. If the user selects a proposed quick

fix, Euklas parses the AST of the target file to insert the

copied AST piece from the example file.

4. Evaluation

The evaluation had the goal of answering two questions:

Can users understand and successfully use Euklas’s fea-

tures? Is the integration of example code faster and more

correct with Euklas than with Eclipse’s standard JavaScript

editor or compared to a more sophisticated JavaScript edi-

tor, which already offers some error detection features?

4.1 Participants

We feel that Euklas is most appropriate for people who

have some experience with using JavaScript, and we did

not want to have to train people on how to use Eclipse.

Therefore, we recruited participants who had about one

year of experience using Eclipse (for developing in any

language), and who had done at least one programming

project in JavaScript (using any development environment).

We recruited 12 participants (10 male, 2 female) from our

local university community. Each participant was compen-

sated $15 for participating. Their ages ranged from 19 years

to 37 years (median: 25, s.d. 5). The participants had di-

verse backgrounds, such as business administration and

software engineering.

4.2 Apparatus and Materials

The study was conducted in our lab on the university

grounds. We used an iMac running a standard Eclipse in-

stallation including the WTP (Web Tools Project) plug-in.

The control group used Eclipse’s JavaScript editor, which

does not highlight errors or provide quick fixes, and each

experimental group used one of two versions of Euklas:

“Euklas lite” and “Euklas full”. The main difference be-

tween the two versions was that “Euklas lite” only analyzed

the target file to identify errors and to compute quick fixes,

while “Euklas full” also analyzed the example file(s). We

chose to have these two different versions of Euklas to be

able to separately study the following two aspects. First, we

wanted to explore the effects of providing error highlight-

ing and quick fixes with a user interface similar to Eclipse’s

Java editor. Second, we were interested in the effects of

having the more sophisticated analyses and quick fixes that

took the example file(s) into account.

We set up Eclipse’s workspace with the files that were

used for the study. Each of the examples could be executed

in Firefox to allow participants to explore the examples and

test whether their target code was working. .

4.3 Procedure

The study used a between-subjects design using the tool

version as independent variable with three conditions:

Eclipse’s JavaScript editor (Control condition), “Euklas

lite” and “Euklas full”. The dependent variable was wheth-

er the tasks were completed successfully. The between-

subjects design was chosen because it would have been

impossible for the participants to redo the tasks, since they

would have known the answer to each task after the first

run. Participants were randomly assigned to each group,

6

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

since all subjects reported approximately equal JavaScript

programming experience.

Participants in all groups received a spoken introduction

to the study and signed the consent form. All participants

were briefly introduced to Eclipse’s JavaScript editor.

Members of the experimental groups received an additional

introduction to Euklas’s extensions to Eclipse’s JavaScript

editor, e.g. information about its error and warning markers

and the quick fixes. All task descriptions explained which

code should be copied and what the desired results would

be after the code was pasted and all errors were fixed.

All participants performed the tasks in the same order.

The tasks were designed to cover all cases in which Euklas

provides support, as well as cases where it provides mis-

leading help or does not help at all. Participants were al-

lowed to work on each task for a fixed amount of time,

which varied from 7 to 20 minutes, based on the task’s

difficulty. The researcher who conducted the study meas-

ured the time it took participants to work on each of the

tasks and stopped them if they ran over the maximum time

allowed for each task.
Task No. of

Errors

Types of

Errors*

Source

LOC

Copied

LOC

Max. Time

(min.)

1 1 2 112 10 7

2 3 2, 3 112 13 7

3 2 1, 2 122 29 7

4 3 2, 5, 6 103 5 10

5 5 3, syntax

error

218 125 12

6 10 2, 3, 4 1507 996 20

Sum 24 2174 1178 63

Table 1. Summary of the tasks (*types of errors ac-

cording to the list in section 3.2

Table 1 shows the number of errors per task (errors that

occurred after the first paste operation), the types of errors

included in the tasks (based on the types of errors presented

in section 3.2), the lines of code (LOC) of the source ex-

ample files (HTML and JavaScript files together), the total

number of lines that had to be copied to solve the tasks, and

the maximum time participants were given to complete

each of the tasks. We judged tasks to be finished success-

fully if the code could be executed without causing any

errors in Firefox and if it performed as required by the

specification.

In task #1, participants had to choose and integrate the

correct part of a larger function for setting a cookie, while

they had to choose and integrate a different part of that

function for getting a cookie in task #2. For task #3, partic-

ipants had to integrate an enhanced pop-up menu into the

target file. In task #4, participants had to add a pushpin to a

‘Bing’ map and integrate it into the target file. To complete

task #5, participants had to integrate an enhanced combo

box (the one that we described above as Jamie’s example)

into their target file. Finally, in task #6, participants had to

integrate an inner window into their target file.

At the end of the study, participants filled out a ques-

tionnaire. The questions primarily used five-level Likert

scales, but some were open answer.

4.4 Results

The analysis of the data shows that participants using

“Euklas full” completed more tasks (Control: 7/24, “Euklas

lite”: 13/24, “Euklas full”: 18/24.) and fixed about twice as

many errors (average = 22.25) as the control group did

(average = 11.75) when integrating the example code into

the target system.

For the analysis we combined the tasks shown in Table

1 into an “easy” group (tasks 1-3) and a “difficult” group

(tasks 4-6). There are several reasons for combining the

tasks into the two groups. The median average success rate

for all six tasks across all three conditions was 0.5. We

defined “easy” tasks as those with an average success rate

at or above the median, and “difficult” tasks as those below

the median. Another reason was that the tasks had been

designed with an increasing difficulty. We allotted more

time for completing the more difficult tasks. Finally, with-

out combining the tasks we would have not been able to

perform any statistical analysis, due to the highly differen-

tiated completion values. The same reasoning justifies the

statistical tests on the number of errors fixed.
“Easy” Tasks “Difficult” Tasks

1: 0.75 4: 0.33

2: 0.50 5: 0.17

3: 1.00 6: 0.42

Table 2. Average success rate per task (standard error:

0.13)

We ran a logistic regression analysis of the tasks, which

showed a statistically significant difference for the success

rate with respect to the tasks’ difficulty, i.e. between the

“easy” and “difficult” tasks: likelihood ratio χ²[1] = 14.79,

p < 0.0001. We also analyzed how the success rate of par-

ticipants was affected by the tool used (Control, Euklas lite,

Euklas full) and the task difficulty (easy tasks, difficult

tasks). A nominal logistic regression analysis showed that

the effect of the tool on the success rate was significant:

likelihood ratio χ²[2] = 14.97, p = 0.0006. The effect of the

task difficulty on the success rate was also significant:

likelihood ratio χ²[1] = 19.34, p < 0.0001. The interaction

was not significant. In other words, participants were more

successful based on the tool used across all tasks. We per-

formed pairwise nominal logistic regression tests to deter-

mine which levels of tool use had a significant effect on the

success rate: Control vs. “Euklas lite”: likelihood ratio

χ²[1] = 3.21, p = 0.074; Control vs. “Euklas full”: likeli-

hood ratio χ²[1] = 14.90, p < 0.0001; “Euklas lite” vs.

“Euklas full”: likelihood ratio χ²[1] = 4.44, p < 0.035. In

7

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

summary, “Euklas full” was better than both Control and

“Euklas lite”. “Euklas lite” was slightly better than Control.

Looking at the number of corrected errors, i.e. the num-

ber of errors that were fixed by the participants, the data

also shows that “Euklas full” participants fixed almost

twice as many errors as participants in the control group

We ran an ANOVA to test for the effect of the tool used

and the task difficulty on the number of corrected errors,

and found that the number of corrected errors differed sig-

nificantly across the three tools, F[2,9] = 13.82, p < 0.002.

We ran contrasts to compare the tools with each other. The

Control group made fewer error corrections than the

“Euklas lite” group (F[1,9] = 13.37, p = 0.005) and also

corrected less errors than the “Euklas full” group (F[1,9] =

26, p < 0.001).

Unfortunately, we were not able to analyze differences

for the timing data, i.e. how long participants took to com-

plete each of the tasks, since there were so many tasks that

participants failed to complete in the maximum allotted

time.

The analysis of the final questionnaires provides more

details on the differences between the two Euklas versions.

Participants who used “Euklas full” agreed that it usually

provided helpful quick fixes (average 4 out of 5). One

“Euklas full” user nicely expressed why he liked it: “Intel-

ligent error messages and debugging makes it infinitely

more useful, especially when it checks against the source of

your copy.” “Euklas lite” got lower ratings in terms of

helpfulness (average 3.25 out of 5) of its quick fixes from

the participants who used it, which was not surprising. One

of the “Euklas lite” participants suggested the following

improvement, which reflects exactly the improvements in

“Euklas full”: “Provide [a] pop-up menu which can suggest

to copy blocks of code to resolve errors.” The questionnaire

also asked whether Euklas speeds up the integration of

JavaScript code compared to other editors. Participants

using “Euklas full” strongly agreed with this statement

(4.75 out of 5) while participants using “Euklas lite” did

not share this view (3.75 out of 5).

5. Discussion

The tasks that were combined in the “easy tasks” group

contained a maximum of three errors and participants were

allotted the same maximum time of seven minutes for each

of the tasks. Even though the number of errors was low and

the scripts were short, participants in the Euklas conditions

were more likely to complete the three tasks and fixed more

errors than participants in the control group. However, due

to the rather low complexity of tasks in this group, we did

not expect that “Euklas full” participants would have big

advantages compared to “Euklas lite” participants, which

was reflected by the very similar results in the two Euklas

conditions.

For the three tasks in the “difficult tasks” group, howev-

er, the situation is different. “Euklas full” users had a larger

advantage than participants in the other two groups. The

code they used was longer and more complex (1828 LOC

instead of 346 LOC), contained more errors (18 instead of

6) and the errors were more difficult to find (see Table 1).

Therefore, we increased the maximum time that partici-

pants were allowed to work on each task. The task comple-

tion rates were higher for participants using “Euklas full”

than participants using “Euklas lite” and participants in the

control condition. Also, the results show that participants

using “Euklas full” were able to fix more errors than partic-

ipants in any of the other two conditions.

Overall, the results show that the “Euklas lite” version,

which provided error detection features and standard quick

fixes, already brought many improvements in comparison

with Eclipse’s JavaScript editor, which did not offer such

features. This is not surprising, since we know that high-

lighting errors helps users. “Euklas full”, which offered

additional analyses and additional quick fixes, improved

performance even more. “Euklas full” especially showed

advantages when the pieces of copied code were longer

and/or more complex (as in Tasks 4-6). Euklas’s approach

of considering a broader context for the computation of

potential quick fixes has implications for many other pro-

gramming languages, such as Java.

Using Eclipse’s marker feature for highlighting and fix-

ing errors seems to be an appropriate UI choice as partici-

pants had a very positive attitude towards this approach and

considered it to be easy to learn. The most important aspect

about using this feature is that participants knew what to

expect from the provided quick fixes. They knew that these

were usually right in “Euklas full”, but that they could

sometimes also be wrong and might not be helpful. Such a

situation was simulated in task 5, where participants had to

fix a syntax error. The task also included a missing function

definition that was not detected by either of the two Euklas

versions. Participants were generally able to distinguish

between these cases where they got standard “quick fixes”

from Eclipse and where they got more sophisticated quick

fixes from Euklas, since they did some manual checks to

see if a proposed quick fix was appropriate or not before

they used it.

There were a total of 24 errors that occurred after partic-

ipants pasted the code from the source files into the target

files. “Euklas full” provided 20 helpful suggestions for

fixing these errors, plus 33 generic suggestions (e.g. declare

a function with an empty body). Eclipse generally added in

two additional suggestions per error that were not helpful at

all. Participants sometimes picked one of Euklas’s generic

fixes (e.g., for one of the missing functions in task 5). They

knew that this was not sufficient for making the code work

and therefore looked at the example code to manually find

the correct piece of code. In cases where Euklas did not

8

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

show an error at all (e.g., for one of the missing functions

in task 5), participants did not perform worse than the par-

ticipants in the control group, so there appears to be no

disadvantage to using Euklas.

However, the evaluation has some limitations. First, the

evaluation only had the rather small number of 4 partici-

pants in each condition. Second, participants used the tools

for only one hour. Third, the tasks may not have been rep-

resentative of realistic tasks. Although the pieces of code

were real-world examples that were taken from the web, we

had to reduce the complexity of dealing with these exam-

ples to limit the amount of time spent on completing each

of the tasks.

6. Conclusion and Future Work

In this paper, we presented our new Eclipse plug-in,

Euklas, which supports JavaScript programmers in some of

the tasks when using copy-and-paste-strategies for reusing

example code. This kind of reuse does not create clones in

a codebase [14], but instead helps users to reuse working

code from others to introduce new functionality to their

codebases and understand how this functionality can be

implemented. Euklas supports these strategies by analyzing

the target code for errors and by suggesting fixes for these

errors. An important innovation is augmenting the fixes

through an analysis of the code from where the example

was copied. Our evaluation shows that Euklas’s users were

able to fix a much higher number of copy-and-paste related

errors than participants who used Eclipse’s JavaScript edi-

tor, which does not provide any debugging support.

Euklas’s main contribution is analyzing the file from

where code was copied to provide more detailed error de-

scriptions and much better quick fixes for these errors. We

think that applying Euklas’s ideas to editors used for other

languages (e.g., Python, Java, and C++) could increase

programmers’ performance in these situations in the same

way it did in our case for JavaScript.

In addition to reducing the limitations discussed above,

future work could include implementing some additional

features for Euklas. One idea for providing improved error

detections would be to design a heuristic for analyzing the

context of a variable to try to determine its runtime type.

This would allow the implementation of better quick fixes,

since the system could distinguish between variables with

the same name, but of a different type.

Euklas points to a future where programming support

tools better help developers by taking into account all of the

available contextual information, and the provenance of

resources used. The success of Euklas shows that this ap-

proach is feasible and can be successful, and developers

can make effective use of recommendations, even when

they are heuristic. The incorporation of extended copy and

paste support into different kinds of editors would be a first

step into this future.

Acknowledgements

This work was conducted in 2010/2011, when the first

author was a postdoc at Carnegie Mellon University. The

authors would like to thank Sara Kiesler for her invaluable

assistance in the data analysis. The first author thanks the

Alexander von Humboldt-Foundation for his Feodor Lynen

Research Fellowship for Postdoctoral Researchers. This

research has also been supported by SAP, Adobe and the

National Science Foundation, under grant CCF-0811610.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect those of the sponsors.

References

[1] Lee, B. et al., Designing with interactive example galleries. in

CHI '10, 2257-2266.

[2] Bajracharya, S. et al., C., Sourcerer: An internet-scale software

repository. in ICSE SUITE Workshop '09, IEEE, 1-4.

[3] Brandt, J. et al., S.R., Example-centric programming: integrating web

search into the development environment. in CHI '10, 513-522.

[4] Gross, P.A. et al., A code reuse interface for non-programmer middle

school students. in IUI '10, 219-228.

[5] Hartmann, B. et al., What would other programmers do: suggesting

solutions to error messages. in CHI '10, 1019-1028.

[6] Myers, B. et al., How Designers Design and Program Interactive

Behaviors. in VL/HCC'08, 177-184.

[7] Brandt, J. et al., Two studies of opportunistic programming. in CHI

'09, 1589-1598.

[8] Stylos, J. and Myers, B.A., Mica: A Programming Web-Search Aid.

in VL/HCC '06, 195-202.

[9] Cottrell, R. et al., Semi-automating small-scale source code reuse via

structural correspondence. in FSE-16, 214-225.

[10] Lim, S.C.S. and Lucas, P., JDA: a step towards large-scale reuse on

the web. in OOPSLA '06, 586-601.

[11] Ko, A. J. et al., Eliciting Design Requirements for Maintenance-

Oriented IDEs. In ICSE '05, 126-135.

[12] Kim, M. et al., An Ethnographic Study of Copy and Paste Program-

ming Practices in OOPL. in ISESE ‘04, 83-92.

[13] Rosson, M.B. and Carroll, J.M. The reuse of uses in Smalltalk pro-

gramming. ACM TOCHI, 3 (3). 219-253.

[14] Rahman, F., Bird, C. and Devanbu, P., Clones: What is that smell?.

In MSR ’10, 72-81.

[15] Crockford, D., JavaScript: The Good Parts, Sebastopol, CA: O'Reilly

& Associates, 2008.

[16] Lieberman, H., Paternò, F. and Wulf, V. End User Development.

Springer, Dordrecht, 2006.

[17] Sahavechaphan, N. and Claypool, K., XSnippet: Mining For sample

code. in OOPSLA '06, 413-430.

[18] Holmes, R., Walker, R.J. and Murphy, G.C. Approximate Structural

Context Matching: An Approach to Recommend Relevant Examples.

IEEE TSE, 32 (12). 952-970.

[19] Hartmann, B. et al., Programming by a sample: rapidly creating web

applications with d.mix. in UIST '07, 241-250.

9

Appeared at: The Fifth Workshop on Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2014), at SPLASH 2014, 21 Oct 2014, Portland, OR, USA

[20] Jensen, S.H., Møller, A. and Thiemann, P., Type Analysis for JavaS-

cript. in 16th International Symposium SAS, Springer, 238-255.

[21] Ayewah, N. et al., Using Static Analysis to Find Bugs. IEEE Soft-

ware, 25 (5). 22-29.

[22] Ko, A. and Wobbrock, J., Cleanroom: Edit-Time Error Detection

with the Uniqueness Heuristic. in VL/HCC '10, 7-14.

