Supplementary Notes on Inductive Definitions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 2
August 29, 2002

These supplementary notes review the notion of an inductive definition
and give some examples of rule induction. References to Robert Harper’s
draft book on Programming Languages: Theory and Practice are given in square
brackets, by chapter or section.

Given our general goal to define and reason about programming lan-
guages, we will have to deal with a variety of description tasks. The first is
to describe the grammar of a language. The second is to describe its static
semantics, usually via some typing rules. The third is to describe its dy-
namic semantics, often via transitions of an abstract machine. On the sur-
face, these appear like very different formalisms (grammars, typing rules,
abstract machines) but it turns out that they can all be viewed as special
cases of inductive definitions [Ch. 1]. Following standard practice, inductive
definitions will be presented via judgments and inference rules providing
evidence for judgments.

The first observation is that context-free grammars can be rewritten in
the form of inference rules [Ch. 4.1]. The basic judgment has the form

s A

where s is a string and A is a non-terminal. This should be read as the
judgment that s is a string of syntactic category A.

As a simple example we consider the language of properly matched
parentheses over the alphabet ¥ = {(,) }. This language can be defined by
the grammar

M::=¢|MM]|(M)

with the only non-terminal M. Recall that ¢ stands for the empty string.
Rewritten as inference rules we have:
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L2.2 Inductive Definitions

eM 1)
S1 M S9 M
S1 82 M (2)
s M
(s) M (©)

Our interpretation of these inference rules as an inductive definition of
the judgment s M for a string s means:

s M holds if and only if there is a deduction of s M using rules (1),
(2), and (3).

Based on this interpretation we can prove properties of strings in the syn-
tactic category M by rule induction. Here is a very simple example.

Theorem 1 (Counting Parentheses)
If s M then s has the same number of left and right parentheses.

Proof: By rule induction. We consider each case in turn.

(Rule1) Thens=-¢e.

s has 0 left and 0 right parens Since s = ¢

(Rule 2) Then s = s7 s9.

s1 M Subderivation
s9 M Subderivation
s1 has n left and right parens for some n; By i.h.
s has ny left and right parens for some 7o By i.h.
s has ny + ng left and right parens Since s = s1 $9
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(Rule3) Thens=(s).

s M Subderivaton
' has n' left and right parens for some n’ By ih.
s has n’ + 1 left and right parens Since s = ( ¢')

[ |

The grammar we gave, unfortunately, is ambiguous [Ch. 4.2]. For ex-
ample, there are infinitely many derivations that ¢ M, because

E=€EE=¢€EE="""

In the particular example of this grammar we would be able to avoid rewrit-
ing it if we can show that the abstract syntax tree [Ch. 5.1] we construct will
be the same, independently of the derivation of a particular judgment.

An alternative is to rewrite the grammar so that it defines the same
language of strings, but the derivation of any particular string is uniquely
determined. In order to illustrate the concept of simultaneous inductive
definition, we use two non-terminals L and N, where the category L corre-
sponds to M, while N is an auxiliary non-terminal.

L ::= ¢|NL
N ::= (L)

One can think of L as a list of parenthesized expressions, while N is a
single, non-empty parenthesized expression. This is readily translated into
an inductive definition via inference rules.

el 4)
S1 N S92 L
S1 82 L (5)
sL
(s) N (6)

Note that the definitions of s L and s N depend on each other. This is
an example of a simultaneous inductive definition.

Now there are two important questions to ask: (1) is the new grammar
really equivalent to the old one in the sense that it generates the same set of
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L2.4 Inductive Definitions

strings, and (2) is the new grammar really unambiguous. The latter is left
as a (non-trivial!) exercise; the first one we discuss here.

At a high level we want to show that for any string s, s M iff s L. We
break this down into two lemmas. This is because “if-and-only-if” state-
ment can rarely be proven by a single induction, but require different con-
siderations for the two directions.

We first consider the direction where we assume s M and try to show
s L. When writing out the cases we notice we need an additional lemma.
As is often the case, the presentation of the proof is therefore different from
its order of discovery.

Lemma 2 (Concatenation)
IfSl L and S92 L then S1 82 L.

Proof: By induction on the derivation of s; L. Note that induction on the
derivation on sy L will not work in this case!

(Rule4) Then s; =«.

s9 L Assumption
s189 L Since s1 59 = £ 89 = 89

(Rule 5) Then S1 = S11 S12.

st N Subderivation
s19 L Subderivation
s9 L Assumption
$12 82 L By ih.
811 S12 S2 L By rule (5)

[ |

Now we are ready to prove the left-to-right implication.

Lemma 3
If s M then s L.

Proof: By induction on the derivation of s M.

(Rule1) Thens=-¢e.

s L By rule (4) since s = ¢
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Inductive Definitions L2.5

(Rule 2) Then s = s7 s9.

s1 M Subderivation
so M Subderivation
S1 L By i.h.
so L By ih.
$189 L By concatenation (Lemma 2)

(Rule3) Thens=(s).

s’ M Subderivation

s’ L By i.h.

(s) N By rule (6)

eL By rule (4)

(s") L By rule (5) and ( s’) € = (§')
y

|

The right-to-left direction presents a slightly different problem, namely
that the statement “If s L then s M” does not speak about s N, even though
L and N depend on each other. In such a situation we typically have to
generalize the induction hypothesis to also assert an appropriate property
of the auxiliary judgments (s IV, in this case). This is the first alternative
proof below. The second alternative proof uses a proof principle called
inversion, closely related to induction. We present both proofs to illustrate
both techniques.

Lemma 4 (First Alternative, Using Generalization)
1. If s L thens M.

2. If s N thens M.

Proof: By simultaneous induction on the given derivations. There are two
cases to consider for part 1 and one case for part 2.

(Rule4) Then s =c¢.

s M By rule (1) since s = ¢
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(Rule 5) Then s = s7 s9.

s1 N Subderivation
s9 L Subderivation
s1 M By i.h.(2)
so M By i.h.(1)
$189 M By rule (2)

(Rule 6) Thens = (5).

s’ L Subderivation
s M By i.h.(1)
(s) M By rule (3)

[ |

For this particular lemma, we could have avoided the generalization
and instead proven (1) directly by using a new form of argument called in-
version. Since it is an important principle, we will also show this alternative
proof.

Lemma 4 (Second Alternative, Using Inversion)
If s L then s M

Proof: By induction on the given derivation. Note the there are only two
cases to consider here instead of three, because there are only two rules
whose conclusion has the form s L.

(Rule4) Thens=-¢.

s M By rule (1) since s = ¢

(Rule 5) Then s = 51 s9.

s1 N Subderivation
s1 = (s}]) and s} L for some s By inversion
sy M By i.h.
(sh) M By rule (3)
s9 L Subderivation
(s)) sa M By rule (2)
s M Since s = s1 52 = (8}) s2
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Inductive Definitions L2.7

In this last case, the first line reminds us that we have a subderivation of
s1 N. By examining all inference rules we can see that there is exactly one
rule that has a conclusion of this form, namely rule (6). Therefore s; N must
have been inferred with that rule, and s; must be equal to ( s}) for some
s} such that s} L. Moreover, the derivation of s} L is a subderivation of the
one we started with and we can therefore apply the induction hypothesis
to it. The rest of the proof is routine. u

Now we can combine the preceding lemmas into the theorem we were
aiming for.

Theorem 5
s M ifand only if s L.

Proof: Immediate from Lemmas 3 and 4. [ |

Some advice on inductive proofs. Most of the proofs that we will carry
out in the class are by induction. This is simply due to the nature of the
objects we study, which are generally defined inductively. Therefore, when
presented with a conjecture that does not follow immediately from some
lemmas, we first try to prove it by induction as given. This might involve a
choice among several different given objects or derivations over which we
may apply induction. If one of them works we are, of course, done. If not,
we try to analyse the failure in order to decide if (a) we need to seperate out
a lemma to be proven first, (b) we need to generalize the induction hypothesis,
or (c) our conjecture might be false and we should look for a counterexample.

Finding a lemma is usually not too difficult, because it can be suggested
by the gap in the proof attempt you find it impossible to fill. For example, in
the proof of Lemma 3, case (Rule 2), we obtain s; L and sy L by induction
hypothesis and have to prove s; so L. Since there are no inference rules
that would allow such a step, but it seems true nonetheless, we prove it as
Lemma 2.

Generalizing the induction hypothesis can be a very tricky balancing
act. The problem is that in an inductive proof, the property we are trying
to establish occurs twice: once as an inductive assumption and once as
a conclusion we are trying to prove. If we strengthen the property, the
induction hypothesis gives us more information, but conclusion becomes
harder to prove. If we weaken the property, the induction hypothesis gives
us less information, but the conclusion is easier to prove. Fortunately, there
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are easy cases such as the first alternative of Lemma 4 in which the nature
of the mutually recursive judgments suggested a generalization.

Finding a counterexample greatly varies in difficulty. Mostly, in this
course, counterexample only arise if there are glaring deficiencies in the
inductive definitions, or rather obvious failure of properties such as type
safety. In other cases it might require a very deep insight into the nature
of a particular inductive definition and cannot be gleaned directly from a
failed proof attempt. An example of a difficult counterexample is given by
the extra credit Question 2.2 in Assignment 1 of this course. The conjecture
might be that every tautology is a theorem. However, there is very little in
the statement of this theorem or in the definition of tautology and theorem
which would suggest means to either prove or refute it.

Three pitfalls to avoid. The difficulty with inductive proofs is that one
is often blinded by the fact that the proposed conjecture is true. Similarly,
if set up correctly, it will be true that in each case the induction hypothesis
does in fact imply the desired conclusion, but the induction hypothesis may
not be strong enough to prove it. So you must avoid the temptation to
declare something as “clearly true” and prove it instead.

The second kind of mistake in an inductive proof that one often encoun-
ters is a confusion about the direction of an inference rule. If you reason
backwards from what you are trying to prove, you are thinking about the
rules bottom up: “If I only could prove Jy then I could conclude Jo, because I
have an inference rule with premise J; and conclusion J,.” Nonetheless, when
you write down the proof in the end you must use the rule in the proper
direction. If you reason forward from your assumptions using the infer-
ence rules top-down then no confusion can arise. The only exception is the
proof principle of inversion, which you can only employ if (a) you have
established that a derivation of a given judgment J exists, and (b) you con-
sider all possible inference rules whose conclusion matches .J. In no other
case can use use an inference rule “backwards”.

The third mistake to avoid is to apply the induction hypothesis to a
derivation that is not a subderivation of the one you are given. Such rea-
soning is circular and unsound. You must always verify that when you
claim something follows by induction hypothesis, it is in fact legal to apply
it!

How much to write down. Finally, a word on the level of detail in the
proofs we give and the proofs we expect you to provide in the homework
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Inductive Definitions L2.9

assignments. The proofs in this handout are quite pedantic, but we ask
you to be just as pedantic unless otherwise specified. In particular, you
must show any lemmas you are using, and you must show the generalized
induction hypothesis in an inductive proof (if you need a generalization).
You also must consider all the cases and justify each line carefully. As we
gain a certain facility with such proofs, we may relax these requirements
once we are certain you know how to fill in the steps that one might omit,
for example, in a research paper.
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Supplementary Notes on Abstract Syntax

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 3
September 3, 2002

Grammars, as we have discussed them so far, define a formal language
as a set of strings. We refer to this as the concrete syntax of alanguage. While
this is necessary in the complete definition of a programming language, it
is only the beginning. We further have to define at least the static semantics
(via typing rules) and the dynamic semantics (via evaluation rules). Then
we have to reason about their relationship to establish, for example, type
soundness. Giving such definitions and proofs on strings is extremely te-
dious and inappropriate; instead we want to give it a more abstract form of
representation. We refer to this layer of representation as the abstract syntax
of a language. An appropriate representation vehicle are terms [Ch. 1.2.1].

Given this distinction, we can see that parsing is more than simply rec-
ognizing if a given string lies within the language defined by a grammar.
Instead, parsing in our context should translate a string, given in concrete
syntax, into an abstract syntax term. The converse problem of printing
(or unparsing) is to translate and abstract syntax term into a string rep-
resentation. While the grammar formalism is somewhat unwieldy when
it comes to specifying the translation into abstract syntax, we see that the
mechanism of judgments is quite robust and can specify both parsing and
unparsing quite cleanly.

We begin by reviewing the arithmetic expression language in its con-
crete [Ch. 3] and abstract [Ch. 4.1] forms. First, the grammar in its unam-
bigous form.! We implement here the decision that addition and multipli-
cation should be left-associative (so 1+2+3 is parsed as ( 1+2) +3) and that

'We capitalize the non-terminals to avoid confusion when considering both concrete and
abstract syntax in the same judgment. Also, the syntactic category of Terms (denoted by T")
should not be confused with the terms we use to construct abstract syntax.
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multiplication has precedence over addition. Such choices are somewhat
arbitrary and dictated by convention rather than any scientific criteria.?

Digits D ::= 0]|---]9

Numbers N ::= D|ND

Expressions E ::= T | FE+T

Terms T ::= F|T*F

Factors F ::= N|(E)
Written in the form of five judgments.

sF s1T s9 F

ﬁ 31*52T
sN sE
s (s) F

The abstract syntax of the language is much simpler. It can be speci-
fied in the form of a grammar, where the universe we are working over
are terms and not strings. While natural numbers can also be inductively
defined in a variety of ways [Ch 1.1.1], we take them here as primitive
mathematical objects.

nat ::= 0|1]---
expr ::= num(nat) | plus (expr,expr) | times (expr,expr)

Presented as two judgments, we have k nat for every natural number &
and the following rule for expressions

2The grammar given in [Ch. 3.2] is slightly different, since there addition and multipli-
cation are assumed to be right associative.
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k nat
num(k) expr

t1 expr to expr
plus (t1,t2) expr

t1 expr to expr
times (t1,t2) expr

Now we specify the proper relation between concrete and abstract syn-
tax through several simultaneously inductive judgments. Perhaps the eas-
iest way to generate these judgments is to add the corresponding abstract
syntax terms to each of the inference rules defining the concrete syntax.

OD«—0nat --- 9D +«— 9nat
s D «— k nat s1 N «— kq nat s9 D «— ks nat
s N «— k nat 51892 N «—— 10k1 + k9 nat
s T «— texpr s1 E «— t1 expr 89 T «— ty expr
s E «—— texpr s1+s9 E «—— plus (t1,t2) expr
sF +—texpr s1 T «—— t1 expr so F «—— to expr
s T «—— texpr $1%s9 T «— times (t1,t2) expr
s N «— k nat s E «—— t expr

s F «—— num(k) expr (s) F«— texpr

When giving a specification of the form above, we should verify that
the basic properties we expect, actually hold. In this case we would like
to check that related strings and terms belong to the correct (concrete or
abstract, respectively) syntactic classes.

Theorem 1
(i) If s E «—— t expr then s E and t expr.

(ii) If s E then there exists a t such that s E «—— t expr.

Proof: For each part, by rule induction on the given derivation. In each
case we can immediately appeal to the induction hypothesis on all sub-
derivations and construct a derivation of the desired judgment from the
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results. m

When implementing such a specification, we generally make a commit-
ment as to what is considered our input and what is our output. As mo-
tivated above, parsing and unparsing (printing) are specifed by this judg-
ment.

Definition 2 (Parsing)
Given a string s, find a term t such that s E «—— t expr or fail, if no such t
exists.

Obvious analogous definitions exist for the other syntactic categories.
Now we can refine our notion of ambiguity to take into account the abstract
syntax that is constructed. This is slightly more relaxed that requiring the
uniqueness of derivations, because different derivations could still lead to
the same abstract syntax term.

Definition 3 (Ambiguity of Parsing)
A parsing problem is ambiguous if for a given string s there exist two dis-
tinct terms t1 and to such that s E «—— t1 expr and s E +— t5 expr.

Unparsing is just the reverse of parsing: we are given a term ¢ and have
to find a concrete syntax representation for it. Unparsing is usually total
(every term can be unparsed) and inherently ambiguous (the same term
can be written as several strings). An example of this ambiguity is the in-
sertion of additional redundant parentheses. Therefore, any unparser must
use heuristics to choose among different alternative string representations.

Definition 4 (Unparsing)
Given a term t such that t expr, find a string s such that s E «— ¢ expr.

The ability to use judgments as the basis for implementation of different
tasks is evidence for their flexibility. Often, it is not difficult to “translate”
a judgment into an implementation in a high-level language such as ML,
although in some cases it might require significant ingenuity and some ad-
vanced techniques.

Our little language of arithmetic expressions serves to illustrate various
ideas, such as the distinction between concrete syntax and abstract syntax,
but it is too simple to exhibit various other phenomena and concepts. One
of the most important one is that of a variable, and the notion of variable
binding and scope. In order to discuss variables in isolation, we extend
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our language by a new form of expression to name preliminary results. For
example,
let zbe2*3in z+zend

should evaluate to 12, but only compute the value of 2* 3 once.
First, the concrete syntax, showing only the changed or new cases.

Variables X ::= (any identifier)
Factors F ::= N|(FE) |let XbeFin Eend | X

We ignore here the question what constitutes a legal identifier. Presum-
ably it should avoid keywords (such as let , b), special symbols, such as +,
and be surrounded by whitespace. In an actual language implementation a
lexer breaks the input string into keywords, special symbols, numbers, and
identifiers that are the processed by the parser.

The first approach to the abstract syntax would be to simply introduce a
new abstract syntactic category of variable [Ch. 5.1] and a new operator let
with three arguments, let (x, ey, e2), where z is a variable and e; and e; are
terms representing expressions. Furthermore, we allow an occurrence of a
variable x as a term. However, this approach does not clarify which occur-
rences of a variable are binding occurrences, and to which binder a variable
occurrence refers. For example, to see that

let zbelin let zbez+lin z+zend end

evaluates to 4, we need to know which occurrences of z refer to which val-
ues. Rules for scope resolution [Ch. 5.1] dictate that it should be interpreted
the same as

let z1belin let zobe z1+1lin ze+z9end end

where there is no longer any potential ambiguity. That is, the scope of the
variable x in
let zbes;in syend

is s but not s;.

A uniform technique to encode the information about the scope of vari-
ables is called higher-order abstract syntax [Ch. 5]. We add to our language of
terms a construct .t which binds x in the term ¢. Every occurrence of z in ¢
that is not shadowed by another binding z.t/, refers to the shown top-level
abstraction. Such variables are a new primitive concept, and, in particular,
a variable can be used as a term (in addition to the usual operator-based
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terms). We would extend our judgment relating concrete and abstract syn-
tax by

z X s1 E «—— t1 expr So E «—— to expr 7 X

let xzbespin syend «— let (¢1,x.t2) expr z E «—— x expr

and allow for expressions

t1 expr to expr

T expr let (¢1,x.ty) expr

Note that we translate an identifier = to an identically named variable
z in higher-order abstract syntax. Moreover, we view variables in higher-
order abstract syntax as a new kind of term, so we do not check explicitly
the z’s are in fact variables—it is implied that they are.

We emphasize again that the laws for scope resolution of let -expressions
are directly encoded in the higher-order abstract representation. We inves-
tigate the laws underlying such representations in Lecture 4 [Ch. 5.3].

We can formulate the language of abstract syntax for arithmetic expres-
sions in a more compact notation as a grammar.

nat ::= 0|1]---
expr ::= num(nat) | plus (expr,expr) | times (expr,expr)
| z | let (expr,x.expr)
As a concrete example, consider the string
let z;belin let z9be z1+1lin zo+zoend end

which, in abstract syntax, would be represented as

let (num(1),z;.let (plus (z1,num(1)),z2.plus (z2,x2)))
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Static and Dynamic Semantics

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 4
September 6, 2002

In this lecture we illustrate the basic concepts underlying the static and
dynamic semantics of a programming language on a very simple example:
the language of arithmetic expression augmented by variables and defini-
tions.

The static and dynamic semantics are properties of the abstract syntax
(terms) rather than the concrete syntax (strings). Therefore we will deal
exclusively with abstract syntax here.

The static semantics can further be decomposed into two parts: variable
scope and rules of typing. They determine how to interpret variables, and
discern the meaningful expressions. As we saw in the last lecture, variable
scope is encoded directly into the terms representing the abstract syntax.
In this lecture we further discuss the laws governing variable binding on
terms. The second step will be to give the rules of typing in the form of an
inductively defined judgment. This is not very interesting for arithmetic ex-
pressions, comprising only a single type, but it serve to illustrate the ideas.

The dynamic semantics varies more greatly between different languages
and different levels of abstraction. We will only give a very brief introduc-
tion here and continue the topic in the next lecture.

The basic principle of variable binding called lexical scoping is that the
name of a bound variable should not matter. In other words, consistently
renaming a variable in a program should not affect its meaning. Everything
below will follow from this principle.

We now make this idea of “consistent renaming of variables” more pre-
cise. The development in [Ch. 5.3] takes simultaneous substitution as a
primitive; we avoid the rather heavy notation by only dealing with a single
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substitution at a time. This goes hand in hand with the decision that bind-
ing prefixes such as x.t only ever bind a single variable, and not multiple
ones. We use the notation {y/x/t} to denote the result of substituting y for
x in t, yet to be defined. With that we will define renaming of = to y with
the equation
zt=yfy/z}t
which can be applied multiple times, anywhere in a term. For this to pre-
serve the meaning, y most not already occur free in z.t, because otherwise
the free occurrence of y would be captured by the new binder.
As an example, consider the term

let (num(1),z.let (plus (x,num(1)),y.plus (y,x)))

which should evaluate to num(3). It should be clear that renaming y to =
should be disallowed. The resulting term

let (num(1),z.let (plus (z,num(1)),z.plus (z,x)))

means something entirely different and would evaluate to num(4).
To make this side condition more formal, we define the set of free vari-
ables in a term.

FV(z) = {z}
FV(O(tlv s 7tn)) = Ulgign Fv(tl)
FV(zt) = FV(H)\{z}

So before defining the substitution {y/x}t we restate the rule defining
variable renaming, also called a-conversion, with the proper side condi-
tion:

zt=y{y/x}t provided y ¢ FV(t)

Now back to the definition of substitution of one variable y for another
variable z in a term ¢, {y/x}t. The definition recurses over the structure of
a term.!

{y/ete =y
{y/x}z = =z provided x # z
{y/x}O(tl,,tn) = O({y/x}th?{y/x}tn)
{y/z}xt = xt

{y/z}zt = x{y/xz}t providedz # zand y # z
{y/x}y.t undefined provided x # z

1t can in fact be seen as yet another form of inductive definition, but we will not formal-
ize this here.
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Note that substitution is a partial operation. The reason the last case must
be undefined is because any occurrence of x in t would be replaced by y and
thereby captured. As an example while this must be ruled out, reconsider

let (num(1),z.let (plus (z,num(1)),y.plus (y,x)))

which evaluates to num(3). If we were allowed to rename z to y we would
obtain

let (num(1),y.let (plus (y,num(1)),y.plus (y,y)))

which once again means something entirely different and would evaluate
to num(4).

In the operational semantics we need a more general substitution, be-
cause we need to substitute one term for a variable in another term. We
generalize the definition above, taking care to rewrite the side condition
on substitution in a slightly more general, but consistent form, in order to
prohibit variable capture.

{u/z}r = u
{u/z}z = =z provided x # z
{u/z}o(tr,....tn) = o({u/z}ty,...,{u/x}t,)
{u/z}xt = =zt

{y/z}zt = az{u/z}t providedz # zand y ¢ FV(u)
{u/z}z.t undefined provided x # z and y € FV(u)

In practice we would like to treat substitution as a total operation. This
cannot be justified on terms, but, surprisingly, it works on a-equivalence
classes of terms! Since we want to identify terms that only differ in the
names of their bound variables, this is sufficient for all purposes in the
theory of programming languages. More formally, the following theorem
(which we will not prove) justifies treating substitution as a total operation.

Theorem 1 (Substitution and a-Conversion)
() Ifu = o, t = t, and {u/x}t and {u'/z}t' are both defined, then
{u/x}t = {u [z}t

(ii) Given u, z, and t, then there always exists a t' = t such that {u/x}t' is
defined.

We sketch the proof of part (ii), which proceeds by induction on the size
of t. If {u/z}t is defined we choose ' to be t. Otherwise, then somewhere
the last clause in the definition of substitution applies and there is a binder
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z.t1 in t such that z € FV(u). Then we can rename z to a new variable 2’
which occurs neither in free in u nor free in z.t; to obtain 2’.¢]. Now we can
continue with z’.{u/x}t|. by an appeal to the induction hypothesis.

The algorithm described in this proof is in fact the definition of capture-
avoiding substitution which makes sense whenever we are working modulo
a-equivalence classes of terms. Fortunately, this will always be the case for
the remainder of this course.

With the variable binding, renaming, and substitution understood, we
can now formulate a first version of the typing rules for this language. Be-
cause there is only one type, nat , the rules are somewhat trivialized. Their
only purpose for this small language is to verify that an expression e is
closed, that is, FV(e) = {}. In order to specify this inductively, we use a
new judgment form a so-called hypothetical judgment. We write it as

T b J

which means that J follows from assumptions Ji, ..., J,. Its most basic
property is that

Jiyoo iy In B J;
always holds, which should be obvious: if an assumption is identical to the

judgment we are trying to derive, we are done. We will nonetheless restate
instances of this general principle for each case.

The particular form of hypothetical judgment we consider is
zi:nat ,...,z,:nat Fe: nat

which should be read:

Under the assumption that variables x1, . . . , xy, stand for natural num-
bers, e has the type of natural number.

We usually abbreviate a whole sequence of assumptions with the letter I".?
We write *-" for an empty collection of assumptions, and we abbreviate
-, xz:nat by z:nat .

In [Ch. 6] this is written instead as I" - e ok, where T is a set of variables. Since there is
only one type, the two formulations are clearly equivalent.
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The judgment is defined by the following rules.

z:hat €T
'k 2z :nat I' = num(k) : nat
I'Fer:nat TI'Fey:nat I'Fep:nat TI'Fey:nat
't plus (e, e2) : nat '+ times (ej,e2) : nat

I'Hep:nat TI',z:nat ey : nat
I'Flet (er,z.ez): nat

The point of being interested in typing for this small language is only to
guarantee that there are no free variables in a term to the evaluation will
not get stuck. This property can easily be verified.

Theorem 2
If-+Fe:nat thenFV(e) ={}.

Proof: We cannot prove this directly by rule induction, since the second
premise of the rule for let introduces an assumption. So we generalizing
to

Ifzy:nat ,...,z,nat Fe:nat then FV(e) C {x1,...,2,}.

This generalized statement ca be proved easily by rule rule induction. W

Next we would like to give the operational semantics, specifying the
value of an expression. We represent values also as expressions, although
they are restricted to have the form num(k). There are multiple ways to
specify the operational semantics, for example as a structured operational
semantics [Ch. 7.1] or as an evaluation semantics [Ch. 7.2]. We give two
forms of evaluation semantics here, which directly relate an expression to
its value although they do not specify how to compute the value precisely.

The first way® employs a hypothetical judgment in which we make as-
sumptions about the values of variables. It is written as

v, ..., oy Fe | v

We call z1{lvy, ..., z, v, an environment and denote an environment by 7.
It is important that all variables z; in an environment are distinct so that

*suggested by a student in class
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the value of a variable is uniquely determined.

v en
nkaz v n = num(k) § num(k)

nkerdnumky) nkexdnumks) nterd numky) ntex num(ks)
nk plus (61, 62) [} num(k1 + ]{22) nk times (61, 62) [} num(kl X ]{32)

nte yvr nalvr el vo
nklet (er,z.e3) | vo

(z not declared in n)

In the rule for let we make the assumption that the value of z is v; while
evaluating e;. One may be concerned that this operational semantics is
partial, in case bound variables with the same name occur nested in a term.
However, since we working with a-equivalences classes of terms we can
always rename the inner bound variable to that the rule for let applies. We
will henceforth not make such a side condition explicit, using the general
convention that we rename bound variables as necessary so that contexts
or environment declare only distinct variables.

An alternative semantics uses substitution instead of environments. For
this judgment we evaluate only closed terms, so no hypothetical judgment
is needed.

No rule for variables x num(k) | num(k)
e1 num(kl) es | num(kQ) e1 | num(kl) es |} num(k:Q)
plus (e1,ez) | num(k; + ko) times (ey,e2) {4 num(ky x ko)

er v {vi/x}tes | vo

let (e1,x.e2) I v

In the next lecture we discuss how these two alternatives for the oper-
ational semantics are related, and how they are related to the typing judg-
ment.
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A Functional Language

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 5
September 10, 2002

In this lecture we first show the equivalence of the two styles of opera-
tional semantics: a substitution semantics and an environment semantics. We
then proceed to extend our expression language to include booleans and
functions.

We first recall the environment semantics, presented here as a particular
form of evaluation semantics [Ch. 7.2]. The basic judgment is

v, .. o Fed v,

Recall that this is a hypothetical judgment with assumptions z;|v;. We call
zidv, ..., zndv, an environment and denote an environment by 7. It is im-
portant that all variables z; in an environment are distinct so that the value
of a variable is uniquely determined. Here we assume some primitive op-
erators O (such as plus and times ) and their mathematical counterparts
fo- For simplicity, we just write binary operators here.

e.var e.num

nkFaxlov n Fnum(k) | num(k)

n [ el l} num(k:l) n [ €9 U num(kg) (fo(kl, kg) = k) .
nt o(e1,ez) | num(k)

.0

ntFer v nadvrberl v
nklet (e, z.e2) | vo

e.let (z not declared in n)

The alternative semantics uses substitution instead of environments.
For this judgment we evaluate only closed terms, so no hypothetical judg-
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ment is needed.

No rule for variables x num(k) ¥ num(k) ="

er § num(ky) ez § num(kz) (fo(k1, k2) = k)
o(e1,e2) | num(k)

erdvr {vi/x}tes | vo

let (e1,x.e2)  vo

S.0

s.let

We show each direction of the translation between the two systems sep-
arately. In the first direction we assume - I e || v and we want to show
e || v. A direct proof by induction is suspect, because the environment will
in general not be empty in the derivation of - - e || v. In particular, the
second premise of e.let adds a new assumption, which prevents us from
using the induction hypothesis.

In order to generalize the induction hypothesis, we need to figure out
what corresponds to 1 I e || v in the substitution semantics. From the def-
inition of the semantics we can see that an environment is a “postponed”
substitution: rather than carrying out the substitution for each variable as
we encounter it, we look up the variable at the end when we see it. Formal-
izing this intuition is the key to the proof. We define the translation from
an environment to a simultaneous substitution [Ch. 5.3]

(xidvr, . xpdog)” = (v /21, .. op/an)
Then we generalize to account for environments.

Lemmal
Ifnk el v then {n*}e || v.

Proof: By rule induction on the given derivation. Recall that values v al-
ways have the form num(k) for some k, so v |} v for any value v by rule
s.num.

Case: (Rule e.var) Thene = z.

v en Condition of e.var
v/xz €n* By definition of n*
{n*lx=v By definition of substitution
viw By definition of v and rule s.num
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Case: (Rule e.num) Then e = num(k) = v.

num(k) { num(k) By rule s.num

Case: (Rule e.0) Thene = 0(ey,e2).

nt e J num(k;) Subderivation
n ez | num(ks) Subderivation
fo(k1,ka) =k Given condition
{17*}61 [} num(k:l) By i.h.
{n*}ea | num(ks) By i.h.
o({n*}er,{n*}ea) ¥ num(k) By rule s.o
{n*}o(e1,e2) | num(k) By definition of substitution

Case: (Rule e.let) Thene =let (ej,z.e3) and v = vs.

nted v Subderivation
n,zdvr ez | vg Subderivation
{n*ter b vy By ih.
(n, zlv1)* = (9%, v1/x) By definition of ()*
{n*,v1/x}es | va By ih.
{v1/x}({n*}ea) | vo By properties of simultaneous substitution
let ({n*}er,z.{n"}e2) By rule s.let
{n*}et (e1,x.e2) By definition of substitution

|

In the last case we need two properties that connects simultaneous sub-
stitution and the “single” substitution {v;/s}. They are (a) that the order of
the definition of variables in a simultaneous substitution does not matter,
and (b) that

{vi/z1}{va/z2,. .., vn/xn}e) = {v1/x1,v9/20, ... 00 /2 }e.

These properties hold under the assumption that all the z; are distinct and
that all v, v, ..., v, are closed, which is known in our case.

In lecture we proceeded slightly differently. Although the essential idea
we were converging on was the same, we were getting to a lemma which
asserted that n - e || v then - - {n*}e || v with a derivation of equal length.
The above proof is somewhat more economical.

The other direction is quite a bit tricker to generalize correctly.
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Lemma 2
Ife  vande = {n*}e' thennt € | v.

Proof: The proof is by rule induction on the derivation of e || v

Case: (Rule s.num) Then we have to consider two subcases, depending
on whether ¢/ = z for some variable z, or ¢/ = num(k) for some k.

Subcase: (Rule s.num and ¢’ = x) Then z{v € nin order for e = {n*}x |
vand hence n -z || v by rule e.var.

Subcase: (Rule s.num and ¢’ = num(k)) In that case v = num(k), so we
can use rule e.num.

Case: (Rule s.0) Thene =0(ey,e2) = {n*}e’.

e/ = o(e], ey) with

e1 = {n*}e} and e2 = {n*}€, By definition of substitution
e1 4 num(ky) Subderivation
ez I num(ks) Subderivation
folk1,k2) =k Given condition
nt e} I num(k;) By i.h.
n e | num(ks) By i.h.
nto(ey,ey) | k By rule e.o

Case: (Rule s.let) Thene =let (ej,z.e2) = {n*}e’ and v = va.

e =let (e},x.e,) with
e1 = {n*}e} and es = {n*}e, and

x not defined in 7 By definition of substitution
er v Subderivation
nkey o By i.h.
{vi/z}es | va Subderivation
{vi/x}es = {vi/x}({n*}ey) = {n*, v1/z}e, Property of substitution
{(n, zlvr)"}eh v By definition of ( )*
n,zlvi F ey § vo By i.h.
nklet (e}, z.e5) | vo By rule e.let

|

Now we can prove our main theorem.
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Theorem 3 (Equivalence of Environment and Substitution Semantics)
(i) If -+el vthene | v

(ii) Ife | v then - F e |} v.

Proof: Part (i) follows immediately from the first lemma with = -, the
empty environment.

Part (ii) follows from the second lemma by using the empty environ-
ment for 1 and e for €/, which is correct since e = {-}e. |

We now proceed with the introduction of MinML. The treatment here is
somewhat cursory; see [Ch. 8] for additional material. Roughly speaking,
MinML arises from the arithmetic expression language by adding booleans
and recursive functions. These recursive functions are (almost) first-class
in the sense that they can occur anywhere in an expression, rather than just
at the top-level as in other languages such as C. This has profound con-
sequences for the required implementation techniques (to which we will
return later), but it does not affect typing in an essential way.

First, we give the grammar for the higher-order abstract syntax. For the
concrete syntax, please refer to Assignment 2.

Types T ::= int |bool |arrow (7i,7)
Integers n = ...|=1/0]1]...
Primops o ::= plus |minus |times |negate

| equals |lessthan

Expressions e ::= num(n)|o(ei,...,ey)
| true |false [|if (e, e1,e2)
| let (e1,z.e2)
| fun (71,72, f.z.e) | apply (e1,e2)
| =z

Note that, unlike ML, the fun -expression binds both f (the function)
and z (the argument). It does not define f in the rest of the program, only
in the function body e in order to allow a recursive call. For example, the
concrete syntax function

fun p(x:int):int is if x = 0
then 1
else 2 * p(x-1) fi end
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is represented by

fun (int ,int ,p.x.if (equals (x,num(0))
num(1),
times (num(2),apply (p, minus (z,num(1)).))))

This is a naive implementation of p(z) = 2% for x > 0. If z < 0, it will
simply not terminate.

Below are the typing rules for the language. We show only the case of
one operator—the others are analogous.

T el
I'tao:7

VarTyp NumTyp

I'F num(n) : int

Fl—el:int Fl—egiint
I' - equals (ep,ez) : bool

EqualsTyp

TrueTyp FalseTyp

T true : bool I' - false : bool

I'ke:bool TI'te:7 TI'kFey:T
I
LHif (e,er,e2): 7 fTyp

I'kter:mm Dyomber:m
T'Flet (61,%.62) I To

LetTyp

I'fimm > m,zmbe:n
I'Ffun (71,72, f.x.e) : arrow (11, 72)

FunTyp

IC'kep:arrow (13,7) T'hes:m
L't apply (ej,e2):7

AppTyp

We specify the operational semantics as a structured operational semantics
also called a small-step semantics. The reason for this style of specification
is that the evaluation semantics (also called big-step semantics) we used so
far makes it difficult to talk about non-termination and the individual steps
during evaluation, because it is slightly too abstract.

So we define two basic judgments
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(i) e — €’ which expresses that e steps to €/, and
(ii) e value which expresses that e is a value (written v)

The idea is that, given a closed, well-typed expression e;, computation pro-
ceeds step-by-step until it reaches a value:

el ey t— - —=v

where v value. We will eventually prove the following three important
properties, which guide us in the design of the rules

1. (Progress) If - - e : 7 then either

(i) e — € for some €, or

(ii) e value
2. (Preservation)If -Fe:7andew— € then-Fe' : 7
3. (Determinism) If - -e: 7and e — ¢’ and e — €” then e = ¢”.

Note that for all three properties we are only interested in closed, well-
typed expressions.
When presenting the operational semantics, we proceed type by type.

Integers This is straightforward. First, integers themselves are values.

num(k) value

Second, we evaluate the arguments to a primitive operation from left to
right, and apply the operation once all arguments have been evaluated.

e1 +— €] vy value eg — €}
equals (e1,ez) — equals (e}, e2) equals (vq,e2) — equals (v1,€))

(k1 = ko)
equals (num(ki),num(ks)) — true

(k1 # ko)

equals (num(k;),num(ks)) — false

We refer to the first two as search rules, since they traverse the expression
to “search” for the subterm where the actual computation step takes place.
The latter two are reduction rules.
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Booleans First, true and false are values.
true value false value

For if-then-else we have only one search rule for the condition, since we
never evaluate in the branches before we know which one to take.
e e
If (6, €1, 62) — If (6/, €1, 62)

if (true ,ej,ez) — e if (false ,ej,eq)— e

Definitions We proceed as in the expression language with the substitu-
tion semantics. There are no new values, and only one search rule.

e1— €}

let (e1,z.e2) — let (e}, x.e2)

v1 value
let (vi,z.e2) — {vi/x}es

Functions Itis often claimed that functions are “first-class”, but this is not
quite true, since we cannot observe the structure of functions in the same
way we can observe booleans or integers. Therefore, there is no need to
evaluate the body of a function, and in fact we could not since it is not
closed and we would get stuck when encountering the function parameter.
So, any (recursive) function by itself is a value.

fun (m1, 72, f.z.€) value

Applications are evaluated from left-to-right, until both the function and its
argument are values. This means the language is a call-by-value language
with a left-to-right evaluation order.

e1 — €} vy value eg — €
apply (er,e2) — apply (ef,e2)  apply (vi,ez) — apply (vi,é€))

(v1 =fun (71,72, f.x.€)) wvo value

apply (vi,ve) — {vi/fH{vz/x}e
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15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 6
September 12, 2002

In this lecture we discuss and prove several language properties of
MinML that connect the type system to the operational semantics. In partic-
ular, we will show

1. (Preservation) If -+e:7and e €' then-+¢' : 7
2. (Progress) If - - e : 7 then either

(i) e — € for some €, or

(ii) e value
3. (Determinism) If - e : 7and e — ¢’ and e — ¢’ then e = €.

Usually, preservation and progress together are called type safety. Not
all these properties are of equal importance, and we may have perfectly
well-designed languages in which some of these properties fail. However,
we want to clearly classify languages based on these properties and under-
stand if they hold, or fail to hold.

Preservation. This is the most fundamental property, and it would be dif-
ficult to see how one could accept a type system in which this would fail.
Failure of this property amounts to a missing connection between the type
system and the operational semantics, and it is unclear how we would even
interpret the statement that e : 7. If preservation holds, we can usually
interpret a typing judgment as a partial correctness assertion about the ex-
pression:
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If expression e has type T and e evaluates to a value v, then v also has
type T.

Progress. This property tells us that evaluation of an expression does not
get stuck in any unexpected way: either we have a value (and are done), or
there is a way to proceed. If a language is to satisfy progress it should not
have any expressions whose operational meaning is undefined. For exam-
ple, if we added division to MinML we could simply not specify any transi-
tion rule that would apply for the expression divide  (num(k), num(0)). Not
specifying the results of such a computation, however, is a bad idea because
presumably an implementation will do something, but we can no longer
know what. This means the behavior is implementation-dependendent
and code will be unportable. To describe the behavior of such partial ex-
pressions we usually resort to introducing error states or exceptions into
the language.

There are other situations where progress may be violated. For exam-
ple, we may define a non-deterministic language that includes failure (non-
deterministic choice between zero alternatives) as an explicit outcome.

Determinism. There are many languages, specifically those with concur-
rency or explicit non-deterministic choice, for which determinism fails, and
for which it makes no sense to require it. On the other hand, we should al-
ways be aware whether our languages is indeed deterministic or not. There
are also situations where the language semantics explicitly violates deter-
minism in order to give the language implementor the freedom to choose
convenient strategies. For example, the Revised® Definition of Scheme! states
that the arguments to a function may be evaluated in any order. In fact, the
order of evaluation for every single procedure call may be chosen differ-
ently!

While every implementation conforming to such a specification is pre-
sumably deterministic (and the language satisfies both preservation and
progress), code which accidentally or consciously relies on the order of
evaluation of a particular compiler will be non-portable between Scheme
implementations. Moreover, the language provides absolutely no help in
discovering such inadvisable implementation-dependence. While one is
easily willing to accept this for concurrent languages, where different in-
terleavings of computation steps are an unavoidable fact of life, it is un-

Lhttp://www.swiss.ai.mit.edu/jaffer/r5rs_toc.html
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fortunate for a language which could quite easily be deterministic, and is
intended to be used deterministically.

Preservation. For the proof of preservation we need two properties about
the substitution operation as it occurs in the cases of let -expressions and
function application. We state them here in a slightly more general form
than we need, but a slightly less general form than what is possible.

Theorem 1 (Properties of Typing)
(i) (Weakening) IfT'y,T's k€' : 7/ the'y,z:7, Ty €' : 7.

(ii) (Value Substitution)
IfTy,z:m,To b€ 7" and -+ v : 7 thenTy, Ty - {v/x}e’ : 7.

Proof: Property (i) follows directly by rule induction on the given deriva-
tion: we can insert the additional hypothesis in every hypothetical judg-
ment occuring in the derivation without invalidating any rule applications.

Property (ii) allso follows by a rule induction on the given derivation of
Iy, x:7, Ty € @ 7. Since typing and substitution are both compositional
over the structure of the term, the only interesting cases is where ¢’ is the
variable .

Case: (Rule VarTyp) with ¢/ = 2. Then 7' = 7 and {v/z}e’ = {v/z}x = v.
So we have to show I';,I's - v : 7. But our assumption is - - v : 7 so we can
conclude this by weakening (Property (1)). |

Both the weakening and value substitution properties arise directly from
the nature of reasoning from assumption. They are special cases of very
general properties of hypothetical judgments.

Weakening is a valid principle, because when we reason from assump-
tion nothing compels us to actually use any given assumption. Therefore
we can always add more assumptions without invalidating our conclusion.

Substitution is a valid principle, because we can always replace the use
of an assumption by its derivation.

Theorem 2 (Preservation)
If-Fe:Tander € then-Feée' :T.

Proof: By rule induction on the derivation of e +— ¢’. In each case we
apply inversion to the given typing derivation and then apply either the
induction hypothesis or directly construct a typing derivation for ¢’.
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Critical in this proof is the syntax-directed nature of the typing rules: for
each construct in the language there is exactly one typing rule. Preservation
is significantly harder for languages that do not have this property, and
there are many advanced type systems that are not a priori syntax-directed.

We only show the cases for booleans and functions, leaving integers
and let -expressions to the reader.

Case

e1— €}

if (e1,e2,e3) —if (€], e2,e3)

This case is typical for search rules, which compute on some subexpression.

e — ¢} Subderivation
-Fif (e1,ez,e3): 7 Assumption
-Fej:bool and-Fey:7and - Fes: T By inversion
-k €} : bool By i.h.
~Hif (e],e2,e3): T By rule
Case

if (true ,eg,e3)— ey

-Fif (true ,eg,e3):T Assumption
-Ftrue :bool and-Fey:7and-Fes: T By inversion
‘Fey:T In line above
Case

if (false ez, e3)— e3

Symmetric to the previous case.

Case
e — €}
apply (e1,e2) — apply (e}, e2)

e — e} Subderivation
-Fapply (ei,e2): 7 Assumption
ke :arrow (7',7) and - - eg : 7/ for some 7’ By inversion
-k ¢} arrow (77, 7) By i.h.
-+ apply (ej,e2):7 By rule
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Case

vy value e +— €

apply (vi,e2) — apply (vi,e5)

Analogous to the previous case.

Case

(vy =fun (11,72, f.x.e1)) wvo value

apply (vi,v2) — {v1/fHvz/z}es
-Fapply (vi,v2):7 Assumption
-k :arrow (7/,7)and - vy : 7’ for some 7’ By inversion
-Ffun (71,72, f.x.e1) : arrow (7/,7) By definition of v;
f:arrow (7',7),z:7'Fe:Tand =7 and =7 By inversion
faarrow (7/,7) F {va/x}er : 7T By value substitution property
cHA{vi/fHve/x}er i T By value substitution property

In summary, in MinML preservation comes down to two observations:
(1) for the search rules, we just use the induction hypothesis, and (2) for re-
duction rules, the interesting cases rely on the value substitution property.
The latter states that substuting a (closed) value of type 7 for a variable of
type 7 in an expression of type 7’ preserves the type of that expression as

7.

Progress. We now turn our attention to the progress theorem. This asserts
that the computation of closed well-typed expressions will never get stuck,
although it is quite possible that it does not terminate. For example,

apply (fun (int jint | f.x.apply (f,z)),num(0))

reduces in one step to itself.

The critical observation behind the proof of the progress theorem is that
a value of function type will indeed be a function, a value of boolean type
will indeed by either true or false , etc. If that were not the case, then we
might reach an expression such as

apply (num(0), num(1))
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which is a stuck expression because num(0) and num(1) are values, so nei-
ther any of the search rules nor the reduction rule for application can be
applied. We state these critical properties as an inversion lemmas, because
they are not immediately syntactically obvious.

Lemma 3 (Value Inversion)
(i) If -+ v :int and v value then v = num(n) for some integer n.

(ii) If - + v : bool and v value thenv = true orwv = false

(iii) If -+ v : arrow (71, 72) and v value then v = fun (7, 79, f.x.e) for some

f.x.e.

Proof: We distinguish cases on v value and then apply inversion to the
given typing judgment. We show only the proof of property (ii).

Case: v = num(n). Then we would have - - num(n) : bool , which is
impossible by inspection of the typing rules.

Case: v = true . Then we are done, since, indeed v = true or v =
false

Case: v =false . Symmetric to the previous case.

Case: v = fun (71,7, f.z.e). As in the first case, this is impossible by in-
spection of the typing rules. [ |

The preceding value inversion lemmas is also called the canonical forms
theorem [Ch. 9.2]. Now we can prove the progress theorem.

Theorem 4 (Progress)
If -+ e : 7 then

(i) either e — ¢’ for some €/,
(ii) or e value.

Proof: By rule induction on the given typing derivation. Again, we show
only the cases for booleans and functions.
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Case

T € -

ka7 VarTyp

This case is impossible since the context is empty.

Case
- true : bool TrueTyp
Then true value.
Case
- false : bool FalseTyp

Then false  value.
Case

-Fer:bool  kFey:T bFeg:T

IfTyp

- If (81,62,63) . T

In this case it is clear that if (e, e9,e3) cannot be a value, so we have to
show thatif (e, ez, e3) — €’ for some ¢'.

Either e; — €] for some €] or e; value By i.h.
e1+— ¢} First subcase
if (e1,e2,e3) —if (€, e2,e3) By rule
e1 value Second subcase
e; =true ore; = false By value inversion
e1 = true First subsubcase
if (true ez, e3)+— e By rule
e; = false Second subsubcase
if (false ez, e3)— e3 By rule
Case

farrow (r,72),z:m Fe:
-+ fun (11,7, f.z.€) : arrow (71, 72)

FunTyp
Then fun (71, 72, f.z.e) value.
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Case
‘Fep:arrow (mo,7) -hFex:m
) AppTyp
- apply (er,e2): 7

Either e; — €] for some €] or e; value By i.h.
e1— €} First subcase
apply (e1,e2) — apply (ej,ez) By rule
ey value Second subcase
Either e; — e for some € or e value By i.h.
eg — €, First subsubcase
apply (e1,e2) — apply (e1,€}) By rule (since e; value)
es value Second subsubcase
er =fun (r, o, f.x.€)) By value inversion
apply (e1,e2) — {e1/fHea/x}e} By rule (since ey value)

Determinism. We will leave the proof of determinism to the reader—it is
not difficult given all the examples and techniques we have seen so far.

Call-by-Value vs. Call-by-Name. The MinML language as described so
far is a call-by-value language because the argument of a function call is
evaluated before passed to the function. This is captured the following
rules.

ep — €}
/ cbv.1
apply (e1,e2) — apply (ej,e2)
v1 value eg — €
2 cbv.2

apply (vi,e2) — apply (vi,e5)

(v1 =fun (71,72, f.x.€)) wvo value
apply (v1,v2) = {01/ fHua/ate

We can create a call-by-name variant by not permitting the evaluation of
the argument (rule cbv.2 disappears), but just passing it into the function

r
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(replace cbv.r by cbn.r). The first rule just carries over.

e1— €] -
apply (c1,e2) — apply (¢f,ez) "
(v1 =fun (11,72, f.z.€))
cbn.r

apply (vi,eq) — {vi/f}Hez/z}e

Evaluation Order. Our specification of MinML requires the we first eval-
uate e; and then es in application apply (e, e2). We can also reduce from
right to left by switching the two search rules. The last one remains the
same.

eg — €,

apply (e1,es) — apply (e1,eh)

cbor.1

e1+— €] v value

apply (eq,v2) — apply (e},v2

) cbur.2

(vy =fun (11,72, f.x.€)) vy value
apply (vi,v2) = {v1/fHva/a}e
The O’Caml dialect of ML indeed evaluates from right-to-left, while Stan-
dard ML evaluates from left-to-right. There does not seem to be an intrinsic

reason to prefer one over the other, except perhaps that evaluating a term
in the order it is written appears slightly more natural.

cbur.r

Unspecified Evaluation Order. The specification of Scheme, when trans-
lated into our setting is more difficult to model accurately. There are two
conditions:

(1) In any application apply (e, e2), either or argument may be evaluated
first.

(2) There can be no interleaving of the evaluation of the two arguments.
In other words, the constituent we pick to evaluate first must be com-
pletely evaluated before picking the other.

As discussed before, such an underspecification has obvious disadvantages
with respect to portability, since the code exhibits spurious non-determinism.
While modelling part (1) is quite straightforward by simply including the
left and right search rules, part (2) does not fit into the form of the rules that
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we have specified so far. It seems that one would need either an auxiliary
judgment or some auxiliary abstract syntax constructors. We show here the
latter. We introduce three forms of application: uncommitted apply , left-
to-right apply ; and right-to-left apply 5. The first two rules commit to the
choice between the two constructs.

bus.di
apply (e1,e2) — apply 1(er,eq) °

cbvs.dr
apply (e1,e2) — apply s(e1,ez)

The second and third set of rules step according to the left-to-right order
for apply ; and according to the right-to-left order for apply .

61?—)6,1

apply q(e1,e2) — apply (e}, ez)

cbvs.l1

vy value e — €
apply 1(vi,e2) — apply 1(v1,e3)

cbvs.l2

e — €

apply o(e1,ey) — apply o(er,es)

cbvs.rl

e1+— €] v value
apply o(er,v2) — apply o(€}, vz

The final set of rules carries out the identical reductions for the two com-
mitted forms of application.

) cbvs.r2

(vy =fun (1, 72, f.z.€)) vy value

apply 1(vi,v2) — {v1/fHva/z}e

cbvs.lr

(v1 = fun (71,72, f.z.€)) wvo value
apply 2(vi,v2) = {v1/fHve/z}e

For this to work properly we must enforce that the constructors apply
and apply ; are only used internally in the semantics, but are not accessible
through the concrete syntax of the language. This is because the language
does not actually provide the programmer with the explicit choice: his or
her program should be correct no matter which order of evaluation is ap-
plied. Nonetheless, we need to write the (obvious) typing rules for them in
order to prove progress and preservation, since all the intermediate states
during evaluation must be typable.

cbvs.rr
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Supplementary Notes on Aggregate Data
Structures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 7
Sep 17, 2002

Before we go into aggregate data structures (pairs, sums, and some re-
cursive types), we discuss how run-time errors can be handled in a type-
safe language [Ch. 9.3]. Consider extending our MinML language by a par-
tial division operator, div (e, e2). Besides the usual typing rules and search
rules for the operational semantics, we would also have the following re-
duction rule:

(n2 #0)

div (num(ny), num(nz)) — num(|ny/na|)

The condition ny # 0 means that there is no rule for div (num(n), num(0))
and evaluation gets stuck. Progress would be violated.

We can restore an amended progress theorem if we introduce a new
judgment e aborts to explicitly require that run-time errors will abort the
program rather than continuing in some random state. We add the rule

div (num(n),num(0)) aborts
However, we are not finished, because an expression such as
plus (div (num(3),num(0)), num(2))
must also abort, but we have no rule that allows us to conclude this. So in

addition to the search rules we have “abort propagation” rules that prop-
agate run-time errors up to the overall program we are trying to evaluate.
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We show the two rules for application as an example; similar rules are nec-
essary for all search rules to account for a possible abort.

e1 aborts
apply (e1,e2) aborts

v1 value ey aborts
apply (v1,e2) aborts

Now we can refine the statements progress and determinism to account for
the new judgment. Note that preservation does not change, because it only
has to account for a successful computation step.

1. (Preservation)If - +e:7and e ¢ then -+ ¢ : 7.
2. (Progress) If - - e : 7 then either

(i) e+ € for some ¢, or
(ii) e value, or

(iii) e aborts.
3. (Determinism) If - - e : 7 then exactly one of

(i) e — € for some unique €/, or
(ii) e value, or

(iii) e aborts.

We do not give her a proof of these properties, nor do we discuss how
the language might be extended withatry ...handle ...end constructin
order to catch error conditions.

Now we come to various language extensions which make MinML a
more realistic language without changing its basic character.

Products. Introducing products just means adding pairs and a unit ele-
ment to the language [Ch. 19.1]. We could also directly add n-ary prod-
ucts, but we will instead discuss records later when we talk about object-
oriented programming. MinML is a call-by-value language. For consistency
with the basic choice, the pair constructor also evaluates its arguments—
otherwise we would be dealing with lazy pairs.! In addition to the pair

See Assignment 3
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constructor, we can extract the first and second component of a pair.2

I'Fer:mp TPFey:m
Lk pair (er,es):cross (ri,7)

I'te:cross (rm,72) I'te:cross (m,72)
L-fst (e):m I'Fsnd(e): 72

For the unit type we only have a constructor but no destructor, since there
are no components to extract.

T unitel : unit

We often adopt a more mathematical notation according to the table
at the end of these notes. However, it is important to remember that the
mathematical shorthand is just that: it is just a different way to shorten
higher-order abstract syntax or make it easier to read.

A pair is a value if both components are values. If not, we can use the
search rules to reduce, using a left-to-right order. Finally, the reduction
rules extract the corresponding component of a pair.

e1 value eg value
pair (e1,ez) value

e — €} vy value eg — €,
pair (e1,ez) — pair (ej,e2) pair (vi,ez) — pair (vi,eh)

e— e er— e

fst (e) — fst (¢/) snd(e)+— snd(¢)

vy value vy value vy value vy value
fst (pair (v1,v2)) — v; snd(pair (vi,v2)) — vg

Since it is at the core of the progress property, we make the value inversion
property explicit.

If -+ v :cross (r1,72) and v value then v = pair (vy,vs) for
some v value and vy value.

2An alternative treatment is given in [Ch. 19.1], where the destructor provides access to
both components of a pair simultaneously. Also, the unit type comes with a corresponding
check construct.
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Unit Type. The unit types does not yield any new search or reduction
rules, only a new value. At first it may not seem very useful, but we will
see an application in the next section on sums.

unitel  value

The value inversion property is also simple.

If -Fov:unit thenv= ().

Sums. Unions, as one might now them from the C programming lan-
guage, are inherently not type safe. They can be abused in order to access
the underlying representations of data structures and intentionally violate
any kind of abstraction that might be provided by the language. Consider,
for example, the following snippet from C.

union {
float f;
int i;

} unsafe;

unsafe.f = 5.67e-5;
printf("%d", unsafe.i);

Here we set the member of the union as a floating point number and then
print the underlying bit pattern as if it represented an integer. Of course,
much more egregious examples can be imagined here.

In a type-safe language we replace unions by disjoint sums. In the im-
plementation, the members of a disjoint sum type are tagged with their
origin so we can safely distinguish the cases. In order for every expression
to have a unique type, we also need to index the corresponding injection
operator with their target type.?

Fl—el:n F"@QSTQ
CHinl (71,72,e1) :sum(ry,72) THinr (71,72, e2) : sSUM(7y, 72)

F'ke:sum(ry, o) Dxpimber:o Tizomber:o
I' - case (e, z1.e1,22.€2) : 0

3‘Stric’cly speaking, some of this information is redundant, but it is easier read if we are
fully explicit here.
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Note that we require both branches of a case -expression to have the same
type o, just as for a conditional, because we cannot be sure at type-checking
time which branch will be taken.

e1 value eg value
inl (71, 72,e1) value inr (71,72, ez) value

er¢e
case (e, zy.e1,z2.62) — case (e, xy.e1,x9.€2)

vy value
case (Inl (7’1,7‘2,’1)1),:61.61,1‘2.62) = {Ul/xl}el

vy value
case (inr (71, 72,v2),x1.€1,x2.62) — {va/xz2}es

We also state the value inversion property.

If - = v : sum(ry, 2) then either v = inl (71, 79, v1) with v; value
orv =inr (1,72, vy) with vs value.

Empty Type. The empty type can be thought of as a zero-ary sum. It
has no values and a corresponding abort construct which should never be
executable unless we add an error value to the language.

I'te:void
't abort (r,e):7

There is only one search rule of computation, but no actual reduction rule.

e ¢
abort (7,e) — abort (7,¢’)

The value inversion property here just expresses that there are no values
of void type.

If -+ v :void then we have a contradiction.
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Aggregate Data Structures

Higher-Order
Abstract Syntax

arrow (7, 72)
cross (7, 72)
unit
sum(ry, 72)
void

pair (ep,es)
fst (e)

snd (e)

unitel

inl (71, 72,e1)
inr (T1,7'2,62)
case (e, xj.e1,x3.€2)

abort (7,¢)

SUPPLEMENTARY NOTES

Concrete Syntax

T1 == To
T1* T
unit
T1+72
void

(e1, e2)
#le
#2e
()
inl (ep) : 1472
inr (eg) : 1+
case e
of inl (.rl) =>eq
| inr (372) => e9
esac
abort (e): 7

Mathematical Syntax

T1 — T2
T1 X T9
1
T1 + To
0

(e1,e2)

T e

9 €

()

ianl-i-TQ (61)

infr, 4 ry(€2)

case(e, z1.e1, T2.€2)

abort;(e)
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An Abstract Machine

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 8
Sep 19, 2002

In this lecture we introduce a somewhat lower-level semantics for MinML
in the form of an abstract machine [Ch 11]. In this machine we make the con-
trol flow explicit, rather than encoding it in the search rules as in the first
operational semantics. Besides getting closer to an actual implementation,
it will allow us to easily define constructs to capture the current continua-
tion [Ch. 12].

Abstract machines have recently gained in popularity through the as-
cendency of the Java programming language. The standard model is that
we compile Java source to Java bytecode, which may be transmitted over
networks (for example, as an “applet”), and then interpreted via the Java
abstract machine. The use of an abstract machine here plays two important
roles: (1) the byte code is portable to any architecture with an interpreter,
and (2) the received code can be easily checked for illegal operations. This
is type-checking of the abstract machine code goes hand in hand with some
residual checking that has to go on while the code is interpreted. Note that
traditional type-checking as we have discussed it so far needs to be aug-
mented significantly, for example, to prevent the normally type-safe oper-
ation of reformatting the hard disk.

The kind of abstract machine we present here is a variant of the C-
machine [Ch 11.1] with two kinds of states: those that attempt to evaluate
an expression, and those that return a value that has been computed. Its
main component, however, is the same: a run-time stack that records what
remains to be done after the current subexpression has been fully evalu-
ated. The stack consists of frames which represents the action to be taken
by the abstract machine once the current expression has been evaluated.
We treat here the fragment with pairs, functions, and booleans (see [Ch
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11.1] for a treatment of primitive operators).

We begin by defining the syntax in the form of (abstract syntax) gram-
mar. As we have seen before, this can also be written in the form of judg-
ments. When we use v we imply that v must be a value.

States s ::= k>e evaluate e under k

| k<w return v to k
Stacks k ::= e empty stack

| k> f stack k£ with top f
Frames f ::= o(Oez) | 0(vy,0) primops

| pair (O,e2) | pair (vy,0) pairs

| fst (O)]|snd(O) projections

| apply (O,e2) | apply (vi,0) applications

| if (O,e1,e2) conditional

A hole [J in the top stack frame is intended to hold the value returned
by evaluation of the current expression. It corresponds to the place in an
expression where evaluation can take place and thus implements the search
rules of the structured operational semantics.

The main judgment defining the abstract machine is

/
Stoc §

expressing that state s makes a transition to state s’ in one step. The initial
state of the machine has the form e > ¢, a final state has the form e < v. In
general, we define our machine so that if

e=e = e, =

according to our operational semantics then for any stack £ which should
have

k>eroe ok <wv

As we will see, the operational semantics and the abstract machines do not
take the same number of steps. This is because the operational semantics
does not step at all for values, while the abstract machine will take some
steps to go from k > vto k < v.

We now give the transitions, organized by the type structure of the lan-

guage.
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Integers.

Products.

k > num(n)

k> 0(61,62)
kDO(D,eg) < U1

k>o(num(ni),d) < num(ng)

k > pair (e1,e2)
k>pair (O,e2) < v1
k> pair (v,0) < vo

k> fst (e)

k>fst (O) < pair (v1,v2)

k> snd (e)

k>snd (O) < pair (vy,v2)

Functions.

k> fun (1, 71e, f.x.€)

k > apply (e1,e2)
k>apply (0, e2) < v
k> apply (vi,0) < v

Conditionals.

k > true
k > false
kE>if (e e, ea)

Evif (O, e1,e2) < true

—c

—c
—c

—

Evif (O, e1,e2) < false

SUPPLEMENTARY NOTES

e
—c

e

¢ k< num(n)

¢ kro(des) > e

)
]C[>O(Ul,|:|) > e
)

¢ k< numn

(n = fo(ni,n2))

k> pair (O,e2) > e
k> pair (vy,0) > eo
k < pair (vi,v2)

Exfst (O) >e
k< v

kE>snd(0) > e
k < w9

k < fun (11,72, f.x.€)

k>apply (0, e2) > e1
keapply (vi,0) > ez
k> {vi1/fHva/z}e

(v =fun (71,72, f.a.€))

k < true

k < false

Exif (O, er,e2) > e
k>ep

k> e
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As an example, consider the evaluation of

(fun f(x:int):int is x end) O

We elide the types int in order to shorten the syntax.

. > apply (fun (,,, f.z.xz),num(0))
—c e>apply (O,num(0)) > fun (., f.x.2)
—c e>apply (O, num(O)) < fun (L, fx.x)
—c exapply (fun (., _, fx.z),00) > num(0)
—c e>apply (fun ( o frx),0d) < um(O)
e @ > m(O)
e @ < num(0)

Note that in the second-to-last step, {fun (...)/f}H{num(0)/z}z = num(0)
Proving the correctness of the C-machine is complicated by the fact that
the two machines step at different rates. We further have to account for
the stack. However, in the overall statement of the correctness theorem,
these problems may not be apparent. In order to state the theorem, we
tirst define the multi-step versions of the two transition judgments. This is
just the reflexive and transitive closure of the single-step relation. We only
define this formally for the abstract machine; other transition relations can
similarly be extended to multiple steps [Ch. 2].
st s’ sstepsto s’ in zero or more steps

stoc s 8 > s
o, refl 7 step

SLs SrC s

We take certain elementary properties of the multi-step transition rela-
tion for granted and use them tacitly. We give here only one, as an example.

Theorem 1 (Transitivity)
If s —% s and s’ —?* §" then s —% §".

Proof: By straightforward rule induction on the derivationof s —} s’. W

Theorem 2 (Correctness of C-Machine)
e—*vifandonlyife >e¢—; e <wv

As usual, we cannot prove this directly, but we need to generalize it. In
this case we also need two lemmas.
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Lemma 3 (Determinism)
If s —. s and s —. s" then s’ = s".

Proof: By cases on the two given judgments. This is a degenerate case of
rule induction, since the — judgment is defined only by axioms. [

Lemma 4 (Value Computation)
(i k>v—ik<wv

(ii) If k > v —{ e > a then the computation decomposes into
kE>v—lik<vandk <v—!e>a

Proof: Part (i) follows by induction on the structure of v.! Part (ii) then

follows from part (i) by determinism. We show the proof of part (i) in detail.

Cases: v =num(n), v =true ,v =false ,orv =fun (71,7, f.z.e). Then
the result is immediate by a single step of the abstract machine.

Case: v = pair (vi,vz). Then

k > pair (vi,v2)

—c k> pair (O,v2) > v By rule
—¢ ke pair (0, v2) <o By i.h. on v;
—c k> pair (v, ) > ve By rule
=& ke pair (v1,0) <y By i.h. on vy
—e k< pair (v1,v2) By rule

|

Now we are in a position to prove the generalization that directly re-
lates a single step in the original semantics to possibly several steps in the
C-machine. It is difficult to explain how one might arrive at this gener-
alization, except to say “through experience” and by analysing the failure
of other attempts. We express that if e — ¢/, then under any stack k, if
the evaluation of ¢’ yields the final answer a, then the evaluation of e also
yields the final answer e.

'Equivalently, we could say: By rule induction on the derivation of v value.
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Lemma 5 (Completeness Lemma for the C-Machine)

Ife— ¢ andk >e —fe>athenk >e—’e>a.

Proof: The proof is by rule induction on the derivation of e — ¢’.

Below, when we claim a step follow “by inversion” it is because exactly
one of the rules could be applied as the first step. Technically, this is an
inversion on the definition of —} (rule step must have been applied), fol-
lowed by an second inversion on the (single) first step that could have been
taken.

We show only the cases for products, since all other cases follow a sim-
ilar pattern.

For the search rules, we apply inversion until we have uncovered a sub-
computation of the abstract machine to which we can apply the induction
hypothesis. Then we reconstitute the full computation.

For the reduction rules, we directly construct the needed computation,
possibly applying to the value computation lemma, part (i).

Case:
]
pair (e1,eq) — pair (e, e2)

e — €} Subderivation
k > pair (€},e2) —ie>a Assumption
k > pair (€},e2) —c k>pair (O,e2) > e —fe>a By inversion

E>pair (O,eq) > e —re>a By ih.
k > pair (e1,es) —¢ k> par (Oyex) >e; —:e>a By rule

Case:
vy value e — €
pair (vq,ez) — pair (vq,€h)
] Subderivation
k> pair (vi,e}) —*e>a Assumption
k> pair (vi,eh) — k>pair (O,e)) > v —* e >a By inversion

ko pair (O,e)) > v —* krpair (O,e)) <v —*e>a
By value computation (ii)

ke pair (O,€)) < vy — k>par (v1,0) >e,—*e>a By inversion
k>pair (vi,0) > e —"e>a By i.h.
k>pair (O,e2) <vi—"e>a By rule
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k> pair (O,e3) > v —*e>a By value computation (i)
k> pair (vi,e2) — kppair (O,e2) > v —*e>a By rule
Case:

e1— €}

fst (e1) — fst (e})

e — e} Subderivation
k> fst () e >a Assumption
k>fst (e))—ckrfst (O) >¢) —ie>a By inversion

Evfst (O) >e —fe>a By i.h.
k>fst (e1) —ckp>fst (O)>e— e>a By rule

Case:
v1 value v9 value
fst (pair (v1,v2)) — v;

k<vi—e>a Assumption
k> fst (pair (v1,v2))

—c k>fst (O) > pair (vi,v2) By rule
—e k>fst (O) < pair (vi,v2) By value computation (i)
ek < v By rule
—le>aq By assumption
Case:

v1 value w9 value
snd (pair (v1,v2)) — v2

k<uvy—fe>a Assumption

k > snd (pair (v1,v2))

—c k>snd (O) > pair (vi,v2) By rule

—¢ k>snd (0) < pair (vi,v2) By value computation (i)

e k < v By rule

e e >a By assumption
|

We do not show the proof in the other direction, which is a minor vari-
ant of the one in [Ch 11.1]. We now return to the correctness theorem.
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Theorem 6 (Correctness of C-Machine)
(i) Ife —* vthene > ¢ -} o < v.

(ii) If e > e +—} @ < v thene —* v.

Proof: We show part (i) and omit part (ii) (see [Ch 11.1]). The proof of part
(i) is by induction on the derivation of e —* v.

Case:
—— refl

v =%
o> y—=le<w By value computation (i)
Case:

e—e =" u g

e—*wv P
o> —fe>w By i.h.
e>ci=le>0 By completeness lemma
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Exceptions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 9
September 25, 2002

In this lecture we first give an implementation of the C-machine for the
fragment containing integers, booleans, and functions using higher-order
functions. We then discuss exceptions as an extension of the C-machine
[Ch. 13]

The implementation of the C-machine is to represent the stack as a con-
tinuation that encapsulates the rest of the computation to be performed.!

First, in our implementation, both expressions and value have type exp .
We nonetheless use different names to track our intuition, even though the
type system of ML does not help use verify the correctness of this intuition.

type value = exp
e . exp
v . value

Next, the stack £ is represented by an ML function

k : value -> value

Applying this function to a value v will carry out the rest of the compu-
tation of the machine, returning the final answer. Finally, we have two
functions

'We give some code excerpts here; the full code can be found at
http://www.cs.cmu.edu/ fp/courses/312/code/09-exceptions/
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eval : exp -> (value -> value) -> value
return : value -> (value -> value) -> value

satisfying the specification:

(i) eval e k | aiffk >e—}oe<a

(ii) return v k | aiffk<v—le<a

In order to implement stacks as ML functions, it is useful to introduce
some new auxiliary functions to represent the frames. We give in the table
below the association between forms of the stack and the corresponding
ML function. We omit only the case for primops which requires a simple
treatment of lists.

k>if (O,e2,e3) (fn vl => ifFrame (v1, e2, e3) k)

k>apply (O,e2) (fn vl => applyFramel (v1, e2) k)
k>apply (vi,0) (fn v2 => applyFrame2 (v1, v2) k)
kE>let (O,z.e2) (fn vl => letFrame (v1, ((), e2)) k)
. (fn v =>v)

The case of the empty stack corresponds to the initial continuation,
which simply returns the value passed to it as the result of the overal com-
putation

Now we can piece together the whole code elegantly, as advertised. We
have elided only the case for primitive operations, which can be found with
the complete code at the address given above.
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fun eval (v as Int ) k = return v k
(* elided primops *)
| eval (v as Bool ) k = return v k

| eval (If(el, e2, e3)) k =
eval el (fn vl => ifFrame (v1, e2, e3) k)
| eval (v as Fun ) k = return v k
| eval (Apply(el, e2)) k =
eval el (fn vl => applyFramel (v1, e2) k)
| eval (Let(el, ((), e2))) k =
eval el (fn vl => letFrame (v1, ((), e2)) k)
(* eval (var _) k impossible by MinML typing *)
and ifFrame (Bool(true), e2, e3) k = eval e2 k
| ifFrame (Bool(false), e2, e3) k = eval e3 k
(* other expressions impossible by MinML typing *)
and applyFramel (v1, e2) k =
eval e2 (fn v2 => applyFrame2 (v1, v2) k)
and applyFrame2 (vl as Fun( S o (0, 0, el)), v2) k =
eval (Subst.subst (v1, 2, Subst.subst (v2, 1, el)) k
(* other expressions impossible by MinML typing *)
and letFrame (v1, ((), e2)) k = eval (Subst.subst (v1, 1, e2)) k
and return v k = k v

The overall evaluation just starts with the initial continuation which
corresponds to the empty stack.

fun evaluate e = eval e (fn v => v)

This style of writing an interpreter is also refered to as continuation-
passing style. It is quite flexible and elegant, and will be exercised in As-
signhment 4.

Next we come to exceptions. We introduce a new form of state

k < fail

which signals that we are propagation an exception upwards in the control
stack k, looking for a handler or stopping at the empty stack. This “un-
caught exception” is a particularly common form of implementing run-
time errors. We do not distinguish different exceptions, only failure. For
more complex variations of exceptions, see [Ch. 13] and Assignment 4.

We have two new forms of expressions fail (1) (with concrete syntax
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fail [7])? and try (e1,eq) (with concrete syntax try e; owes). Informally,
try (ei1,e2) evaluates e; and returns its value. If the evaluation of e; fails,
that is, an exception is raised, then we evaluate e instead and returns its
value (or propagate its exception). These rules are formalized in the C-
machine as follows.

k>try (e1,e2) e kotry (Oe2) > e

Evtry (Oye2) <vi e k<u

k> fail (7) —c k< fail

k> f < fail —e k< fail for f #try (O, )

kxtry (O,e2) < fail —¢ k>eo

In order to verify that these rules are sensible, we should prove appro-
priate progress and preservation theorems. In order to do this, we need to
introduce some typing judgments for machine states and the new forms of
expressions. First, expressions:

I'ter:m T'key: 7
PkHfail (7):7 LHtry (er,er): 7

The new judgment for typing states depends on a typing for stacks. A
stack is characterized by the type of the argument it expects and the type
of the final answer it returns. We write p for the type of the final answer.
Note that during the whole computation of a machine, this never changes.
The new judgments are

s OK, state s is well-formed with final answer type p
k : 7 stack, stack k accepts a value of type 7
and returns a final answer of type p

Since p never changes for any run of the machine, we omit the subcript
in some of the rules below. However, keep in mind that it is implicitly
present. Note also that judgments on states and stacks do not need to be
hypothetical judgments, since they never contain free variables. First, the
rules for states which ensure that the type expected by a stack matches the
type of the expression to be evaluated, or value being returned.

*The type is written here in order to preserve the property that every well-typed expres-
sion has a unique type.
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k :7stack, -Fe:T
k>e OK,

k :7stack, -Fwv:7 v value
E<v OK,

k : 7 stack,
k < fail OK,

The rules for stacks are straightforward, given a few examples below.

e : pstack,

k :7ystack -Feg:m
k>apply (O,e2) : 79 — 11 stack

k :mystack kv — 1 vy value
kw>apply (vi,0) : 7o stack

k :7mstack -Fey:7 -Feg:T
koif (O, e2,e3) : bool stack

k :7stack ‘Feg:T
kE>try (O, eq) : 7 stack

k :mystack x:miFeg:m
k>let (O, x.e2) : 7 stack

We can now state (without proof) the preservation and progress prop-
erties. The proofs follow previous patterns (see [Ch. 13]) and Lecture 5 on

Type Safety.
1. (Preservation) If s OK, and s +— s’ then s’ OK,,.
2. (Progress) If s OK, then either

(i) s+ s for some s, or
(ii) s = e < v with v value, or

(iii) s = o < fail.
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The manner in which the C-machine operates with respect to exceptions
may seem a bit unrealistic, since the stack is unwound frame by frame.
However, in languages like Java this is not an unusual implementation
method. In ML, there is more frequently a second stack containing only
handlers for exceptions. The handler at the top of the stack is innermost
and a fail  expression can jump to it directly.

Overall, this machine should be equivalent to the specification of ex-
ceptions above, but potentially more efficient. Often, we want to describe
several aspects of execution behavior of a language constructs in several
different machines, keeping the first as high-level as possible.

In our simple language, the handler stack h contains only frames ow(k;, e2)
while the control stack contains the usual frames, and try () (the “other-
wise” clause has moved to the handler stack). All the usual rules are aug-
mented to carry a control stack and a handler stack, and leave the handler
unchanged.

(h,k) > apply (e1,e2) —c (h,k>apply (Oe2)) > e

(h,k) > try (e1,e2) e (hpow(k,e), k>try (O)) > e
(h>ow(k' e2), ketry (O) <v1 ¢ (hk) <v;
(h>ow(k' e2), k) > fail (1) e (hK') > e

Note that we do not unwind the control stack explicilty, but jump di-
rectly to the handler when an exception is raised. This handler must story
a copy of the control stack in effect at the time the try expression was exe-
cuted. Fortunately, this can be implemented without the apparent copying
of the stack in the rule for try , because we can just keep a pointer to the
right frame in the control stack [Ch. 13].

Note also in case of a regular return for the subject of atry expression,
we need to pop the corresponding handler off the handler stack.
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Continuations

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 10
September 26, 2002

In this lecture we introduce continuations, an advanced control construct
available in some functional languages [Ch. 12]. Most notably, they are part
of the definition of Scheme and are implemented as a library in Standard
ML of New Jersey, even though they are not part of the definition of Stan-
dard ML. Continuations have been described as the goto of functional
languages, since they allow non-local transfer of control. While they are
powerful, programs that exploit continuations can difficult to reason about
and their gratuitous use should therefore be avoided.

There are two basic constructs, given here with concrete and abstract
syntax. We ignore issues of type-checking in the concrete syntax.!

letcc xin eend letcc (7,z.e)
throw ejto eq throw (7, e1,e2)

In brief, letcc  xzin eend captures the stack (= continuation) £ in effect
at the time the letcc  is executed and substitutes cont (k) for z in e. we can
later transfer control to k by throwing a value v to k£ with throw vto cont (k).
Note that the stack £ we capture can be returned passed point in which it
was in effect. As a result, throw can effect a kind of “time travel”. While
this can lead to programs that are very difficult to understand, it has multi-
ple legitimate uses. One pattern of usage is an an alternative to exceptions,
another is to implement co-routines or thread. Another use is to affect back-
tracking.

As a starting example we consider simple arithmetic expressions.

See Assignment 4 for details on concrete syntax.
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(a) 1 + letcc x in 2 + (throw 3 to x) end — 4

(b) 1 + letcc x in 2 end =5 3

(¢) 1 + letcc x in if (throw 2 to x) then 3 else 4 fi end
—s 3

Example (a) shows an upward use of continuations similar to excep-
tions, where the addition of 2 4+ [0 is bypassed and discarded when we
throw to z.

Example (b) illustrates that captured continuations need not be used in
which case the normal control flow remains in effect.

Example (¢) demonstrates that a throw expression can occur anywhere;
its type does not need to be tied to the type of the surrounding expres-
sion. This is because a throw expression never returns normally—it al-
ways passes control to its continuation argument.

With this intuition we can describe the operational semantics, followed
by the typing rules.

k> letcc (7,z.e) —c k> {cont (k)/x}e
k > throw (T, e1,e2) e k>throw (7,0,e2) > e;
kw>throw (7,0,e2) < vy e k>throw (7,v1,0) > eg

kw>throw (7,v1,0) < cont (k2) +—c ko <y
k > cont (k) —c k< cont (k)
The typing rules can be derived from the need to make sure both preser-

vation and progress to hold. First, the constructs that can appear in the
source.

Ixrke:r
L't letcc (r,xz.e):7

I'Fei:mm T'Feg:mcont
I'+throw (7,ep,e2): 7

Finally, the rules for continuation values that can only arise during com-
putation. They are needed to check the machine state, even though they are
not needed to type-check the input.

k : T stack
I'+cont (k) : 7 cont
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As a more advanced example, consider the problem of composing a
function with a continuation. This can also be viewed as explicitly pushing
a frame onto a stack, represented by a continuation. Even though we have
not yet discussed polymorphism, we will phrase it as a generic problem:

Write a function

compose : (a -> 'b) -> 'b cont -> 'a cont

so that compose F K returns a continuation K;. Throwing
a value v to K should first compute F'v and then throw the
resulting value v’ to K.

To understand the solution, we analyze the intended behavior of Kj.
When given a value v, it first applies F' to v. So

K, = Ky apply (F,0)
for some K. Then, it needs to throw the result to K. So
Ky = Kgp>throw (0, K)
and therefore
K, = Ks»>throw (_,0, K)r>apply (F,0)

for some K3.
How can we create such a continuation? The expression

throw ( F ..) to K

will create a continuation of the form above. This continuation will be the
stack precisely when the hole “...” is reached. So we need to capture it
there:

throw ( F (letcc k1 in ... end) to K

The next conundrum is how to return k1 as the result of the compose func-
tion, now that we have captured it. Certainly, we can not just replace . .. by
k1, because the F' would be applied (which is not only wrong, but also not
type-correct). Instead we have to throw k1 out of the local context! In or-
der to throw it to the right place, we have to name the continuation in effect
when the compose is called.
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letcc r
in

throw ( F (letcc k1 in throw k1 to r end)) to K
end

Now it only remains to abstract over F' and K, where we take the liberty of
writing a curried function directly in our language.

fun compose (f'a -> 'b) (ki’b cont) : 'a cont is
letcc r
in
throw (f (letcc k1 in throw k1 to r end)) to k
end
end

In order to verify the correctness of this function, we can just calculate,
using the operational semantics, what happens when compose is applied
to two values F' and K under some stack K. This is a very useful exercise,
because the correctness of many opaque functions can be verified in this
way (and many incorrect functions discovered).

Ky > apply (apply (compose, F'), K)
—s Ko >letcc (_,rthrow (_,apply (F,letcc (., ki.throw (., k1,7))),K))
—c Ko >throw (_,apply (F,letcc (_, ki.throw (_, k,cont (Kjy)))), K)
e Ko>throw (L0, K) > apply (F,letcc (., k;.throw (_ k1,cont (Kj))))
— Korthrow (_,0,K)>apply (F,0) >letcc (-, ki.throw (_, ki, cont (Kp)))

At this point, we define
K, = Ko>throw (_,0, K)>apply (F,0)

and continue
—c Kj >throw (_, K;,cont (Kjp))

—e Ko < Ky

By looking at K; we can see hat it exactly satisfies our specification.
Interestingly, K3 from our earlier motivation turns out to be K, the con-
tinuation in effect at the evaluation of compose. Note that if F' terminates
normally, then that part of the continuation is discarded because K is in-
stalled instead as specified. However, if F' raises an exception, control is
returned back to the point where the compose was called, rather than to
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the place where the resulting continuation was invoked (at least in our se-
mantics). This is an example of the rather unpleasant interactions that can
take place between exceptions and continuations.

See the code? for a rendering of this in Standard ML of New Jersey,
where we have slightly different primitives. The translations are as given
below. Note that, in particular, the arguments to throw are reversed which
may be significant in some circumstances because of the left-to-right eval-
uation order.

Concrete MinML  Abstract MinML SML of NJ

letcc xin eend letcc (7,z.e) callcc (fn x => e)
throw e;to e throw (7,e1,e2) throw e2 el

For a simpler and quite practical example for the use of continuation
refer to the implementation of threads given in the textbook [Ch. 12.3]. A
runnable version of this code can be found at the same location as the ex-
ample above.

Zhttp://www.cs.cmu.edu/ fp/courses/312/code/10-continuations/
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Lecture 11
October 1, 2002

After an excursion into advanced control constructs, we return to the
basic questions of type systems in the next couple of lectures. The first one
addresses a weakness of the language we have presented so far: every ex-
pression has exactly one type. Some functions (such as the identity function
fun f(x) is x end ) should clearly be applicable at more than one type.
We call such function polymorphic. We later distinguish two principal forms
of polymorphism, namely parameteric and ad hoc polymorphism. Besides
pure functions, there are many data structure (such as lists) whose element
types should be arbitrary. We achieved this so far by making lists primi-
tive in the language, but this trick does not extend when we try to write
interesting programs over lists. For example, the following map function is
clearly too specalized.

fun map (fint -> bool):int list -> bool list is
fun _ (Lint list):bool list is
case |
of nil => nil[bool]
| cons(x,I) => cons(f(x),map f I')
end
end

It should work forany f: 7 — 0,1 : 7list  and return a result of type
olist . The importance of this kind of generic programming varies from
language to language and application to application. It has always been
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considered central in functional programming in order to avoid unneces-
sary code duplication. In objected oriented programming it does not ap-
pear as critical, because subtyping and the class hierarchy allow some form
of polymorphic programming. Nonetheless, the Java language has recently
decided to add “generics” to its next revision—we will discuss later how
this relates to parametric polymorphism as we present it here.

There are different ways to approach polymorphism. In its intrinsic
form we allow polymorphic functions, but we are careful to engineer the
language so that every function still has a unique type. This may sound
contradictory, but it is in fact possible with a suitable extension of the ex-
pression language. In its extrinsic form, we allow an expresson to have
multiple types, but we ensure that there is a principal type that subsumes
(in a suitable sense) all other types an expression might have. The poly-
morphism of ML is extrinsic; nonetheless, we present it in its intrinsic form
first.

The idea is to think of the map function above not only takes f and [
as arguments, but also the type 7 and o. Fortunately, this does not mean
we actually have to pass them at run-time, as we discuss later. We write
Funtin eend for a function that take a type as an argument. The (bound)
type variable ¢ stands for that argument in the body, e. The type of such
a function is written a V¢.7, where 7 is the type of the body. To apply a
function e to a type argument 7 (called instantiation), we write e[ 7] . We
also introduce a short, mathematical notation for functions that are not re-
cursive, called A-abstraction.

Concrete Abstract Mathematical
All t. T All (t.T) vt.r
Funtin eend Fun(t.e) At.e
el 7] Inst (e, 7) e[7]

fun f(z:7):mis eend fun (r, 7, fx.e) wpfiti — 2. AxiTy. €
fun _(z:7):_is eend fun (m, ., _x.e) Axim.e
fn 2.7 => e

Using this notation, we can rewrite the example above.
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Fun t in Fun s in
fun map (fit -> s):it list -> s list is
fun _ (Iit list):s list is
case |
of nil => nil[s]
| cons(x,I) => cons(f(x),map f I')
end
end
end end

In order to formalize the typing rules, recall the judgment 7 type. So far,
this judgment was quite straightforward, with rules such as

71 type T2 type T type
arrow (1, 72) type list (7) type int  type

Now, types may contain type variables. An example is the type of the
identity function, which is V¢.t — ¢, or the type of the map function, which
isVt.Vs.(t — s) — list (t) — list (s). So the typing judgment becomes
hypothetical, that is, we may reason from assumption ¢ type for variables ¢.
In all the rules above, they are simply propagated (we show the example of
the function type). In addition, we have new rule for universal quantifica-
tion.

T type 7o type I',t type F 7 type
arrow (7, 72) type ' Al (t.7) type

In addition, the notion of hypothetical judgments yields the rule for
type variables

I'q,t type, I's - t type

and a substitution property.

Lemma 1 (Type Substitution in Types)
IfT'y F 7 type and 'y, t type, I's - o type thenT'y, {7/t}T's F {7/t}o type.

This is the idea behind higher-order abstract syntax and hypothetical
judgments, applied now to the language of types. Note that even though
we wrote I' above, only assumptions of the form ¢ type will actually be
relevant to the well-formedness of types.

Now we can present the typing rules proper.
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I',ttypeFe: o
' Fun(t.e) : All (t.0)

I'ke: Al (t.o) T'FTtype
I'tInst (e,7):{7/t}o

Let us consider the example of the polymorphic identity function to
understand the substitution taking place in the last rule. You should read
this derivation bottom-up to understand the process of type-checking.

t type, f:arrow (t,t),xz:t b+ x:t
ttype + fun (¢,¢, f.x.x) : arrow (t,t)
F Fun(t.fun (¢, ¢, f.x.x)) : Al (t.arrow (t,t))

If we abbreviate the identity function by id then it must be instantiated
by (apply to) a type before it can be applied to an expression argument.

Foid:Vtt—t
Foddfint ]:int —int
Foadlint ]3:int

Foad Vit —t
+ 4d [bool | : bool — bool
F id [bool |true : bool

Foid:Vit—t
Foddint ]:int —int
/' id[int Jtrue :int

Using mathematical notation and the short form for a non-recursive
function:

ttype,x:it F x:t
ttype F Azt.x:t—t
F At Azt x Vit — ¢t

As should be clear from these rules, assumptions of the form ¢ type
also must appear while typing expression, since expressions contain types.
Therefore, we need a second substitution property:

Lemma 2 (Type Substitution in Expressions)
IfTy b 7 type and 'y, t type, 'y e : o thenT'y, {7/t}To - {7 /t}e : {7 /t}o.
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Note that we must substitution into I'y, because the type variable ¢t may
occur in some declaration z:o in I's.

In the operational semantics we have a choice on whether to declare a
type abstraction Funtin eend to be a value, or to reduce e. Intuitively,
the latter cannot get stuck because ¢ is a type variable not an ordinary vari-
able, and therefore is never needed in evaluation. Even though it seems
consistent, we know if now language that supports such evaluation in the
presence of free type variables. This decision yields the following rules:

Fun(t.e) value

er— e

Inst (Fun(t.e),7)— {7/t}e Inst (e,7) — Inst (e, 7)

From this it is routine to prove the progress and preservation theorems.
For preservation, we need the type substitution lemmas stated earlier in
this lecture. For progress, we need a new value inversion property.

Lemma 3 (Polymorphic Value Inversion)
If-+v: Al (t.r)andv value thenv = Fun(t.e’) for somee'.

Theorem 4 (Preservation)
If-Fe:Tande— e then-+¢' : .

Proof: By rule induction on the transition derivation for e. In the case of
the reduction of a polymorphic function to a type argument, we need the
type substitution property. n

Theorem 5 (Progress)
If - + e : 7 then either

(i) e value, or
(ii) e — ¢’ for some €

Proof: By rule induction on the typing derivation for e. We need poly-
morphic value inversion to show that all cases for a type instantiation are
covered. [ |

In our language the polymorphism is parametric, which means that the
operation of a polymorphic function is independent of the type that it is ap-
plied to. Formalizing this observation requires some advanced technique
that we may not get to in this course.
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This can be contrasted with ad hoc polymorphism, in which the func-
tion may compute differently at different types. For example, if the func-
tion + is overloaded, so it has type int x int — int and also type
float xfloat — float ,then we need to have two different implemen-
tations of the function. Another example may be a toString  function
whose behavior depends on the type of the argument.

Parametric polymorphism can often be implemented in a way that avoids
carrying types at run-time. This is important because we do not want poly-
morphic functions to be inherently less efficient than ordinary functions.
ML has the property that all polymorphic functions are parametric with
polymorphic equality as the only exception. Ignoring polymorphic equal-
ity, this means we can avoid carrying type information at run-time. In prac-
tice, some time information is usually retained in order to support garbage
collection or some optimization. How to best implement polymorphic lan-
guages is still an area of active research.

ML-style polymorphism is not quite as general as the one described
here. This is so that polymorphic type inference remains decidable and has
principal types. See [Ch 20.2] for a further discussion. We may return to the
issue of type inference later in this course.
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Lecture 12
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One of the most important ideas in programming is data abstraction. It
refers to the property that clients of library code cannot access the internal
data structures of the library implementation. The implementation remains
abstract. Data abstraction is inherently a static property, that is, a property
that must be verified before the program is run. This is because during
execution the internal data structures of the library are, of course, present
and must be manipulated by the running code. Hence, data abstraction is
very closely tied to type-checking [Ch. 21].

Modern languages, such as ML and Java, support data abstraction, al-
though the degree to which it is supported (or how easy it is to achieve)
varies. Lower-level languages such as C do not support data abstraction
because various unsafe constructs can be exploited in order to expose repre-
sentations. This can have the undesirable effect that authors of widely used
library code cannot change their implementations because such a change
would break client code. Even the presence of a well-documented appli-
cation programmers interface (API) is not much help if it can be easily cir-
cumvented due to weaknesses in the programming language.

In ML, abstraction is supported primarily at the level of modules. This
can be justified in two ways: first, data abstraction is mostly a question of
program interfaces and therefore it arises naturally at the point where we
have to consider program composition and modules. Second, the ML core
language has been carefully designed so that no type information needs
to be supplied by the programmer: full type inference is decidable. In the
presence of data abstraction this no longer makes sense since, as we will
see, an implementation does not uniquely determine its interface.

So how is data abstraction enforced in ML? Consider the following
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skeletal signature, presenting a very simple interface to an implementation
of queues containing only integers.

signature QUEUE =
sig

type ¢

val empty : @

val eng : int * g -> @

val deq : g -> g * int (* may raise Empty *)
end;

This signature declares a type ¢ which is abstract (no implementation
of q is given). It then presents three operations on elements of this type. An
implementation of this interface is a structure that matches the signature.
Here is an extremely inefficient one.

structure Q > QUEUE =
struct

type q = int list

val empty = nil

fun eng (x,l) = x:l

fun deq | = deq’ (rev )

and deq (y:k) = (rev k, y)

| deg’ (nil) = raise Empty

end;

Note that we use opaque ascription :> QUEUE which is Standard ML'’s
way to guarantee data abstraction. No client can see the definition of the
type Q.q. For example, the last line in the following example fails type-
checking.

val g21 = Q.eng (2, Q.enqg (1, Q.empty));
val (g2, 1) = Q.deqg 921,
val _ = hd g21; (* TYPE ERROR HERE %)

This is because hd can operate only on lists, while 21 is only known to
have type Q.q. The implementation of Q.q as int list is hidden from
the type-checker in order to ensure data abstraction. This means we can
replace Qwith a more efficient implementation by a pair of lists,
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structure Q > QUEUE =
struct
type g = int list * int list
val empty = (nil, nil)
fun enqg (x, (back, front)) = (x::back, front)
fun deq (back, x:front) = ((back, front), x)
| deq (back as ' _, nil) = deq (nil, rev back)
| deq (nil, nil) = raise Empty
end;

and any client code will continue to work (although it may now work much
faster).

In order to avoid the complications of a full module system, we intro-
duce existential types 3t.7, where t is a bound type variable. ¢ represents the

abstract type and 7 represents the type of the operations on ¢. Returning to
the example, the signature

signhature QUEUE

sig
type ¢
val empty : q

val eng : int * g -> g
val deq : g -> g * int (* may raise Empty *)
end;

is represented by the type
dg.g x (int xqg—q) x (¢ —¢gxint ).

Except for the missing names empty , enq, and deq, this carries the same
information as the signature.

A value of an existential type is a tuple whose first component is the im-
plementation of the type, and the second component is an implementation
of the operations on that type. We write this as pack (o, e). For the sake of
brevity, we show only part of the example:
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structure Q > QUEUE =
struct

type g = int list

val empty = nil

end,
is represented as
pack (int list ,pair (nil ,...)):3q.gx---

In contrast, the second implementation

structure Q > QUEUE =
struct
type q = int list * int list
val empty = (nil, nil)
fun enqg (x, (back, front)) = (x::back, front)
fun deq (back, x:front) = ((back, front), x)
| deq (back as  _: _, nil) = deq (nil, rev back)
| deg (nil, nil) = raise Empty
end;

looks like
pack (int list xint list ,pair (pair (nil ,nil ),...)):3¢q.q¢x---

From these examples we can deduce the typing rules. First, existential
types introduce a new bound type variable.

I',t type F 7 type
' 3t.7 type

Second, the package that implements an existential type requires that the
operations on the type respect the definition of the type. This is modeled
in the rule by substituting the implementation type for the type variable in
the body of the existential.

I'otype I'ke:{o/t}r
I' - pack (o,e) : 3t.7
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For example, if we take the first implementation above, the first two
lines below justify the third.

-Fint list  type
-Fpair (nil ,...):int list  x---
-k pack (int list ,pair (nil ,...)):3q.qgx---

In the second implementation, we need the implementation of ¢ to have
typeint list xint list

-Fint list xint list type
-k pair (pair (nil ,nil ),...):(int list xint list )x---

-k pack (int list xint list ,pair (pair (nil ,nil ),...)):3g.qx---

Next we have to consider how make the implementation of an abstract
type available. In ML, a structure is available when a definition structure
S = .. is made at the top level. Here, we need an explicit construct to
open a package to make it available to a client. Given a package e : 3t.7, we
write open (e, t.xz.e’) to make e available to the client ¢’. Here, ¢ is a bound
type variable that refers to the abstract type (and remains abstract in ¢’) and
x is a bound variable that stands for the implementation of the operations
on the type. In our example, fst (e) denotes the implementation of empty ,
fst (snd (e)) stands for the implementation of enq, etc.

This leads us to the following rule:

Fke:3t.r I,ttype,z:tke' :0 Tk otype
I'+open(e,t.x.e): o

We have added the explicit premise that I' - ¢ type to emphasize that ¢
must not occur already in I' or o: every time we open a package, or multi-
ple package, we obtain a new type, different from all types already known.
This generativity means that even multiple instances of the exact same struc-
ture are not recognized to have the same implementation type: any one of
them could be replaced by another one without affecting the correctness of
the client code.

The property of data abstraction can be seen in the rule above: the code
¢’ can use the library code e, but during type-checking only a type vari-
able t is visible, not the implementation type. This means the code in ¢’ is
parametric in t, which guarantees data abstraction.

The operational semantics is straightforward and does not add any new
ideas to those previously discussed. This confirms that the importance
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of data abstraction lies in compile-time type-checking, not in the runtime
properties of the language.

e e v value
pack (7,e) — pack (7,¢’) pack (7,v) value

e — €}
open (e, t.z.e2) — open (e}, t.z.e2)

vy value
open (pack (7,v1),t.z.ez) — {vi/x}{7/t}es

Observe that before the evaluation of the body of an open expression,
we substitute 7 for ¢, making the abstract type concrete. However, we know
that e; was type-checked without knowing 7, so this does not violate data
abstraction.

The progress and preservation theorems do not introduce any new ideas.
For the type substitution we need a type substitution property that was
given in Lecture 11 on Parametric Polymorphism.

Combining parametric polymorphism and data abstraction, that is, uni-
versal and existential types can be interesting and fruitful. For example,
assume we would like to allows queues to have elements of arbitrary type
s. This would be specified as

Va.3q.q X (a x ¢ — q) X (¢ — ¢ X a).

For example, the implementation of a queue by a single list would then
have the form

Fun(a.pack (alist ,(Inst (nil ,a),...)))
Note that the type
dg.Va.q x (a x ¢ — q) X (¢ — ¢ X a)

would be incorrect, because we cannot choose the implementation type for
q before we know the type a.

As another example, assume we want to widen the interface to also
export double-ended queues qq with some additional operations that we
leave unspecified here. Then the type would have the form

dg.3qq.q X qq x ---.
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The implementation would provide definitions for both ¢ and ¢g, as in
pack (int list ,pack (int list ,...)).
Next we return to the question of type-checking. Consider!
pack (int ,pair (A\x.x 4+ 1, \x.x —1)).
This package has 16 different types; we show four of them here:

3t.(t —t) x (t —t)

Jt.(int —t) x (t —int )

Jt.(t —int ) x (int —¢)
Jt.(int —int ) x (int —int )

While not all of these are meaningful, they are all different and the type-
checker has no way of guessing which one the programmer may have
meant. This is inherent: an implementation does not determine its inter-
face. However, we can check an implementation against an interface, which
is precisely what bi-directional type-checking achieves. We have not for-
mally presented the technique in these notes and postpone its discussion
for now.

'Recall the abbreviation Az.e for a function fun (_, _, f.z.e) where e does not depend on
f, that is, does not make a recursive call.
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Recursive Types

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 13
October 8, 2002

In the last two lectures we have seen two critical concepts of program-
ming languages: parametric polymorphism (modeled by universal types)
and data abstraction (modeled by existential types). These provide quan-
tification over types, but they do not allow us to define types recursively.
Clearly, this is needed in a practical language. Common data structures
such as lists or trees are defined inductively, which is a restricted case of
general recursion in the definition of types [Ch. 19.3].

So far, we have considered how to add a particular recursive type, namely
lists, to our language as a primitive by giving constructors (nil and cons ),
a discriminating destructor (listcase ). For a realistic language, this ap-
proach is unsatisfactory because we would have to extend the language
itself every time we needed a new data type. Instead we would like to
have a uniform construct to define new recursive types as we need them.
In ML, this is accomplished with the datatype construct. Here we use
a somewhat lower-level primitive—we return to the question how this is
related to ML at the end of this lecture.

As a first, simple non-recursive example, consider how we might imple-
ment a three-element type.

datatype Color = Red | Green | Blue;
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Using the singleton type 1 (unit , in ML), we can define

Color = 1+(1+1)
Red : Color = inl()
Green : Color = inr(inl())
Blue : Color = inr(inr())
ccase i Vs.Color - (1—-38)—=(1—s)—(l—s)—s
= As.de Ay Ay \ys.
case ¢

of inl(cl) = Y1 C1
| inr(c2) = case o
of inl(zg) = Y2 22
‘ inI’(Z3) = Y3 23

Recall the notation Az.e for a non-recursive function and At.e for a type
abstraction. The ccase constructs invokes one of its arguments y1, y2, or ys,
depending on whether the argument c represents red, green, or blue.

If we try to apply the technique, for example, to represent natural num-
bers as they would be given in ML by

datatype Nat = Zero | Succ of Nat;

we would have
Nat =1+ (14 (1+--))

where

n: Nat = inr(...(inr(inl())))
5,—/
n times

In order to make this definition recursive instead of infinitary we would

write
Nat ~ 1+ Nat

where we leave the mathematical status of ~ purposely vague, but one
should read 7 ~ o as “7 is isomorphic to ¢”. Just as with the recursion at the
level of expressions, it is more convenient to write this out as an explicit
definition using a recursion operator.

Nat = put.1+1t

We can unwind a recursive type yut.o to {ut.o/t}o to obtain an isomorphic
type.
Nat = pt.1+t ~ {pt.1+¢/t}1+t =1+ put.1+t =1+ Nat
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In order to obtain a reasonable system for type-checking, we have con-
structors and destructors for recursive types. They can be considered “wit-
nesses” for the unrolling of a recursive type.

Pke:{utr/t}r T F ut.7type Lke:putr
't roll(e) : ut.T 't unroll(e) : {ut.7/t}r

The operational semantics and values are straightforward; the difficulty
of recursive types lies entirely in the complexity of the substitution that
takes place during the unrolling of a recursive type.

e— ¢ v value
roll(e) — roll(e’) roll(v) value
e e v value
unroll(e) — unroll(e’) unroll(roll(v)) — v

Now we can go back to the definition of specific recursive types, using
natural numbers built from zero and successor as the first example.

Nat = putl4t

Zero : Nat = roll(inl())

Succ : Nat — Nat = Az.roll(inr x)

ncase : Vs.Nat - (1 —s)— (nat —s) —s

= AsA\n.Ay1.Ayo.
case unroll(n)
of in|(21) = Y1 %1
’ inr(zg) = Y2 22

In the definition of ncase we see that z; : 1 and 2z : Nat, so that y» is really
applies to the predecessor of n, while y; is just applied to the unit element.

Polymorphic recursive types can be defined in a similar manner. As an
example, we consider lists with elements of type 7.

rlist = ptl4+rxt
Nil : Vror List
= Ar.roll(inl ())
Cons : ¥r.o xr List — r List
= As.Ap.roll(inrp)
lcase  : VsNrur List —» (1 —s) — (r xr List = s) — s

= As.Ar AL )y1.Ayo.
case unroll(l)
of inl(z1) = y1 21
| inr(z2) = y2 22
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If we go back to the first example, it is easy to see that representation of
data types does not quite match their use in ML. This is because we can see
the complete implementation of the type, for example, Color =1+ (1+1).
This leads to a loss of data abstraction and confusion between different data
types. Consider another ML data type

Answer = Yes | No | Maybe;
This would also be represented by
Answer =14 (1+1)

which is the same as Color. Perhaps this does not seem problematic until
we realize that Yes = Red! This is obviously meaningless and create in-
compatibilities, for example, if we decide to change the order of definition
of the elements of the data types.

Fortunately, we already have the tool of data abstraction to avoid this
kind of confusion. We therefore combine recursive types with existential types
to model the datatype construct of ML. Using the first example,

datatype Color = Red | Green | Blue;
we would represent this
deexexexVse—(1—s)—(1—s)—(1—s)—s

The implementation will have the form

pack (1 + (1+1),pair (inl(),pair (inr(inl()),...)))

Upon opening an implementation of this type we can give its components
the usual names. With this strategy, Color and Answer can no longer be
confused.

We close this section with a curiosity regarding recursive types. We
can use them to type a simple, non-terminating expression that does not
employ recursive functions! The pure A-calculus version of this function is
(Az.x z) (Az.z x). Our example is just slight more complicated because of
the need to roll and unroll recursive types.
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We define
w utt —t
Tw unroll(z) : w — w
Tiw unroll(z) x : w

Az.unroll(z) z 1 w — w
roll(Az.unroll(z) z) : w
(Az.unroll(x) z) roll(Az.unroll(z) z) : w

T T T 7T T

When we execute this term we obtain

(Az.unroll(x) x) roll(Az.unroll(x) )
— unroll(roll(Az.unroll(z) z)) (roll(Az.unroll(z) x))
— (Az.unroll(z) x) (roll(Az.unroll(z) x))

so it reduces to itself in two steps.

While we will probably not prove this in this course, recursive types are
necessary for such an example. For any other (pure) type construct we have
introduced so far, all functions are terminating if we do not use recursion
at the level of expressions.
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Frank Pfenning

Lecture 14
October 10, 2002

After several lectures on extensions to the type system that are indepen-
dent from computational mechanism, we now consider mutable storage as
a computational effect. This is a counterpart to the study of exceptions and
continuations which are control effects [Ch. 14].

We will look at mutable storage from two different points of view: one,
where essentially all of MinML becomes an imperative language (this lec-
ture), and one where we use the type system to isolate effects (next lecture).
The former approach is taken in ML, that latter in Haskell.

To add effects in the style of ML, we add a new type 7ref and three
new expressions to create a mutable cell (ref(e)), to write to the cell (e; :=
e2), and read the contents of the cell (le). There is only a small deviation
from the semantics of Standard ML here in that updating a cell returns
its new value instead of the unit element. We also need to introduce cell
labels themselves so we can uniquely identify them. We write [ for locations.
Locations are assigned types in a store typing A.

Store Typings A= | A7

Since locations can be mentioned anywhere in a program, we thread the
store typing through the typing judgment which now has the form A;T" -
e : 7. We obtain the following rules, which should be familiar from ML.

ANTFRe:T ATkHey:7ref A;TlRes: T
A;T Fref(e) : 7ref AThe i=e:7
AT e Tref L7in A
ANTFHle:r AT HL: Tref
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To describe the operational semantics, we need to model the store. We
think of it simply as a mapping from locations to values and we denote it
by M for memory.

Stores M::=-| M,l=v

Note that in the evaluation of a functional program in a real compiler
there are many other uses of memory (heap and stack, for example), while
the store only contains the mutable cells.

In this approach to modeling mutable storage, the evaluation of any
expression can potentially have an effect. This means we need to change
our basic model of computation to add a store. We replace the ordinary
transition judgment e — ¢’ by

(M, e) — (M’ e

which asserts that expression e in store M steps to expression e’ with store
M'. First, we have to take care of changing all prior rules to thread through
the store. Fortunately, this is quite systematic. We show only the cases for
functions.

(M, e1) — (M',eq)
(M, apply (e1,e2)) — (M’ apply (e},e2))
vy value (M, eq) — (M’ €})
(M, apply (vi,e2)) — (M’ apply (vi,e5))

(v1 =fun (71,72, f.x.€)) w9 value
(M apply (v1,v2)) = (M, {v1/f}{vz/x}e)

For the new operations we have to be careful about the evaluation order,
and also take into account that evaluating, say, the initializer of a new cell
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may actually change the store.

(M,e) — (M',€') v_value

(M, ref( )) — (M ref(e')) (M, ref(v)) — (M, l=v),1) [ value
e1) —
)=

(M, e
(M, ey :=e3

(M’ €)) vy value (M, eq) — (M’ él)
(M’ e} :=e) (M, v := eg) — (M’ vy := €})

M = (Ml,lzvl,Mg) and M = (Ml,l:UQ,MQ)
<M,l = 1)2> — <M/,U2>

(M, e) — (M e M = (M, l=v, M>)
(M,le) — (M’ 1) (M) — (M, v)

In order to state type preservation and progress we need to define well-
formed machine states which in turn requires validity for the memory con-
figuration. For that, we need to check that each cell contains a value of the
type prescribed by the store typing. The value stored in each cell can refer
other cells which can in turn refer back to the first cell. In other words, the
pointer structure can be cyclic. We therefore need to check the contents of
each cell knowing the typing of all locations. The judgment has the form
Ag;- = M : A, where we intend A to range over the whole store typing will
we verify on the right-hand side that each cell has the prescribed type.

- Ao;- M :A Ags-Fo:7 v value
Aos-F () : () Ao;- (M, 1=v) : (A, I:7)

With this defined, we can state appropriate forms of type preservation
and progress theorems. We write A’ > A if A’ is an extension of the store
typing A with some additional locations. In this particular case, for a single
step, we need at most one new location.

Theorem 1 (Type Preservation)
IfA;-Fe:Tand A;- - M : A and (M, e) — (M’ €') then for some A’ > A
and memory M' we have A’;- e’ : Tand ;- + M’ : A'.

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. |

Theorem 2 (Progress)
IfA;-Fe:7Tand A;- = M : A then either
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(i) e value, or
(ii) (M,e) — (M’ ¢’) for some M’ and ¢'.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. L

We assume the reader is already familiar with the usual programming
idioms using references and assignment. As an example that illustrates one
of the difficulties of reasoning about programs with possibly hidden effect,
consider the following ML code.

signature COUNTER =
sig
type ¢
val new : int -> ¢ (* create a counter *)
val inc : ¢ -> int (* inc and return new value *)
end;
structure C :> COUNTER =
struct
type ¢ = int ref
fun new(n):c = ref(n)

fun inc(r) = (r := r+1; r)
end;
val ¢ = C.new(0);
val 1 = C.inc(c);
val 2 = C.inc(c);

Here the two calls to C.inc(c) are identical but yield different re-
sults. This is the intended behavior, but clearly not exposed in the type
of the expressions involved. There are many pitfalls in programming with
ephemeral data structures that most programmers are too familiar with.
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Lecture 15
October 15, 2002

The way we have extended MinML with mutable storage has several
drawbacks. The principal difficulty with programming with effects is that
the type system does not track them properly. So when we examine the
type of a function 7 — 7 we cannot tell if the function simply returns a
value of type 73 or if it could also have an effect. This complicates reasoning
about programs and their correctness tremendously.

An alternative is to try to express in the type system that certain func-
tions may have effects, while others do not have effects. This is the purpose
of monads that are quite popular in the Haskell community. Haskell is a
lazy! functional language in which all effects are isolated in a monad. We
will see that monadic programming has its own drawbacks. The last word
in the debate on how to integrate imperative and pure functional program-
ming has not yet been spoken.

We introduce monads in two steps. The first step is the generic frame-
work, which can be instantiated to different kinds of effects. In this lecture
we introduce mutable storage as an effect, just as we did in the previous
lecture on mutable storage in ML. In Assignment 5 you are asked to in-
stantiate the monadic framework instead by defining a simple semantics of
input and output.

In the generic framework, we extend MinML by adding a new syntactic
category of monadic expressions, denoted by m. Correspondingly, there is a
new typing judgment

I'tm=171

'Lazy here means call-by-name with memoization of the suspension.
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expressing that the monadic expression m has type 7 in context I'. We think
of a monadic expression as one whose evaluation returns not only a value
of type 7, but also has an effect. We introduce this separate category so that
the ordinary expressions we have used so far can remain pure, that is, free
of effects.

Any particular use of the monadic framework will add particular new
monadic expressions, and also possibly new pure expressions. But first
the constructs that are independent of the kind of effect we want to con-
sider. The first principle is that a pure expression e can be considered as a
monadic expression [e] which happens to have no effect.

I'te:7
CEle]+7

The second idea is that we can quote a monadic expression and thereby
turn it into a pure expression. It has no effects because the monadic expres-
sion will not be executed. We write the quotation operator as val(m).

'Em=+71
I'Fval(m): Ot val(m) value

Finally, we must be able to unwrap and thereby actually execute a quoted
monadic expression. However, we cannot do this anywhere in a pure ex-
pression, because evaluating such a supposedly pure expression would
then have an effect. Instead, we can only do this if we are with an explicit
sequence of monadic expressions! This yields the following construct

I'te:Or TyoirkFm—+o
I'Fletvalr = einmend =~ o

Note that m and letvalz = einm end are monadic expressions (and there-
fore may have an effect), while e is a pure expression of monadic type. We
think of the effects are being staged as follows:

(1) We evaluate e which should yield a value val(m').

(2) We execute the monadic expression m’, which will have some effects
but also return a value in the form [v].

(3) Substitute v for x in m and then execute the resulting monadic expres-
sion.
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In order to specify this properly we need to be able to describe the effect
that may be engendered by executing a monadic expression. For this we
introduce the concept of worlds w that encapsulate all state that may be
changed by an effect. In the case of the storage monads, this will be the
memory M. In the case of the I/O monad, this will be input and output
streams.

The judgment for executing monadic expressions then has the form

(w,m) — (w',m’)

where the world changes from w to v’ and the expression steps from m to
m/. According to the considerations above, we obtain the following rules.

(w, [e]) = (w, [¢'])

We can see that the transition judgment on ordinary expressions looks the
same as before and that it can have no effect. Contrast this with the sit-
uation in ML from the previous lecture where we needed to change every
transition rule to account for possible effects.

The next sequence of three rules implement items (1), (2), and (3) above.

e—
(w, letvalz = einmend

<w letval z = ¢’ inmend)

)=
(w,m1) = (W', my)
)

(w, letval x = val(m;y) inmend (w', letval z = val(m)) inmend)

(w,letval z = val([v]) inmend) — (w, {v/x}m)

Note that the substitution in the last rule is appropriate. The substitution
principle for pure values into monadic expressions is straightforward pre-
cisely because v is cannot have effects.

We will not state here the generic forms of the preservation and progress
theorems. They are somewhat trivialized because our language, while de-
signed with effects in mind, does not yet have any actual effects.

In order to define the monad for mutable storage we introduce a new
form of type, 7 ref and three new forms of monadic expressions, namely
ref(e), e1 := ez and le. In addition we need one new form of pure expres-
sion, namely locations [ which are declared in a store typing A with their
type. Recall the form of store typings.

Store Typings A= | A7
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Locations can be pure because creating, assigning, or dereferencing them
is an effect, and the types prevent any other operations on them. The store
typing must now be taking into account when checking expressions that
are created a runtime. They are, however, not needed for compile-time
checking because the program itself, before it is started, cannot directly
refer to locations. We just uniformly add “A;” to all the typing judgments—
they are simply additional hypotheses of a slightly different form than what
is recorded in I'.

ATkFe:T ATFep:7mref A;ThReg:T
AT = ref(e) + 7ref AT Fe i=ex+7
AT Fe:Tref L7 in A
ATHle-T AT 7ref

Note that the constituents of the new monadic expressions are pure ex-
pressions. This guarantees that they cannot have effects: all effects must be
explicitly sequenced using the letval form.

In order to describe the operational semantics we need to make the
worlds explicit. In this case a world consists simply of the current mem-
ory M. Recall the form of stores.

Stores M::=-| M,l=v

Now the additional rules for new expressions are analogous to those from
the previous lecture.

e e v value

(M, ref(e)) — (M, ref(e)) (M, ref(v)) — (M, 1=v),[l]) [ value

e1— €} vy value ey — €
(M, ey :=e3) — (M, €| = eg) (M, vy :=e3) — (M, vy := €h)

M = (Ml,lzvl,Mg) and M’ = (Ml,l:UQ,MQ)
<M,l = 1}2> — <M/, [’Ug]>

er— e M = (Ml,l:U,MQ)
(M, e) — (M, e’ (M) — (M, [v])

The progress and type preservation theorems now need to be extended
to cover both pure and monadic expressions. We also seen to verify that a
store satisfies a store typing. Recall the rules for the judgment Ag; - = M : A.

- Ag;-FM: A Ag;-Fov:T v value
Ao;-F () : () Ao;- F (M, 1=v) : (A, l:7)
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We can now formulate the appropriate generalizations of type preservation
and progress. We write A’ > A if A’ is an extension of the store typing A
with some additional locations. In this particular case, for a single step, we
need at most one new location.

Theorem 1 (Type Preservation)
(1) IfA;-+e:7and e € thenA;-+¢e' : 7.

(2) If ;- - m+7and A;- = M : A and (M, m) — (M',m’) then for some
A > A and memory M’ we have A’;- = m/ —~Tand A';- = M’ : A

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. n

Theorem 2 (Progress)
(1) If A;- + e : 7 then either

(i) e value, or

(ii) e — ¢’ for some ¢’
(2) If A;-Fm +~7and A;-+ M : A then either

(i) m = [v] for some v value, or

(ii) (M,m) — (M’ ,m') for some M' and m/'.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. u

As an example consider a function inc : intref — Oint which takes a
location as an argument, increments it, and returns the incremented value.
The return type has to be protected by the monadic type, since the function
has an effect.

inc : intref — Qint
= Ar.val(let val(zy) = val(!r) in
let val(z2) = val(r := x1 + 1) in
[z2]end end)

Several things to note about this definition. When inc is called on a loca-

tion, it refurns an effectful computation, but it does not carry it out (val(m)
quotes m). Secondly, the first let expression is necessary, because  := ! + 1
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incorrectly uses the monadic expression !r in a place where a pure expres-
sion is expected. The uses of val(m) on the right-hand side of the lets can
be avoid by introducing appropriate definitions such as

new : Vit — O(tref)
= At.\z.val(ref(x))

get : Vttref — Ot
= At.Arval(Ir)
set : Vitref -t — Ot

= At rdzwval(r =)

Furthermore, the Haskell language creates some syntactic sugar that makes
it easier to write a sequence of let val forms in a row.

In order to create a cell, initialize it with 0, increment it once an return
cell’s contents we can write the following monadic expression at the top
level.

let val(z1) = new(0) in
let val(z2) = inc(x1)
let val(x3) = get(xq)
[x3] end end end

+int

in
in

When started in the empty memory, the above monadic expression ex-
ecutes and evaluates to ((I=1),1). It is worth writing out this computa-
tion step by step to see exactly how computation proceeds and effects and
effect-free computations may be interleaved.
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Supplementary Notes on
Subtyping

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 16
October 22, 2002

Subtyping is a fundamental idea in the design of programming lan-
guages. It can allow us to write more concise and readable programs by
eliminating the need to convert explicitly between elements of types. It
can also be used to express more properties programs. Finally, it is abso-
lutely fundamental in object-oriented programming where the notion of a
subclass is closely tied to the notion of subtype.

Which subtyping relationships we want to integrate into a language
depends on many factors. Besides some theoretical properties we want
to satisfy, we also have to consider the pragmatics of type-checking and
the operational semantics. In this lecture we are interested in isolating the
fundamental principles that must underly various forms of subtyping. We
will then see different instances of how these principles can be applied in
practice.

We write 7 < o to express that 7 is a subtype of 0. The fundamental
principle of subtyping says:

If 7 < o then wherever a value of type o is required, we can use a
value of type T instead.

This can be refined into two more specific statements, depending on the
form of subtyping used.

Subset Interpretation. If 7 < o then every value of type T is also a
value of type o.
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As an example, consider both empty and non-empty lists as subtypes
of the type of lists. This is because an empty list is clearly a list, and a non-
empty lists is also a list. One can see that with a subset interpretation of
subtyping one can track properties of values.

Coercion Interpretation. If 7 < o then every value of type T can be
converted (coerced) to a value of type o in a unique way.

As an example, consider integers as a subtype of floating point num-
bers. This interpretation is possible because there is a unique way we can
convert an integer to a corresponding floating point representation (ignor-
ing questions of size bounds). Therefore, coercive subtyping allows us to
omit explicit calls to functions that perform the coercion. However, we
have to be careful to guarantee the coerced value is unique, because oth-
erwise the result of a computation may be ambiguous. For example, if
we want to say that both integers and floating point numbers are also a
subtype of strings, and the coercion yields the printed representation, we
violate the uniqueness guarantee. This is because we can coerce 3 to "3"
since int < string or 3 to 3.0 and then to "3.0" using first int < float and
then float < string. We call a language that satisfies the uniqueness property
coherent; incoherent languages are poor from the design point of view and
can lead to many practical problems. We therefore require the coherence
from the start.

Note that both forms of subtyping satisfy the fundamental principle,
but that the coercion interpretation is more difficult to achieve than subset
interpretation, because we have to verify uniqueness of coercions. Because
it is somewhat richer, we concentrate in this lecture on working out a con-
crete system of subtyping under the coercion interpretation.

First, some general laws that are independent of whether we choose a
subset or coercion interpretation. The defining property of subtyping can
be expressed in the calculus by the rule of subsumption.

I'Fe:7 7<o0o
I'Fe:o

subsume

Secondly, we have reflexivity and transitivity of subtyping.

71Ty Tp<T3
refl trans
71 < T3

T<T

Let us careful justifies these principles. Under the subset interpretation
7 < 7 follows from A C A for any set of values A. Transitivity follows from
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the transitivity of the subset relation. Under the coercion interpretation,
the identity function coerces from 7 to 7 for any 7. And we can validate
transitivity by composition of functions.

To make the latter considerations concrete, we annotate the subtyping
judgment with a coercion and we calculate this coercion in each case. We
write f : 7 < o is f is a coercion from 7 to 0. Note that coercions f are
always closed, that is, contain no free variables, so no context is necessary.

fim<m g:im<m
Az.g(f(x)):m <73

The three laws we have are essentially all the general laws that can be
formulated in this manner. Coherence is stated in a way that is similar to a
substitution principle.

Coherence. If f : 7 <candg:7<othen f~g:7— 0.

Here, extensional equality f ~ g : 7 is defined inductively on type 7.
We show the special cases for functions, pairs, and primitive types.

1. e ~ € :intif e =* num(n) and ¢ —* num(n’) and n = n’ or e and ¢’
both do not terminate.

2. ex~ée im xpiffst (e) ~fst (¢'): 7 and snd (e) ~ snd (¢') : 7.
3.e~ée:m —mifforanye; ~ e} : 7 wehaveee; ~¢€ e : o.

As a particular example of subtyping, consider int < float. We call the
particular coercion itof : int — float.

int < float itof : int < float

In order to use these functions, consider two versions of the addition
operation: one for integers and one for floating point numbers. We avoid
overloading here, which is subject of another lecture.

I'ker:int T'keg:int I'keq:float I'F ey : float
I'kei +eg:int I' e + ey : float

Now an expression such as 2 + 3.0 is ill-typed, since the second argu-
ment is a floating point number and floating point numbers in general can-
not be coerced to integers. However, the expression 2 +. 3.0 is well-typed
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because the first argument 2 can be coerced to the floating point number
2.0 by applying itof. Concretely:

F2:int int < float

F 2 : float F 3.0 : float
F2 4 3.0 : float

So far we have avoided a discussion of the operational semantics, but
we can see that (a) under the subset interpretation the operational seman-
tics remains the same as without subtyping, and (b) under the coercion in-
terpretation the operational semantics must apply the coercion functions.
That is, we cannot define the operational semantics directly on expressions,
because only the subtyping derivation will contain the necessary infor-
mation on how and where to apply the coercions. We do not formalize
the translation from subtyping derivations with coercions to the language
without, but we show it by example. In the case above we have

F2:int itof : int < float
k- itof(2) : float 3.0 : float
Fitof (2) + 3.0 : float

The subsumption rule with annotations then looks like

I'kte:7 f:7<0
't f(e):o

so we interpret f : 7 < o as f : 7 — 0. However, typing derivations are
not unique. For example, we cold have

Ax.x :int <int itof : int < float
F2:int  Ay.itof((Az.z)(y)) : int < float
F (Ay.itof (Azx.z)(y)))(2) : float F 3.0 : float
F (Ay.itof (Az.x)(y)))(2) + 3.0 : float

This alternative compilation will behave identically to the first one, itof
and \y.itof ((Az.z)(y)) are observationally equivalent. To see this, apply
both sides to a value v. Then the one side yiels itof (v), the other side

(Ay.itof (Az.x)(y)))v — itof (Az.x)v) — itof (v)

The fact that the particular chosen typing derivation does not affect the
behavior of the compiled expressions (where coercions are explicit) is the
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subject of the coherence theorem for a language. This is a more precise ex-
pression of the “uniqueness” required in the defining property for coercive
subtyping.

At this point we have general laws for typing (subsumption) and sub-
typing (reflexivity and transitivity). But how does subtyping interact with
pairs, functions, and other constructs? We start with pairs. We can coerce a
value of type 71 x 3 to a value of type o1 X o7 if we can coerce the individual
components appropriately. That is:

T <01 To <09
7'1><7'2§01><O’2

With explicit coercions:

fiimm<or faim <o
)\p.pair (fl(fSt (p)),fg(snd (p))) 71 X9 < 01 X 09

Functions are somewhat trickier. We know that int < float. It should
therefore be clear that int — int < int — float, because we can coerce the
output of the function of the left to the required output for the function on
the right. So

A Az.itof (h(z)) : int — int < int — float

Perhaps surprisingly, we have
float — int < int — int

because we can obtain a function of the type on the right from a function
on the left by coercing the argument:

Ah Az h(itof (x)) : float — int < int — int
Putting these two ideas together we get
Ah. Az itof (h(itof (z))) : float — int < int — float

In the general case, we obtain the following rule:

01 <11 T2 < 09
T — T2 <01 — 09

With coercion functions:

firor <1 forim < oo
A Az fo(h(fi1(2))) : 11 — 72 < 01 — 09
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The fact that the subtyping relationship flips in the left premise is called
contravariance. We say that function subtyping is contravariant in the argu-
ment and covariant in the result. Subtyping of pairs, on the other hand, is
covariant in both component.

Mutable reference can be neither covariant nor contravariant. As simple
counterexamples, consider the following pieces of code.

The first one assumes that 7ref C oref if o < 7, that is reference sub-
typing is contravariant.

let val r = ref 2.1 (* r : float ref *)
in
Ir
end : int (* using float ref <: int ref *)

Clearly, this is incorrect and violates preservation.
Conversely if we assume subtyping is covariant, that is, 7 ref < o ref if
7 < 7, then

let val r = ref 3 (* r : int ref *)

in
r:= 2.1, (* using int ref <: float ref *)
Ir

end : int

To avoid these counterexamples we make mutable references non-variant.

Tref < 7ref

Of course, this is already entailed by the reflexivity rule. More detailed
analyses of references are possible. In particular, we can decompose them
into “sources” from which we can only read and “sinks” to which we can
only write. Source are covariant and sinks are contravariant. Since we can
both read from and write to mutable references, they must be non-variant.
We will not develop this formally here.

Note the the non-variance of reference is an important issue in object-
oriented languages. For example, in Java every element of an array acts like
a reference and should therefore be non-variant. However, in Java, arrays
are co-variant, so run-time checks on types of assigments to arrays or mu-
table fields are necessary in order to save type preservation. In particular,
every time one writes to an array of objects in Java, a dynamic tag-check is
required, because arrays are co-variant in the element type.
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Lecture 17: Bidirectional Typing

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu )

24 October 2002

1 Type Inference: The Good, The Bad

So far (as formulated in Assignments 2 and 4, for instance), the typing prob-
lem has always been:

Given a context I' and term e, produce its type 7 (or fail if it has
no type).

This is the same problem as type inference in core SML (SML without mod-
ules). It’s possible to annotate any SML expression with a type; this is often
highly desirable, given SML/NJ’s suboptimal type error reporting, since
it tends to produce type error messages in which the claimed error site
actually is the error site. But it is never necessary (again, without modules—
we’ve already seen how existential types make type inference impossible).
We haven't really tried to do this in MinML; while the form of the prob-
lem is the same, we have always required certain types to be explicitly
annotated, in particular, on function declarations. As we expanded the
language, this became increasingly annoying; the type annotation on raise,
for example, seems particularly gratuitous.

It’s well understood how to do full type inference, SML-style: generate
constraints and unify the variables. Why haven’t we done this, since it
would allow us to get rid of the type annotations on raise and so forth?
There are two reasons:

1. It's somewhat complicated. It would probably be a full programming
assignment, and there are more interesting things to do.

2. After a while, it stops working.



What do I mean by that? If you add existentials to your language, you can’t
infer all types. If you add sums, you can’t infer all types—what is the type
of

inl(5)

? If you add something more exotic, like intersection types or refinement
types, you can’t infer all types. Most relevantly, you can’t do subtyping.
Consider the subsumption typing rule

I'kFe:oco o<~
I'kFe:r

What does this say? To infer type 7 for e, we must infer type o for e and
show o < 7. Right away there’s a problem: there’s nothing to keep us from
recursing forever. But hey, infinite recursion is silly. We can just agree to
not apply the subsumption rule twice in a row. (Why is this complete?)

Unfortunately, that was the least of our problems. We have e : ¢. But
we have to show ¢ < 7. What is 7? We have no idea. We have to guess a 7
that will make the rest of the typing derivation work.!

Life would be so much easier if we were given the type, instead of hav-
ing to infer it.

(Sub)

2 No Type Inference: The Ugly

Instead of inferring types, let’s check them. The problem of typing becomes

Given a context I, a term e, and a type 7, return true iff e checks
against 7.

Now everything is very easy. There’s just one little problem: if we do this
everywhere, we have to write so many type annotations that the language
becomes unusable.

(2 :int) + (2 :int) : int

3 Some Type Inference

In practice, languages use some mixture of inferred types and checked
types. C? and Java are examples: types have to be given with all functions

!This is similar to the problem with implementing the transitivity rule, discussed in
recitation.
20f course, C’s type system is almost meaningless, but that’s beside the point.



and variable declarations, but not for things like 2 + 2. SML is another
example: inference suffices for the core language but not the module lan-
guage, since modules correspond to existential types. Saying that structure
FOO ascribes to signature Foo amounts to writing an annotation on an ex-
istential type.

Likewise, intersection types o & 7 can’t be inferred because in the rule

I'rv:o Thw:T
'Fov:0& T

one has to guess both ¢ and 7 (and in fact there are an infinite number of
intersection types for any well-typed term: 0 & 0, (60 & 0) & 0, ...).

We would like a system that is

(&Intro)

1. Practical (not just decidable, but efficient too);

2. Usable (needing only a reasonable number of type annotations, easy
to understand, predictable, good error reporting, ...?);

3. Aesthetically pleasing.

4 Bidirectional Typing

The idea is to have both inference and checking judgments in the same
system. In the inference judgment

I'elrT

one is given I' and e and must produce a 7 (or fail). In the checking judg-
ment
I'kelT

one is given everything—I, ¢, and 7—and must simply return true iff the
judgment is derivable.

We can move between the two judgments as follows. First we introduce
a new syntactic form, the type annotation, written

e T Anno (e, T)

If we need to infer a type for a term, but no type can be inferred (for exam-
ple, if the term is a pack ), the user has to give a type annotation. Then we
can check against the annotation. The rule is

I'telT

TF(c: 7) 17 A0



So we can move from inferring a type for an annotated term to checking
the term against a type. How can we move in the other direction? If we can
infer type 7 for e, e certainly should check against 7.

I'kelr

I'kelr
However, the subsumption rule subsumes?® this rule. The bidirectional
subsumption rule is

(AlmostSub)

I'telo o
I'kelT

Now (AlmostSub) is derivable from (Sub) using reflexivity of subtyping.

These are the only rules where we move between inference and check-
ing of the entire term e; in the other rules, we will variously check or infer
subterms of the term e whose type is being inferred or checked against.

In general, for each syntactic form in MinML, we have a rule concluding
... T Tor... | 7. Insome cases, it's easy to see which is appropriate. The
types of free variables can always be found in the context I', so we can
always infer a type for a variable, and we can always infer a type for a num

=7 (Sub)

I'=Ty,z:7,T

W (Var) num(k) 1 int (Int)

To type a function (without type annotations), we might try
Izxiokel T

I'Ffun f(x)is eend 1o —

But this would require us to guess both o and 7. What we want is

(bad-Fun)
-

I, fioor,xcokFe| T
I'tfun f(x)is eend | o — 7
(Note about new vs. old syntax for annotating functions.) The rule for
lambdas is just the same but without f:
I'zobkel] T
I'Xe.elo—r
To type an application e;es:

I'FegTo—=71 TFelo
Ff—elegTT (App)

(Fun)

(Lam)

Example: (Az.z*2):int  —int

S0ow.



zint Fax*x2 | int
FAx.z*x2]int —int
We type the body of the A as follows: the body is an application, so we
want to use the (App) rule, but (App) is an inference judgment and we are
trying to derive a checking judgment. So we use the subsumption rule.

xint Fax*x27 <int
zint Fax*x2 |int
FAr.xx2 |int —int

Then we use a rule for % (write it!), which infers its result and checks its
arguments, analogous to (App).

x:int F x:int x:int  F 2:int
xint Fxx27int int <int
ziint Fx*x2 | int
FAx.z*2]int —int

Example:
fun mapdouble(¢)is intmap (Az.x +2) fend: intlist — intlist

LetI' =intmap : (int —int ) — intlist — intlist, ¢:intlist.
I'Fintmap (A\z.x %2) £ ] < intlist
& intmap (Az. x x2) £ | intlist

The next step is to use (App). The function is intmap (A\z. x * 2) and we're
applying it to ¢, so we need to infer a type for intmap (A\z. x * 2).
I'Fintmap (Az.x*2) T re=¢]
I'Fintmap (Mz.x%2) £ ] < intlist
I' - intmap (Ax. x % 2) £ | intlist

But intmap (A\z. x * 2) is also an application, so we use (App) again.

I' F intmap 1 ' (A\z.z%x2) |
I'Fintmap (Az.x*2) T re=¢]
I'Fintmap (Az.x*2) €7 < intlist
I'Fintmap (Ax. x *2) ¢ | intlist
Now we have to infer a type for intmap, but we can always infer a type for a
variable by using (Var). The first argument to intmap has type int — int ,

so we must check Az. x x 2 against int — int —which we just did in the
preceding example.




Printmap ... T'F(Az.xz=*2)]int —int
I' Fintmap (Ax. x *2) T intlist—intlist r=¢]
I'Fintmap (Az.x*2) €7 < intlist
I'Fintmap (Ax. x *2) ¢ | intlist

Fkintmap ... TF(Az.z%2)|int —int
I'Fintmap (Az. x * 2) ] intlist—intlist I'F /| intlist
I'Fintmap (Ax. x *2) £ 1 intlist intlist < intlist
'+ intmap (Az. z*2) £ | intlist

4.1 Let

I'Feg o T,xiokey|T
I'klet (e, z.e) | T

(Let)

4.2 Sums

So it seems to work nicely for functions. Let’s look at sums, which were an-
noying without bidirectional typing because (for example) inl (5) doesn’t
have a unique type. Since it doesn’t have a unique type, we need to check
it against a type rather than try to infer a type.

I'telmn (Inl) I'ktelmn
THinl (e) | 71+ 7 FEinr (e) | 1+

(Inr)

I'teln+7mn TDazimbelo Taxembey|o
I' - case (e, zy.e1,22.€2) | 0

(Case)

A peculiarity of bidirectional typing is that it doesn’t work for many con-
trived programs. For example, case (inl (5),21.0,z2.1) 1int  is not well-
typed unless we annotate inl (5). But no real program would create a sum
and immediately take it apart. In practice, one almost always does a case
on a variable, or on some function application—in which cases we can infer
the type, and need no annotation.

Moreover, whenever an expression appears as the body of a function,
we check it against the (usually annotated) result type of the function. So
we can return an injection from a function with no additional type annota-
tions, beyond the type annotation for the function. And, as we saw in the
intmap example, sometimes we don’t even need to annotate the function.

6



Before looking at how bidirectional typing behaves with other types,
let’s consider the formal properties of the system.

4.3 Soundness and Completeness

When we examine bidirectionality in connection with the dynamic seman-
tics, several questions arise. The first is: How should preservation and
progress be formulated? Perhaps we could formulate preservation as

(1) IftefrTande— ¢ thenk¢€ T 7
Q) Ifte] Tand e e thenk¢ | T

But this becomes very messy; even proving that (A\z.e)v — {v/z}e pre-
serves types is nasty. The type 7 of (Az.e)v is inferred, so we have case
(1), but the premise of (Lam) is a checking judgment, so we don’t have
x:0 e T 7 which would lead (by substitution) to {v/x}e T 7.

Besides, e may have type annotations. While we can certainly write a
rule

(e: 7)—e

it doesn’t remotely correspond to any reasonable model of computation.
The formulation

Ifrelrtorke|Tander € thenke' T Torke | 7

might be correct, but it suggests that we don’t actually care about the di-
rection. Which is indeed the case: we use bidirectionality so we can write
the typechecker; it has nothing to do with running the program. Indeed,
since type annotations are (in some cases) essential to bidirectional typing,
and types should not matter at runtime, there seems to be a gulf between
bidirectional typing and dynamic semantics.

Since we know how to state (and prove) preservation and progress for
a non-bidirectional type system, why not have a non-bidirectional system
as well, and show that we can get from a bidirectional typing to a typing
in that system? The non-bidirectional system I have in mind is simply the
bidirectional system without (Anno) and with all T, | changed to :. For-
mally:

Theorem 1 (Soundness). If-e | Torte | 7 thent |e| : T where |e| is e with
all type annotations erased.

Proving this is straightforward (after generalizing to an arbitrary con-
text I'). I call it soundness because it says that the bidirectional system is

7



sound with respect to the non-bidirectional system: anything derivable in
the first is derivable in the second (after erasing type annotations).
Do we have completeness? No. As a counterexample,

case (inl (5),21.0,22.1)

is well-typed in the non-bidirectional system, but not in the bidirectional
system.

4.4 Polymorphism

T',ttypekFelo
'k Fun(t.e) | Vt.o

Exercise: derive

I'telVto T Fr1type
CklInst (e,7) 1 {7/t}o

(Typefun) (Inst)

FFun(t.\x.z) | Vtt —t

4.5 Other Type Constructors

See the Assignment 6 handout.



Supplementary Notes on
Records

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 18
October 29, 2002

A common generalization of the notion of a product is a record. A record
is like a tuple, except that the components are named explicitly by a record
label. All labels in a record must be distinct. Records can also be used
as the foundation for object-oriented programming idioms in a functional
language. In the case, an object would be represented as a record, and a
record label would be either a field name or a method name.

We begin by studying records in themselves; later we consider how to
model some features of objects. We extend the type system by record types
that we denote by p; we use [ to denote record labels.!

Types 7 ::= ... |{p}
Record Types p ::= .|l p

We extend expressions to allow the formation of records, denoted by r,
and also the selection of a field from a record, written as e.l for a record
label 1.

Expressions e ::= ...|{r}|el
Records r ::= -|l=e,r

We sometimes use parentheses to enclose record types or record so the
scope of the ‘,’ is more clearly visible. Such parentheses are not properly
part of the syntax of the language. We have a new typing judgment r : p,
used in the following rules.

'Not to be confused with memory locations that we use to study mutable references.
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L18.2 Records

'kr:p Trke:{p} p=p1,lit,p2
r'-{r}:{p} Fkel:T

'kFe:7 T'kr:p
L=():() 't (I=e,r) : (L1, p)

Note that the field selection operation e.l will always yield a unique
answer on well-typed records. This is because labels in a record must be
unique. The order of the fields in a record is significant, although we dis-
cuss below how this can be relaxed using exchange subtyping for records.

In this notation, the empty record expression corresponds to the unit
type. Note that there is a minor ambiguity in that the empty record and its
type are both denoted by ‘-, thatis, - {-} : {-}. As usual, we omit a leading
‘in a record.

A pair pair (e, ez) can represented by the record {1=e;,2=e2}. Then
the first and second projection are defined by fst (e) = e.1 and snd (e) =
e.2, respectively. This is the approach taking in Standard ML, using the
notation #I(e) instead of e.l.

Records in this form may make code more readable, because instead
of writing fst (e), we write e.l, where [ is presumably a meaningful label.
However, a much greater advantage can be derived from records if we add
rules of subtyping. Before we describe this, we give the operational seman-
tics for records. There are two new judgments, » value and r — . A
record is a value if all fields are values, and we evaluate the components of
a record from left to right.

r—r
{r} = {r'}

v value 7 value
(1) value (I=v,r) value
e— e ri—r

(I=e,r) — (I=€,r) (I=v,7) — (I=v,7’)
e ¢ r value 7= (ry,l=v,ry)
el el {r}l—w

The progress and type preservation theorems now also have to account
for the new judgment, but this is entirely straightforward and omitted here.
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There are three forms of subtyping that can be considered together or
in isolation: depth subtyping, width subtyping and exchange subtyping.

The general rule passes from ordinary types to record types and is com-
mon to all forms of subtyping.

p<p
{p} < {0’}

<record

Depth subtyping. This is the idea we used for product subtyping, applied
to records. Subtyping is co-variant in all fields of a record.

<7 p</y
(L1, p) < (L7, )

<(field <gqempty

(=<0

We do not show formally how to construct coercions, but consider the
following sample coercion.

Ar{z=itof (r.z), y=itof (r.y) } : {z:int, y:int} < {z:float, y:float}

Width subtyping. The idea of width subtyping is that we can always co-
erce from a record with more fields to a record with fewer by dropping
some extra fields. We separate out the idea of exchange and allow fields to
be dropped only at the end of a record.

p=p
(Ir,p) < (L7, )

<y field <wempty

p<()

Note that the <, field rule does not allow any subtyping on the field itself—
this would require the combination of width and depth subtyping.

We can give width subtyping both a subset and a coercion interpreta-
tion. The subset interpretation would say that a value of type {p} can be
any extension of {p, p'}: the additional fields p’ are simply ignored. This is
common in object-oriented languages. It requires a so-called boxed repre-
sentation where every object is simply a pointer to the actual object, so that
for the purpose of argument passing, every record has the same size.

The coercion interpretation would explicitly shorten the object, which
is not usually practical. Nonetheless, under this interpretation we might
have a coercion such as

Ardz=r.z,y=r.y} : {z:float, y:float, c:int} < {x:float, y:float}
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Exchange subtyping. This means we can reorder the fields. We formalize
this by allowing corresponding fields to be picked out from anywhere in
the middle of the record.

< / /
(p1,p2) = (P, P5) < empty

<,field
(or. 7 p2) < (P Erply) =

()=()

An implementation that allows exchange subtyping would typically
sort the fields alphabetically by field name.

It is straightforward to construct type systems for record that combine

depth, width, and exchange subtyping. We will see what is needed in or-
der to model some object-oriented features, following Chapter 18 of Ben-
jamin C. Pierce: Types and Programming Languages, MIT Press, 2002. We
only sketch the rationale and implementation below; for more detail see
the above reference.
Objects. As a very first approximation we think of an object as a record
with some internal state. This internal state is encapsulated in that it can
only be accessed through the visible fields of the method. We use a simple
counter as an example.

Counter = {get:1 -> int, inc:i1 -> 1 h
c . Counter =
let x = ref 1
in
{get = A_1l. Ix,
inc = A2l x = Ix+1  }
end;

In the terminology of object-oriented languages, X is a private field, acces-
sible only to the methods get and inc .

We can increment and then read the counter by sending messages to C.
This is accomplished by calling the functions in the fields of c.

(c.inc(); c.inc(); c.get()); —* 3

Object Generators. We can package up the capability of creating a new
counter object.
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newCounter : 1 -> Counter =
Azl
let x = ref 1 in
{get = A_1. Ix,
inc = A2l x = Ix+1 }
end;

Subtyping. We can easily create an object with more methods. Width sub-
typing allows us to use the object with more methods in any place the the
object with fewer methods is required.

ResetCounter =

{get:1 -> int, inc:1 -> 1, reset:l -> 1 b
newResetCounter : 1 -> ResetCounter =

Aol

let x = ref 1 in
{get = A_1. Ix,
inc = A.l. x = Ix+1,
reset = A:l. x =1 }
end;

Grouping Instance Variables. The instance variable z was just a single
variables; it is more consistent with the approach to group them into a
record. The modification is completely straightforward.

Counter = {get:l -> int, inc:1 -> 1 h
newCounter : 1 -> Counter =
Azl
let r = {x =ref 1 } in
{get = A_:1. I(r.x),
inc = A1l rx = I(rx)+1 }
end;

Simple Classes. We can extract the instance variables and make them a
parameter of the instance creation mechanism. This will allow us to give a
simple model of subclassing and inheritence.
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CounterRep = {x : int ref  };
Counter = {get:l -> int, inc:i1 -> 1 h
CounterClass : CounterRep -> Counter =

Ar:CounterRep.

{get = A_1. I(rx),

inc = Azl rx = I(r.x)+1 h

newCounter : 1 -> Counter =

Azl let r = x=ref 1 in counterClass r end;

The possibility of a shared representation allows us to create an instance
of the ResetCounter subclass by first constructing a Counter .

ResetCounterClass : CounterRep -> ResetCounter =
Ar:CounterRep.
let super = counterClass r in
{get = super.get,
inc = super.inc,

reset = A:l.rx =1 }
end,
newResetCounter : 1 -> ResetCounter
Azl let r = {x=ref 1 } in resetCounterClass r end;

Adding Instance Variables. So far, subtyping only allows us to use in-
stances of a subclass where instances of a superclass are required. When
we add instance variables, we need it in another place, namely where the
representation of the instance of the superclass is created.
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BackupCounter =
{get:1 -> int, intt1 -> 1, reset:l -> 1,
backup:l -> 1 };
BackupCounterRef =
{x:int ref, b:int ref h
backupCounterClass =
Ar:BackupCounterRep.
let super = resetCounterClass r in % subtyping here
{get = super.get,
inc = super.inc,
reset = A_l. r.x = I(r.b),
backup = A:1. r.b = I(r.x) }
end;

As we can see, references to instances of the superclass are easy. But ref-
erences to the methods of the class itself within the method are somewhat

tricker, but an essential technique in object-oriented languages. We discuss
this in the next lecture.
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Objects

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 19
October 31, 2002

In this lecture we extend the encoding of objects using records and sub-
typing from the previous lecture to allow open recursion through self. We
still follow Chapter 18 of Benjamin C. Pierce: Types and Programming Lan-
guages, MIT Press, 2002.

Classes with Self. First, we show how “self”, that is, invoking of methods
part of the current objects, can be encoded directly. This technique does not
model open recursion (also called late binding of self).

The basic idea of this first approach is to use a fixed point construct in
order to allow the methods of in an object to refer to the object itself. The
fixpoint operator is orthogonal to all other operators in the language and
can be defined with

I firke:r
MHfixfe:r fix f.e — {fix f.e/x}e

There are no new values. Type preservation requires that all three types
involved in the definition of fix be the same.

Now we take a slight modification of the previous example, extending
the class to allow get , set , and inc methods. Internally, the inc method
refers to set and get instead of accessing the private fields directly.
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CounterRep = {x:int ref };
SetCounter =  {get:1 -> int, setint -> 1, inc:1 -> 1
setCounterClass : CounterRep -> SetCounter =
Ar:CounterRep.
fix self:SetCounter.
{get = A1 (r.x),

set = Aiiint. r.x = |,
inc = MA_:1. self.set (self.get() + 1) h
newSetCounter : 1 -> SetCounter =
Al let r = {x = ref 1 } in setCounterClass r end;

To see this representation in action, we apply the operational semantics
to newSetCounter().inc() in the empty store. Each line constitutes a
state of the machine, although we skip several intermediate steps.

<., newSetCounter().inc()>

<, letr = {x=ref 1 } in setCounterClass r end.inc()>
<c=1, (setCounterClass {x=c }).inc()>
<c=1, (fix self.

{..., Inc= A1, self.set(self.get()+1) }).inc()>

At this point we abbreviate

s = fix self. {..., InC = A_l. self.set(self.get()+1) }

and continue execution with

<c=1, {...inc= Al s.set(s.get()+1) }.inc()>
<c=1, M.1. s.set(s.get()+1)()>

<c=1, s.set(s.get()+1)>

<c=1, s.set(( A1 1 {x=c }.x))()+1)>

<c=1, s.set(!( {x=c }.x)+1)>

<c=1, s.set(2)>

<c=2, ()>

Open Recursion through Self. The previous encoding is perfectly ade-
quate, yet it does not model a feature available in many object-oriented
languages, namely open recursion. This feature means that in a subclass of
SetCounter that overrides set but not inc , the references to self will
be to the set and get methods of the subclass. This feature is somewhat
unfortunate, because it breaks encapsulation: as we will see after we have
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modeled the feature, client code will depend on internals of the implemen-
tation of a superclass.

To model this feature we move the recursion outside the object itself to
the place where it is created.

setCounterClass : CounterRep -> SetCounter -> SetCounter =
Ar:CounterRep.
Aself:SetCounter.
{get = A_:1. I(r.x),

set = iiint. r.x = i,
inc = MX.:1. self.set (self.get() + 1) h
newSetCounter : 1 -> SetCounter =
Al let r = {x =ref 1 }
in fix self. setCounterClass r self end;
InstrCounterRep = {x:int ref, a:int ref }
InstrCounter =
{get:1 -> int, setint -> 1,
inc:l -> 1, accesses:1 -> int }

instrCounterClass :

InstrCounterRep -> InstrCounter -> InstrCounter =
Ar:iInstrCounterRep.
Aself:InstrCounter.

let super = setCounterClass r self

in
{get = super.get,
set = Jiint. (r.a := !(r.a)+1; super.set i),
inc = super.inc,
accesses = A_l. I(r.a) }
end;

The previous problem has now been solved, yet a new problem has
arisen, because creating objects of type instrCounterClass By using the
standard technique of unit-abstractions, we can overcome this problem (see
Chapter 18.11 of Pierce’s book). We will not go into those details here.

We close the lecture by exhibiting that this form of late binding of self
breaks encapsulation and is extremely dangerous when writing a library. It
means that the behavior of a subclass can depend on specifics of the (sup-
posedly invisible!) internal of the library class. The example we show here
is taken from Item 14 of Joshua Bloch: Effective Java, Addison-Wesley, 2001,
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The following code uses inheritance inappropriately, as the example at
the end shows.

/I Broken - Inappropriate use of inheritance!

public class InstrumentedHashSet extends HashSet {
/I The number of attempted element insertions
private int addCount = O;

public InstrumentedHashSet () {

}

public InstrumentedHashSet(Collection c) {
super(c);

}

public boolean add(Object 0) {
addCount++;

return super.add(o);

public boolean addAll(Collection c) {
addCount += c.size();
return super.addAll(c);

¥

public int getAddCount() {
return addCount,

}

Now the following sequence

InstrumentedHashSet s = new InstrumentedHashSet();
s.addAll(Arrays.asList(new String]]

{"Snap", "Crackle", "Pop" )
s.getAddCount();

may return either 3 or 6, depending on whether the library implementation
of addAll has internal calls to add or not.

To the writer of this library this means he must either fully document
the internal call patterns of the library, or risk breaking a lot of client code
when improving internal data structures. Bloch suggests that it is often
better to prohibit inheritance, for example, making constructors private,
and using composition instead of inheritance. Precisely the same technique
would be used in Standard ML’'s module system to obtain the effect by in-
heritance. First, the corresponding Java code.
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/I Wrapper class - uses composition in place of inheritance
public class InstrumentedSet implements Set {
private final Set s;
private in addCount = 0;
public InstrumentedSet(Set s) {
this.s = s;

public boolean add(Object o) {
addCount++;
return s.add(o);

public boolean addAll(Collection c) {
addCount += c.size();
return s.addAll(c);

}
public int getAddCount() {
return addCount;
}
/I Forwarding methods
public void clear() { s.clear ();
public boolean contains(Object 0) { return s.contains(o);
public boolean isEmpty() { return s.isEmpty();
I ...
public String toString () { return s.toString();
}
In the placeof // ...  all the relevant public methods of s are exported

again. In ML we would use a wrapper functor instead (assuming we really
wanted the implementation of Set to be ephemeral):
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signature InstrumentedSet =

sig
include Set
val getAddCount : unit -> int
end;
functor InstrumentWrapper (structure S : Set)
. InstrumentedSet =
struct
val addcount = ref O
open S

fun add(o) = (addcount := 'addcount+1; S.add(0))
fun addAll(c) = (addcount := !addcount+List.length(c); S.addAll(c))
fun getAddCount() = !addCount

end;

structure InstrumentedSet = InstWrapper (structure S = Set);

We would like to emphasize that open recursion is indeed an anti-modularity
feature that breaks encapsulation. Any programmer that prepares libraries
in a language like Java should be aware of this, and know how to avoid its
pitfalls that are sometime difficult to detect.

There are many other features of object-oriented languages that we have
not yet modeled. We return to some of them in the next lecture. Here we
would like to discuss overloading. In Java it refers to the fact that a method
name can be reused, as long as all its argument types are different. We
only discuss it on simpler examples, namely the overloading of addition.
Assume we have two internal functions, +;,; and + ;¢ that add integers
and floating point numbers.

In the concrete syntax of the language, we would like to use + and let
the type checker sort out which of the two versions of addition should be
used. Intersection types, in conjunction with subtyping, allow precisely
that. We write 7 A o for the intersection between 7 and 0. We have the
following rules:

I'tv:mm ThHov:m v value

'Fov:m A A
I'te:mAm I'kFe:mmAm
I'te:n NEL I'Fe:nr NE

The restriction of the intersection introduction rule to values is necessary
for soundness in the presence of mutable references. The counterexample
(which we do not show here) echoes the related counterexample that re-
quires the value restriction in Standard ML.
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Together with the introduction and elimination rules, we also have three
subtyping rules, working on the left or the right hand side.

T<o01 T<09

T <010y NI
<o T <0
Tl/\TQSU/\LI Tl/\TQSJ/\LI

With these concepts, we can now declare
+ : (int — int — int) A (float — float — float)
Below are several judgments that check with these declarations.

3+4 : int
3.0+4 : float
34+4.0 : float
3.0+4.0 : float

We use the AE rule in the first case, and A F» to extract the appropriate
type for + in each judgment. As before, we also need to coerce the integer
arguments to floating point numbers, in the middle two examples.

Since we are using a coercion interpretation of subtyping here, we have
to show how to interpret intersection types. From the primitive function
+ we can see that a constant of intersection type actually corresponds to a
pair of two functions

pair (+int, +fioat) : (int — int — int) x (float — float — float)

From this we can extend interpretation through the whole type hierar-
chy. We achieve this by annotating a type derivation by the fully explicit
expression it generates. We also extend the annotation of the subtyping
rules to account for the new coercion. The judgmentisI' Fe: 7 = ¢
where €’ is an explicit term without any uses of subtyping or intersection
types. It has type 7’ which is generated from 7 by replacing intersections
(A) by products. We write T for this operation.

'tv:mp = vy TThHv:m = vy v value
Fkv:ﬁ/\72:>pair (’01,1)2)

i

F'Fe:mAm = ¢ “r F'Fe:mmAT = €
Fhe:m = fst (¢) " 'ke:m = snd(¢)

AFEs
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For most other constructs the propagation of the explicitly typed term
is straightforward. We show only a few further cases

(I =T4,x:7,T9) F'te:r = ¢ f:7<0
Tro:ir — o F'ke:o = f(¢)

sub

Subtyping introduces no new ideas.

fiiTt<o1 fo:7<o09
Az.pair (fi(z), fo(x)): 7 < o1 Aoo N

h:n<o AL form<o
Ar.fi(fst (z)):m AR <o Mt fo(snd (z)) : AT <o

ALs

Recall that 7 replaces intersections by products. We extend this opera-
tion to context by applying it to each type declaration.

Theorem 1 (Coercions)
(i) If T < o then f : T < o for some f.

(ii) IfT -e:7thenT Fe: 7 = ¢ forsomee withT |- ¢ : 7.

Proof: By rule induction on the given derivations. |

Note that we also want f and e’ to be unique. However, this can only
be true extensionally, since subtyping derivations (and therefore typing
derivations) are not uniquely determined. In other words, we do not for-
malize here the all-important property of coherence.

We cannot execute or define the operational semantics directly on a
source expression e, because the process of inserting the coercions performs
the overloading resolution. As in Java, this process is completely static,
that is, happens before the program is ever executed. The above should
therefore be considered a reasonable model for the kind of overloading
present in object-oriented languages. Other languages, such as Haskell,
permit overloading, but overloading is not resolved until run-time—this
requires different techniques for both proving progress and preservation
than we discuss here.
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15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 20
November 5, 2002

So far, we have been working with type systems were all checking was
static, and types were not needed at run-time. In this lecture we investigate
the consequences of loosening this assumption. A language in which types
are used at run-time is called dynamically typed. Examples of dynamically
typed languages are Lisp, Scheme, and Java. There is an excellent treatment
of dynamic types in [Ch. 24]. We emphasize a few complementary points
here.

We begin with the extreme point of no static type-checking at all. We
simply take a program written in MinML and run it without type-checking
it first. Clearly, this would violate progress since a term such as apply (1,1)
is neither a value, nor can it make a step. In order to obtain a sensible
language, we need to extend our computational rules to check for such
stuck states and raise a run-time type error. We show here only the rules
for function application. First, the usual rules, written (implicitly) under
the assumption of type-correctness.

e1— €} vy value ey — €

apply (er,e2) — apply (ej,e2) apply (v1,e2) — apply (vi,e5)

(v1 =fun (f.z.e1)) wvo value
apply (vi,v2) = {va/x}{v1/f}es

Next, the rules to handle the case of a run-time type error. The first one
signals the actual error, the others propagate the error outward.
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vy value (vp #fun (f.z.e1)) wvo value

apply (vi,v2) — error

v1 value
apply (error,ey) +— error apply (vi,error) +— error

The rest of the operational semantics should be extended in a similar
way. In particular, there need to be additional rules for primitive operations
and other elimination forms (conditionals, projections, case expressions,
etc.) in the case of a dynamic type error.

In the resulting language, we can write and execute expressions such as

if true then 1 else AX. X — 1
[1, true, AX. X] value
(hd (tl (tl [1, true, AX. X]))) 3 —* 3

where we used ML-style notations for lists.

With these additions, we can recover preservation and progress. We
assume here that we still want to statically compile the program, so free
variables are still not permitted (e must be closed, that is, FV(e) = {}).
Preservation is somewhat trivialized.

Theorem 1 (Preservation)
If e is closed and e — €’ then €’ is closed.

It is also posssible to talk about expressions e that happen to be well-
typed. In that case, evaluation preserves types, since we have only added
rules to the operational semantics in a conservative way.

Theorem 2 (Progress)
If e is closed then either

(i) e value, or
(ii) e = error, or
(iii) e +— €' for somee’.

The main conceptual cost of dynamic typing is the inability to discover
errors early: code that does not happen to be executed can have lurking
bugs that would be obvious to a type-checker. However, there is also an
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implementation cost. We cannot simply compile a program with the same
strategy as may be possible for a statically typed language, because we
must be able to perform the run-time type checks. Fortunately, this is not
as bad as it sounds, since we do not need to have the precise type of a
function, we only need to know where it is in fact a function or not.

In order to make tags explicit, we can change the syntax of our lan-
guage; see [Ch. 24] for the details. Here we show that we can make such
tags explicit in a statically typed language. The small price we pay for this
is that now the user program or library will have to do some tag-checking.
But this means we can tag-check precisely where necessary, instead of ev-
erywhere in the program.

In ML, we would write such a tagged datatype as

datatype tagged =
Int of int
| Bool of bool
| Fun of tagged -> tagged -> tagged

Note that we do not explicitly represent bound variables, as they are mapped
to bound variables in ML. This is an application of the idea of higher-order
abstract syntax.

As a reminder, here is how we would write this type using plain recur-
sive types instead.

tagged = pt.int 4+ bool + (t — t — )

Instead of named tags, as in the datatype declaration above, we use com-
positions of inl and inr as tags.

Now the elimination forms become functions on tagged representa-
tions. We show one primitive operator, conditional, and application.

exception TypeError

fun checkedMult (Int(n), Int(m)) = Int(n*m)
| checkedMult _ = raise TypeError

fun checkedIf (Bool(true), el, e2) = el ()
| checkedIf (Bool(false), el, e2) = e2 ()

| checkedIf _ = raise TypeError
fun checkedApply (v1 as Fun(g), v2) = g vl v2
| checkedApply _ = raise TypeError
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Heterogeneous lists now become lists of tagged data. This is in fact
exactly the same as the representation in a purely dynamically typed lan-
guage, except that the tagging is visible to the programmer. For example,
the following are all well-typed and execute as expected:

val hetList : tagged list =

[Int 1, Bool true, Fun (fn _=> fn x = X)];
val f : tagged = hd(tl(ti(hetList)));
val x : tagged = checkedApply (f, Int(3));

The non-terminating self-application example can also be written quite
easily using checked application. Note that even though functions can in
principal be recursive in our encoding, we do not use this feature here to
give a correct implementation of the dynamically typed (Az.xz x) (Az.x x).

val omega : tagged =
Fun (fn _ => fn x => checkedApply (X, X));
checkedApply (omega, omega);

As expected, this last expression diverges.

It is also interesting to consider if we can perhaps use subtyping to al-
low us to write heterogenous lists. For example, if we had a universal type
T that includes all values, one might expect

[1, true, AX. X] T list

In order to see if this is indeed the case, we consider the laws that T
should satisty. First, every value should have type T. Second every type
should be a subtype of T.

v value
I'Fo:T T<T

There are no other rules regarding T. Clearly, it is necessary to require v to
be a value in the first rule in order to save the progress theorem.
Now, indeed, we have

[1, true, X, X] T list
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However, we find we cannot use such a list in a non-trivial way. For exam-

ple

val hetList : T list = [1, true, AX. X];
val f: T = hd(ti(ti(hetList)));

Now the application f 3 would not be well-typed, because f is not known
to be a function, only a value of type T.

In order to use f, we must introduce a downcast operator into the lan-
guage, that allows us to check explicitly at run-time if a given value has a
specified type, and raise an error otherwise. We could then write

((int -> inH)f) 3

and it would type-check. Of course, at this point we realize we haven't
made any progress, because the function still must be tagged with its type
in order to verify the correctness of the downcast at run-time. In fact, we
would need to keep more information to verify the precise form of the func-
tion’s type, rather than just the information that it is a function.

Note that his form of downcast is very different from an unsafe version
of cast where (7)e will be treated as if it has type 7, regardless of the actual
type of the value of v. In a language like C this cannot be repaired, because
data are not tagged and no run-time checking of tags is possible.

What would be the coercion interpretation of the T type? Recall that
intersection types are interpreted as pairs. If we think of T as a 0-ary inter-
section, it should logically be interpretated as a 0-ary product, namely the
unit type.

Ar.():T7<T

Intuitively, this is also meaningful: the coercion from any type to T is
unique (the constant function) and coherence is preserved. Knowing that
v : T carries no information.

This points out an important property of the coercion interpretation of
subtyping: since we run the program after all coercions have been applied,
any term that was assigned type T via a subtyping coercion may not be
executed at all! This is nonetheless consistent since essentially only values
have type T directly. But this means that we cannot implement down-
casting in a coercion interpretation of subtyping. Again, intuitively this
make sense: since a coercion from 7 to o where 7 < o loses information,
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we cannot in general recover an element of the original type 7 if we try to
downcast a value of type o.

On the other hand, under the subset interpretation of subtyping, a co-
ercion is useless, since all coercions will be the identity: if a value of type 7
is a value of type o then there is no need to apply a coercion. In that case
downcasting as a run-time operation that may fail makes sense: in a down-
cast (7)e for e : 0 we evaluate e, and then verify if it has type 7. The latter
operation will, of course, require tags or some other method to check that
a given value has a specified type at run-time.

These observations help to explain why objected-oriented languages
such as Java, which rely heavily on downcasting, have a subset interpre-
tation of subtypes that arise from subclassing. In such languages objects
are tagged with their class, which makes it quite efficient to implement
downcasts or the related instanceOf  operation. Of course, it is critical
that viewing an object of a class as an element of the superclass does not
apply a coercion, dropping extra fields, because later downcasts could not
undo this damage.

Also, in Java there is a class Object which is a superclass of any other
class. This almost corresponds to T, except that Java also has primitive
types such as int or float . Given that Java performs coercions on int
and float we could summarize the situation as coercive subtyping on
primitive types and subset subtyping on objects.
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In this lecture we first examine a technique to specify the operational
semantics for lazy evaluation. This is an implementation technique for
a call-by-name semantics that avoids re-evaluating expressions multiple
times by memoizing the result of the first evaluation. Then we use a similar
technique to specify the meaning of futures, a construct that introduces par-
allelism into evaluation. Futures were first developed for Multilisp, a dy-
namically typed, yet statically scoped version of Lisp specifically designed
for parallel computation. A standard reference on futures is:

Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on Programming Lan-
guages and Systems, 7(4):501-538, October 1985.

One advantage of call-by-name function application over call-by-value
is that it avoids the work of evaluating the argument if it is never needed.
More broadly, lazy constructors avoid work until the data are actually used.
In turn, this has several drawbacks. One of them is that the efficiency model
of such a language is more difficult to understand than for a call-by-value
language. The second is that lazy constructors introduce infinite values of
data types which complicate inductive reasoning about programs. How-
ever, the most obvious problem is that if an expression is used several times
it will be computed several times unless we can find an implementation
technique to avoid this.

There are two basic approaches to avoid re-evaluation of the argument
of a function application. The first is to analyze the function body to de-
termine if the argument is really needed. If so, we evaluate it eagerly and
then work with the resulting value. This is semantically transparent, but
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there are many cases where we cannot tell statically if an argument will
be needed. The other is to create a so-called thunk and pass a reference to
the thunk as the actual argument. When the argument is needed we eval-
uate the thunk and memoize the resulting value. Further reference to the
thunk now just returns the value instead of evaluating it again. Note that
this strategy is only a correct implementation of call-by-name if there are
no effects in the language (or, if there are effects, they are encapsulated in a
monad).

We can think of a thunk as a reference that we can write only once (the
first time it is accessed) and henceforth will continue to be the same value.
So our semantic specification for lazy evaluation borrows from the ideas in
the operational semantics of mutable references. We generalize the basic
judgment e — €' to (H,e) — (H',e') where H and H' contains all thunks,
and e and ¢’ can refer to them by their labels.

Thunks H::=-|H,l=e

Note thunks may be expressions; after they have been evaluated the
first time, however, they will be replaced by values. First, the rules for
call-by-name application. We separate here recursion from functions.

<H7 61> — <H/>€/1>
(H,apply (e1,ez)) — (H',apply (e7,e2))

(H,apply (Az.e1,ez)) — ((H,l=e3),{l/x}er)

In the second rule, the label [ must be new with respect to H. When the
value of [ is actually accessed, we need to force the evaluation of the thunk
and then record that value.
((Hy,l=e, Hy),e) — ((Hy,l=€*, H}),¢€')
<(H1a l:e7 HQ): l> = <(H{7 l:ela Hé)v l>

v value

<(H1, l:U, Hg), l> — <(H1, l:U, HQ), ’U)

Note that in the first rule, the result e* must actually be equal to e. If it
were not, that means the evaluation of e would actually require the thunk
[, which would lead to an infinite loop. This particular form of infinite loop
is called a black hole can be statically detected, while other forms of non-
termination remain.
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It is left as an exercise to extend the statements of progress and preserva-
tion, or to show in which sense the call-by-name semantics coincides with
the lazy evaluation semantics. Note also that there are other rules that can
create thunks: essentially every time we need to substitute for a variable.
We show one of these cases, namely recursion.

(H,fixx.e) — ((H,l={l/x}e),l)

As an example of a black hole, consider fix f.f. As an example of an expres-
sion that is not a black hole, yet fails to terminate consider (fix f.A\y.f (y +
1)) 1. It is instructive to simulate the execution of this expression.

(- (fix fAy.f (y +1))1)
— (= A.yl(erl)),ll)
> <(l=)\yl( 1), (Ayl(y +1)) 1)
— <(l: ( +1),l1:1) l(l1+1)>
= (=Ml (y+1),00=1), Myl(y +1)) (I1 + 1))
— <(l: ( —I—l),llzl 2—ll+1),l(lg+1)>

In order to detect black holes and take appropriate action we would
allow thunks of the form [=e and replace the first rule by
((Hi,l=e, H3), ) — <(Hi, [=e, Hé)? 6/>
((Hi,l=e, Hy), 1) — ((Hy,l=¢, Hy), 1)

((Hy,l=e, H3),1) — ((Hy,l=e, Hy), BlackHole)

where BlackHole is a new error expression that must be propagated to the
top level as shown in a previous lecture on run-time exceptions and errors.

Next we consider futures. The idea is that an expression future(e) spawns
a parallel computation of e while returning immediately a pointer to the re-
sulting value. If the resulting value is ever actually needed we say we are
touching the future. When we touch the future we block until the parallel
computation of its value has succeeded. However, in most situations we
can pass around the future, construct bigger values, etc.

There are two principal differences to lazy evaluation as shown above.
The first is that a future is a bona fide value. This is important because
unlike lazy evaluation, we are here in a call-by-value setting. Secondly, the
computation of the future may proceed asynchronously, instead of being
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completed in full exactly the first time it is accessed. However, it is similar
in the sense that once a future has been computed, its value is available
everywhere it is referenced.

To describe such a computation we have to describe the overall state of
all the computing threads. For this, we just use H, as defined above.

Processes H::=-|Hl=e

In this interpretation, labels [ are thread identifiers, and I=v represents
a finished thread. So overall computation proceeds as in

H— H

which non-deterministically selects a process that can proceed (that is, not
finished or blocked) and makes a step. The judgment of making a step in
the network of parallel processes is

(H,e) — (H',¢)

where H' may contain a new thread spawned by the step of e. Unlike lazy
evaluation, this judgment cannot change any binding in H; this is reserved
for the primary judgment. We start the overall computation of an expres-
sion e as a single process lp=e and we are finished when we have reached
a state where all processes have the form I=v.

The first rule non-deterministically selects a thread to perform a step. In
this setting, a process can never refer to itself, because we have no recursive
futures. Of course, we may have futures whose computation is recursive.

<(H1)H2)76> = <H,,€,>
(Hy,l=e, Hy) — (H',1=¢") I value

The rules for the judgment (H,e) — (H',€') are the usual call-by-value
rules, threading through H. It is only changed or referenced in the follow-
ing two rules.

v val

((Hy,l=v,H9),l) — ((Hy,l=v, H3),v) (H, future(e)) — ((H,l=e),l)

Because [ is a value, it can be passed around, or looked up (in case the
thread [ has finished). This introduces some local non-determinism into
expressions such as apply ([, e) because [ could be looked up, or e could
be reduced. In the end, the difference is not observable in a call-by-value
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language without effects. It could also be removed with some additional
machinery, but we do not pursue this here, since non-determinism remains
anyway due to the selection of the process to step.

Notice that an expression such as apply (/,v) is blocked until the thread
computing [ can completed. This is because it not a value, yet cannot be
reduced.

The process selection rule must be prescient in this formulation, because
we must traverse a thread expression to see if it is finished, can make a
step, or is blocked, waiting for another thread to finish. This is a feature
generally true for a small-step semantics with search rules. In a semantics
with an evaluation stack, this can be avoided because the sub-expression
to be evaluated is isolated at the top level of the state. This possibility is
pursued in Assignment 8.

We close this lecture with a two examples of programs written using
the future() construct. These have been adapted from Halstead’s paper, but
are present in ML assuming a construct future(e) . A simple sequential
simulation is simply to define future  as the identity function.

The first example is the insertion of a node into an ordered binary tree.
An ordered binary tree is either Empty, a data-carrying Leaf(x) , oranode
Node(left,y,right) where y is a discriminator so that every element
in the left subtree left  is smaller or equal to y, and every element in the
right subtree right  is larger thany.

The parallelism in this example is the possibility to spawn a thread at
each recursive call to insert , which returns immediately and continues
insertion of the subtree. Thereby, if we insert several elements in a row, the
computations can ripple down the tree simultaneously almost in a pipeline
structure (although there is no assumption that the operations are indeed
performed in lock-step).
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datatype Tree =
Empty
| Leaf of int
| Node of Tree * int * Tree
fun insert (x, Empty) = Leaf(x)
| insert (x, tree as Leaf(y)) =
if y <x
then Node (tree, y, Leaf(x))
else Node (Leaf(x), x, tree)
| insert (x, Node(left, y, right)) =
if y <x
then Node (left, y, future (insert (x, right)))
else Node (future (insert (x, left), y, right))

As a second example, we consider quicksort , implemented on lists.
It first partitions a list into elements smaller and greater than a pivot el-
ement (the first element in the list) and then sorts the sublists in parallel
before appending them. There is also a smaller amount of parallelism in
the partition function shown below.

fun quicksort (nil, acc) = acc
| quicksort (x:l, acc) =
let
val (smaller, greater) = partition (X, I)
in
quicksort (smaller,
x::future (quicksort (greater, acc)))
end
and partition (x, nil) = (nil, nil)
| partition (x, y:l) =
let
val parts = future (partition (x, I))
in
if y <x
then (y::future(#1(parts)), future (#2(parts)))
else (future (#1(parts)), y::future (#2(parts)))
end

Stating a preservation theorem for MinML with futures is not difficult.
However, proving progress is tricky, because typing alone among multi-
ple processes does not rule out the possibility of a deadlock. Instead, we
must assume a partial order among processes so that minimal elements in
the order cannot block. It is important that his order is maintained during
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computation and that it remains an order, that is, remains acyclic. Again,
we will not pursue this direction further.
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When are two programs equal? Without much reflection one might say
that two programs are equal if they evaluate to the same value, or if both
of them run forever. This explicitly ignores the issue of effects, and we will
continue to think about a pure language until later in this lecture. So, in a
pure language the statement above reduces the equality of programs to the
equality of values. But when should two values be equal? For example,
how about the following two functions.

idi = Axr.x
ido = dx.x+0

The first observation is that they are both values, so they definitely will not
diverge.

Now, id; and idy return the same integer when applied to an integer,
but id; has more types than id2. We conclude from that the we should
compare two values at a type. In general, the judgment has the form

V>V T
where we assume that - - v : 7and - - v’ : 7. Here we want to ask if
(Az.z) ~ (Az.x +0) : int — int?

The answer to this question depends on our point of view. If we care
about efficiency, for example, they are not equal since the left-hand side
always takes one fewer step than the right-hand side. If we care about the
syntactic form of the function, they are not equal either. On the other hand,
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if we only care about the result of the function when applied to all possible
argument, then the two should be considered equal at the given type, since
both of them are (mathematically) the identity function on integers.

In this lecture we are concerned with observational equivalence between
programs: we consider to programs (and values) equal if whatever we can
observe about their behavior is identical. In pure functional languages, the
only thing you can observe about a program is the final value it returns. But
there are further restrictions. For example, we cannot observe the internal
structure of functions. In implementations, they have been compiled to
machine code—all we see is a token such as fn indicating the given value
cannot be printed.

If we cannot observe the structure of a function, what can be observe
about a function? We can apply it to arguments and observe its result. But
this result may again be a function whose structure we cannot see directly.
It appears we are moving in a vicious circle, trying to define observational
equivalence of functions in terms of itself.

Fortunately, there is a way out. We once again use fypes in order to
create order out of chaos. In our example above, the functions A\z.z and
Az.x + 0 should be equal at type int — int because apply both of them to
equal arguments of type int will always yield equal results of type int. And
values of type int are directly observable—they form a basic data type of
our language.

Using this intuition we can now define two relations of observational
equivalence for a pure, call-by-value language by simultaneous induction
on the structure of a type of the expressions we are comparing. We write
e 1 if the evaluation of e does not terminate. We also use the convention
that when we write e 2 ¢’ : 7 that- F e : 7and - + ¢ : 7 and similarly for
values without restating this every time.

exe T iff eithere ftand e 1
ore—*vande —* v withv~v' : 7

v~ sint iff v =" = nfor aninteger n.

v~ : bool iff v=1"=trueorv =1 = false

ve~v' i1 — 1o iff forallvy ~ o] : 7 wehavevv; v v

The last clause requires careful analysis. Functions are not observable

directly, although we can apply them to arguments to observe their result.
The case of values of function type can therefore be summarized as: “Two
functions are equal at type T — T if they deliver equal results of type T when ap-
plied to equal arguments of type T1.” Note that on the right-hand side the types
are smaller than on the left-hand side, so the definition is well-founded. It
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is also allowed that neither of the two functions terminates when given
equal arguments. This follows from comparing the expressions vv; and
v' v} which have to be evaluated first.

We can use this definition to prove out original assertion that Az.z ~
Az.z 40 :int — int.

v ~ v rint Assumption
v1 = v} = n for some integer n By definition of ~
no~n:int By definition of ~
(Ax.z)n—*n By definition of —
(A\x.x + O) n—*n By definition of —
(Az.z)n = (Az.x +0)n By definition of =
(A\r.z)v; = ()\xaz—}—O)vl" t Since v; = v} =n
(Ar.x) ~ (Az.x +0) : int — int By definition of ~

In many cases equivalence proofs are not that straightforward, but re-
quire considerable effort. As a slightly more complicated example consider

idy = Mr.x
ids = fun f(z)isif x =0thenOelse f(z —1)+1

We notice that id; and id3 are in fact not equal at type int — int because
ids (—1) diverges, while id; (—1) —* —1. However, when applied to nat-
ural numbers, that is, integers greater or equal to 0, then they are obser-
vationally equal (both return the argument). In order to capture this we
introduce nat < int under the subset interpretation of subtyping and ex-
tend observational equivalence with the clause
v~ :natiff v =o' =k for some k£ > 0.

With these definitions we need a lemma, which can be proven by in-

duction on k:

For any k > 0, we have id; k = ids k : nat.

Proof: By induction on k.

Case: k = 0. Then id; 0 — 0 and id30 — if 0 = 0 then O else id3(k — 1) +
1+—*0.
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Case: k= k‘/+ 1. Then ’idl k — kand ng k —* idg(kif 1) +1— ’Ldg(k’/) +1.
By induction hypothesis, id3(k’) = idi(k') so ids3(k’) = K and idsk —*
k' + 1 = k, which is what we needed to show. |

From this it follows directly by definition of ~ that id; = id3, since
v ~ v} : natiff vy = v} = k for some k.

Some care must be taken in general to define observational equivalence
correctly with respect to what is observable. For example, assume we have
a call-by-name language. In that case, we have to change the definition of
observational equivalence as follows.

ee T iff eithere ffand e 1
ore—*vande —* v withv ~v : 7

v~ :int iff v =" =nfor aninteger n.

v~ : bool iff v=1"=trueorv =1 = false

ve~v' i1 — 7o iff foralle; e} : 7 wehaveves 2 v e i 7

The only change to the definition in the call-by-value case in the last
clause. Note that now it is necessary to verify the equivalence of ve; and
ve for arbitrary equivalent expressions e; and e}. Checking this just for
values is no longer enough. For example in a call-by-value language we
have
Ar.0 ~ Az.x —x :int — int

because both functions return 0 when applied to arbitrary integers. How-
ever, in a call-by-name language the two differ

Ax.0 2 Ax.x — z :int — int

since (Az.0) (fixy.y) — 0 while (Az.x — x) (fixy.y) diverges.

It should also be clear that in the presence of effects, be it store effects or
control effects, the definition of observational equivalence must be changed
substantially to account for the effects.

In the remainder of this lecture we briefly explore the question of equiv-
alence in a setting where we have only effects. In particular, we are no
longer interested in termination or the value produced by a computation,
but just the externally observable effects it has. This is a fundamental shift
in perspective on the notion of computation, but one that is appropriate in
the realm of concurrency. For example, we may have server process that
never finishes, but forever answers request. It does not return a value (be-
cause it never does return), but it interacts with the outside world by receiv-
ing requests and sending replies. In this setting, observational equivalence
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implies that the server answers with equal reply given equal requests. This
is a bit imprecise in the setting where we also have non-determinism, that
is, a process might evolve in different ways.

For this, we introduce the notion of a sequential process expression. Se-
quential processes can evolve non-deterministically and have externally
observable actions, but they do not yet integrate concurrency which is re-
served for the next lecture. We start with (observable) actions o which, at
present consist either of names a (eventually denoting an input action) and
co-names a (eventually denoting an output action). A sequential process
expression P is defined by the following grammar.

P ::= Alaw.Pi+-+an.P,

We write 0 for a sum of zero elements; it corresponds to a process that
has terminated (it can take no further actions). Note that “.” is not related
to variable binding here, it simply separates the prefix a from the process
expression P. The process identifiers A are defined by, possibly recursive

equations
def

A= Py.
Sequential process expression evolve in a rather straightforward way. We
can unfold a definition of a process identifier, or we can select one non-
deterministically from a sum. When such an action is taken, the result is
observable. We define a single-step judgment P —*+ P’ meaning that P
transitions in one step to P’ exhibiting action a.
def e ,
APy PP

P Sum o Def
M+a.P+N—P A— P

The Sum rule non-deterministically selects an element of a sum and
exhibits action a. Because of the syntax of the language, we cannot replace
a part of the sum. We write M and N for sums.

An examples, consider a tea and coffee vending machine with the fol-
lowing informal behavior: if we put in twopence! we can obtain tea by
pusing an appropriately labeled button, or we can deposit 2 more pennies
and the obtain coffee. This machine can be described as a sequential pro-

cess as follows:

A “ 2p.(tea.A + 2p.coffee. A)

!This example is taken from Robin Milner’s book on Communicating and Mobile Processes:
the m-Calculus, Cambridge University Press, 1999.
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The vending machine has three states: an initial state A (in which it only
waits for the input of 2p), a state B where we can either get the tea, or put
in another 2p, and a state C where can only ge the coffee. We can make this
explicit with this alternative definition

A 2p.B
B ¥ %ead+2p.C

C def coffee. A

Now we return to the question of observational equivalence. If we think
just about the actions that the vending machine can exhibit, they can be
described by the regular expression:

(2p - (tea + 2p - coffee))*.

However, this regular expression does not characterize the vending ma-
chine as it interacts with its environment. In order to see that, consider the
following (broken) vending machine.

A 2p.B’ 4 2p.B|
B’ tea. A’ + 2p.C’
B = tea.A

C' = coffee. A’

In words, this machine differs from the first one as follows: when we sup-
ply it with 2p when in state A’, it will non-deterministically go to state B’
as before, or go into a new state B, in which we can only obtain tea, but not
deposit any additional money. Clearly, this machine is broken. However,
the sequence of actions it can produce, namely

(2p - (tea + 2p - coffee) + 2p - tea)*

is exactly the same as for the first machine.

What has gone wrong is the the reactive behavior of the system has
changed. But this is what we will be interested in when analyzing com-
municating processes. Here, every input or output will be seen as an in-
teraction with the environment, and then the two vending machines are
clearly not equivalent.

In order to capture in what sense they are equivalent we define the no-
tion of strong simulation. Let S be a relation on the states of a process or
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between several processes. We say that S is a strong simulation if when-
ever P - P’ and P S Q then there exists a state Q' such that Q —— @’
and P’ S Q'. We say that @) strongly simulates P is there exists a strong
simulation S such that P S Q).

For example, the first machine above strongly simulates the second in
the sense that there is a strong simulation S such that A’SA. We write this
simulation as <. It is defined by

A< A
B'<iB B;<;B
c'<;C

In order to prove that this is a strong simulation we have to verify the con-
ditions in the definition for every transition of the second machine.

2 .
Case: A’ =2 B’ and A’ <; A. We have to show there is state Q such that

A Q and B’ < Q. Q = B satisfies this condition. We abbreviate this
argument in the following case by just showing the relevant transition.

Case: A’ 22 Bjand A’ <; A. Then A 2P, Band B{ <; B.
Case: B % A’and B/ <; B. Then B % 4 and A’ <; A.
Case: B' 22 ('and B’ <4 B. Then B 2P, ¢ and ¢ <, C.
Case: B *a 4’ and B} <1 B. Then B 2 A and A/ < A.

Case: ' T A’and ¢’ <, C. Then C % Aand A’ <, A.

This covers all cases, so A strongly simulates A’. The perhaps surpris-
ing fact is that A" also strongly simulates A, although we need a different
relation. We define

A<y A
B <y B
C<C

so that By, is not related to any other state. Then <, shows that A’ strongly
simulates A. Intuitively, this is the case, because the second machine can
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simulate every step the first machine can take. It can also exhibit some
additional undesired behavior, but this does not matter when we construct
a strong simulation.

Now it seems like we have defeated our original purpose, since the
two vending machines should not be observationally equivalent, but each
one can strongly simulate the other. It turns out that the notion we are in-
terested in is not mutual strong simulation, but strong bisimulation which
means that there is a single relation between the states that acts as a strong
simulation in both directions. Under this definition, the two vending ma-
chines are not equivalent, because any bi-simulation would have to relate
B’ and B|, to B, but B|, could never simulate B because it cannot simulate
the transition to C.

In summary, we have isolated the notion of strong bisimulation that we
can use to compare the behavior of sequential processes with observable
actions and non-deterministic choice. In the next lecture we will make our
language of processes richer, allowing for concurrency and interaction.
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We have seen in the last lecture that by investigating the reactive be-
havior of systems, we obtain a very different view of computation. Instead
of termination and the values of expressions, it is the interactions with the
outside world that are of interest. As an example, we showed an important
notion of program equivalence, namely strong bisimulation and contrasted
it with observational equivalence of computation with respect to values.

The processes we have considered so far were non-deterministic, but
sequential. In this lecture we generalize this to allow for concurrency and
also name restriction to obtain a form of abstraction.

In order to model concurrency we allow process composition, P | P,. In-
tuitively, this means that processes P; and P, execute concurrently. Such
concurrent processes can interact in a synchronous fashion when one pro-
cess wants to perform an input action and another process wants to per-
form a matching output action. As a very simple example, consider two
processes A and B plugged together in the following way. A performs in-
put action a and then wants to perform output action b, returning to state
A. Process B performs an input action b followed by an output action ¢,
returning to state B upon completion.

A Y apAa

B ¥ peB

We assume we start with A and B operating concurrently, that is, in state
A|B
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Now we can have the following sequence of transitions:

A|B-“Db.A|beB— A|cB->A|B

We have explicitly unfolded B after the first step to make the interaction
between b and b clear. Note that this synchronization is not an external
event, so the transition arrow is unadorned. We call this an internal action
or silent action are write 7.

The second generalization from the sequential processes is to permit
name hiding (abstraction). In the example above, we plugged processes A
and B together, intuitively connecting the output b from A with the input
b from B. However, it is still possible to put another process in parallel
with A and B that could interact with both of them using b. In order to
prohibit such behavior, we can locally bind the name b. We write new a.P
for a process with a locally bound name a. Names bound with new a.P
are subject to a-conversion (renaming of bound variables) as usual. In the
example above, we would write

newb.A | B.

However, we have created a new problem: the name b is bound in this
expression, but the scope of b does not include the definitions of A and B. In
order to avoid this scope violation we parameterize the process definitions
by all names that they use, and apply uses of the process identifier with the
appropriate local names. We can think of this as a special form of parameter
passing or renaming.

A(a,b) = a.b.Ala,b)
B(b,c) = bc.B(b,c)
The process expression can now hygienically refer to locally bound names.
new b.A(a,b) | B(b,c)

This leads to the following language of concurrent process expressions.

Process Exps P ::= Aai,...,an) | N | (P | P)|newa.P
Sums N ::= a.P|N; +Ny|0
Action Prefix o ::= alal|r

In order to describe the possible transitions we use a structural congru-
ence, written P = () that allows us rearrange the pieces of a process expres-
sion in a meaning-preserving way. It is given by the following laws, which
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can be applied anywhere in a process expression. We write FN for the free
names in process expression.

PIQ=Q|P PIQIR=(P|QIR PlO=P
M+N=N+M M+ (N+N)=(M+N)+N  M+0=M
newa.(P| Q)= P | (newa.Q) provided a ¢ FN(P)

newa.P =P  provided a ¢ FN(P)

new a.new b.P = new b.new a.P

A<b1,... ,bn> = {bl/al,...,bn/an}PA provided A(al,...,an) = PA

Renaming of variables by new is implicit here. With this definition we can
transform any process expression into a standard form

newas....neway,.(Mj | --- | My)

where we write 0 if £ = 0.

In order to define the operational semantics we take advantage of struc-
tural congruence to put the expressions that have to interact into proximity.
In this semantics, all transitions are silent.

P+ M —p u @P+M)|@Q+N) — p| g React
P— P P P— P N
P|lQ—P|Q ar newa.P — newa.P "

P=Q Q—Q Q=P

P p Struct

If we want to examine the interaction of a system with its environment
we consider the environment as another testing process that is run concur-
rently with the system whose behavior we wish to examine. As example
for the above rules, consider the following process expression.

P = (new a.((a.Q1 + bQQ) | 5.0)) | (ERl +5.R2)
Note that the output action before R, is a different name than a used as
the input action to ()1, the latter being locally quantified. This means there

are only two possible transitions.

P — (newa.(@Q
P — (newa.(Q
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We next present an alternative semantics in which we do not need to
resort to structural equivalence, except reassociating the terms in a sum.
In this semantics an action is made explicit in a transition, but matching
input/output actions become silent. We use A to stand for either a or a and
A for a or a, respectively.

PP QA
m; p= React;
PlQ—P|Q

M+a.P+N-5P

PP |, Q-5 qQ
o -larg > - R-Par;
PlQ—rFlQ PlQ-%5P|Q
PP (a¢{aa})
o Res;
new a.P — new a.P’
{b1/ay,...,by/an}Ps — P (A(ay,...,a) défPA)
Ident;

Alby, ..., by) = P!

As another example of this form of concurrent processes, consider two
two-way transducers of identical structure.

def

A(a,d’,bt) a.b.A(a,a’,b,V') +b'.a’. Ala,ad’,b, V)

We now compose to instances of this process concurrently, hiding the
internal connection between.

new b.new b'.(A{a,a’, b, b’y | A(b,b,c,c))

At first one might suspect this is bisimilar with A(a,d’,¢c,¢’), which
shortcircuits the internal synchronization along b and ¢'. While we have
not formally defined bisimilarity in this new setting, this new composition
is in fact buggy: it can deadlock when put in parallel with a.P, c.P’, ¢'.Q,
a’.qQ’

aPl|cP|cd.Q|a.Q | newbnewb'.(Ala,da’,b,b) | Ab, b, c,c))

— P|c.P'|d.Q|a.Q" | newb.newt . (b.A{a,a’,b,b') | Alb,V, c,c))

— P |c.P|Q|a.Q | newb.newd'.(b.Ala,a’, b,t') | b/.A(b,V ¢, c'))

At this point all interactions are blocked and we have a deadlock. This

can not happen with the process A(a,d’,c, ). It can evolve in different
ways but not deadlock in the manner above; here is an example.
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a.P|cP |cd.Q|a.qQ | Ala,d, cc)
—>P|cP’|€Q| Q|cA<aa e, d)
— PP |TQ| Q| Ala,de,d)
— P|P|Q|a. ’\7’A(a,a’,c,c’>

—>P|P'|Q|Q’\A<a,a’,c,c’>

The reader should make sure to understand these transition and re-

design the composed two-way buffer so that this deadlock situation cannot
occur.

The two forms of semantics we have given are equivalent in the follow-
ing way:

(i) If P — P'then P —— P” and P" = P’ for some P".
(ii) If P - P'then P — P'.

These theorems are proving after appropriate generalization, by inductions
over the given derivations. We do not give the proof here.
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The Pi-Calculus

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 24
November 19, 2002

In this lecture we first consider the question of observational equiva-
lence for the calculus of concurrent, communicating processes. Then we
extend the calculus to allow us communication to transmit values, which
leads to the 7-calculus.

Recall from the last lecture our notion of process expression, and in par-
ticular the unobservable (internal) action 7.

Observable Action A ::= ala
Action « ::= A|T
Process Exps P ::= Alai,...,an) | N | (P | P)|newa.P
Sums N ::= «a.P|N;i+N2|O0

The operational semantics with observable behavior is given by the
judgment P — P’ which is defined by the following rules. Here we write
A for the opposite of A\, with the understanding that a = a.

PP QN
o m; - React;
M+4+aP+N—P P|lQ—P|Q
« / a /
Lid 7 P L-Pary @ 7 @ R-Par,
PlQ—P|Q P|Q—P|Q

P— P (a¢{aa}

> Res;
new a.P — new a.P’

{bi/a1,....bpjantPa -5 P (Aay,...,an) & Py)

Ident
Albr, ... b)) =2 P! !
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Also recall our definition of a strong simulation S: If P S Q and P - P’
then there exists a Q' such that Q - Q' and P’ S Q'.
In pictures:

P—S—Q
« (0]

\

Pl§ Q)

where the solid lines indicate given relationships and the dotted lines in-
dicate the relationships whose existence we have to verify (including the
existence of ()’). If such a strong simulation exists, we say that ) strongly
simulates P.

Futhermore, we say that two states are strongly bisimilar if there is a
single relation S such that both the relation and its converse are strong
simulations.

Strong simulation does not distinguish between silent (also called inter-
nal or unobservable) transitions 7 and observable transitions A (consisting
either of names a or co-names a). When considering the observable behav-
ior of a process we would like to “ignore” silent transitions to some extent.
Of course, this is not entirely possibly, since a silent transition can change
from a state with many enabled actions to one with much fewer or differ-
ent ones. However, we can allow any number of internal actions in order
to simulate a transition. We define

PSP iff P TP
P 2T P if PP PP

In particular, we always have P ", P. Then we say that S is a weak simu-
lation if the following two conditions are satisfied:!

G) fPSQand P - P’
then there exists a Q' such that Q — Q' and P’ S Q.

(i) PSQand P 2 P’
then there exists a )’ such that Q AT Q' and P’ S Q'.

This differs slightly, but I believe insignificantly from Milner’s definition.
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In pictures:

P—5—Q P—5—Q
.
T 7—* )\ )\
v v T
PosQ Pos Q)

As before we say that () weakly simulates P if there is a weak simulation S
with P § Q. We say P and () are weakly bisimilar if there is a relation S such
that both S and its inverse are weak simulations. We write P =~ @ if P and
() are weakly bisimular.

We can see that the relation of weak bisimulation concentrates on the
externally observable behavior. We show some examples that demonstrate
processes that are not weakly bisimilar.

ASETA A
ey

0 0 0
P=a0+0b0 Q=a0+700 R=7.a.0+7.b.0

Even though P, @), and R can all weakly simulate each other, no two are
weakly bisimilar. As an example, consider P and @. Then any weak bisim-
ulation must relate P and ()1, because if ) SN (1 then P can match this
only by idling (no transition). But P — 0 and @; cannot match this step.
Therefore P and and ) cannot be weakly bisimilar. Analogous arguments
suffice for the other pairs of processes.

As positive examples of weak bisimulation, we have

a.P ~ T1.aP
a.P+71a.P =~ T1.0a.P
a.b.P+71.cQ) =~ a(b.P+71.cQ)+T.cQ

The reader is encouraged to draw the corresponding transition diagrams.
As an example, consider the second equation.

Qi=aP+71aP and @5 =rT1.a.P
We relate Q1 S Q2 and a.P S a.P and P S P. In one direction we have
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1. Q@ = P which can be simulated by @2 I p.

2. Q1 —— a.P which can be simulated by Q2 s a.P.
In the other direction we have
1. Q2 —— a.P which can be simulated by @1 > a.P.

Together these cases yield the desirect result: Q1 ~ Q».

Next we will generalize the calculus of concurrent processes so that
value can be transmitted during communication. But our language has
no primitive values, so this just reduces to transmitting names along chan-
nels that are themselves represented as names. This means that a system
of processes can dynamically change its communication structure because
connections to processes can be passed as first class values. This is why the
resulting language, the 7-calculus, is called a calculus of mobile and concur-
rent communicating processes.

We generalize actions and differentiate them more explicitly into in-
put actions and output actions, since one side of a synchronized commu-
nication act has to send and the other to receive a name. We also replace
primitive process identifiers and defining equation by process replication
'P explained below.

Action prefixes 7 ::= x(y) receive y along z
| X(y) send y along
| T unobservable action
Processexps P ::= N | (P | ) |newa.P |!P
Sums N ::= O|N;+ N2 |7.P

The structural congruence remains the same as before, except that in
addition we have !P = P | !P, that is, a process !P can spawn arbitrarily
many copies of itself.

In examples 7.0 is often abbreviated by m. Note that in a summand
x(y).P, y is a bound variable with scope P that stands for the value received
along z. On the other hand, X(y).P does not bind any variables.

Before presenting the transition semantics, we consider the following
example.

P = ((X(y).0 + z(w).w(y).0) | x(u).u(v).0 | X(z).0)

The middle process can synchronize and communicate with either the first
or the last one. Reaction with the first leads to

Py =(0]5(v).0[x(2).0) = (¥(v).0 | X(2).0)
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which cannot transition further. Reaction with the seconds leads to
P} = ((x(y).0 + 2(w) 5(y).0) | 2(0).0 | 0)
which can step further to
Py =(v(y).0]0]0)

Next we show the reaction rules in a form which does not make an
externally observable action explicit, and exploits structural congruence.

TP+ N —P Tau
— React
(a(z).P+ M) | (a(b).Q + N) — ({b/z}P) | Q
P— P P P— P Res
PlQ— P|Q ar new x.P — new x.P’

Q=P P—P P=q
Q— Q'

Struct

Even though the syntax does not formally distinguish, we use z for
binding occurrences of names (subject to silent renaming), and a and b for
non-binding occurrences.

As a simple example we will model a storage cell that can hold a value
and service get and put requests to read and write the cell contents. We first
show it using definitions for process identifiers and then rewrite it using
process replication.

C(x, get, put) dof get(x).C(x, get, put).0
+ put(y).C(y, get, put).0

We express this in the 7-calculus by turning C itself into a name, left-
hand side into an input action and occurrences on the right-hand side into
an output action.

l'c(x, get, put).(get(x).c(z, get, put).0 + put(y).c(y, get, put).0)

We abbreviate this process expression by !C. In order to be in the cal-
culus we must be able to receive and send multiple names at once. It is
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straightforward to add this capability. As an example, consider how to cre-
ate cell with initial contents 3, write 4 to it, read the cell and then print the
contents some output device. Printing a is represented by an output action
print{a).0. We also consider 3 and 4 just as names here.

IC | new g.new p.c(3, g, p).p(4).g(x).print(x).0

Note that ¢ and print are the only free names in this expression. Note
also that we are creating new names g and p to stand for the channel to
get or put a names into the storage cell C. We leave it to the reader as an
instructive exercise to simulate the behavior of this expression. It should be
clear, however, that we need to use structural equivalence initially to obtain
a copy of C' with which we can react after moving the quantifiers of g and
p outside.

As a more involved example, consider the following specification of the
sieve of Eratosthenes. We start with a stream to produce integers, assuming
we have a primitive successor operation on integer names.? The idea is to
have a channel which sends successive numbers.

lcount(n, out).out(n).count(n + 1, out)

Second we show a process to filter all multiples of a given prime num-
ber from its input stream while producing the output stream. We assume
an oracle (xmod p = 0) and its negation.

filter(p, in, out).in(x).((x mod p = 0)().filter(p, in, out).0
+ (xmod p # 0)().out(x).filter(p, in, out).0)

Finally, we come to the process that generates a sequence of prime num-
bers, starting from the first item of the input channel which should be prime
(by invariant).

Iprimes(in, out).in(p).out(p).
new mid. (filter(p, in, mid).0 | primes(mid, out).0)

primes establishes a new filtering process for each prime and threads the
input stream in into the filter. The first element of the filtered result stream
is guaranteed to be prime, so we can invoke the primes process recursively.

At the top level, we start the process with the stream of numbers count-
ing up from 2, the smallest prime. This will generate communication re-
quests out(p) for each successive prime.

This can also be coded in the m-calculus, but we prefer to avoid this complication here.
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new nats.count(2, nats) | primes(nats, out)

In this implementation, communication is fully synchronous, that is,
both sender and receiver can only move on once the message has been ex-
changed. Here, this means that the prime numbers are guaranteed to be
read in their natural order. If we don’t care about the order, we can rewrite
the process so that it generates the primes asynchronously. For this we use
the general transformation of

a(h).P = 7.(a(b).0| P)

which means the computation of P can proceed regardless whether the
message b has been received along channel a. In our case, this would be a
simple change in the primes generator.

Iprimes(in, out).in(p).
out(p).0 | new mid.(filter(p, in, mid).0 | primes(mid,out).0)

The advantage of an asynchronous calculus is its proximity to a realis-
tic model of computation. On the other hand, synchronous communciation
allows for significantly shorter code, because no protocol is neede to make
sure messages have been received, and in received in order. Since asyn-
chronous communication is very easily coded here, we stick to Milner’s
original m-calculus which was synchronous.

In the next lecture we will see how a variant of the m-calculus can be
embedded in a full-scale language such as Standard ML to offer rich con-
currency primitives in addition to functional programming.
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15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 25
November 21, 2002

In the last lecture we discussed the m-calculus, a minimal language
with synchronous communication between concurrent processes. Mobil-
ity is modeled by allowing channels to transmit other channels, enabling
dynamic reconfiguration of communication patterns.

Concurrent ML (CML) is an extension of Standard ML with concur-
rency primitives that heavily borrown from the m-calculus. In particular,
channels can carry values (including other channels), communication is
synchronous, and execution is concurrent. However, there are also dif-
ferences. Standard ML is a full-scale programming language, so some id-
ioms that have to be coded painfully in the m-calculus are directly avail-
able. Moreover, CML offers another mechanism called negative acknowledg-
ments. In this lecture we will not discuss negative acknowledgments and
concentrate on the fragment of CML that corresponds most directly to the
m-calculus. The examples are drawn from the standard reference:!

John H. Reppy, Concurrent Programming in ML, Cambridge Uni-
versity Press, 1999.

We begin with the representation of names. In CML they are represented
by the type 7 chan that carries values of type 7. We show the relevant
portion of the signature for the structure CML

type 'a chan

val channel : unit -> 'a chan
val send : 'a chan * 'a -> unit
val recv : 'a chan -> 'a

ISee also http://people.cs.uchicago.edu/jhr/cml/
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The send and recv operations are synchronous which means that a call
send (a, v)  will block until there is a matching recv (a) in another
thread of computation and the two rendezvous. We will see later that send
and recv are actually definable in terms of some lower-level constructs.

What we called a process in the m-calculus is represented as a thread
of computation in CML. They are called threads to emphasize their rela-
tively lightweight nature. Also, they are executing with shared memory
(the Standard ML heap), even though the model of communication is mes-
sage passing. This imposes a discipline upon the programmer not to resort
to possibly dangerous and inefficient use of mutable references in shared
memory and use message passing instead.

The relevant part of the CML signature is reproduced below. In this
lecture we will not use thread _id which is only necessary for other styles
of concurrent programming.

type thread _id
val spawn : (unit -> unit) -> thread _id
val exit : unit -> 'a

Even without non-deterministic choice, that is, the sums from the =-
calculus, we can now write some interesting concurrent programs. The ex-
ample we use here is the sieve of Eratosthenes presented in the 7-calculus
in the last lecture. The pattern of programming this examples and other re-
lated programs in CML is the following: a function will accept a parameter,
spawn a process, and return on or more channels for communication with
the process it spawned.

The first example is a counter process that produces a sequence of in-
tegers counting upwards from some number n. The implementation takes
n as an argument, creates an output channel, defines a function which will
be the looping thread, and then spawns the thread before returning the
channel.

(* val counter : int -> int CML.chan *)
fun counter (n) =
let
val outCh = CML.channel ()

fun loop (n (CML.send (outCh, n); loop (n+1))
in

CML.spawn (fn () => loop n);

outCh
end
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The internal state of the process is not stored in a reference, but as the
argument of the loop function which runs in the counter thread.

Next we define a function filter which takes a prime number p as
an argument, together with an input channel inCh , spawns a new filtering
process and returns an output channel which returns the result of removing
all multiples of p from the input channel.

(* val filter : int * int CML.chan -> int CML.chan *)
fun filter (p, inCh) =

let
val outCh = CML.channel ()
fun loop () =
let val i = CML.recv inCh
in
if i mod p <> 0
then CML.send (outCh, i)
else ();
loop ()
end
in
CML.spawn (fn () => loop ());
outCh
end

Finally, the sieve function which returns a channel along which an
external thread can receive successive prime numbers. It follows the same
structure as the functions above.

(* val sieve : unit -> int CML.chan *)

fun sieve () =
let
val primes = CML.channel ()
fun head ch =
let
val p = CML.recv ch
in
CML.send (primes, p);
head (filter (p, ch))
end
in
CML.spawn (fn () => head (counter 2));
primes
end
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When sieve is creates a new channel and then spawns a process that
will produces prime numbers along this channel. It also spawns a process
to enumerate positive integers, starting with 2 and counting upwards. At
this point it blocks, however, until someone tries to read the first prime
number from its output channel. Once that rendezvous has taken place,
it spawns a new thread to filter multiples of the last prime produced with
filter (p, ch) and uses that as its input thread.

To produce a list of the first n prime numbers, we successively commu-
nicate with the main thread spawned by the call to sieve .

(* val primes : int -> int list *)
fun primes (n) =

let
val ch = sieve ()
fun loop (O, I) = Listrev |
| loop (n, I) = loop (n-1, CML.recv(ch):l)
in
loop (n, nil)
end

For non-deterministic choice during synchronization, we need a new
notion in CML which is called an event. Event are values that we can syn-
chronize on, which will block the current thread. Event combinators will al-
low us to represent non-deterministic choice. The simplest forms of events
are receive and send events. When synchronized, they will block until the
rendezvous along a channel has happened.

type ’'a event

val sendEvt : 'a chan * 'a -> unit event
val recvEvt : 'a chan -> 'a event

val never : 'a event

val alwaysEvt : 'a -> 'a event

val wrap : 'a event * (a -> 'b) -> 'b event
val choose : 'a event list -> 'a event

val sync : 'a event -> 'a

Synchronization is achieved with the function sync . For example, the
earlier send function can be defined as

val send = fn (a,x) => sync (sendEvt (a,x))

thatis, val send = sync o sendEvt
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We do not use alwaysEvt here, but its meaning should be clear: it
corresponds to a 7 action returning a value without any communication.

choose [ v1,...,v,] foreventvalueswy,...,v, corresponds to a sum N;+
-+ -+ Ny In particular, choose [] will block and can never proceed, while
choose [ v] should be equivalent to v.

wrap ( v, f) provides a function v to be called on the result of synchro-
nizing v. This is needed because different actions may be taken in the dif-
ferent branches of a choose . It is typical that each primitive receive or
send event in a non-deterministic choice is wrapped with a function that
indicates the action to be taken upon the synchronization with the event.

As an example we use the implementation of a storage cell via a con-
current process. This is an implementation of the following signature.

signature CELL =
sig

type ’'a cell

val cell : 'a -> 'a cell

val get : 'a cell -> 'a

val put : 'a cell * 'a -> unit
end;

In this example, creating a channel returns two channels for communi-
cation with the spawned thread: one to read the contents of the cell, and
one to write the contents of the cell. It is up to the client program to make
sure the calls to get and put are organized in a way that does not create
incorrect interference in case different threads want to use the cell.
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structure Cell' :> CELL =
struct
datatype 'a cell =
CELL of 'a CML.chan * 'a CML.chan

fun cell x =
let
val getCh = CML.channel ()
val putCh = CML.channel ()

fun loop x = CML.synch (
CML.choose [CML.wrap (CML.sendEvt (getCh, x),
fn () => loop x),
CML.wrap (CML.recvEvt putCh,
fn X' => loop X))
in
CML.spawn (fn () => loop X);
CELL (getCh, putCh)

end
fun get (CELL(getCh, 1)) = CML.recv getCh
fun put (CELL( _, putCh), x) = CML.send (putCh, x)
end;

This concludes our treatment of the high-level features of CML. Next
we will sketch a formal semantics that accounts for concurrency and syn-
chronization. The most useful basis is the C-machine, which makes a con-
tinuation stack explicit. This allows us to easily talk about blocked pro-
cesses or synchronization. The semantics is a simplified version of the one
presented in Reppy’s book, because we do not have to handle negative
acknowledgments. Also, the notation is more consistent with our earlier
development.

First, we need to introduce channels. We denote them by a, follow-
ing the w-calculus. Channels are typed a : 7 chan for types 7. During the
evaluation, new channels will be created and have to be carried along as a
channel environment. This reminiscent of thunks, or memory in other evalu-
ation models we have discussed. These channels are global, that is, shared
across the whole process state. Finally we have the state s of individual
thread, which are as in the C-machine.

Channelenv N ::= .| N,achan
Machine state P ::= -|P,s
Thread state s ::= K>e| K <w

In order to write rules more compactly, we allow the silent re-ordering
of threads in a machine state. This does imply any scheduling strategy.
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We have two judgments for the operational semantics

s s Thread steps from s to s’
(N P)— (N'+ P') Machine steps from P to P’

In the latter case we know that N’ is either N or contains one additional
channel that may have been created. The first judgment, s — s is exactly
as it was before in the C-machine. We have one general rule

s+ s

NFEPs)— (NFPs)

We now define the new constructs, one by one.

Channels. Channels are created with the channel function. They are
value.

(a chan € N)
a value (N + P,K >channel ())+— (N,achant P,K < a)

We do not define the semantics of the send and recv functions because
they are definable.

Threads. New threads are created with the spawn function. We ignore
here the thread _id type and return a unit element instead.

(NE P, K >spawnv) — (NFPe>uv(),K < ()

NFEPK>exit ()— (NFP)

Recall that even though we write the relevant thread among P last, it could
in fact occur anywhere by our convention that the order of the threads is
irrelevant.

Finally, we come to events. We make one minor change to make them
syntactically easier to handle. Instead of choose to take an arbitrary list of
events, we have two constructs:

val choose : 'a event * 'a event -> 'a event
val never : 'a event
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Events must be values in this implementation, because they must be-
come arguments to the synchronization function sync .

v_value v_value
sendEvt (a,v) value recvEvt (a) value always (v) value

v1 value vy value
choose (v1,v2) value never value

v1 value vy value
wrap (vi,v2) value

From these value definitions one can straightforwardly derive the rules
that evaluate subexpressions. Interestingly, there only two new rules for
the operational semantics: for two-way synchronization (corresponding to
a value being sent) and one-way synchronization (corresponding to a 7-
action with a value). This requires two new judgments, (v,v') ~ (e, e’) and
v ~» e. We leave the one-way synchronization as an exercise and show the
details of two-way synchronization.

(v,0") ~ (e, €)

(N + P K >sync (v),K >sync (v'))— (NP, K >e K >¢)

Ry

UV v e R
(NFP,K >sync (v)) — NFPK >e)

The judgment (v,v’) ~ (e, €’) means that v and v’ can rendezvous, re-
turning expression e to the first thread and ¢’ to the second thread. We
show the rules for it in turn, considering each event combinator. We pre-
suppose that subexpressions marked v are indeed values, without checking
this explicitly with the v value judgment.

Send and receive events. This is the base case. The sending thread con-
tinues with the unit element, while the receiving thread continues with the
value carried along the channel a.

(sendEVt (a, v),recVEVt () — ((),0)

(recvEVt (a),sendEvt (a,v)) ~ (v,()) "
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Choice events. There are no rules to synchronize on never events, and
there are four rules for the binary choose event.

(Ula U/) ~ (6, 6/)
(choose (v1,v2),v") ~ (e, ¢€)

y (v9,0") ~ (e, €) y
! (choose (v1,ws),v) ~ (e,e’) 2

(v,09) ~ (e,€)
(v, choose (v}, v4)) ~ (e, ¢)

(v,0)) ~ (e,€')
(v, choose (vf, 1)) ~ (e, ¢)

] A

Cy

Wrap events. Finally we have wrap events that construct bigger expres-
sions, to be evaluated if synchronization selects the corresponding event.
This is way synchronization returns an expression, to be evaluated further,
rather than a value.

(Ulﬂ U’) ~ (617 6,)

I
(wrap (v1,v2),0') ~ (vaer,e)

(v, v1) ~ (e, 1)
(v, wrap (v, vg)) ~ (e, v3 €})

r

w

With the typing rules derived from the CML signature and the opera-
tional semantics, it is straightforward to prove a type preservation result.
The only complication is presented by names, since they are created dy-
namically. But we have already seen the solution to a very similar problem
when dealing with mutable references (since locations [ are also created
dynamically), so no new concepts are required.

Progress is more difficult. The straightforward statement of the progress
theorem would be false, since the type system does not track whether pro-
cesses can in fact deadlock. Also, we would have to re-think what non-
termination means, because some processes might run forever, while oth-
ers terminate, while yet others block. We will not explore this further, but it
would clearly be worthwhile to verify that any thread can either progress,
exit, return a final value, or block on an event. This means that there are no
“unexpected” violations of progress. Along similar lines, it would be very
interesting to consider type systems in which concurrency and communi-
cation is tracked to the extent that a potential deadlock would be a type
error! This is currently an active area of research.
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Supplementary Notes on
Environments

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 26
December 3, 2002

In the final two lectures of this course we go into slightly lower-level
issues regarding the implementation of functional languages. As we will
see, related issues arise in object-oriented languages.

This first observation about our semantic specifications is that most of
them rely on substitution as a primitive operation. From the point of view
of implementation, this is impractical, because a program would be copied
many times. So we seek an alternative semantics in which substitutions are
not carried out explicitly, but an association between variables and their
values is maintained. Such a data structure is called an environment. Care
has to be taken to ensure that the intended meaning of the program (as
given by the specification with substitution) is not changed.

Because we are in a call-by-value language, environment n always bind
variables to values.

Environments 7 ::= -|n,z=v

The basic intuition regarding typing is that if I' F e : 7, then e should
be evaluated in an environment which supplies bindings of appropriate
type for all the variables declared in I'. We therefere formalize this as a
judgment, writing n : I if the bindings of variables to values in 1 match
the context I'. We make the general assumption that a variable x is bound
only once in an environment, which corresponds to the assumption that a
variable z is declared only once in a context. If necessary, we can rename
bound variables in order to maintain this invariant.

n:I' -Fov:7 v value

(n,xz=v) : (D, 2:7)
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Note that the values v bound in an environment are closed, that is, they
contain no free variables. This means that expressions are evaluated in an
environment, but the resulting values must be closed. This creates a dif-
ficulty when we come to the evaluation of function expressions. Relaxing
this restriction, however, causes even more serious problems.1

In order to concentrate on the essential issues with environments, we
give here only a big-step operational semantics relating an expression to
its final value. See [Ch. 11.2] for a version of the C-machine that main-
tains environments. We first give a big-step operational semantics using
substitution. We concentrate on pairs and (non-recursive) functions; other
constructs can be added but distract from the main issues.

et v el v
pair(er, e2) |} pair(vi, v2)

e || pair(vy,v2) e || pair(vy,v2)
fst(e) | v1 snd(e) | vg
erd Azes ea vy {va/xtes Jv
Az.e | Ax.e apply(e1,e2) 4 v

Next we try to add environments, being careful not to carry out substi-
tutions, but just adding binding to the environments. The final two rules
are actually incorrect, as we explain shortly.

nkFerdvi nke v
n b pair(er, e2) I pair(vy, v2)

n ke pair(v, v2) n ke | pair(vy, v2)
n k= fst(e) | vy n t snd(e) | vo

n,r=v,m2 -z lv

s nke JAres nhkexl v n,x:vgl—egilv??
nkAx.el Are ™ n t apply(er,e2) § v o

If we now try to prove type preservation in the following form

Ifn:TandTte:Tandntel vthen-Fov: 1

This is known in the Lisp community as the upward funarg problem.

SUPPLEMENTARY NOTES DECEMBER 3, 2002



Environments L26.3

we find that it is violated in the rule for A-abstraction, since the value A\x.e
may have free variables referring to n. If we try to fix this problem by
proving instead

Ifn:TandTFe:TandntelvthenT Fv: T

the rule for A-abstraction now works correctly, but the rule for application
has a problem. This is because we eventually obtain from the induction
hypothesis and multiple steps of reasoning that I', x:7 - v : 7, but we need
thatI' - v : 7.

So neither of the two ideas works, and type preservation would be vio-
lated. In order to restore is, we need to pair up a value with its environment
forming a closure. There are many strategies to make this efficient. For ex-
ample, we could restrict the environment to those variables occurring free
in the value, but we do not consider such refinements here. This means we
have a new form of value, only used in the operational semantics, but not
in the source expression.

Expressions e ::= ...|{n;A\z.e)

There are no evaluation rules for closures (they are values), and the typ-
ing rules have to “guess” an context that matches the environment. Note
that we always type values in the empty environment.

n:I' I'kXze:r
{(n; A\x.e)) value E(n; Az.e)) T

We now modify the incorrect rules by building and destructing closures
instead.

nkE Ax.el (n; Az.e))

nker (s zes) nbexdve n,z=vabeszlv
n = apply(er,e2) v

Now it is easy to prove by induction over the structure of the evaluation
that type preservation holds in the following form.

Theorem 1 (Type preservation with environments)
Assumen:TandT'Fe: 7. Ifnkelvthen-Fv:T.

Proof: By induction on the derivation of n I- e |} v, applying inversion on
the typing derivation in each case. We show the three critical cases.
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Environments

Case: n,z=v,mtz | v.

'kFxz:71
="y,z:1,1
n:T

(m,z=v,m2) : (I'1,2:7,T9)
ot

Case: nk Azx.e | (n; \z.€)).

I'FXze:T
n:T
Ay Az.e)) T

Case: 17t apply(er,ez) | v.

nk e d (n's Av.es))
ntez | vo

n,r=vo F ez v

'+ apply(ey,e2) : 7
I'Feg:m — Tand

I' - ey : » for some
n:T

E{n s Aves) o — T
7 : T and

I+ A\x.e3 : 79 — 7 for some I

Iz bes: T
vy Ty

(0, z=vy) : (T, x:712)
ot

Given

By inversion
Given

Defns. of nand I’
By inversion

Given
Given
By rule

Subderivation
Subderivation
Subderivation

Given

By inversion
Given
By i.h.

By inversion
By inversion
By i.h.

By rule

By i.h.

A big-step semantics is unsuitable for proving a progress theorem, so
we will not do so here (see [Ch. 11.2]).

Type preservation tells us that the environment semantics we gave is
sensible, but actually want to know more, namely that is is in an appropri-
ate sense equivalent to the substitution semantics we gave earlier. This is
another instance of a bisimulation theorem. It will be an instance of weak
bisimulation because we do not care about the intermediate states of eval-
uation. In other words, we can only observe the final value returned by a
computation. Even this we have to refine, as discussed in lecture 22.
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There are three steps in proving a bisimulation theorem that shows the
observational equivalence of two forms of operational semantics

1. Define the bisimulation relation.
2. Show that it is an observational equivalence.

3. Prove that it is a bisimulation.

We now go through these steps on the substitution and environment se-
mantics.

Defining the bisimulation. Intuitively, the bisimulation substitutes out
the environment. The main complication is that it must do this recursively,
because the values in an environment can again contain closures and envi-
ronments. The bisimulation decomposes into two judgments: one to relate
expressions in an environment to closure-free expression, and one to relate
values to values.

nt e <= € einenvironment 7 is related to ¢’
ve— v v is related to v’

In order to describe the typing properties of the translation, we need to
generalize environment to contain bindings z=z'. Typing for environments
is then generalized as follows

I'tnp:T ko7
| I R '+ (n,z=v) : (T, z:7)

IMen:T TVha 7
Ik (n,z=2"): (T, z:7)

The typings are presupposed to be related as follows: if n - e < ¢
thenI"Fnp:TandT'Fe:7and I"F € : 7 for some I" and I".

(z=veEn) v (x=2' € n)
nkx< Nk o< a2

nke<=e¢e| nke ¢
n k= apply(e1, e2) <= apply(e}, e3)

n,r=x'Fe<=¢€
Nk Av.e < \o’.¢

0k Ar.e <=
(s Ax.e)) «——
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Observational Equivalence. Since we have simplified our language to
just contain functions, the observational equivalance is trivialized. How-
ever, if we add, for example, integers and primitive operations, then we
would have the rules

nke<¢e| nke ¢
Nk o(er,e2) <= o(e], €h)

int(n) «— int(n)
and it is indeed the case that «+— coincides with equality on the observable

type int.

Proving the bisimulation. Bisimulation in this case can be discussed us-
ing the following diagram.

nl—e(B:)e’

E “E'

V<—-—>q/

We need to show two properties:
1. If B and F are given, then ¢/, E’, and C exist, and
2. if B and E’ are given, then v, E, and C exist.

Fortunately, neither of these direction is difficult. We do, however, need
a substitution property.

Theorem 2 (Substitution for bisimulation)
Ifv «— v and ny, 2=2',m3 - e <= €' then ny, x=v,m2 b e < {v'/2'}€’.

Proof: By induction on the derivation of ny, z=xz",m F e <= ¢’ [ |

For a more general language, we also need the easy property thate || e
iff e value in the substitution semantics.

Theorem 3 (Simulation;)
Ifn - e < ¢ and n + e |} v then there exists a v’ such that ¢’ || v' and

v — .
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Proof: By induction on the derivation of - e || v and inversion on
Nt e <= ¢’ in each case. [

Theorem 4 (Simulations)
Ifn ke < ¢ and ¢ || v’ then there exists a v such thatn + ¢ |} v and
ve— .

Proof: By induction on the derivation of ¢’ |} v" and inversionon 7 - e <=
¢’ in each case. L

There is a compile-time analogue to the closures that are generated in
our operational semantics at run-time. This is the so-called closure conver-
sion. To see the need for that, consider the simple program (shown in SML
syntax)

let val x = 1
valy = 2
in fnw=>x+w + 1 end

How do we compile the function fn w => x + w + 17? The difficulty
here is the reference to variable X defined in the ambient environment.

The solution is to close the code by abstracting over an environment,
and pairing it up with the environment. This way we obtain

let val x = 1
valy = 2
in (fn env => fn w => (#x env) + w + 1, {x = x}) end

If this transformation is carried out systematically, all functions are closed
and can be compiled to a piece of each. Each of them expect and envi-
ronment as an additional argument. This environment contains only the
bindings of variables that actually occur free in the body of the function.
An application of the function now also applies the function to the envi-
ronment. For example,

let val x = 1

val y = 2
val f =fnw=>x+w+ 1
in f 3 end
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is translated to

let val x = 1
val y = 2
val f = (fn env => fn w => (#x env) + w + 1,
{x =x})
in #1 f) #2 f) 3 end

The problem with this transformation is that its target is generally not
well typed. This is because functions with different sets of free variables
will sometimes have different type. For example, the code

let val x = 1

in if true then fn w => w + X
else fn w => w + 2

end : int -> int

becomes

let val x = 1

in if true
then (fn env => fn w => w + (#x env), {x = x})
else (fn env => fn w => w + 2, {hH

end

which is not well-typed because the two branches of the conditional have
different type: the first has type ( {x:int } -> int -> int) * {xint }
and the second has type ({} -> int -> int) * {}. We can repair the
situation by using existential types. Since SML does not have first-class ex-
istential type, we just use the syntax pack[t](e) for pack(7,e). Then the
example above can be written as

let val x = 1

in if true
then pack [ {xint }]
(fn env => fn w => w + (#x env), {x = x})
else pack [ {}] (fn env => fn w => w + 2, {hH
end
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which now has type
Jt.(t — int — int) x t.

An application of a function before the translation is now translated to use
open. For example,

let val x = 1
val y = 2
val f = pack [ {xint }]
(fn env => fn w => (#x env) + w + 1,
{x = x})
in open f as 'a =>9g => (#1 g) #2 g) 3 end

where we wroteopen el as t => g => e2 foropen(ey,t.g.e2).

The above discussion can be summarized by closures have existential type.
When we apply this idea to objects in our encoding, we find that objects in a
functional language are also become closures and therefore have existential
type. Reconsider the simple example of a counter.

Counter = {get:1 -> int, inc:1 -> 1 h
¢ : Counter =
let x = ref 1
in
{get = A_1. Ix,
inc = A2l x = Ixt1  }
end;

After closure conversion, we obtain

¢ : Counter =

let x = ref 1

in
pack [ {x:int }]
(Ar.
{get = A_1. Irx,
inc = Azl rx = Irx+1 s
{x=x})

end;
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which has type
Jt.(t — {get: 1 —intjinc: 1 — 1) xt

Here, the existential type hides the private fields of the record. This justifies
the slogan that objects have existential type.
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Lecture 27
December 5, 2002

In this lecture we discuss issues of storage managment and garbage
collection. The lecture follows [Ch. 31] rather closely, so we concentrate on
what is slightly different here, namely the presentation of bisimulation.

In order to talk about garbage collection, we need to formalize the dis-
tinction between small values and large values, where small values can be
part of the stack, while large values must be allocated in the heap. For
the purpose of this lecture, small values are either integers, booleans, or
“pointers” to large values. Functions are large values, as are pairs. We use
the judgments v svalue and v lvalue for small and large values, respectively.
Pointers are represented by a new kind of value /, standing for locations in
memory. Unlike with mutable storage, such locations cannot be changed,
but they can be allocated (implicitly) and deallocated (by garbage collec-
tion).

int(n) svalue [ svalue

v1 svalue w9 svalue
pair(vy, v) Ivalue A\z.e lvalue

Note that the components of a pair are small values. This means they
must either be integers, booleans, or again pointers.
Heaps are simply locations together with their (immutable) values.

Heaps H ::= -|H,l=v

As usual, all location [ must be distinct. Furthermore, values stored in
the heap must be large values, that is, if [=v is part of the heap, then v Ivalue.
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We describe a heap-based operational semantics using the A-machine,
which is an extension of the C-machine to account for the heap. Recall:

Stacks K ::= e | Krapply(de2) | K >apply(vi, )
|  Kovpair(d,e2) | K> pair(v1,0) | K>fst(O) | K >snd(0)

States s ::= K>e|K<w

We restrict stacks and states to contain only small values. If an expres-
sion e is stored on the stack or in the process of being evaluated it has not
yet been turned into a value and therefore does not have to satisfy this cri-
terion. We show only a few rules which formalize this intuition. We ignore
issues of typing, since they are largely orthogonal and basically unchanged
from the typing of the C-machine.

K stack e exp K stack v svalue
K > e state K > v state
K stack e9 exp K stack w7 svalue
K > apply(0, e2) stack K > apply(vy, ) stack

H heap wlvalue (I ¢ dom(H))
- heap H,l=v heap

A machine state is now extended by a heap, written as H;s, where s
is either K > e or K < v. There are several invariants we will want to
maintain of machine states. For example, it should be self-contained. If we
denote the location defined by a heap with dom(H) and the free locations
in a term (that is, expression, value, stack, or values defined in a heap) by
FL(.), the H;s is self-contained if FL(H) U FL(s) C dom(H). For other
invariants, see [Ch. 31].

The transitions of the A-machine can now be developed in analogy with
the C-machine, keeping in mind that we need to maintain the distinction
between small and large values.

H; K > pair(e1, e2) —a H; K> pair(O,e2) > ep
H; K v pair(O,e2) < vy +—, H; K pair(vy,0) > e9
H; K v pair(vy,0) <wvy +—, H,l=pair(vi,v2); K <l (I ¢ dom(H))

H; K > fst(e) —a H;K»>fst(O) >e
H;Kv>fst(O) <1 —a H3 K <o (I=pair(vi,v2) € H)
H; K > snd(e) —a H;Kp>snd(O) >e
H;Kv>snd(OD) <1 —a H; K < vy (I=pair(vi,v2) € H)
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It is easy to verify inductively that the value size invariants for heaps
and stacks are preserved by these rules. We finish with the rules for func-
tions.

H; K > apply(e1, e2) —a H; Ko apply(O,eg) > e

H; K >apply(,e2) <v1 +—a H; Kpapply(v,0d) > ez

H; Kvapply(l;,00) <wvy —5 H;K > {vy/x}ey (h=MAz.e; € H)
H;K > \x.e —a Hjl=\ve; K < (I ¢ dom(H))

Next we would like to show the correctness of the A-machine when
compared to the C-machine. Interestingly, this becomes a strong bisimula-
tion theorem: the two machines execute in lock-step. This requires that we
set up a bisimulation relation. Following some of the prior examples we
have seen, this amounts to substituting values for location labels I. Also
as before, this has to be done recursively, because the values v can again
contain references to other values, and so on. The inductive definition of
the bisimulation as a judgment is not difficult, but somewhat tedious, so
we only show a few cases. We have the judgments

H;K ~K'

H;en~¢

H;v~7

H;s~ s
defined by the following rules:

Hyv~v (I=veH) H;K~K' Hye~é H/K~K H;v~v
H:l~ HK>e~K >¢ HK<v~K <

H;K ~K' H;ey~é,
H;o~e H; K vapply(0, e2) ~ K’ > apply(0, €3)

H;K ~K' H;v ~}
H; K > apply(vi,0) ~ K’ >apply(vy, 0)

H;ey ~éy H;ey~ ¢ H;e~¢

H;apply(e1, ea) ~ apply(e], €5) H: ) \v.e ~ \z.€ Hxz~z

These rules are extended to handle pairs and states using straightforward
congruence rules for all constructs. The fact this works essentially works
like a congruence yields the following lemma. We take exchange for granted:
the order of the locations in the heap is irrelevant. We use O and O’ to stand
for stacks, expressions, values, or states.
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Lemma 1 (Weakening and Substitution)
(i) IfH;O ~ O then H,H';0 ~ O’

(ii) If H;v ~v" and H; O ~ O’ then H; {v/x}O ~ {v'/2}0O’

Proof: By induction on the structure of the given derivation relating O and
0. |

Now we can prove strong bisimulation according to the following dia-
gram:

B /
Hl;sl ~N S

E|a ClE’

. /
Hs; s9 o %

We have to show (1) that if B and FE are given, then s/, E’, and C' exist, and
(2) that if B and E’ are given, then Hj, s3, E, and C exist.

Theorem 2 (Strong Bisimulation for A- and C-machine)
(i) If Hy;s1 ~ s} and Hy; s1 —a, Ha; so then there is an s}, such that s} —.
st and Ha; s9 ~ sbh.

(i) If Hy;s1 ~ sy and s} —c s, then there is an Hy and sy such that
Hy; 81+, Ha; s9 and Ha; sg ~ sb.

Proof: In direction (1) we examine the cases for £, applying inversion to
B to construct s5 and E’. In direction (2) we examine the cases for E’, ap-
plying inversion to B to construction H», s and C'. [ |

On observable values (i.e. integers, pairs of integers, etc.) the simula-
tion yields the right translation, as can readily be verified.

Once we have heaps, we can formulate garbage collection as a way to
trace through the heap and copying all locations accessible in a state. In
some ways this inverts the weakening lemma into a strengthening property,
where we remove part of the heap H' that is not referred to in the stack
or expression. Garbage collection admits only weak bisimulation, since the
steps of garbage collection are not accounted for in the C-machine. Please
see [Ch. 31] for further details and discussion of garbage collection.

SUPPLEMENTARY NOTES DECEMBER 5, 2002



