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1 Introduction

The connection between proofs and program so far has been through a
proof term assignment for natural deduction. Proof reduction then forms
the basis of computation. This might be called the “Howard isomorphism”
[How80]. So where does Curry enter into the picture? He had discovered
much earlier that one can assign types combinators in a way that validates
the axioms of intuitionistic propositional logic [Cur34]. Combinators are a
variable-free notation for functions, with a form of computation that does
not rely on substitution in the way that natural deduction does. In this lec-
ture we first present this connection for intuitionistic logic and then extend
it to include necessity and possibility.

2 Hilbert-Style Axiom Systems

Deductive systems in the tradition of Hilbert [HB34] are characterized by a
minimal number of inference rules and many axioms. This reflects mathe-
matical tradition where theories are characterized axiomatically, and logic
is seen as a particular kind of mathematical theory. Classical and intuition-
stic logic, for example, just have a single rule of inference, namely modus
ponens which we abbreviate as mp:

A⊃B hil A hil
B hil

mp
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L9.2 Combinatory Modal Logic

Here we write A hil to indicate that A follows according to the axioms and
rules of inference of intuitionistic logic. Where in the judgmental approach
we characterize implication via hypothetical judgments, in Hilbert systems
modus ponens can be seen as a meaning explanation for implication.

Particular logical connectives are now characterized by axioms. For ex-
ample, we might have the following three axioms for conjunction:

A⊃B⊃A ∧B hil
A ∧B⊃A hil
A ∧B⊃B hil

We will not specify right now the axioms for implication, but develop them
together with a proof that A hil iff A true, that is, the axiomatic and the nat-
ural deduction approach prove the same theorems. Nevertheless, the two
approaches are vastly different because the structure of proofs, of primary
importance in the constructive interpretation of logic, is very different, as
we will see.

3 From Hilbert Proofs to Natural Deductions

Generally speaking, this direction is easy. Since the rule of modus ponens is
the same as implication elimination (⊃E), all we have to do is to prove the
axioms in natural deduction, and any axiomatic proof can be translated into
natural deduction form. Once we have completed our axiomatic system,
we will show how to prove the axioms at the end of the next section.

4 From Natural Deductions to Hilbert Proofs

The difficult direction is to translate natural deductions to Hilbert proofs.
This is difficult because the introduction rule for implication employs hy-
potheses which are not directly available in Hilbert proofs.

The key to the solution are hypothetical Hilbert derivations. They al-
low a rather straighforward translation of natural deductions. We prove
separately that, on Hilbert proofs, hypotheses can be eliminated using the
crucial deduction theorem. We will prove this first, because it motivates the
particular axioms we need.

We write Γ for hypotheses A1 hil, . . . , An hil.

Theorem 1 (Deduction Theorem) If Γ, A hil ` C hil then Γ ` A⊃C hil.

LECTURE NOTES FEBRUARY 16, 2010



Combinatory Modal Logic L9.3

Proof: By induction on the structure of the given proof. We will introduce
the necessary axioms for this proof as we go along.

Case:

Γ, A hil ` A hil
hyp

In this case we need to show that Γ ` A⊃A hil. We introduce the
axiom schema

` A⊃A hil (I)

from which Γ ` A⊃A hil follows by weakening.

Case:

B hil ∈ Γ

Γ, A hil ` B hil
hyp

In this case we need to prove Γ ` A⊃B hil. We introduce the axiom
schema

` B⊃(A⊃B) hil (K)

and procceed as follows:

Γ ` B hil By hypothesis B hil ∈ Γ
Γ ` B⊃(A⊃B) hil By axiom (K) and weakening
Γ ` A⊃B hil By rule (mp)

Case:

Γ, A hil ` B⊃C hil Γ, A hil ` B hil

Γ, A hil ` C hil
mp

Γ ` A⊃(B⊃C) hil By i.h.
Γ ` A⊃B hil By i.h.

At this point we need to introduce the axiom schema

` (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C) hil (S)

Now we can complete the proof.
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L9.4 Combinatory Modal Logic

Γ ` (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C) hil By (S) and weakening
Γ ` (A⊃B)⊃(A⊃C) hil By rule (mp)
Γ ` A⊃C hil By rule (mp)

Now we have introduced several axiom schemas X , for each of which we
have Γ ` X hil. These also have to be covered in the proof.

Case:

Γ ` X hil
X

for an axiom X (either I , K, or S).

Γ ` X hil Axiom
Γ ` X ⊃(A⊃X) hil By axiom (K)
Γ ` A⊃X hil By rule (mp)

�

In summary, for the purely implicational fragment we obtain the de-
duction theorem with the following axioms:

` A⊃A hil (I)
` B⊃(A⊃B) hil (K)
` (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C) hil (S)

together with the single rule of modus ponens

` A⊃B hil ` A hil
` B hil

mp

From the deduction theorem it follows easily that we can translate natu-
ral deduction to Hilbert proofs. We write Γ̂ for the translation of judgments
A true to A hil.

Theorem 2 (From Natural Deduction to Hilbert Proofs) If Γ ` A true then
Γ̂ ` A hil.

Proof: By induction on the given natural deduction.

Case:

A true ∈ Γ
Γ ` A true

hyp
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Γ̂ ` A hil By hypothesis A hil ∈ Γ̂.

Case:

Γ, A1 true ` A2 true

Γ ` A1⊃A2 true
⊃I

Γ̂, A1 hil ` A2 hil By i.h.
Γ̂ ` A1⊃A2 hil By the deduction theorem (Theorem 1)

Case:

Γ ` B⊃A true Γ ` B true
Γ ` A true

⊃E

Γ̂ ` B⊃A hil By i.h.
Γ̂ ` B hil By i.h.
Γ̂ ` A hil By rule (mp)

�

Since deduction in a Hilbert-style system is usually not presented with
hypotheses, the following corollary is really the desired result.

Corollary 3 (Completeness of IKS) If ` A true then ` A hil.

Proof: From Theorem 2 by taking Γ = (·). �

We can also return to the translation from Hilbert proofs to natural de-
ductions which we postponed earlier.

Theorem 4 (From Hilbert Proofs to Natural Deductions) If ` A hil then `
A true.

Proof: By induction on the structure of the given deduction. We just show
the corresponding natural deduction proof term which can be unwound
into a proof.

Case: ` A⊃A hil (I).

` λx. x : A⊃A
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L9.6 Combinatory Modal Logic

Case: ` B⊃(A⊃B) hil (K).

` λx. λy. x : B⊃(A⊃B)

Case: ` (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C) (S).

` λx. λy. λz. (x z) (y z) : (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C)

Case:

` B⊃A hil ` B hil
` A hil

mp

` M : B⊃A By i.h.
` N : B By i.h.
` M N : A By rule ⊃E

�

5 Combinatory Reduction

In order to understand the computational meaning of Hilbert’s system, we
assign proof terms to the axioms and inference rules. We write `H M : A if
combinator term M represents a Hilbert proof of A.

`H S : (A⊃(B⊃C))⊃(A⊃B)⊃(A⊃C)
`H K : A⊃B⊃A

`H I : A⊃A

`H M : A⊃B `H N : A

`H M N : B
mp

From the translation of these into proof terms for natural deduction at
the end of the last section, we can derive reductions for terms built from
combinators. The idea is to supply enough arguments that the resut is no
longer a λ-abstraction. Recall that juxtaposition (representing ⊃E in natu-
ral deduction proof terms and modus ponens in combinator terms) is left-
associative. We write M̂ for the translation of a combinator into a natural
deduction proof term.
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Î = λx. x I x −→ x

K̂ = λx. λy. x K xy −→ x

Ŝ = λx. λy. λz. (x z) (y z) S x y z −→ (x z) (y z)

Here, x, y, and z on the right-hand side stand for combinator terms of
appropriate type. As an example, we consider z:A `H S K K z : A which
reduces to z:

S K K z −→ (K z) (K z)
−→ z

This means that S K K acts like I , both in terms of typing and in terms of
reduction. When the analogue of local expansion is considered, however,
the result is less clear, so I is often retained as a primitive combinator.

Combinatory reduction is interesting from the computational perspec-
tive because it does not involve substitution for a bound variable as a primi-
tive operation. It has therefore been considered as the basis for compilation,
especially for lazy functional languages, both using a fixed set of combina-
tors (such as S, K, I) or varying set of combinators defined by their own
rewrite rules. In either case, we need to compile functional programs to
combinator form, which is discussed in the next section.

6 Bracket Abstraction

As with all prior metatheoretic proofs in the constructive section of this
course, the proof of the deduction theorem is itself constructive. This means
it contains an algorithm for constructing a proof of Γ ` A⊃C hil given
a proof of Γ, A hil ` C hil. We can extract this algorithm and write is
out as an explicit translation on combinators terms. To express hypotheti-
cal Hilbert proofs we follow the standard approach for hypothetical judg-
ments, namely labeling assumptions with distinct variables and referring
to them as proof terms.

x:A ∈ Γ

Γ `H x : A
hyp

Now we can specify [x]M as the combinator term implementing the proof
of the deduction theorem:

If Γ, x:A `H M : C then Γ `H [x]M : A⊃C.
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L9.8 Combinatory Modal Logic

Keeping in mind the cases of the proof of the deduction theorem (Theo-
rem 1), we obtain the following:

[x]x = I
[x]y = K y for y 6= x
[x](M1 M2) = S ([x]M1) ([x]M2)
[x]X = K X where X = I , K, or S

We can combine the second and last case as follows:

[x]x = I
[x]M = K M for x not in M
[x](M1 M2) = S ([x]M1) ([x]M2)

This second version leads to significantly smaller combinator terms, when
compared to the first version which inserts applications of S for every sub-
term when translating [x]M , even if x does not occur in M at all. For a
more detailed analysis of the complexity of bracket abstraction, see Stat-
man [Sta86].

We can now easily extend bracket abstraction to compilation of func-
tional terms. We write M∗ for the compilation of a term Γ ` M : A. We will
have that Γ̂ `H M∗ : A. In particular, for a closed term with ` M : A we
obtain `H M∗ : A, which is a closed combinator term.

(λx.M)∗ = [x]M∗

(M1 M2)∗ = M∗
1 M∗

2

x∗ = x

7 Hilbert Deduction for Modal Logic

We now revisit the modal logic of necessity and possibility with the goal of
developing a complete axiom system. Before that, we have to add one new
rule of inference, the rule of necessity.

` A hil
` �A hil

nec

For hypothetical Hilbert proofs, we follow the same strategy as for natural
deduction: we allow hypotheses A hil and A hvalid, where the latter means
“valid in the sense of Hilbert”. We write ∆; Γ ` A hil. The necessity rule
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then becomes the rule on the left, and we also have an additional hypothe-
sis rule.

∆; • ` A hil

∆; Γ ` �A hil
nec

A hvalid ∈ ∆

∆; Γ ` A hil
vhyp

Anticipating the translation from natural deduction to Hilbert proofs, we
prove a generalized version of the deduction theorem. This proof will sug-
gest new axiom schemas to handle necessity and possibility.

Theorem 5 (Modal Deduction Theorem)

(i) If ∆; Γ, A hil ` C hil then ∆; Γ ` A⊃C hil.

(ii) If ∆, A hvalid; Γ ` C hil then ∆; Γ ` �A⊃C hil

Proof: By induction on the structure of the given deduction. Part (i) works
exactly as before, in the proof of Theorem 5. We show some cases of part
(ii) below; the other cases go as for part (i).

Case:

∆, A hvalid; Γ ` A hil
vhyp

In this case we need to show ∆; Γ ` �A⊃A hil. We introduce the
new axiom schema

` �A⊃A hil (T�)

from which the desired conclusion follows by weakening.

Case:

C hvalid ∈ ∆

∆, A hvalid; Γ ` C hil
vhyp

∆; Γ ` C hil By rule vhyp
∆; Γ ` C ⊃(�A⊃C) hil By axiom K
∆; Γ ` �A⊃C hil By modus ponens

Case:

∆, A hvalid; • ` C1 hil

∆, A hvalid; Γ ` �C1 hil
nec
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L9.10 Combinatory Modal Logic

∆; • ` �A⊃C1 hil By i.h.
∆; Γ ` �(�A⊃C1) hil By rule nec

At this point we need to introduce a new axiom schema

` �(�A⊃C)⊃(�A⊃�C) hil (K4�)

and continue with the proof

∆; Γ ` �A⊃�C1 hil By modus ponens

�

Because there are no special rules regarding possibility, we do not need
any special cases in the modal deduction theorem. However, we will need
appropriate axioms in order to translate natural deductions to Hilbert proofs.
We let this proof give us the remaining axioms. We extend the notation Γ̂
to valid hypotheses as before.

Theorem 6 (From Modal Natural Deduction to Hilbert Proofs)

1. If ∆; Γ ` A true then ∆̂; Γ̂ ` A hil.

2. If ∆; Γ ` A poss then ∆̂; Γ̂ ` ♦A hil.

Proof: By induction on the structure of the given deduction.

Case:

A true ∈ Γ
∆; Γ ` A true

hyp

∆̂; Γ̂ ` A hil By hypothesis A hil ∈ Γ̂

Case:

A valid ∈ ∆
∆; Γ ` A true

vhyp

∆̂; Γ̂ ` A hil By hypothesis A hvalid ∈ ∆̂.
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Case:

∆; • ` A1 true

∆; Γ ` �A1 true
�I

∆̂; • ` A1 hil By i.h.
∆̂; Γ̂ ` �A1 hil By rule nec

Case:

∆; Γ ` �B true ∆, B hvalid; Γ ` A true

∆; Γ ` A true
�E

∆̂, B hvalid; Γ̂ ` A hil By i.h.
∆̂; Γ̂ ` �B⊃A hil By the modal deduction theorem
∆̂; Γ̂ ` �B hil By i.h.
∆̂; Γ̂ ` A hil By modus ponens

Case:

∆; Γ ` �B true ∆, B hvalid; Γ ` A poss

∆; Γ ` A poss
�E

As in the previous case, with ♦A instead of A in the conclusion.

Case:

∆; Γ ` A poss

∆; Γ ` ♦A true
♦I

∆̂; Γ̂ ` ♦A hil By i.h.

Case:

∆; Γ ` A true

∆; Γ ` A poss
poss

Here we need a new axiom schema

` A⊃♦A hil (T♦)

∆̂; Γ̂ ` A hil By i.h.
∆̂; Γ̂ ` ♦A hil By modus ponens
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Case:

∆; Γ ` ♦B true ∆; •, B true ` A poss

∆; Γ ` A poss
♦E

∆̂; Γ̂ ` ♦B hil By i.h.(i)
∆̂; B hil ` ♦A hil By i.h.(ii)
∆̂; • ` B⊃♦A hil By the modal deduction theorem
∆̂; Γ̂ ` �(B⊃♦A) hil By rule nec

At this point we need a new axiom schema

` �(B⊃♦A)⊃(♦B⊃♦A) hil (K4♦)

and we can proceed with the proof

∆̂; Γ̂ ` ♦B⊃♦A hil By modus ponens
∆̂; Γ̂ ` ♦A hil By modus ponens

�

The Hilbert system that can be read off from these proofs is the follow-
ing.

Inference Rules.

` A⊃B hil ` A hil
` B hil

mp
` A hil
` �A hil

nec

Axioms. The names for the modal axioms below are not standard, al-
though derived from standard notation.

` A⊃A hil (I)
` A⊃B⊃A hil (K)
` (A⊃B⊃C)⊃(A⊃B)⊃(A⊃C) hil (S)

` �A⊃A hil (T�)
` �(�A⊃B)⊃(�A⊃�B) hil (K4�)

` A⊃♦A hil (T♦)
` �(A⊃♦B)⊃(♦A⊃♦B) hil (K4♦)
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Theorem 7 (From Hilbert Proofs to Modal Natural Deduction) If ` A hil
then ` A true

Proof: By straightforward induction, proving all the axiom schemas di-
rectly via natural deduction. �

The usual presentation uses the same inference rules, but a slightly dif-
ferent set of axioms. Specifically, we replace

` �(�A⊃B)⊃(�A⊃�B) hil (K4�)

` �(A⊃♦B)⊃(♦A⊃♦B) hil (K4♦)

by

` �(A⊃B)⊃(�A⊃�B) hil (K�)
` �A⊃��A hil (4�)

` �(A⊃B)⊃(♦A⊃♦B) hil (K♦)
` ♦♦A⊃♦A hil (4♦)

It is easy to see that K� and 4� implies K4�, and that K♦ and 4♦ im-
plies K4♦, which means these for axioms are also complete with respect
to modal natural deduction. We have proven them in an earlier lecture, so
they are also sound. See also Exercise 5.

8 Modal Combinators

This section is is speculative in the sense that no theorems relating
combinatory reduction and λ-calculus reduction have been checked.

We now extend the proof term assignment from earlier, using the more
familiar second set of axioms.

Inference Rules.

`H M : A⊃B `H N : A

`H M N : B
mp

`H M : A

`H ‘M ’ : �A
nec
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Axioms. The names for the modal axioms below are not standard, but de-
rived from standard names. For example, Simpson [Sim94] calls (�A⊃A)∧
(A⊃♦A) the axiom T ; we name the first conjunct T� and the second con-
junct T♦. Note that K� and K♦ do not have anything to do with the usual
K combinator of intuitionistic combinatory logic, but with the axiom K of
modal logic.

`H I : A⊃A

`H K : A⊃B⊃A

`H S : (A⊃B⊃C)⊃(A⊃B)⊃(A⊃C)

`H T� : �A⊃A

`H K� : �(A⊃B)⊃(�A⊃�B)
`H 4� : �A⊃��A

`H T♦ : A⊃♦A

`H K♦ : �(A⊃B)⊃(♦A⊃♦B)
`H 4♦ : ♦♦A⊃♦A

The reductions:

I x −→ x
K x y −→ x
S x y z −→ (x z) (y z)

T� ‘u’ −→ u

K� ‘u’ ‘w’ −→ ‘u w’
4� ‘u’ −→ ‘ ‘u’ ’

K♦ ‘u’ (T♦ x) −→ T♦ (u x)
4♦ (T♦ (T♦ x)) −→ T♦ x

Bracket abstraction:

(i) If ∆; Γ, x:A `H M : C then ∆; Γ `H [x]M : A⊃C.

(ii) If ∆, u:A; Γ `H M : C then ∆; Γ `H [[u]]M : �A⊃C.
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[x]x = I
[x]M = K M if x 6∈ M
[x](M N) = S ([x]M) ([x]N)
[x]‘M ’ = K ‘M ’

[[u]]u = T�

[[u]]M = K M for u 6∈ M
[[u]](M N) = S ([[u]]M) ([[u]]N)
[[u]]‘M ’ = K4� (‘[[u]]M ’)

Observe that the case for [x]‘M ’ is actually redundant with the second case,
because x may not occur in M .

Translation from natural deduction:

(i) If ∆; Γ ` M : A then ∆; Γ `H M∗ : A.

(ii) If ∆; Γ ` E ÷A then ∆; Γ `H E+ : ♦A.

(x)∗ = x
(M N)∗ = (M∗) (N∗)
(λx.M)∗ = [x]M∗

(u)∗ = u
(box M)∗ = ‘(M∗)’
(let box u = M in N)∗ = ([[u]]N∗) M∗

(dia E)∗ = E+

(let dia x = M in F )+ = K4♦ ‘[x]F+’ M∗

(let box u = M in F )+ = ([[u]]F+) M∗

(M)+ = T♦ M∗
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Exercises

Exercise 1 Add conjunction A∧B and truth> to the development of this lecture.

(i) Add appropriate axioms to intuitionistic modal logic.

(ii) Extend the deduction theorem (Theorem 5), showing the new cases.

(iii) Extend the translation from natural deduction to Hilbert proofs (Theorem 6),
showing the new cases.

(iv) Extend the translation from Hilbert proofs to natural deductions by giving
proof terms for the new axioms.

(v) Name the new axioms schemas as combinators and give appropriate reduc-
tions.

(vi) Show the new cases in bracket abstraction [x]M and [[x]]M .

(vii) Show the new cases in the definition of M∗ and E+.

Exercise 2 Add disjunction A ∨ B and falsehood ⊥ to the development of this
lecture as in Exercise 1.

Exercise 3 Give reduction rules directly for K4� and K4♦.

Exercise 4 Assume we have a closed term ` M : A so that `H M∗ : A. How do
reductions in M relate to combinatory reductions in M∗?

(i) State and proof some form of correspondence for the non-modal intuitionistic
case.

(ii) Generalize the correspondence to the modal case. You may use the reductions
you devise in Exercise 3 if appropriate.

Exercise 5 You may carry out this exercise using Hilbert proofs or combinators.
Please note any other axioms or combinators you need besides those mentioned.

(i) Prove that K� and 4� together can prove K4� and vice versa.

(ii) Prove that K♦ and 4♦ together can prove to K4♦ and vice versa.
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