
Graduate Artificial Intelligence 15-780

Homework 2: Tree Search and SAT solving

\

Out on February 1
Due on February 15



Homework 2 Graduate Artificial Intelligence 15-780

Problem 1: Proving with InstGen

Consider the following formula:

F = (∀x,P (x)∨Q(x))∧ (¬P (a)∨¬P (b)) (1)

Prove that F ⇒ ∃x,Q(x) using the InstGen algorithm given in class (pp. 38-47 in the slides for January 18th).

For each iteration {0, . . . ,n}, please provide:

• The first-order formula Gi ;

• The propositionalized formula G (Gr )
i ;

• A propositional model M (Gr ) for G (Gr )
i ;

• The lifted model M for Gi ;

• The set of discordant pairs;

• An application of InstGen on one of those discordant pairs that leads to Gi+1

Discuss how you formed G0, and why you are using it to prove F ⇒ ∃x,Q(x). For the final iteration n report

which of the algorithm’s termination conditions you hit.

We found a proof that took 4 applications of InstGen, but your proof may be longer. The propositional formulas

G (Gr )
i should be simple enough to find models by hand.

Problem 2: Build-A-SAT-Solver Workshop

In this problem you need to build a boolean satisfiability solver that takes a set of variables and constraints in con-

junctive normal form (CNF) and returns either a satisfying assignment or determines that no satisfying assignment

is possible.

In particular, we are asking you to implement the DPLL algorithm—it is the basis for some of the world’s fastest

SAT solvers. Even though SAT is an N P-complete problem DPLL typically has good empirical performance.

The input will be provided in a simplified DIMACS CNF format (see, for example,

http://www.satcompetition.org/2009/format-benchmarks2009.html):

• Each line that starts with a ‘c’ is a comment;

• The first non-comment line must be of the form: ‘p cnf 〈numOfVariables〉 〈numOfClauses〉;
• All other lines are space delimited lists of literals with a positive value indicating the variable and a negative

value indicating its negation. For example, the number ‘-4’ represents ¬x4. Each line is terminated by a ‘0’.

(Note: because of this don’t call any variable x0. Not only is this symbol reserved, but also 0 =−0.)

For example, the formula (x1 ∨¬x2)∧ (¬x1 ∨x2 ∨¬x3) can be represented as:

c Some made-up problem
p cnf 3 2
1 -2 0
-1 2 -3 0

The solution should be a space delimited two column file with a row per variable. Each row should have the

format va, where v is the variable number and a is either 0 or 1 (false or true). For example, a solution file for the

above problem might look like:

1 0
2 0
3 0

In this solution, each variable was set to false.

Some test SAT problems can be found on the homework page. You can use the provided Python model verifier

to check your solutions. Feel free to compare against minisat (http://minisat.se/) or any other existing solver.

Just make sure that you hand in your own code.

Page 1 of 3



Homework 2 Graduate Artificial Intelligence 15-780

In your implementation of DPLL, consider including the following features:

• Unit propagation;

• Variable ordering heuristics;

• Value ordering heuristics;

• Handling special cases (e.g. Horn clauses)

Please do not include clause learning or or conflict-directed backjumping at this stage of your code. The solver

that you build here will be extended in the next problem set. Design your SAT solver with this in mind—make sure

that your implementation is robust and easily extensible.

We will not specify what language you should use, but you must provide two scripts to ease automated grading:

• build.sh, a script that builds your project. For C++ this may be a bunch of g++ calls, or a single make call. For

a scripting language like Python this might be an empty file or a pleasant echo message for the grader.

• run.sh, a script that takes in a single DIMACS CNF formatted file as input and prints either a solution or

"UNSAT".

In particular, your scripts should hook into a grading script that looks like:

${DIR}/build.sh
${DIR}/run.sh file1.cnf > ${DIR}/run_1.out
${DIR}/run.sh file2.cnf > ${DIR}/run_2.out
...

How you will be graded:
You must provide the following files:

• The commented code for your solver;

• Both build.sh and run.sh.

Do not include any binaries.

If your scripts do not conform to our naming standards, your code does not compile, or your code is a wrapper

to an external SAT solver, the grader will be unhappy and mark accordingly. If the grader is in a good mood, they

might provide limited ‘run-time’ debugging, but do not count on it. Well commented code is always appreciated

and is known to put graders in a good mood.

Your code will be first run against the provided test examples, then run against a reserved set of CNF problems.

You will get full marks if your solver provides either a satisfying assignment or correctly identifies a formula as

UNSAT within two minutes. (This is a generous cut-off and is per run.) Bonus marks will be awarded to the top

three fastest solvers for each problem instance in the reserved set.

Code hand-in instructions will be sent out soon via email.

Problem 3: Getting Empirical On Your SAT

Write a random 3S AT generator. This generator should pass in two numbers: c and n. Given these numbers the

generator should generate c clauses and write the result in the DIMACS format described in Problem 2. Each clause

should have three literals selected uniformly from all possible literals of n variables. (recall that there are 2n literals

if there are n variables).

Generate 25 different random 3S AT instances for n = 25 and c = {75,85, . . . ,175}. Generate a further 25 different

random 3S AT instances for n = 50 and c = {150,170, . . . ,350}. This is a total of 550 problem instances—start these

experiments early. Run your SAT solver from Problem 2 on each instance, and record the time that it takes to solve

it and whether it was satisfiable or not.

Page 2 of 3



Homework 2 Graduate Artificial Intelligence 15-780

a) Plot the probability of S AT vs. the ratio c
n for both n = 25 and n = 50 (separately; do not aggregate them).

What do you notice? Can you explain this behavior?

b) Plot a box-and-whiskers graph (see, for example, Matlab’s boxplot(X) command) for the runtime of your

solver vs. the ratio c
n for both n = 25 and n = 50 (separately; do not aggregate them). What do you notice?

Can you explain this behavior?

Problem 4: Randomized Solvers

Modify your solver from Problem 2 to branch randomly—branch by selecting a variable uniformly from the set of

remaining variables (not branched on; not unit-propagated). Please copy/backup/branch your old solver first. Do

not hand this version in as your answer for Problem 2 unless this is the fastest solver that you have found. You can

also use a flag in the command line to change your solver’s branching heuristic, but make sure that your run.sh
file in Problem 2 has the correct flag set.

We will call your solver from Problem 2 SG and this randomized solver SR .

a) Forproblem10.cnf in the provided files, run SR your random solver at least 25 times and plot the cumulative

distribution function (CDF) of the runtimes. (More runs yield a smoother plot.) You can, for example, use

the cdfplot(X) command in Matlab.

b) Suppose that you have run your SR on a particular problem instance many times. After plotting the CDF (as

above) you notice that the CDF function of your solver’s runtime looks almost exactly like

F (x) = 1− 1

x +1
, (2)

where F (x) is the probability that the run took less than x seconds to complete. (Your CDF plot from part (a)

will not necessarily look like this plot.)

How can you use this empirical observation to speed up your solver? Propose a modification to SR , and

simulate this modified solver’s runtime using the idealized CDF given in Eq 2. I.e., write a program to sample

from the distribution of runtimes for this modified solver, and plot the resulting CDF.

c) Is SG better or worse than SR on problem10.cnf in the provided files? Think of at least three ways to com-

pare the performance of two potentially random algorithms. What are the benefits and drawbacks of each

method of comparison?

Page 3 of 3


