
15-780: Graduate AI

Lecture 1. Logic

Geoff Gordon (this lecture)

Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

1



Logic

2



Why logic?

Search: can compactly write down, solve 

problems like Sudoku

Reasoning: figure out consequences of the 

knowledge we’ve given our agent

… and, logical inference is a special case 

of probabilistic inference
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Propositional logic

Constants: T or F

Variables: x, y (values T or F)

Connectives: !, ", ¬

Can get by w/ just NAND

Sometimes also add others: 

#, $, %, …

George Boole

1815–1864
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Propositional logic

Build up expressions like ¬x $ y

Precedence: ¬, !, ", $

Terminology: variable or constant with or 

w/o negation = literal

Whole thing = formula or sentence
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Expressive variable names

Rather than variable names like x, y, may 

use names like “rains” or “happy(John)”

For now, “happy(John)” is just a string 

with no internal structure

there is no “John”

happy(John) $ ¬happy(Jack) means 

the same as x $ ¬y
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But what does it mean?

A formula defines a mapping

(assignment to variables) ! {T, F}

Assignment to variables = model

For example, formula ¬x yields mapping:

x ¬x

T F

F T
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More truth tables

x y x ! y

T T T

T F F

F T F

F F F

x y x " y

T T T

T F T

F T T

F F F
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Truth table for implication

(a $ b) is logically equivalent 

to (¬a " b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will 

have popcorn”: if no movie, 

may or may not have popcorn

a b a $ b

T T T

T F F

F T T

F F T
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Complex formulas

To evaluate a bigger formula

(x " y) ! (x " ¬y) when x = F, y = F

Build a parse tree

Fill in variables at 

leaves using model

Work upwards using 

truth tables for 

connectives

10



Another example

(x " y) $ z x = F, y = T, z = F
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Questions about models and 

sentences

How many models make a sentence true?

Sentence is satisfiable if true in some 

model (famous NP-complete problem)

If not satisfiable, it is a contradiction 

(false in every model)

A sentence is valid if it is true in every 

model (called a tautology)
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How is the variable X set in {some, all} 

satisfying models?

This is the most frequent question an agent 

would ask: given my assumptions, can I 

conclude X?  Can I rule X out?

SAT answers all the above questions

Questions about models and 

sentences
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Bigger 

Examples
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3-coloring
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http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Sudoku
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Constraint satisfaction problems

Like SAT, but:

variable domains are arbitrary (vs. TF)

complex constraints (vs. a " b " ¬c)

Sudoku: “at most one 3 in row 5”

Can translate SAT % CSP

often CSP more compact
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Minesweeper
“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid 
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP 
to find a unique set of labelings. Important step to 
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small 

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of 
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT :  Constra int Propagat ion a lways works perfec t ly .

+

+

+

++

+

+

+

++

-

-
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-

-
--

-

-

image courtesy Andrew Moore
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Propositional planning

init: have(cake)

goal: have(cake), eaten(cake)

eat(cake):

! pre: have(cake)

! eff: -have(cake), eaten(cake)

bake(cake):

! pre: -have(cake)

! eff: have(cake)
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Scheduling (e.g., of factory production)

Facility location

Circuit layout

Multi-robot planning

Other important logic problems
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1 1 1

1 1 1 1 1 1 1 1 1

Minesweeper: what if no safe move?

Say each mine initially present w/ prob p

Common situation: independent “Nature” 

choices, deterministic rules thereafter

Logic represents deterministic rules $ use 

logical reasoning as subroutine

Handling uncertainty
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Working with 

formulas
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Truth tables get big fast

x y z (x " y) $ z

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F
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Truth tables get big fast

x y z a (x " y " a) $ z

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F T

T T T F

T T F F

T F T F

T F F F

F T T F

F T F F

F F T F

F F F F
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Definitions

Two sentences are equivalent, A ' B, if 

they have same truth value in every model

(rains $ pours) ' (¬rains " pours)

reflexive, transitive, symmetric

Simplifying = transforming a formula into 

a simpler, equivalent formula
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Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

", #, $ are arbitrary formulas
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More rules

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

", # are arbitrary formulas
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Still more rules…

… can be derived from truth tables

For example:

(a " ¬a) ' True

(True " a) ' True  (T elim)

(False ! a) ' False  (F elim)
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Example

(a " ¬b) ! (a " ¬c) ! (¬(b " c) " ¬a)
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Normal 

Forms
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Normal forms

A normal form is a standard way of 

writing a formula

E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals

(x " y " ¬z) ! (x " ¬y) ! (z)

Each disjunct called a clause

Any formula can be transformed into CNF 

w/o changing meaning
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CNF cont’d

Often used for storage of knowledge database

called knowledge base or KB

Can add new clauses as we find them out

Each clause in KB is separately true (if KB is)

happy(John) ! 

(¬happy(Bill) " happy(Sue)) !

man(Socrates) !

(¬man(Socrates) " mortal(Socrates))
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Another normal form: DNF

DNF = disjunctive normal form = 

disjunction of conjunctions of literals

Doesn’t compose the way CNF does: can’t 

just add new conjuncts w/o changing 

meaning of KB

(rains " pours) ! (¬pours $ fishing)
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Transforming to CNF or DNF

Naive algorithm:

replace all connectives with !"¬

move negations inward using De 

Morgan’s laws and double-negation

repeatedly distribute over ! over " for 

DNF (" over ! for CNF)
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Example

Put in CNF:

(a " ¬c) ! ¬(a ! b ! d ! ¬e)
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Discussion

Problem with naive algorithm: it’s 

exponential!  (Space, time, size of result.)

Each use of distributivity can almost 

double the size of a subformula
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A smarter transformation

Can we avoid exponential blowup in 

CNF?

Yes, if we’re willing to introduce new 

variables

G. Tseitin.% On the complexity of 

derivation in propositional calculus.% 
Studies in Constrained Mathematics and 

Mathematical Logic, 1968.
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Tseitin example

Put the following formula in CNF:

(a ! b) " ((c " d) ! e)

Parse tree:
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Tseitin transformation

Introduce temporary variables

x = (a ! b)

y = (c " d)

z = (y ! e)
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Tseitin transformation

To ensure x = (a ! b), want

x $ (a ! b)

(a ! b) $ x
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Tseitin transformation

x $ (a ! b)

(¬x " (a ! b))

(¬x " a) ! (¬x " b)
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Tseitin transformation

(a ! b) $ x

(¬(a ! b) " x)

(¬a " ¬b " x)
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Tseitin transformation

To ensure y = (c " d), want

y $ (c " d)

(c " d) $ y
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Tseitin transformation

y $ (c " d)

(¬y " c " d)

(c " d) $ y

((¬c ! ¬d) " y) 

(¬c " y) ! (¬d " y)
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Tseitin transformation

Finally, z = (y ! e)

z $ (y ! e)  '  (¬z " y) ! (¬z " e)

(y ! e) $ z  '  (¬y " ¬e " z)
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Tseitin end result

(a ! b) " ((c " d) ! e)  '

(¬x " a) ! (¬x " b) ! (¬a " ¬b " x) !

(¬y " c " d) ! (¬c " y) ! (¬d " y) !

(¬z " y) ! (¬z " e) ! (¬y " ¬e " z) !

(x " z)
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Compositional 

Semantics
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Semantics

Recall: meaning of a formula is a function

models ! {T, F}

Why this choice?  So that meanings are 

compositional

Write ["] for meaning of formula "

[" ! #](M) = ["](M) ! [#](M)

Similarly for ", ¬, etc.
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Proofs
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Entailment

Sentence A entails sentence B, A " B, if B 

is true in every model where A is

same as saying that (A $ B) is valid
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Proof tree

A tree with a formula at each node

At each internal node, children " parent

Leaves: assumptions or premises

Root: consequence

If we believe assumptions, we should also 

believe consequence
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Proof tree example
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Proof by contradiction

Assume opposite of what we want to 

prove, show it leads to a contradiction 

Suppose we want to show KB " S

Write KB’ for (KB ! ¬S)

Build a proof tree with

assumptions drawn from clauses of KB’

conclusion = F

so, (KB ! ¬S) " F (contradiction)
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Proof by contradiction
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Proof by contradiction
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