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Admin

Recitations: Fri. 3PM here (GHC 4307)

Vote: useful to have one tomorrow?

would cover propositional & FO logic

Draft schedule of due dates up on web

subject to change with notice
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Course email list

15780students AT cs.cmu.edu

Everyone’s official email should be in the 

list—we’ve sent a test message, so if you 

didn’t get it, let us know
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Review
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What is AI?

Lots of examples: poker, driving robots, 

flying birds, RoboCup

Things that are easy for humans/animals 

to do, but no obvious algorithm

Search / optimization / summation

Handling uncertainty

Sequential decisions
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Propositional logic

Syntax

variables, constants, operators

literals, clauses, sentences

Semantics (model ! {T, F})

Truth tables, how to evaluate formulas

Satisfiable, valid, contradiction

Relationship to CSPs
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Propositional logic

Manipulating formulas (e.g., de Morgan)

Normal forms (e.g., CNF)

Tseitin transformation to CNF

Handling uncertainty (independent Nature 

choices + logical consequences)

Compositional semantics

How to translate informally-specified 

problems into logic (e.g., 3-coloring)

7



NP
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Satisfiability

SAT: determine whether a propositional 

logic sentence has a satisfying model

A decision problem: instance ! yes or no

Fundamental problem in CS

many decision problems reduce to SAT

informally, if we can solve SAT, we can 

solve these other problems

A SAT solver is a good AI building block

9



Example decision problem

k-coloring: can we color a map using only 

k colors in a way that keeps neighboring 

regions from being the same color?
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Reduction

Loosely, “A reduces to B” means that if 

we can solve B then we can solve A

Formally, let A, B be decision problems 

(instances ! Y or N)

A reduction is a poly-time function f such 

that, given an instance a of A

f(a) is an instance of B, and 

A(a) = B(f(a))
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Reduction picture
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Reduction picture
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Reduction picture
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Reducing k-coloring ! SAT

(ar " ag " ab) # (br " bg " bb) # (cr " cg " cb) #

(dr " dg " db) # (er " eg " eb) # (zr " zg " zb) #

(¬ar " ¬br) # (¬ag " ¬bg) # (¬ab " ¬bb) #

(¬ar " ¬zr) # (¬ag " ¬zg) # (¬ab " ¬zb) #

…
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Direction of 

reduction

When A reduces to B:

if we can solve B, we can solve A

so B must be at least as hard as A

Trivially, can take an easy problem and 

reduce it to a hard one
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Not-so-useful reduction

Path planning reduces to SAT

Variables: is edge e in path?

Constraints:

exactly 1 path-edge touches start

exactly 1 path-edge touches goal

either 0 or 2 touch each other node
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More useful: SAT ! CNF-SAT

Given any propositional formula, Tseitin 

transformation produces (in poly time) an 

equivalent CNF formula

So, given a CNF-SAT solver, we can solve 

SAT with general formulas
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More useful: CNF-SAT ! 3SAT

Can reduce even further, to 3SAT

is 3CNF formula satisfiable?

3CNF: at most 3 literals per clause

Useful if reducing SAT/3SAT to another 

problem (to show other problem hard)
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CNF-SAT ! 3SAT

Must get rid of long clauses

E.g., (a " ¬b " c " d " e " ¬f)

Replace with

(a " ¬b " x) # (¬x " c " y) # 

(¬y " d " z) # (¬z " e " ¬f)
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NP

A decision problem is in NP if it reduces to 

SAT

E.g., TSP, k-coloring, propositional 

planning, integer programming (decision 

versions)

E.g., path planning, solving linear 

equations
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NP-complete

Many decision problems reduce back and 

forth to SAT: they are NP-complete

Cook showed how to simulate any poly-

time nondeterministic computation w/ 

(very complicated, but still poly-size) 

SAT problem

Equivalently, SAT is exactly as hard (in 

theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures, 
Proceedings of ACM STOC'71, pp. 151-158, 1971.

22



Open question: P = NP

P = there is a poly-time algorithm to solve

NP = reduces to SAT

We know of no poly-time algorithm for 

SAT, but we also can’t prove that SAT 

requires more than about linear time!
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Cost of reduction

Complexity theorists often ignore little 

things like constant factors (or even 

polynomial factors!)

So, is it a good idea to reduce your 

decision problem to SAT?

Answer: sometimes…
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Cost of reduction

SAT is well studied $ fast solvers

So, if there is an efficient reduction, ability 

to use fast SAT solvers can be a win

e.g., 3-coloring

another example later (SATplan)

Other times, cost of reduction is too high

usu. because instance gets bigger

will also see example later (MILP)
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Choosing a reduction

May be many reductions from problem A 

to problem B

May have wildly different properties

e.g., solving transformed instance may 

take seconds vs. days
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Proofs
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Entailment

Sentence A entails sentence B, A " B, if B 

is true in every model where A is

same as saying that (A $ B) is valid
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Proof tree

A tree with a formula at each node

At each internal node, children " parent

Leaves: assumptions or premises

Root: consequence

If we believe assumptions, we should also 

believe consequence
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Proof tree example
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Proof by contradiction

Assume opposite of what we want to 

prove, show it leads to a contradiction 

Suppose we want to show KB " S

Write KB’ for (KB # ¬S)

Build a proof tree with

assumptions drawn from clauses of KB’

conclusion = F

so, (KB # ¬S) " F (contradiction)
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Proof by contradiction
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Proof by contradiction
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Inference 

rules
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Inference rule

To make a proof tree, we need to be able to 

figure out new formulas entailed by KB

Method for finding entailed formulas = 

inference rule

We’ve implicitly been using one already
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Modus ponens

Probably most famous inference rule: all 

men are mortal, Socrates is a man, 

therefore Socrates is mortal

Quantifier-free version: 

man(Socrates) # 

(man(Socrates) $ mortal(Socrates))

d

(a # b # c $ d)  a  b  c
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Another inference rule

Modus tollens

If it’s raining the grass is wet; the grass is 

not wet, so it’s not raining

¬a

(a $ b)  ¬b
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One more…

Resolution

!, " are arbitrary subformulas

Combines two formulas that contain a 

literal and its negation

Not as commonly known as modus 

ponens / tollens

(! " c)    (¬c " ")

! " "

38



Resolution example

Modus ponens / tollens are special cases

Modus tollens:

(¬raining " grass-wet) # ¬grass-wet  " 

¬raining
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Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?
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Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?

¬rains " pours

¬pours " ¬outside " rusty
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Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?

¬rains " pours

¬pours " ¬outside " rusty

¬rains " ¬outside " rusty

40



Resolution

Simple proof by case analysis

Consider separately cases where we 

assign c = True and c = False

(! " c)    (¬c " ")

! " "
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Resolution case analysis

(! " c)     (¬c " ")
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Soundness and completeness

An inference procedure is sound if it can 

only conclude things entailed by KB

common sense; haven’t discussed 

anything unsound

A procedure is complete if it can conclude 

everything entailed by KB

43



Completeness

Modus ponens by itself is incomplete

Resolution + proof by contradiction is 

complete for propositional formulas 

represented as sets of clauses

famous theorem due to Robinson

if KB " F, we’ll derive empty clause

Caveat: also need factoring, removal of 

redundant literals (a " b " a) " (a " b)

J. A. Robinson

1918–1974
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Algorithms

We now have our first* algorithm for SAT

remove redundant literals (factor) 

wherever possible

pick an application of resolution 

according to some fair rule

add its consequence to KB

repeat

Not a great algorithm, but works
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Variations

Horn clause inference

MAXSAT

Nonmonotonic logic
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Horn clauses

Horn clause: (a # b # c $ d)

Equivalently, (¬a " ¬b " ¬c " d)

Disjunction of literals, at most one of 

which is positive

Positive literal = head, rest = body
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Use of Horn clauses

People find it easy to write Horn clauses 

(listing out conditions under which we can 

conclude head)

happy(John) # happy(Mary) $ 

happy(Sue)

No negative literals in above formula; 

again, easier to think about
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Why are Horn clauses important

Modus ponens alone is complete

So is modus tollens alone

Inference in a KB of propositional Horn 

clauses is linear

e.g., by forward chaining
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Forward chaining

Look for a clause with all body literals 

satisfied

Add its head to KB (modus ponens)

Repeat

See RN for more details
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MAXSAT

Given a CNF formula C1 # C2 # … # Cn

Clause weights w1, w2, … wn (weighted 

version) or wi = 1 (unweighted)

Find model which satisfies clauses of 

maximum total weight

decision version: max weight # w?

More generally, weights on variables 

(bonus for setting to T): MAXVARSAT
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Nonmonotonic logic

Suppose we believe all birds can fly

Might add a set of sentences to KB

bird(Polly) $ flies(Polly) 

bird(Tweety) $ flies(Tweety)

bird(Tux) $ flies(Tux)

bird(John) $ flies(John)

…
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Nonmonotonic logic

Fails if there are penguins in the KB

Fix: instead, add

bird(Polly) # ¬ab(Polly) $ flies(Polly) 

bird(Tux) # ¬ab(Tux) $ flies(Tux)

…

ab(Tux) is an “abnormality predicate”

Need separate abi(x) for each type of rule
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Nonmonotonic logic

Now set as few abnormality predicates as 

possible (a MAXVARSAT problem)

Can prove flies(Polly) or flies(Tux) with no 

ab(x) assumptions

If we assert ¬flies(Tux), must now assume 

ab(Tux) to maintain consistency

Can’t prove flies(Tux) any more, but can 

still prove flies(Polly)
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Nonmonotonic logic

Works well as long as we don’t have to 

choose between big sets of abnormalities

is it better to have 3 flightless birds or 5 

professors that don’t wear jackets with 

elbow-patches?

even worse with nested abnormalities: 

birds fly, but penguins don’t, but 

superhero penguins do, but …
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First-order 

logic
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First-order logic

So far we’ve been using opaque

vars like rains or happy(John)

Limits us to statements like “it’s raining” or 

“if John is happy then Mary is happy”

Can’t say “all men are mortal” or “if John 

is happy then someone else is happy too”

Bertrand Russell

1872-1970
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Predicates and objects

Interpret happy(John) or likes(Joe, pizza) 

as a predicate applied to some objects

Object = an object in the world

Predicate = boolean-valued function of 

objects

Zero-argument predicate x() plays same 

role that Boolean variable x did before
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Distinguished predicates

We will assume three distinguished 

predicates with fixed meanings:

True / T, False / F

Equal(x, y)

We will also write (x = y) and (x $ y)

59



Equality satisfies usual axioms

Reflexive, transitive, symmetric

Substituting equal objects doesn’t change 

value of expression

(John = Jonathan) # loves(Mary, John) 

$ loves(Mary, Jonathan)
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Functions

Functions map zero or more objects to 

another object

e.g., professor(15-780), last-common-

ancestor(John, Mary)

Zero-argument function is the same as an 

object—John v. John()
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The nil object

Functions are untyped: must have a value 

for any set of arguments

Typically add a nil object to use as value 

when other answers don’t make sense
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Types of values

Expressions in propositional logic could 

only have Boolean (T/F) values

Now we have two types of expressions: 

object-valued and Boolean-valued

done(slides(15-780)) $ 

happy(professor(15-780))

Functions map objects to objects; 

predicates map objects to Booleans; 

connectives map Booleans to Booleans
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Definitions

Term = expression referring to an object

John

left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects

happy(John)

raining

at(robot, Wean-5409, 11AM-Wed)
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Definitions

Literal = possibly-negated atom

happy(John), ¬happy(John)

Sentence or formula = literals joined by 

connectives like #"¬$

raining

done(slides(780)) $ happy(professor)

Expression = term or formula
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Semantics

Models are now much more complicated

List of objects (nonempty, may be infinite)

Lookup table for each function mentioned

Lookup table for each predicate 

mentioned

Meaning of sentence: model ! {T, F}

Meaning of term: model ! object
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For example
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KB describing example

alive(cat)

ear-of(cat) = ear

in(cat, box) # in(ear, box)

¬in(box, cat) # ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil

cat $ box # cat $ ear # cat $ nil …
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Aside: avoiding verbosity

Closed-world assumption: literals not 

assigned a value in KB are false

avoid stating ¬in(box, cat), etc.

Unique names assumption: objects with 

separate names are separate

avoid box $ cat, cat $ ear, …

69



Aside: typed variables

KB also illustrates need for data types

Don’t want to have to specify ear-of(box) 

or ¬in(cat, nil) 

Could design a type system

argument of happy() is of type animate

Include rules saying function instances 

which disobey type rules have value nil
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Model of example

Objects: C, B, E, N

Function values:

cat: C, box: B, ear: E, nil: N

ear-of(C): E, ear-of(B): N, ear-of(E): N, 

ear-of(N): N

Predicate values:

in(C, B), ¬in(C, C), ¬in(C, N), …
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Failed model

Objects: C, E, N

Fails because there’s no way to satisfy 

inequality constraints with only 3 objects
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Another possible model

Objects: C, B, E, N, X

Extra object X could have arbitrary 

properties since it’s not mentioned in KB

E.g., X could be its own ear
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An embarrassment of models

In general, can be infinitely many models

unless KB limits number somehow

Job of KB is to rule out models that don’t 

match our idea of the world

Saw how to rule out CEN model 

Can we rule out CBENX model?
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Getting rid of extra objects

Can use quantifiers to rule out CBENX 

model:

%x. x = cat " x = box " x = ear " x = nil

Called a domain closure assumption
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Quantifiers, informally

Add quantifiers and object variables

%x. man(x) $ mortal(x)

¬&x. lunch(x) # free(x)

%: no matter how we replace object 

variables with objects, formula is still true

&: there is some way to fill in object 

variables to make formula true
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New syntax

Object variables are terms

Build atoms from variables x, y, … as well as 

constants John, Fred, …

man(x), loves(John, z), mortal(brother(y))

Build formulas from these atoms

man(x) # mortal(brother(x))

New syntactic construct: term or formula w/ 

free variables
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New syntax # new semantics

Variable assignment for a model M maps 

syntactic variables to model objects

x: C, y: N

Meaning of expression w/ free vars: look up 

in assignment, then continue as before

term: (model, var asst) ! object

formula: (model, var asst) ! truth value
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Example

Model: CEBN model from above

Assignment: (x: C, y: N)

alive(ear(x)) ! alive(ear(C)) ! alive(E) ! T
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Working with assignments

Write % for an arbitrary assignment (e.g., 

all variables map to nil)

Write (V / x: obj) for the assignment which 

is just like V except that variable x maps to 

object obj
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More new syntax: 

Quantifiers, binding

For any variable x and formula F, (%x. F) 

and (&x. F) are formulas

Adding quantifier for x is called binding x

In (%x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical 

operations like #"¬ in any order

But must eventually wind up with ground 

formula (no free variables)
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Semantics of %

Sentence (%x. S) is T in (M, V) if S is T in 

(M, V / x: obj) for all objects obj in M
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Example

M has objects (A, B, C) and predicate 

happy(x) which is true for A, B, C

Sentence %x. happy(x) is satisfied in (M, %)

since happy(A), happy(B), happy(C) are 

all satisfied in M

more precisely, happy(x) is satisfied in 

(M, %/x:A), (M, %/x:B), (M, %/x:C)
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Semantics of &

Sentence (&x. S) is true in (M, V) if there is 

some object obj in M such that S is true in 

(M, V / x: obj)
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Example

M has objects (A, B, C) and predicate

happy(A) = happy(B) = True

happy(C) = False

Sentence &x. happy(x) is satisfied in (M, %)

Since happy(x) is satisfied in (M, %/x:B)
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Scoping rules (so we don’t have 

to write a gazillion parens)

In (%x. F) and (&x. F), F = scope = part of 

formula where quantifier applies

Variable x is bound by innermost possible 

quantifier (matching name, in scope)

Two variables in different scopes can have 

same name—they are still different vars

Quantification has lowest precedence
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Scoping examples

(%x. happy(x)) " (&x. ¬happy(x))

Either everyone’s happy, or someone’s 

unhappy

%x. (raining # outside(x) $ (&x. wet(x)))

The x who is outside may not be the one 

who is wet
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Scoping examples

English sentence “everybody loves 

somebody” is ambiguous

Translates to logical sentences

%x. &y. loves(x, y)

&y. %x. loves(x, y)
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Equivalence 

in FOL
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Entailment, etc.

As before, entailment, satisfiability, validity, 

equivalence, etc. refer to all possible models

these words only apply to ground sentences, 

so variable assignment doesn’t matter

But now, can’t determine by enumerating 

models, since there could be infinitely many

So, must do reasoning via equivalences or 

entailments
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Equivalences

All transformation rules for propositional 

logic still hold

In addition, there is a “De Morgan’s Law” 

for moving negations through quantifiers

¬%x. S  '  &x. ¬S

¬&x. S  '  %x. ¬S

And, rules for getting rid of quantifiers
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Generalizing CNF

Eliminate $, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)

Distribute #", or use Tseitin
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Do we really need &?

&x. happy(x)

happy(happy_person())

%y. &x. loves(y, x)

%y. loves(y, loved_one(y))
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Skolemization

Called Skolemization 

(after Thoraf Albert 

Skolem) Thoraf Albert Skolem

1887–1963

Eliminate & by substituting a function of 

arguments of all enclosing % quantifiers

Make sure to use a new name!
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Do we really need %?

Positions of quantifiers irrelevant (as long 

as variable names are distinct)

%x. happy(x) # %y. takes(y, CS780)

%x. %y. happy(x) # takes(y, CS780)

So, might as well drop them

happy(x) # takes(y, CS780)
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Getting rid of quantifiers

Standardize apart (avoid name collisions)

Skolemize

Drop % (free variables implicitly 

universally quantified)

Terminology: still called “free” even 

though quantification is implicit
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For example

%x. man(x) $ mortal(x)

¬man(x) " mortal(x)

%y. &x. loves(y, x)

loves(y, f(y))

%x. honest(x) $ happy(Diogenes)

¬honest(x) " happy(Diogenes)

(%x. honest(x)) $ happy(Diogenes)
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Exercise

(%x. honest(x)) $ happy(Diogenes)
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Proofs in 

FOL
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FOL is special

Despite being much more powerful than 

propositional logic, there is still a sound 

and complete inference procedure for 

FOL w/ equality

Almost any significant extension breaks 

this property

This is why FOL is popular: very powerful 

language with a sound & complete 

inference procedure
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Proofs

Proofs by contradiction work as before:

add ¬S to KB

put in CNF

run resolution

if we get an empty clause, we’ve proven 

S by contradiction

But, CNF and resolution have changed
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Generalizing resolution

Propositional: (¬a " b) # a " b

FOL: 

(¬man(x) " mortal(x)) # man(Socrates)

" (¬man(Socrates) " mortal(Socrates))

# man(Socrates)

" mortal(Socrates)

Difference: had to substitute x ! Socrates
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Universal instantiation

What we just did is UI:

(¬man(x) " mortal(x))

" (¬man(Socrates) " mortal(Socrates))

Works for x ! any term not containing x

… " (¬man(uncle(y)) " mortal(uncle(y)))

For proofs, need a good way to find useful 

instantiations
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Substitution lists

List of variable ! term pairs

Values may contain variables (leaving 

flexibility about final instantiation)

But, no LHS may be contained in any RHS

i.e., applying substitution twice is the 

same as doing it once

E.g., L = (x ! Socrates, y ! uncle(z))
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Substitution lists

Apply a substitution to an expression: 

syntactically substitute vars ! terms

E.g., L = (x ! Socrates, y ! uncle(z))

mortal(x) # man(y): L  !           

mortal(Socrates) # man(uncle(z)) 

Substitution list $ variable assignment
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Unification

Two FOL terms unify with each other if 

there is a substitution list that makes them 

syntactically identical

man(x), man(Socrates) unify using the 

substitution x ! Socrates

Importance: purely syntactic criterion for 

identifying useful substitutions
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Unification examples

loves(x, x), loves(John, y) unify using        

x ! John, y ! John

loves(x, x), loves(John, Mary) can’t unify

loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples

loves(x, x), loves(John, y) unify using        

x ! John, y ! John

loves(x, x), loves(John, Mary) can’t unify

loves(uncle(x), y), loves(z, aunt(z)):

z ! uncle(x), y ! aunt(uncle(x))

loves(uncle(x), aunt(uncle(x)))
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Quiz

Can we unify

knows(John, x)   knows(x, Mary)

What about

knows(John, x)   knows(y, Mary)
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Quiz

Can we unify

knows(John, x)   knows(x, Mary)

What about

knows(John, x)   knows(y, Mary)

No!

x ! Mary, y ! John
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Standardize apart

But knows(x, Mary) is logically equivalent 

to knows(y, Mary)!

Moral: standardize apart before unifying
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Most general unifier

May be many substitutions that unify two 

formulas

MGU is unique (up to renaming)

Simple, moderately fast algorithm for 

finding MGU (see RN); more complex, 

linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the 
eighth annual ACM symposium on Theory of Computing, 1976. 
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