15-780: Graduate Al
Lecture 2. Proafs & F OL

W’WMMM PTOteTA “q"' ”Mxﬂvouto-ﬁﬁinzh oty M‘.h“’ o PPN

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman

- - - - 7. ‘_'

o Recitations: Fri. 3PM here (GHC 4307,

o Vote: useful to have one tomOrmw?
o would cover propositional & FO logic

o Draft schedule of due dates up on web

o subject to change with notice

Course email list

o 15780students AT cs.cmu.edu

o Everyone’s official email should be in the
list—we’ve sent a test message, so if you
didn’t get it, let us know

P K P DA 44 Tty O T B ot e N i e s BTNCR 10,0 1 o s DL S I T IS

Review

What 1s AI?

o Lots of examples: poker, driving robots,
flying birds, RoboCup

o Things that are easy for humans/animals
to do, but no obvious algorithm

o Search / optimization /| summation
o Handling uncertainty

o Sequential decisions

Propositional logic

o Syntax
o variables, constants, operators
o literals, clauses, sentences
o Semantics (model - {T, F})
o Truth tables, how to evaluate formulas
o Satisfiable, valid, contradiction

o Relationship to CSPs

Propositional logic

m’mw =% '.4"“ ‘-_oumdq_oxgga.....-,."'-&'-;\. "-“4""‘“&&4&"”“ " -

o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o 1Tseitin transformation to CNF

o Handling uncertainty (independent Nature
choices + logical consequences)

o Compositional semantics

o How to translate informally-specified
problems into logic (e.g., 3-coloring)

mw . . .
’ Sl b , PP BB A A Tty o IV LTS AL IR ve e) .
: x Yl et W e e P, SRaman o DI . " 2

NP

Satisfiability

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o SAT: determine whether a propositional
logic sentence has a satisfying model

o A decision problem: instance — yes or no
o Fundamental problem in CS
o many decision problems reduce to SAT

o informally, if we can solve SAT, we can
solve these other problems

o A SAT solver is a good Al building block

Example decision problem

o |l.ﬂl“ . .l‘ ; i E - ‘ ’.‘“.'.’ﬂm'xtgnuc-y‘ii'-zh ﬁmqp-ma| L0 et = -y _’ r '..‘ ;"‘m 8

o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?

10

Reduction

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o Formally, let A, B be decision problems
(instances — Y or N)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))

B

11

Reduction picture

PSR TIE S B Ly Tt g Promr it AR $ 4 Sty 5= I S0 a2 IR v

Yeobewn X

DL AR

- b -
Lt S s o Ny TN

?(D\o\ﬂh’\ 17)

DAL (A

12

Reduction picture

MMWWw.&%;—'uM&. B st A N e

Yeoblewn N /V(o\o\ewx B
(onetion £

AN A DAL A

13

Reduction picture

WWMvtfﬁ I e XY

Yeobewn X

)

DL AR

- b -
Lt S s o Ny TN

/Pcb\,\ew\ 17>

DAL (A

14

Reducmg k—colormg — SAT

(ar Vv ag Vv ap) A (br v bg Vv bp) A (CrV Cg V Cp) A
(dr Vv dgVvdp) A(ervegVep) N(zrVZgVn)A
(mar Vv =b;) A(—agVv —bg) A (map Vv = bp) A

(marV —z) A(—mag VvV =Ze) A (map VvV —2p) A

15

Toblan A VeoSlemn TS

Direction of
reduction c j

PN AN P AN

o When A reduces to B:
o if we can solve B, we can solve A
o S0 B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one

16

Not-so-useful reduction

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly I path-edge touches goal

o either O or 2 touch each other node

17

More useful: SAT — CNF-SAT

B

B e LS T L e i i Latanie ” PH :

o Given any propositional formula, Tseitin
transformation produces (in poly time) an
equivalent CNF formula

o So, given a CNF-SAT solver, we can solve
SAT with general formulas

18

More useful: CNF-SAT — 3SAT

B e LS T L e i i Latanie ” PH

B

o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o 3CNF': at most 3 literals per clause

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

19

CNF-SAT — 3SAT

MWM“Q‘M St 8- 44,2 TERSE R L SR el PRGSO, -

o Must get rid of long clauses
o Eg.,(av -bvcvdvev —f)
o Replace with

(av -bvx)A(-xVvcVvy)A
(myvdvz)A(-zvev —f)

20

o A decision problem is in NP if it reduces to
SAT

o E.g., TSP, k-coloring, propositional
planning, integer programming (decision
versions)

o E.g., path planning, solving linear
equations

21

NP- complete

L T S & b T RIS aade” VIS

B

o Many decision problems reduce back and
forth to SAT: they are NP-complete

o Cook showed how to simulate any poly-
time nondeterministic computation w/
(very complicated, but still poly-size)
SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,
Proceedings of ACM STOC'71, pp. 151-158, 1971.

22

Open questlon P=NP

PIOTTIRE A B3 T A P SHPEANT $ Rty 5= A G R e S5V ot et e SR e " £ e e el

o P = there is a poly-time algorithm to solve

o NP = reduces to SAT

o We know of no poly-time algorithm for
SAT, but we also can’t prove that SAT
requires more than about linear time!

23

Cost of reduction

o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o S0, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...

- - - - 7. ‘_'

24

Cost of reduction

o) v g .") - voh' AL Saahaa i3+ 4.3 P PR "-‘""m&‘vA&"Mu‘ - -

o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)

25

Choosing a reduction

) ll,ﬂ ’ . f | - 144 A e i3 §,0. 3 PRSI BN ,y_.gg..-mh‘&.'”“ - -

o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days

26

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

Proofs

27

o Sentence A entails sentence B, A= B, if B
is true in every model where A is

o same as saying that (A = B) is valid

28

Proof tree

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o

o

A tree with a formula at each node

At each internal node, children = parent

Leaves: assumptions or premises
Root: consequence

If we believe assumptions, we should also
believe consequence

29

Proof tree example

e T L D it tanie L PPN So e PSRN ST S

[GWAS =) P03

?DU\I‘S /A O\As(' :—‘7 r\.A\TVb
QZ AN
NS AL

30

Proof by contradiction

m’mw =% '.4"“ ‘-_oumdq_oxgga.....-,."'-&'-;\. "-“4""‘“&&4&"”“ " -

o Assume opposite of what we want to
prove, show it leads to a contradiction

B

o Suppose we want to show KB = §

o Write KB’ for (KB A —5)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o so, (KB A =S) = F (contradiction)

31

Proof by contradiction

PSSR Do 4, Tt g Prrm S AT A Ty = N SO L IR v e S5V bk e MR e
—

ran/\S ::‘> ?bdrs

C NS
O WA AN

o -

~—\ ruq\'vz}
/Q_/ l\n-‘&k‘nbd\ > O\QSM

OONCN SADN\

Pl e s T ANBE

32

Proof by contradiction

DI b B L, Tt g P S AT KTty 5= OV AL v e PV st ek A MR e

m)

ram% =) U0 ¥ o \
\ =g
c&-\\j\\ /

O RKSH AL =
/
~—\ rux}*l/h

J\c\\J SADA

AP UPIP

33

PSIOTEIRE o B 4 Tt AT Prrmn o AT 48 “Liguns? aaie ! P A i N e e TN

Inference
rules

Inference rule

MWM“‘M A A A e N st s "‘"h«;umm

o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already

35

Modus ponens

R R T — gy SO A A Ty = I ST AL IR s e VY st e e

(anbAac=4d) a b c
d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:

man(Socrates) A

(man(Socrates) = mortal(Socrates))

36

Another inference rule

ISITEIRE A DA 4 Tt g AT P GG BT DAT MKty 5= 0SS AL I f w0 e b Lt ® e b o aaie l PRSP, Py e g AR
(a=b) —b
—d

o Modus tollens

o If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

37

One more...

(ave) (mcvp)
avp

o Resolution

o a, P are arbitrary subformulas

o Combines two formulas that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens

38

Resolution example

o Modus ponens / tollens are special cases

o Modus tollens:

(—raining v grass-wet) A —~grass-wet =
—raining

39

Resolution example

Emaiad e i Rt Ladanie PRSP S LR ST

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

40

Resolution example

FPIOTTIRE A i T GRS P AT S s 5= 9 L= ST IR S st ek G I PTCR e i PP s E

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours Vv —outside vV rusty

40

Resolution example

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours Vv —outside vV rusty

—=rains Vv —outside v rusty

40

Resolution

(ave) (mcvp)
avp

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False

41

Resolution case analysis

P |ln|“ . . s -) L et 13- 143 TR N _.v-.;q;-ﬁ-l\.a“ Seaea - .

(avec)A (v p)

T/\p ‘:}é
w oA LA
KV

42

Soundness and completeness

o) v g .") - voh' AL Saahaa i3+ 4.3 P PR "-‘""m&‘vA&"Mu‘ - -

B

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven'’t discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB

43

Completeness

mw - '.4-“ éouma}‘g!o..-,.-p“ii’-h "'"‘4"“‘.&& Seamee o

o Modus ponens by itself is incomplete

o Resolution + proof by contradiction is ;. a.robinson
.« . 1918-1974
complete for propositional formulas
represented as sets of clauses

o famous theorem due to Robinson

o if KB E F,we’ll derive empty clause

o Caveat: also need factoring, removal of
redundant literals (av bv a) = (a Vv b)

44

Algorithms

-y ¥ 4 A Teprtiy &'u‘”‘ﬁ:xﬂgnuu---p“"ﬁilwv_.‘g;-M\Qh‘&.'”“

o We now have our first™ algorithm for SAT

o remove redundant literals (factor)
wherever possible

o pick an application of resolution
according to some fair rule

o add its consequence to KB
o repeat

o Not a great algorithm, but works

- - - - 7. ‘_'

45

Variations

PRI TSR b B 4, T GO P S PEDAST Sty 5= I LS LI s e S5V it e A B OB 0 a1 . ariar i DO IR I

o Horn clause inference
o MAXSAT

o Nonmonotonic logic

46

Horn clauses

o Horn clause: (a A b A ¢c = d)
o Equivalently, (—av -bv -c v d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body

47

Use of Horn clauses

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

B

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula;
again, easier to think about

48

Why are Horn clauses important

HPOAST O B L Tt SRS oo AT STt 5= O L LI o e SN it e b e ONCR 10 0 1 e s PO S R MR

o Modus ponens alone is complete

o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

49

o

Forward chaining

Look for a clause with all body literals
satisfied

Add its head to KB (modus ponens)
Repeat
See RN for more details

- . - - 7. ‘_'

50

) ll,ﬂ g ." | - 148 A e i3 §,0. 3 PRSI BN "“""m&‘v‘&"v.p - -

o

O

MAXSAT

B

Given a CNF formula C; A C2 A ... A Cy

Clause weights wi, wz, ... wp (weighted
version) or w; = 1 (unweighted)

Find model which satisfies clauses of
maximum total weight

o decision version: max weight = w?

More generally, weights on variables
(bonus for setting to T): MAXVARSAT

51

Nonmonotonic logic

- 48 s o'-'““""*:x’!‘“""""”qw*“"""‘“‘&‘,“;.”“ - -

o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

52

Nonmonotonic logic

o) o g .") - voh' A L gt - 4.3 PP "-“4’"'m&~4¢;"qn.p - -

B

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —ab(Polly) = flies(Polly)
bird(Tux) A —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

53

m’mw =% '.4"“ ‘-_oumdq_oxgga.....-,."'-&'-;\. "-“4""‘“&&4&"”“ " -

o

Nonmonotonic logic

B

Now set as few abnormality predicates as
possible (a MAXVARSAT problem)

Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

If we assert = flies(Tux), must now assume
ab(Tux) to maintain consistency

Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

54

Nonmonotonic logic

B

o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

55

PSIOTEIRE o B 4 Tt AT Prrmn o AT 48 “Liguns? aaie ! P A i N e e TN

First-order
logic

First-order logic

DIOTT N B A, 7t GRS P AN S 9 5= = S e S5V st met e AR e

Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

57

Predicates and objects

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Zero-argument predicate x() plays same
role that Boolean variable x did before

58

Distinguished predicates

IO i A, P g A P AT B 5= O e S IR e S5V Es it e MR i

o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False/ F
o Equal(x,y)

o We will also write (x =y) and (x #Z y)

59

Equality satisfies usual axioms

m . Am’“‘% ‘._oumxggam..-,.'i-&'-;_ L M“c&‘“‘:'”“ - -

o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)

60

Functions

o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()

61

The nil object

PSSR A B L, Tt g Promer G AT A Tt 5= 0 S LI v b S5V it s e e PR e T g

o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense

62

Types of values

AT A A Tt g T OANT ARy SO AT S It e s I et e TR 10 1 s i IO SR LTI

o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object-valued and Boolean-valued

o done(slides(15-780)) =
happy(professor(15-780))

o Functions map objects to objects;
predicates map objects to Booleans;
connectives map Booleans to Booleans

63

Definitions

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)

64

Definitions

HIOTE L b A & Tt g T s T e st 1 4 = PRt 5% 0 o s s DTV S IS

o Literal = possibly-negated atom
o happy(John), ~happy(John)

o Sentence or formula = literals joined by
connectives like Av—-=

o raining
o done(slides(780)) = happy(professor)

o Expression = term or formula

65

Semantics

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

B

o Models are now much more complicated
o List of objects (nonempty, may be infinite)
o Lookup table for each function mentioned

o Lookup table for each predicate
mentioned

o Meaning of sentence: model — {T, F'}

o Meaning of term: model — object

66

For example

PR ELTRE A DI Tt GRS oo b AT S5y SO L IRt e S SN st ek A - ONCR 10 0 1 i sl DML MRS
. L - L0 o - i "

\ et <

67

KB descrlbmg example

o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...

68

Aside: avoiding verbosity

PISCIOTTIRE b B L, Tt GRS Promar G PSS Tty 5= ST CL IS v eSS stk A e R e

o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

B

69

Aside: typed variables

qmo- um& N a2 ‘N-——‘ - Muh S .

YEPISTERE A B 4 Gt AT

B

o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Include rules saying function instances
which disobey type rules have value nil

70

Model of example

FEPOAST TR B 4t GO Promar o TP Aty S I LT T v SVt e 8 AR 0 0 7wt TSR R NI

o Objects: C,B, E, N
o Function values:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), ~in(C, C), ~in(C, N), ...

71

Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects

72

Another possible model

- . - - 7. ‘_'

o Objects: C,B, E,N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear

73

An embarrassment of models

o) v g .") - voh' AL Saahaa i3+ 4.3 P PR "-‘""m&‘vA&"Mu‘ - -

o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don't
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

B

74

Getting r1d of extra objects

PIOTTIRE A B3 T A P SHPEANT $ Rty 5= A G R e S5V ot et e SR e o B b s AR

o Can use quantifiers to rule out CBENX
model.:

Vx.x=catv x=boxVv x=ear v x = nil

o Called a domain closure assumption

75

Quantlﬁers 1nforma11y

B e LS T L e i i Latanie ” PH ' A

o Add quantifiers and object variables
o Vx.man(x) = mortal(x)
o =dx. lunch(x) A free(x)

o V: no matter how we replace object
variables with objects, formula is still true

o d: there is some way to fill in object
variables to make formula true

76

New syntax

I ENE b A 4 G oot AT Aty 5= O A L S5 B et - PR 1 a0 1 g I RS

o Object variables are terms

o Build atoms from variables x, y, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

77

New syntax = new semantics

B

PISCIOTTIRE b B L, Tt GRS Promar G PSS Tty 5= ST CL IS v eSS stk A e R e

o Variable assignment for a model M maps
syntactic variables to model objects

o x.:C, y. N

o Meaning of expression w/ free vars: look up
in assignment, then continue as before

o term: (model, var asst) — object

o formula: (model, var asst) — truth value

78

o Model: CEBN model from above
o Assignment: (x: C,y: N)
o alive(ear(x)) » alive(ear(C)) » alive(E) » T

79

Working with assignments

IO i A, P g A P AT B 5= O e S IR e S5V Es it e MR i

o Write € for an arbitrary assignment (e.g.,
all variables map to nil)

o Write (V/ x: obj) for the assignment which
is just like V except that variable x maps to
object obj

80

More new syntax:
Quantlﬁers blndmg

YEPISTERE A B 4 Gt AT

B

o For any variable x and formula F, (Vx. F)
and (3x. F) are formulas

o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like nv — in any order

o But must eventually wind up with ground
formula (no free variables)

81

Semantics of V

o Sentence (Nx.S)isTin(M,V)ifSisTin
(M, V/ x: obj) for all objects obj in M

82

Example

o) v g .") - voh' AL Saahaa i3+ 4.3 P PR "-‘""m&‘vA&"Mu‘ - -

B

o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence Vx. happy(x) is satisfied in (M,)

o since happy(A), happy(B), happy(C) are
all satisfied in M

o more precisely, happy(x) is satisfied in
(M, e/x:A), (M, e/x:B), (M, &/x:C)

83

Semantics of 3

o Sentence (dx.S) is true in (M, V) if there is

some object obj in M such that S is true in
(M, V/x: obj)

84

o M has objects (A, B, C) and predicate

o happy(A) = happy(B) = True

o happy(C) = False
o Sentence dx. happy(x) is satisfied in (M, €)
o Since happy(x) is satisfied in (M, €/x:B)

85

Scoping rules (so we don’t have
to write a gazﬂhon parens)

VEPRSTERE A D L Tt g 5K o G DA S Tty = OV ST CAI I b S st et Lhanknl, PIVSGT PR el

o In (Vx.F)and (3x. F), F = scope = part of
formula where quantifier applies

o Variable x is bound by innermost possible
quantifier (matching name, in scope)

o Two variables in different scopes can have
same name—they are still different vars

o Quantification has lowest precedence

86

Scoping examples

B L R O e i “"’h«y’v.m.n‘“mw

o (Vx. happy(x)) v (Ix. =happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet

87

Scoping examples

o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx.loves(x, y)

88

PISROTEIRL b DA 4 Tt g OIS P S DT 4 T e e

Equlvalence
in FOL

Entailment, etc.

mmw - ¥ A Tty " I A 3 S WY p e SN "““"mh«;'m.p

B

o As before, entailment, satisfiability, validity,
equivalence, etc. refer to all possible models

o these words only apply to ground sentences,
so variable assignment doesn’t matter

o But now, can’t determine by enumerating
models, since there could be infinitely many

o So, must do reasoning via equivalences or
entailments

90

Equivalences

) “H g ." | - 148 AL S 5. 4.3 PPERE e "-"4“""“&‘«4;'0.;‘ - -

B

o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S§ = dx. =S
-dx.§ = Vx. =S
o And, rules for getting rid of quantifiers

91

Generahzmg CNF

B L R O e i ande . PUSRPUR

o Eliminate =, move - in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute AV, or use Tseitin

B

92

Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))

93

Skolemization

PODISTE IR B Ly Tt g Prromae S AT $ 8 5ty 5= I A CA IR e Nt it -)

o Called Skolemization
(after Thoraf Albert

S kolem) | Thoraf Albert olem
1887—-1963

o Eliminate 3 by substituting a function of
arguments of all enclosing V' quantifiers

o Make sure to use a new name!

94

Do we really need V?

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

B

o Positions of quantifiers irrelevant (as long
as variable names are distinct)

o Vx. happy(x) A Vy. takes(y, CS780)
o Vx.Vy. happy(x) A takes(y, CS780)

o So, might as well drop them
o happy(x) A takes(y, CS780)

95

o) v g .") - voh' AL Saahaa i3+ 4.3 P PR "-‘""m&‘vA&"Mu‘ - -

o

Getting rid of quantifiers

B

Standardize apart (avoid name collisions)
Skolemize

Drop Y (free variables implicitly
universally quantified)

Terminology: still called “free” even
though quantification is implicit

96

For example

- VAN Tty I SIS CL IR R e b ISt e o Py,

o Vx.man(x) = mortal(x)
o —man(x) v mortal(x)

o Vy.dx. loves(y, x)

o loves(y, f{y))
o Vx. honest(x) = happy(Diogenes)

o —honest(x) v happy(Diogenes)
o (Vx. honest(x)) = happy(Diogenes)

97

Exercise

o (Vx. honest(x)) = happy(Diogenes)
o <\T/% hoMgl«<K)) Vv Vo‘PPE}L (D>

(F mborsr @) Y v Leorg)
— lhoaerk (foo (SS \/l/\agg D>

98

PO TR A B A Tt GRS Promer S O OAST S A5ty S LT ST e s S st e b 2 BTNCR Y 0 4 st i TS S IR NS

Proofs 1n
FOL

99

FOL 1s special

PASCIOTTIRE b B L Tt GRS Promar G OSSO LT CL I v e SN st e b A e BENCR v s e P

B

o Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for
FOL w/ equality

o Almost any significant extension breaks
this property

o This is why FOL is popular: very powerful
language with a sound & complete
inference procedure

100

Proofs

AT 2 A G g AN I T4A ety S S SR Nt e TR 10 0

- - - - 7. ‘_'

o Proofs by contradiction work as before:
o add -~ S to KB
o putin CNF
o run resolution

o Iif we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed

101

Generalizing resolution

- '.4.’“ &'“MNQ!"‘""""”"lw"‘“Qﬂ'M"&‘,‘&-,”“ - -

o Propositional: (—av b) Aa= b
o FOL:
(—man(x) v mortal(x)) A man(Socrates)

= (—~man(Socrates) v mortal(Socrates))
A man(Socrates)

= mortal(Socrates)

o Difference: had to substitute x — Socrates

102

Universal instantiation

m’mw =% '.4"“ ‘-_oumdq_oxgga.....-,."'-&'-;\. "-“4""‘“&&4&"”“ " -

B

o What we just did is Ul:

(—man(x) v mortal(x))
= (—man(Socrates) v mortal(Socrates))

o Works for x — any term not containing x

... (—wman(uncle(y)) v mortal(uncle(y)))

o For proofs, need a good way to find useful
instantiations

103

Substitution lists

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o List of variable — term pairs

o Values may contain variables (leaving
flexibility about final instantiation)

o But, no LHS may be contained in any RHS

o 1.e., applying substitution twice is the
same as doing it once

o E.g.,L=(x— Socrates, y — uncle(z))

104

Substitution lists

HIOTE L b A & Tt g T s T e st 1 4 = PRt 5% 0 o s s DTV S IS

o Apply a substitution to an expression:
syntactically substitute vars — terms

o E.g.,L = (x— Socrates,y — uncle(z))

o mortal(x) AN man(y): L —
mortal(Socrates) A man(uncle(z))

o Substitution list # variable assignment

105

Unification

PSR Begs 4, Tt A Promer S AT DANT S Tty S I ST AT v eSSV v N e g bR

o Two FOL terms unify with each other if
there is a substitution list that makes them

syntactically identical

o man(x), man(Socrates) unify using the
substitution x — Socrates

o Importance: purely syntactic criterion for
identifying useful substitutions

106

Unification examples

o loves(x, x), loves(John, y) unify using
x —= John,y — John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x),y), loves(z, aunt(z)):

107

Unification examples

PR TR s Ly Tt TS Prma B AT S8ty S O T I I At b 2 P M st ek A TR 0 o1 i ISP B I T AN

o loves(x, x), loves(John, y) unify using
x —= John,y — John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x),y), loves(z, aunt(z)):
o z —> uncle(x), y — aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))

108

o Can we unify

knows(John, x) knows(x, Mary)

o What about
knows(John, x) knows(y, Mary)

109

o Can we unify
knows(John, x) knows(x, Mary)
No!

o What about
knows(John, x) knows(y, Mary)

x — Mary, y — John

110

Standardize apart

o But knows(x, Mary) is logically equivalent
to knows(y, Mary)!

o Moral: standardize apart before unifying

111

Most general unifier

PISCIOTTIRE b B L, Tt GRS Promar G PSS Tty 5= ST CL IS v eSS stk A e R e

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.

112

