
15-780: Graduate AI

Lecture 2. Proofs & FOL

Geoff Gordon (this lecture)

Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

1

Admin

Recitations: Fri. 3PM here (GHC 4307)

Vote: useful to have one tomorrow?

would cover propositional & FO logic

Draft schedule of due dates up on web

subject to change with notice

2

Course email list

15780students AT cs.cmu.edu

Everyone’s official email should be in the

list—we’ve sent a test message, so if you

didn’t get it, let us know

3

Review

4

What is AI?

Lots of examples: poker, driving robots,

flying birds, RoboCup

Things that are easy for humans/animals

to do, but no obvious algorithm

Search / optimization / summation

Handling uncertainty

Sequential decisions

5

Propositional logic

Syntax

variables, constants, operators

literals, clauses, sentences

Semantics (model ! {T, F})

Truth tables, how to evaluate formulas

Satisfiable, valid, contradiction

Relationship to CSPs

6

Propositional logic

Manipulating formulas (e.g., de Morgan)

Normal forms (e.g., CNF)

Tseitin transformation to CNF

Handling uncertainty (independent Nature

choices + logical consequences)

Compositional semantics

How to translate informally-specified

problems into logic (e.g., 3-coloring)

7

NP

8

Satisfiability

SAT: determine whether a propositional

logic sentence has a satisfying model

A decision problem: instance ! yes or no

Fundamental problem in CS

many decision problems reduce to SAT

informally, if we can solve SAT, we can

solve these other problems

A SAT solver is a good AI building block

9

Example decision problem

k-coloring: can we color a map using only

k colors in a way that keeps neighboring

regions from being the same color?

10

Reduction

Loosely, “A reduces to B” means that if

we can solve B then we can solve A

Formally, let A, B be decision problems

(instances ! Y or N)

A reduction is a poly-time function f such

that, given an instance a of A

f(a) is an instance of B, and

A(a) = B(f(a))

11

Reduction picture

12

Reduction picture

13

Reduction picture

14

Reducing k-coloring ! SAT

(ar " ag " ab) # (br " bg " bb) # (cr " cg " cb) #

(dr " dg " db) # (er " eg " eb) # (zr " zg " zb) #

(¬ar " ¬br) # (¬ag " ¬bg) # (¬ab " ¬bb) #

(¬ar " ¬zr) # (¬ag " ¬zg) # (¬ab " ¬zb) #

…

15

Direction of

reduction

When A reduces to B:

if we can solve B, we can solve A

so B must be at least as hard as A

Trivially, can take an easy problem and

reduce it to a hard one

16

Not-so-useful reduction

Path planning reduces to SAT

Variables: is edge e in path?

Constraints:

exactly 1 path-edge touches start

exactly 1 path-edge touches goal

either 0 or 2 touch each other node

17

More useful: SAT ! CNF-SAT

Given any propositional formula, Tseitin

transformation produces (in poly time) an

equivalent CNF formula

So, given a CNF-SAT solver, we can solve

SAT with general formulas

18

More useful: CNF-SAT ! 3SAT

Can reduce even further, to 3SAT

is 3CNF formula satisfiable?

3CNF: at most 3 literals per clause

Useful if reducing SAT/3SAT to another

problem (to show other problem hard)

19

CNF-SAT ! 3SAT

Must get rid of long clauses

E.g., (a " ¬b " c " d " e " ¬f)

Replace with

(a " ¬b " x) # (¬x " c " y) #

(¬y " d " z) # (¬z " e " ¬f)

20

NP

A decision problem is in NP if it reduces to

SAT

E.g., TSP, k-coloring, propositional

planning, integer programming (decision

versions)

E.g., path planning, solving linear

equations

21

NP-complete

Many decision problems reduce back and

forth to SAT: they are NP-complete

Cook showed how to simulate any poly-

time nondeterministic computation w/

(very complicated, but still poly-size)

SAT problem

Equivalently, SAT is exactly as hard (in

theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,
Proceedings of ACM STOC'71, pp. 151-158, 1971.

22

Open question: P = NP

P = there is a poly-time algorithm to solve

NP = reduces to SAT

We know of no poly-time algorithm for

SAT, but we also can’t prove that SAT

requires more than about linear time!

23

Cost of reduction

Complexity theorists often ignore little

things like constant factors (or even

polynomial factors!)

So, is it a good idea to reduce your

decision problem to SAT?

Answer: sometimes…

24

Cost of reduction

SAT is well studied $ fast solvers

So, if there is an efficient reduction, ability

to use fast SAT solvers can be a win

e.g., 3-coloring

another example later (SATplan)

Other times, cost of reduction is too high

usu. because instance gets bigger

will also see example later (MILP)

25

Choosing a reduction

May be many reductions from problem A

to problem B

May have wildly different properties

e.g., solving transformed instance may

take seconds vs. days

26

Proofs

27

Entailment

Sentence A entails sentence B, A " B, if B

is true in every model where A is

same as saying that (A $ B) is valid

28

Proof tree

A tree with a formula at each node

At each internal node, children " parent

Leaves: assumptions or premises

Root: consequence

If we believe assumptions, we should also

believe consequence

29

Proof tree example

30

Proof by contradiction

Assume opposite of what we want to

prove, show it leads to a contradiction

Suppose we want to show KB " S

Write KB’ for (KB # ¬S)

Build a proof tree with

assumptions drawn from clauses of KB’

conclusion = F

so, (KB # ¬S) " F (contradiction)
31

Proof by contradiction

32

Proof by contradiction

33

Inference

rules

34

Inference rule

To make a proof tree, we need to be able to

figure out new formulas entailed by KB

Method for finding entailed formulas =

inference rule

We’ve implicitly been using one already

35

Modus ponens

Probably most famous inference rule: all

men are mortal, Socrates is a man,

therefore Socrates is mortal

Quantifier-free version:

man(Socrates) #

(man(Socrates) $ mortal(Socrates))

d

(a # b # c $ d) a b c

36

Another inference rule

Modus tollens

If it’s raining the grass is wet; the grass is

not wet, so it’s not raining

¬a

(a $ b) ¬b

37

One more…

Resolution

!, " are arbitrary subformulas

Combines two formulas that contain a

literal and its negation

Not as commonly known as modus

ponens / tollens

(! " c) (¬c " ")

! " "

38

Resolution example

Modus ponens / tollens are special cases

Modus tollens:

(¬raining " grass-wet) # ¬grass-wet "

¬raining

39

Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?

40

Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?

¬rains " pours

¬pours " ¬outside " rusty

40

Resolution example

rains $ pours

pours # outside $ rusty

Can we conclude rains # outside $ rusty?

¬rains " pours

¬pours " ¬outside " rusty

¬rains " ¬outside " rusty

40

Resolution

Simple proof by case analysis

Consider separately cases where we

assign c = True and c = False

(! " c) (¬c " ")

! " "

41

Resolution case analysis

(! " c) (¬c " ")

42

Soundness and completeness

An inference procedure is sound if it can

only conclude things entailed by KB

common sense; haven’t discussed

anything unsound

A procedure is complete if it can conclude

everything entailed by KB

43

Completeness

Modus ponens by itself is incomplete

Resolution + proof by contradiction is

complete for propositional formulas

represented as sets of clauses

famous theorem due to Robinson

if KB " F, we’ll derive empty clause

Caveat: also need factoring, removal of

redundant literals (a " b " a) " (a " b)

J. A. Robinson

1918–1974

44

Algorithms

We now have our first* algorithm for SAT

remove redundant literals (factor)

wherever possible

pick an application of resolution

according to some fair rule

add its consequence to KB

repeat

Not a great algorithm, but works

45

Variations

Horn clause inference

MAXSAT

Nonmonotonic logic

46

Horn clauses

Horn clause: (a # b # c $ d)

Equivalently, (¬a " ¬b " ¬c " d)

Disjunction of literals, at most one of

which is positive

Positive literal = head, rest = body

47

Use of Horn clauses

People find it easy to write Horn clauses

(listing out conditions under which we can

conclude head)

happy(John) # happy(Mary) $

happy(Sue)

No negative literals in above formula;

again, easier to think about

48

Why are Horn clauses important

Modus ponens alone is complete

So is modus tollens alone

Inference in a KB of propositional Horn

clauses is linear

e.g., by forward chaining

49

Forward chaining

Look for a clause with all body literals

satisfied

Add its head to KB (modus ponens)

Repeat

See RN for more details

50

MAXSAT

Given a CNF formula C1 # C2 # … # Cn

Clause weights w1, w2, … wn (weighted

version) or wi = 1 (unweighted)

Find model which satisfies clauses of

maximum total weight

decision version: max weight # w?

More generally, weights on variables

(bonus for setting to T): MAXVARSAT

51

Nonmonotonic logic

Suppose we believe all birds can fly

Might add a set of sentences to KB

bird(Polly) $ flies(Polly)

bird(Tweety) $ flies(Tweety)

bird(Tux) $ flies(Tux)

bird(John) $ flies(John)

…

52

Nonmonotonic logic

Fails if there are penguins in the KB

Fix: instead, add

bird(Polly) # ¬ab(Polly) $ flies(Polly)

bird(Tux) # ¬ab(Tux) $ flies(Tux)

…

ab(Tux) is an “abnormality predicate”

Need separate abi(x) for each type of rule

53

Nonmonotonic logic

Now set as few abnormality predicates as

possible (a MAXVARSAT problem)

Can prove flies(Polly) or flies(Tux) with no

ab(x) assumptions

If we assert ¬flies(Tux), must now assume

ab(Tux) to maintain consistency

Can’t prove flies(Tux) any more, but can

still prove flies(Polly)

54

Nonmonotonic logic

Works well as long as we don’t have to

choose between big sets of abnormalities

is it better to have 3 flightless birds or 5

professors that don’t wear jackets with

elbow-patches?

even worse with nested abnormalities:

birds fly, but penguins don’t, but

superhero penguins do, but …

55

First-order

logic

56

First-order logic

So far we’ve been using opaque

vars like rains or happy(John)

Limits us to statements like “it’s raining” or

“if John is happy then Mary is happy”

Can’t say “all men are mortal” or “if John

is happy then someone else is happy too”

Bertrand Russell

1872-1970

57

Predicates and objects

Interpret happy(John) or likes(Joe, pizza)

as a predicate applied to some objects

Object = an object in the world

Predicate = boolean-valued function of

objects

Zero-argument predicate x() plays same

role that Boolean variable x did before

58

Distinguished predicates

We will assume three distinguished

predicates with fixed meanings:

True / T, False / F

Equal(x, y)

We will also write (x = y) and (x $ y)

59

Equality satisfies usual axioms

Reflexive, transitive, symmetric

Substituting equal objects doesn’t change

value of expression

(John = Jonathan) # loves(Mary, John)

$ loves(Mary, Jonathan)

60

Functions

Functions map zero or more objects to

another object

e.g., professor(15-780), last-common-

ancestor(John, Mary)

Zero-argument function is the same as an

object—John v. John()

61

The nil object

Functions are untyped: must have a value

for any set of arguments

Typically add a nil object to use as value

when other answers don’t make sense

62

Types of values

Expressions in propositional logic could

only have Boolean (T/F) values

Now we have two types of expressions:

object-valued and Boolean-valued

done(slides(15-780)) $

happy(professor(15-780))

Functions map objects to objects;

predicates map objects to Booleans;

connectives map Booleans to Booleans

63

Definitions

Term = expression referring to an object

John

left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects

happy(John)

raining

at(robot, Wean-5409, 11AM-Wed)

64

Definitions

Literal = possibly-negated atom

happy(John), ¬happy(John)

Sentence or formula = literals joined by

connectives like #"¬$

raining

done(slides(780)) $ happy(professor)

Expression = term or formula

65

Semantics

Models are now much more complicated

List of objects (nonempty, may be infinite)

Lookup table for each function mentioned

Lookup table for each predicate

mentioned

Meaning of sentence: model ! {T, F}

Meaning of term: model ! object

66

For example

67

KB describing example

alive(cat)

ear-of(cat) = ear

in(cat, box) # in(ear, box)

¬in(box, cat) # ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil

cat $ box # cat $ ear # cat $ nil …

68

Aside: avoiding verbosity

Closed-world assumption: literals not

assigned a value in KB are false

avoid stating ¬in(box, cat), etc.

Unique names assumption: objects with

separate names are separate

avoid box $ cat, cat $ ear, …

69

Aside: typed variables

KB also illustrates need for data types

Don’t want to have to specify ear-of(box)

or ¬in(cat, nil)

Could design a type system

argument of happy() is of type animate

Include rules saying function instances

which disobey type rules have value nil

70

Model of example

Objects: C, B, E, N

Function values:

cat: C, box: B, ear: E, nil: N

ear-of(C): E, ear-of(B): N, ear-of(E): N,

ear-of(N): N

Predicate values:

in(C, B), ¬in(C, C), ¬in(C, N), …

71

Failed model

Objects: C, E, N

Fails because there’s no way to satisfy

inequality constraints with only 3 objects

72

Another possible model

Objects: C, B, E, N, X

Extra object X could have arbitrary

properties since it’s not mentioned in KB

E.g., X could be its own ear

73

An embarrassment of models

In general, can be infinitely many models

unless KB limits number somehow

Job of KB is to rule out models that don’t

match our idea of the world

Saw how to rule out CEN model

Can we rule out CBENX model?

74

Getting rid of extra objects

Can use quantifiers to rule out CBENX

model:

%x. x = cat " x = box " x = ear " x = nil

Called a domain closure assumption

75

Quantifiers, informally

Add quantifiers and object variables

%x. man(x) $ mortal(x)

¬&x. lunch(x) # free(x)

%: no matter how we replace object

variables with objects, formula is still true

&: there is some way to fill in object

variables to make formula true

76

New syntax

Object variables are terms

Build atoms from variables x, y, … as well as

constants John, Fred, …

man(x), loves(John, z), mortal(brother(y))

Build formulas from these atoms

man(x) # mortal(brother(x))

New syntactic construct: term or formula w/

free variables

77

New syntax # new semantics

Variable assignment for a model M maps

syntactic variables to model objects

x: C, y: N

Meaning of expression w/ free vars: look up

in assignment, then continue as before

term: (model, var asst) ! object

formula: (model, var asst) ! truth value

78

Example

Model: CEBN model from above

Assignment: (x: C, y: N)

alive(ear(x)) ! alive(ear(C)) ! alive(E) ! T

79

Working with assignments

Write % for an arbitrary assignment (e.g.,

all variables map to nil)

Write (V / x: obj) for the assignment which

is just like V except that variable x maps to

object obj

80

More new syntax:

Quantifiers, binding

For any variable x and formula F, (%x. F)

and (&x. F) are formulas

Adding quantifier for x is called binding x

In (%x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical

operations like #"¬ in any order

But must eventually wind up with ground

formula (no free variables)

81

Semantics of %

Sentence (%x. S) is T in (M, V) if S is T in

(M, V / x: obj) for all objects obj in M

82

Example

M has objects (A, B, C) and predicate

happy(x) which is true for A, B, C

Sentence %x. happy(x) is satisfied in (M, %)

since happy(A), happy(B), happy(C) are

all satisfied in M

more precisely, happy(x) is satisfied in

(M, %/x:A), (M, %/x:B), (M, %/x:C)

83

Semantics of &

Sentence (&x. S) is true in (M, V) if there is

some object obj in M such that S is true in

(M, V / x: obj)

84

Example

M has objects (A, B, C) and predicate

happy(A) = happy(B) = True

happy(C) = False

Sentence &x. happy(x) is satisfied in (M, %)

Since happy(x) is satisfied in (M, %/x:B)

85

Scoping rules (so we don’t have

to write a gazillion parens)

In (%x. F) and (&x. F), F = scope = part of

formula where quantifier applies

Variable x is bound by innermost possible

quantifier (matching name, in scope)

Two variables in different scopes can have

same name—they are still different vars

Quantification has lowest precedence

86

Scoping examples

(%x. happy(x)) " (&x. ¬happy(x))

Either everyone’s happy, or someone’s

unhappy

%x. (raining # outside(x) $ (&x. wet(x)))

The x who is outside may not be the one

who is wet

87

Scoping examples

English sentence “everybody loves

somebody” is ambiguous

Translates to logical sentences

%x. &y. loves(x, y)

&y. %x. loves(x, y)

88

Equivalence

in FOL

89

Entailment, etc.

As before, entailment, satisfiability, validity,

equivalence, etc. refer to all possible models

these words only apply to ground sentences,

so variable assignment doesn’t matter

But now, can’t determine by enumerating

models, since there could be infinitely many

So, must do reasoning via equivalences or

entailments

90

Equivalences

All transformation rules for propositional

logic still hold

In addition, there is a “De Morgan’s Law”

for moving negations through quantifiers

¬%x. S ' &x. ¬S

¬&x. S ' %x. ¬S

And, rules for getting rid of quantifiers

91

Generalizing CNF

Eliminate $, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)

Distribute #", or use Tseitin

92

Do we really need &?

&x. happy(x)

happy(happy_person())

%y. &x. loves(y, x)

%y. loves(y, loved_one(y))

93

Skolemization

Called Skolemization

(after Thoraf Albert

Skolem) Thoraf Albert Skolem

1887–1963

Eliminate & by substituting a function of

arguments of all enclosing % quantifiers

Make sure to use a new name!

94

Do we really need %?

Positions of quantifiers irrelevant (as long

as variable names are distinct)

%x. happy(x) # %y. takes(y, CS780)

%x. %y. happy(x) # takes(y, CS780)

So, might as well drop them

happy(x) # takes(y, CS780)

95

Getting rid of quantifiers

Standardize apart (avoid name collisions)

Skolemize

Drop % (free variables implicitly

universally quantified)

Terminology: still called “free” even

though quantification is implicit

96

For example

%x. man(x) $ mortal(x)

¬man(x) " mortal(x)

%y. &x. loves(y, x)

loves(y, f(y))

%x. honest(x) $ happy(Diogenes)

¬honest(x) " happy(Diogenes)

(%x. honest(x)) $ happy(Diogenes)

97

Exercise

(%x. honest(x)) $ happy(Diogenes)

98

Proofs in

FOL

99

FOL is special

Despite being much more powerful than

propositional logic, there is still a sound

and complete inference procedure for

FOL w/ equality

Almost any significant extension breaks

this property

This is why FOL is popular: very powerful

language with a sound & complete

inference procedure

100

Proofs

Proofs by contradiction work as before:

add ¬S to KB

put in CNF

run resolution

if we get an empty clause, we’ve proven

S by contradiction

But, CNF and resolution have changed

101

Generalizing resolution

Propositional: (¬a " b) # a " b

FOL:

(¬man(x) " mortal(x)) # man(Socrates)

" (¬man(Socrates) " mortal(Socrates))

man(Socrates)

" mortal(Socrates)

Difference: had to substitute x ! Socrates

102

Universal instantiation

What we just did is UI:

(¬man(x) " mortal(x))

" (¬man(Socrates) " mortal(Socrates))

Works for x ! any term not containing x

… " (¬man(uncle(y)) " mortal(uncle(y)))

For proofs, need a good way to find useful

instantiations

103

Substitution lists

List of variable ! term pairs

Values may contain variables (leaving

flexibility about final instantiation)

But, no LHS may be contained in any RHS

i.e., applying substitution twice is the

same as doing it once

E.g., L = (x ! Socrates, y ! uncle(z))

104

Substitution lists

Apply a substitution to an expression:

syntactically substitute vars ! terms

E.g., L = (x ! Socrates, y ! uncle(z))

mortal(x) # man(y): L !

mortal(Socrates) # man(uncle(z))

Substitution list $ variable assignment

105

Unification

Two FOL terms unify with each other if

there is a substitution list that makes them

syntactically identical

man(x), man(Socrates) unify using the

substitution x ! Socrates

Importance: purely syntactic criterion for

identifying useful substitutions

106

Unification examples

loves(x, x), loves(John, y) unify using

x ! John, y ! John

loves(x, x), loves(John, Mary) can’t unify

loves(uncle(x), y), loves(z, aunt(z)):

107

Unification examples

loves(x, x), loves(John, y) unify using

x ! John, y ! John

loves(x, x), loves(John, Mary) can’t unify

loves(uncle(x), y), loves(z, aunt(z)):

z ! uncle(x), y ! aunt(uncle(x))

loves(uncle(x), aunt(uncle(x)))

108

Quiz

Can we unify

knows(John, x) knows(x, Mary)

What about

knows(John, x) knows(y, Mary)

109

Quiz

Can we unify

knows(John, x) knows(x, Mary)

What about

knows(John, x) knows(y, Mary)

No!

x ! Mary, y ! John

110

Standardize apart

But knows(x, Mary) is logically equivalent

to knows(y, Mary)!

Moral: standardize apart before unifying

111

Most general unifier

May be many substitutions that unify two

formulas

MGU is unique (up to renaming)

Simple, moderately fast algorithm for

finding MGU (see RN); more complex,

linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.

112

