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o Recitations: Fri. 3PM here (GHC 4307,

o Vote: useful to have one tomOrmw?
o would cover propositional & FO logic

o Draft schedule of due dates up on web

o subject to change with notice



Course email list

o 15780students AT cs.cmu.edu

o Everyone’s official email should be in the
list—we’ve sent a test message, so if you
didn’t get it, let us know
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What 1s AI?

o Lots of examples: poker, driving robots,
flying birds, RoboCup

o Things that are easy for humans/animals
to do, but no obvious algorithm

o Search / optimization /| summation
o Handling uncertainty

o Sequential decisions



Propositional logic

o Syntax
o variables, constants, operators
o literals, clauses, sentences
o Semantics (model - {T, F})
o Truth tables, how to evaluate formulas
o Satisfiable, valid, contradiction

o Relationship to CSPs



Propositional logic
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o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o 1Tseitin transformation to CNF

o Handling uncertainty (independent Nature
choices + logical consequences)

o Compositional semantics

o How to translate informally-specified
problems into logic (e.g., 3-coloring)
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Satisfiability
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o SAT: determine whether a propositional
logic sentence has a satisfying model

o A decision problem: instance — yes or no
o Fundamental problem in CS
o many decision problems reduce to SAT

o informally, if we can solve SAT, we can
solve these other problems

o A SAT solver is a good Al building block



Example decision problem
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o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?
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Reduction
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o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o Formally, let A, B be decision problems
(instances — Y or N)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))

B
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Reduction picture
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Reduction picture
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Reduction picture
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Reducmg k—colormg — SAT

(ar Vv ag Vv ap) A (br v bg Vv bp) A (CrV Cg V Cp) A
(dr Vv dgVvdp) A(ervegVep) N(zrVZgVn)A
(mar Vv =b;) A(—agVv —bg) A (map Vv = bp) A

(marV —z) A(—mag VvV =Ze) A (map VvV —2p) A
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o When A reduces to B:
o if we can solve B, we can solve A
o S0 B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one

16



Not-so-useful reduction

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly I path-edge touches goal

o either O or 2 touch each other node

17



More useful: SAT — CNF-SAT

B
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o Given any propositional formula, Tseitin
transformation produces (in poly time) an
equivalent CNF formula

o So, given a CNF-SAT solver, we can solve
SAT with general formulas

18



More useful: CNF-SAT — 3SAT
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B

o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o 3CNF': at most 3 literals per clause

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

19



CNF-SAT — 3SAT
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o Must get rid of long clauses
o Eg.,(av -bvcvdvev —f)
o Replace with

(av -bvx)A(-xVvcVvy)A
(myvdvz)A(-zvev —f)

20



o A decision problem is in NP if it reduces to
SAT

o E.g., TSP, k-coloring, propositional
planning, integer programming (decision
versions)

o E.g., path planning, solving linear
equations

21



NP- complete
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B

o Many decision problems reduce back and
forth to SAT: they are NP-complete

o Cook showed how to simulate any poly-
time nondeterministic computation w/
(very complicated, but still poly-size)
SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,
Proceedings of ACM STOC'71, pp. 151-158, 1971.
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Open questlon P=NP
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o P = there is a poly-time algorithm to solve

o NP = reduces to SAT

o We know of no poly-time algorithm for
SAT, but we also can’t prove that SAT
requires more than about linear time!
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Cost of reduction

o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o S0, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...

- - - - 7. ‘_'
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Cost of reduction
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o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)

25



Choosing a reduction
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o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days

26
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Proofs

27



o Sentence A entails sentence B, A= B, if B
is true in every model where A is

o same as saying that (A = B) is valid
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Proof tree
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o

o

A tree with a formula at each node

At each internal node, children = parent

Leaves: assumptions or premises
Root: consequence

If we believe assumptions, we should also
believe consequence
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Proof tree example
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Proof by contradiction
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o Assume opposite of what we want to
prove, show it leads to a contradiction

B

o Suppose we want to show KB = §

o Write KB’ for (KB A —5)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o so, (KB A =S) = F (contradiction)

31



Proof by contradiction
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Proof by contradiction
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Inference rule
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o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already

35



Modus ponens
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(anbAac=4d) a b c
d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:

man(Socrates) A

(man(Socrates) = mortal(Socrates))

36



Another inference rule
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o Modus tollens

o If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

37



One more...

(ave) (mcvp)
avp

o Resolution

o a, P are arbitrary subformulas

o Combines two formulas that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens

38



Resolution example

o Modus ponens / tollens are special cases

o Modus tollens:

(—raining v grass-wet) A —~grass-wet =
—raining

39



Resolution example
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o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

40



Resolution example

FPIOTTIRE A i T GRS P AT S s 5= 9 L= ST IR S st ek G I PTCR e i PP s E

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours Vv —outside vV rusty

40



Resolution example
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o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours Vv —outside vV rusty

—=rains Vv —outside v rusty

40



Resolution

(ave) (mcvp)
avp

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False

41



Resolution case analysis
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Soundness and completeness
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B

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven'’t discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB

43



Completeness
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o Modus ponens by itself is incomplete

o Resolution + proof by contradiction is ;. a.robinson
.« . 1918-1974
complete for propositional formulas
represented as sets of clauses

o famous theorem due to Robinson

o if KB E F,we’ll derive empty clause

o Caveat: also need factoring, removal of
redundant literals (av bv a) = (a Vv b)

44



Algorithms
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o We now have our first™ algorithm for SAT

o remove redundant literals (factor)
wherever possible

o pick an application of resolution
according to some fair rule

o add its consequence to KB
o repeat

o Not a great algorithm, but works

- - - - 7. ‘_'
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Variations
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o Horn clause inference
o MAXSAT

o Nonmonotonic logic

46



Horn clauses

o Horn clause: (a A b A ¢c = d)
o Equivalently, (—av -bv -c v d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body

47



Use of Horn clauses
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B

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula;
again, easier to think about

48



Why are Horn clauses important
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o Modus ponens alone is complete

o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

49



o

Forward chaining

Look for a clause with all body literals
satisfied

Add its head to KB (modus ponens)
Repeat
See RN for more details

- . - - 7. ‘_'
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o

O

MAXSAT

B

Given a CNF formula C; A C2 A ... A Cy

Clause weights wi, wz, ... wp (weighted
version) or w; = 1 (unweighted)

Find model which satisfies clauses of
maximum total weight

o decision version: max weight = w?

More generally, weights on variables
(bonus for setting to T): MAXVARSAT

51



Nonmonotonic logic
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o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

52



Nonmonotonic logic
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B

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —ab(Polly) = flies(Polly)
bird(Tux) A —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

53



m’mw =% '.4"“ ‘-_oumdq_oxgga.....-,."'-&'-;\. "-“4""‘“&&4&"”“ " -

o

Nonmonotonic logic

B

Now set as few abnormality predicates as
possible (a MAXVARSAT problem)

Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

If we assert = flies(Tux), must now assume
ab(Tux) to maintain consistency

Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

54



Nonmonotonic logic

B

o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

55
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First-order logic
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Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”
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Predicates and objects
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o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Zero-argument predicate x() plays same
role that Boolean variable x did before

58



Distinguished predicates
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o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False/ F
o Equal(x,y)

o We will also write (x =y) and (x #Z y)

59



Equality satisfies usual axioms
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o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)

60



Functions

o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()

61



The nil object
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o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense
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Types of values
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o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object-valued and Boolean-valued

o done(slides(15-780)) =
happy(professor(15-780))

o Functions map objects to objects;
predicates map objects to Booleans;
connectives map Booleans to Booleans
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Definitions
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o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)

64



Definitions
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o Literal = possibly-negated atom
o happy(John), ~happy(John)

o Sentence or formula = literals joined by
connectives like Av—-=

o raining
o done(slides(780)) = happy(professor)

o Expression = term or formula

65



Semantics
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o Models are now much more complicated
o List of objects (nonempty, may be infinite)
o Lookup table for each function mentioned

o Lookup table for each predicate
mentioned

o Meaning of sentence: model — {T, F'}

o Meaning of term: model — object

66



For example
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KB descrlbmg example

o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...

68



Aside: avoiding verbosity
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o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

B
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Aside: typed variables
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o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Include rules saying function instances
which disobey type rules have value nil

70



Model of example
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o Objects: C,B, E, N
o Function values:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), ~in(C, C), ~in(C, N), ...

71



Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects
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Another possible model
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o Objects: C,B, E,N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear
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An embarrassment of models
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o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don't
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

B

74



Getting r1d of extra objects
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o Can use quantifiers to rule out CBENX
model.:

Vx.x=catv x=boxVv x=ear v x = nil

o Called a domain closure assumption
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Quantlﬁers 1nforma11y
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o Add quantifiers and object variables
o Vx.man(x) = mortal(x)
o =dx. lunch(x) A free(x)

o V: no matter how we replace object
variables with objects, formula is still true

o d: there is some way to fill in object
variables to make formula true
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New syntax
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o Object variables are terms

o Build atoms from variables x, y, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

77



New syntax = new semantics

B
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o Variable assignment for a model M maps
syntactic variables to model objects

o x.:C, y. N

o Meaning of expression w/ free vars: look up
in assignment, then continue as before

o term: (model, var asst) — object

o formula: (model, var asst) — truth value
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o Model: CEBN model from above
o Assignment: (x: C,y: N)
o alive(ear(x)) » alive(ear(C)) » alive(E) » T
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Working with assignments
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o Write € for an arbitrary assignment (e.g.,
all variables map to nil)

o Write (V/ x: obj) for the assignment which
is just like V except that variable x maps to
object obj
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More new syntax:
Quantlﬁers blndmg
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B

o For any variable x and formula F, (Vx. F)
and (3x. F) are formulas

o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like nv — in any order

o But must eventually wind up with ground
formula (no free variables)
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Semantics of V

o Sentence (Nx.S)isTin(M,V)ifSisTin
(M, V/ x: obj) for all objects obj in M
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Example
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B

o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence Vx. happy(x) is satisfied in (M, )

o since happy(A), happy(B), happy(C) are
all satisfied in M

o more precisely, happy(x) is satisfied in
(M, e/x:A), (M, e/x:B), (M, &/x:C)
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Semantics of 3

o Sentence (dx.S) is true in (M, V) if there is

some object obj in M such that S is true in
(M, V/x: obj)
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o M has objects (A, B, C) and predicate

o happy(A) = happy(B) = True

o happy(C) = False
o Sentence dx. happy(x) is satisfied in (M, €)
o Since happy(x) is satisfied in (M, €/x:B)
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Scoping rules (so we don’t have
to write a gazﬂhon parens)
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o In (Vx.F)and (3x. F), F = scope = part of
formula where quantifier applies

o Variable x is bound by innermost possible
quantifier (matching name, in scope)

o Two variables in different scopes can have
same name—they are still different vars

o Quantification has lowest precedence
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Scoping examples
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o (Vx. happy(x)) v (Ix. =happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet
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Scoping examples

o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx.loves(x, y)
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Equlvalence
in FOL



Entailment, etc.
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B

o As before, entailment, satisfiability, validity,
equivalence, etc. refer to all possible models

o these words only apply to ground sentences,
so variable assignment doesn’t matter

o But now, can’t determine by enumerating
models, since there could be infinitely many

o So, must do reasoning via equivalences or
entailments
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Equivalences
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B

o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S§ = dx. =S
-dx.§ = Vx. =S
o And, rules for getting rid of quantifiers
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Generahzmg CNF

B L R O e i ande . PUSRPUR

o Eliminate =, move - in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute AV, or use Tseitin

B
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Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))
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Skolemization

PODISTE IR B Ly Tt g Prromae S AT $ 8 5ty 5= I A CA IR e Nt it - )

o Called Skolemization
(after Thoraf Albert

S kolem ) | Thoraf Albert olem
1887—-1963

o Eliminate 3 by substituting a function of
arguments of all enclosing V' quantifiers

o Make sure to use a new name!
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Do we really need V?

AT b, i Tt A P AN S 59y 5= S0 S G e SNtk M e OO e e

B

o Positions of quantifiers irrelevant (as long
as variable names are distinct)

o Vx. happy(x) A Vy. takes(y, CS780)
o Vx.Vy. happy(x) A takes(y, CS780)

o So, might as well drop them
o happy(x) A takes(y, CS780)
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o

Getting rid of quantifiers

B

Standardize apart (avoid name collisions)
Skolemize

Drop Y (free variables implicitly
universally quantified)

Terminology: still called “free” even
though quantification is implicit
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For example
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o Vx.man(x) = mortal(x)
o —man(x) v mortal(x)

o Vy.dx. loves(y, x)

o loves(y, f{y))
o Vx. honest(x) = happy(Diogenes)

o —honest(x) v happy(Diogenes)
o (Vx. honest(x)) = happy(Diogenes)
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Exercise

o (Vx. honest(x)) = happy(Diogenes)
o <\T/% hoMgl«<K)) Vv Vo‘PPE}L (D>

(F mborsr @) Y v Leorg )
— lhoaerk ( foo (SS \/l/\agg D>
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Proofs 1n
FOL

99



FOL 1s special
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B

o Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for
FOL w/ equality

o Almost any significant extension breaks
this property

o This is why FOL is popular: very powerful
language with a sound & complete
inference procedure
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Proofs

AT 2 A G g AN I T4A ety S S SR Nt e TR 10 0
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o Proofs by contradiction work as before:
o add -~ S to KB
o putin CNF
o run resolution

o Iif we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed
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Generalizing resolution
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o Propositional: (—av b) Aa= b
o FOL:
(—man(x) v mortal(x)) A man(Socrates)

= (—~man(Socrates) v mortal(Socrates))
A man(Socrates)

= mortal(Socrates)

o Difference: had to substitute x — Socrates
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Universal instantiation
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B

o What we just did is Ul:

(—man(x) v mortal(x))
= (—man(Socrates) v mortal(Socrates))

o Works for x — any term not containing x

... (—wman(uncle(y)) v mortal(uncle(y)))

o For proofs, need a good way to find useful
instantiations
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Substitution lists
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o List of variable — term pairs

o Values may contain variables (leaving
flexibility about final instantiation)

o But, no LHS may be contained in any RHS

o 1.e., applying substitution twice is the
same as doing it once

o E.g.,L=(x— Socrates, y — uncle(z))
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Substitution lists
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o Apply a substitution to an expression:
syntactically substitute vars — terms

o E.g.,L = (x— Socrates,y — uncle(z))

o mortal(x) AN man(y): L —
mortal(Socrates) A man(uncle(z))

o Substitution list # variable assignment
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Unification
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o Two FOL terms unify with each other if
there is a substitution list that makes them

syntactically identical

o man(x), man(Socrates) unify using the
substitution x — Socrates

o Importance: purely syntactic criterion for
identifying useful substitutions
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Unification examples

o loves(x, x), loves(John, y) unify using
x —= John,y — John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x),y), loves(z, aunt(z)):
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Unification examples
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o loves(x, x), loves(John, y) unify using
x —= John,y — John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x),y), loves(z, aunt(z)):
o z —> uncle(x), y — aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))
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o Can we unify

knows(John, x) knows(x, Mary)

o What about
knows(John, x) knows(y, Mary)
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o Can we unify
knows(John, x) knows(x, Mary)
No!

o What about
knows(John, x) knows(y, Mary)

x — Mary, y — John
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Standardize apart

o But knows(x, Mary) is logically equivalent
to knows(y, Mary)!

o Moral: standardize apart before unifying
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Most general unifier

PISCIOTTIRE b B L, Tt GRS Promar G PSS Tty 5= ST CL IS v eSS stk A e R e

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.
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