
15-780: Graduate AI
Lecture 3. FOL proofs

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

2

HW1

Out today
Due Tue, Feb. 1 (two weeks)

hand in hardcopy at beginning of class
Covers propositional and FOL
Don’t leave it to the last minute!

3

Collaboration policy

OK to discuss general strategies
What you hand in must be your own work

written with no access to notes from
joint meetings, websites, etc.

You must acknowledge all significant
discussions, relevant websites, etc., on
your HW

4

Late policy

5 late days to split across all HWs
these account for conference travel,
holidays, illness, or any other reasons

After late days, out of 70th %ile for next
24 hrs, 40th %ile for next 24, no credit
thereafter (but still must turn in)
Day = 24 hrs or part thereof, HWs due at
10:30AM

5

Office hours

My office hours this week (usually 12–1
Thu) are canceled
Email if you need to discuss something
with me

6

Review

7

NP

Decision problems
Reductions: A reduces to B means B at
least as hard as A

Ex: k-coloring to SAT, SAT to CNF-SAT
Sometimes a practical tool

NP = reduces to SAT
NP-complete = both directions to SAT
P = NP?

8

Propositional logic

Proof trees, proof by contradiction
Inference rules (e.g., resolution)
Soundness, completeness
First nontrivial SAT algorithm
Horn clauses, MAXSAT, nonmonotonic
logic

9

FOL

Models
objects, function tables, predicate tables

Compositional semantics
object constants, functions, predicates
terms, atoms, literals, sentences
quantifiers, variables, free/bound,
variable assignments

10

Proofs in FOL

Skolemization, CNF
Universal instantiation
Substitution lists, unification
MGU (unique up to renaming, exist
efficient algorithms to find it)

11

Proofs in
FOL

12

Quiz

Can we unify
knows(John, x) knows(x, Mary)

What about
knows(John, x) knows(y, Mary)

13

Quiz

Can we unify
knows(John, x) knows(x, Mary)

What about
knows(John, x) knows(y, Mary)

No!

x → Mary, y → John
14

Standardize apart

But knows(x, Mary) is logically equivalent
to knows(y, Mary)!
Moral: standardize apart before unifying

15

First-order resolution

Given clauses (α ∨ c), (¬d ∨ β), and a
substitution list L unifying c and d
Conclude (α ∨ β) : L

In fact, only ever need L to be MGU of c, d

16

Example

17

18

First-order factoring

When removing redundant literals, we
have the option of unifying them first
Given clause (a ∨ b ∨ θ), substitution L

If a : L and b : L are syntactically identical
Then we can conclude (a ∨ θ) : L

Again L = MGU is enough

19

Completeness

Unlike propositional case, may be infinitely many
possible conclusions
So, FO entailment is semidecidable (entailed
statements are recursively enumerable)

Jacques Herbrand
1908–1931

First-order resolution (w/ FO
factoring) is sound and complete for
FOL w/o equality (famous theorem
due to Herbrand and Robinson)

20

Algorithm for FOL

Put KB ∧ ¬S in CNF

Pick an application of resolution or
factoring (using MGU) by some fair rule

standardize apart premises
Add consequence to KB
Repeat

21

Variations

Equality

Paramodulation is sound and complete
for FOL+equality (see RN)
Or, resolution + factoring + axiom
schema

Restricted semantics

Only check one finite, propositional KB
NP-complete much better than RE

Unique names: objects with different
names are different (John ≠ Mary)

Domain closure: objects without names
given in KB don’t exist
Known functions: only have to infer
predicates

24

Uncertainty

Same trick as before: many independent
random choices by Nature, logical rules
for their consequences
Two new difficulties

ensuring satisfiability (not new, harder)
describing set of random choices

25

Markov logic

Assume unique names, domain closure,
known fns: only have to infer propositions
Each FO statement now has a known set
of ground instances

e.g., loves(x,y) ⇒ happy(x) has n2
instances if there are n people

One random choice per rule instance:
enforce w/p p (KBs that violate the rule
are (1–p) times less likely)

26

Ri
ch

ar
ds

on
 &

 D
om

in
go

s

Independent Choice Logic

Generalizes Bayes nets, Markov logic,
Prolog programs—incomparable to FOL
Use only acyclic KBs (always feasible),
minimal model (cf. nonmonotonicity)
Assume all syntactically distinct terms are
distinct (so we know what objects are in
our model—perhaps infinitely many)
Label some predicates as choices: values
selected independently for each grounding

27

Inference under uncertainty

Wide open topic: lots of recent work!
We’ll cover only the special case of
propositional inference under uncertainty
The extension to FO is left as an exercise
for the listener

28

Second order logic

SOL adds quantification over predicates
E.g., principle of mathematical induction:
∀P. P(0) ∧ (∀x. P(x) ⇒ P(S(x)))
⇒ ∀x. P(x)

There is no sound and complete inference
procedure for SOL (Gödel’s famous
incompleteness theorem)

Others

Temporal and modal logics (“P(x) will be
true at some time in the future,” “John
believes P(x)”)
Nonmonotonic FOL
First-class functions (lambda operator,
application)
…

Who? What?
Where?

Wh-questions

We’ve shown how to answer a question
like “is Socrates mortal?”
What if we have a question whose answer
is not just yes/no, like “who killed JR?” or
“where is my robot?”
Simplest approach: prove ∃x. killed(x, JR),
hope the proof is constructive

may not work even if constr. proof exists
32

Answer literals

Instead of ¬P(x), add (¬P(x) ∨ answer(x))

answer is a new predicate
If there’s a proof of P(foo), can eliminate
¬P(x) by resolution and unification,
leaving answer(x) with x bound to foo

33

Example

Example

Example

Instance
Generation

Bounds on KB value

If we find a model M of KB, then KB is
satisfiable
If L is a substitution list, and if (KB: L) is
unsatisfiable, then KB is unsatisfiable

e.g., mortal(x) → mortal(uncle(x))

38

Bounds on KB value

KB0 = KB w/ each syntactically distinct atom
replaced by a different 0-arg proposition

likes(x, kittens) ∨ ¬likes(y, x) → A ∨ ¬B

KB ground and KB0 unsatisfiable ⇒ KB
unsatisfiable

39

Propositionalizing

Let L be a ground substitution list
Consider KB’ = (KB: L)0

KB’ unsatisfiable ⇒ KB unsatisfiable

KB’ is propositional
Try to show contradiction by handing KB’
to a SAT solver: if KB’ unsatisfiable, done
Which L?

40

Example

Lifting

Suppose KB’ satisfiable by model M’
Try to lift M’ to a model M of KB

assign each atom in M the value of its
corresponding proposition in M’
break ties by specificity where possible
break any further ties arbitrarily

42

Example

¬kills(Jack, Cat)
kills(Curiosity, Cat)
¬kills(Foo, Cat)

M’

Discordant pairs

Atoms kills(x, Cat), kills(Curiosity, Cat)
each tight for its clause in M’
assigned opposite values in M’
unify: MGU is x → Curiosity

Such pairs of atoms are discordant
They suggest useful ways to instantiate

44

Example

45

InstGen

Propositionalize KB→KB’, run SAT solver

If KB’ unsatisfiable, done
Else, get model M’, lift to M
If M satisfies KB, done
Else, pick a discordant pair according to a
fair rule; use to instantiate clauses of KB
Repeat

46

Soundness and completeness

We’ve already argued soundness
Completeness theorem: if KB is
unsatisfiable but KB’ is satisfiable, must
exist a discordant pair wrt M’ which
generates a new instantiation of a clause
from KB—and, a finite sequence of such
instantiations will find an unsatisfiable
propositional formula

47

Agent
Architectures

Situated agent

49

Perception

Action

Agent
Environment

Inside the agent

50

Inside the agent

50

Knowledge
Representation

Knowledge Representation

is the process of
Identifing relevant objects, functions,
and predicates
Encoding general background
knowledge about domain (reusable)
Encoding specific problem instance

Sometimes called knowledge engineering

Common themes

RN identifies many common idioms and
problems for knowledge representation
Hierarchies, fluents, knowledge, belief, …
We’ll look at a couple

Taxonomies

isa(Mammal, Animal)
disjoint(Animal, Vegetable)
partition({Animal, Vegetable, Mineral,
Intangible}, Everything)

Inheritance

Transitive: isa(x, y) ∧ isa(y, z) ⇒ isa(x, z)

Attach properties anywhere in hierarchy
isa(Pigeon, Bird)
isa(x, Bird) ⇒ flies(x)
isa(x, Pigeon) ⇒ gray(x)

So, isa(Tweety, Pigeon) tells us Tweety is
gray and flies

Physical composition

partOf(Wean4625, WeanHall)
partOf(water37, water3)
Note distinction between mass and count
nouns: any partOf a mass noun also isa
that mass noun

Fluents

Fluent = property that changes over time
at(Robot, Wean4623, 11AM)

Actions change fluents
Fluents chain together to form possible
worlds
at(x, p, t) ∧ adj(p, q) ⇒ poss(go(x, p, q), t)
∧ at(x, q, result(go(x, p, q), t))

Frame problem

Suppose we execute an unrelated action
(e.g., talk(Professor, FOL))
Robot shouldn’t move:

if at(Robot, Wean4623, t), want
at(Robot, Wean4623,
result(talk(Professor, FOL)))

But we can’t prove it without adding
appropriate rules to KB!

Frame problem

The frame problem is that it’s a pain to
list all of the things that don’t change
when we execute an action
Naive solution: frame axioms

for each fluent, list actions that can’t
change fluent
KB size: O(AF) for A actions, F fluents

Frame problem

Better solution: successor-state axioms
For each fluent, list actions that can change
it (typically fewer): if go(x, p, q) is possible,
at(x, q, result(a, t)) ⇔
a = go(x, p, q) ∨ (at(x, q, t) ∧ a ≠ go(x, q, z))

Size O(AE+F) if each action has E effects

Debugging KB

Sadly always necessary…
Severe bug: logical contradictions
Less severe: undesired conclusions
Least severe: missing conclusions

First 2: trace back chain of reasoning until
reason for failure is revealed
Last: trace desired proof, find what’s missing

Examples

A simple data structure

(ABB) ≡ cons(A, cons(B, cons(B, nil)))

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)

63

Caveat

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)

64

A context-free grammar

S := NP VP
NP := D Adjs N
VP := Advs V PPs | Advs V DO PPs | Advs V IO DO PPs
PP := Prep NP
DO := NP
IO := NP
Adjs := Adj Adjs | {}
Advs := Adv Advs | {}
PPs := PP PPs | {}
D := a | an | the | {}
Adj := errant | atonal | squishy | piquant | desultory
Adv := quickly | excruciatingly
V := throws | explains | slithers
Prep := to | with | underneath
N := aardvark | avocado | accordion | professor | pandemonium 65

A context-free grammar

S := NP VP
NP := D Adjs N
VP := Advs V PPs | Advs V DO PPs | Advs V IO DO PPs
PP := Prep NP
DO := NP
IO := NP
Adjs := Adj Adjs | {}
Advs := Adv Advs | {}
PPs := PP PPs | {}
D := a | an | the | {}
Adj := errant | atonal | squishy | piquant | desultory
Adv := quickly | excruciatingly
V := throws | explains | slithers
Prep := to | with | underneath
N := aardvark | avocado | accordion | professor | pandemonium 65

the errant professor
explains the desultory
avocado to the squishy

aardvark

a piquant accordion
quickly excruciatingly

slithers underneath the
atonal pandemonium

Shift-reduce parser

input(x) ⇒ parse(x, nil)

parse(cons(x, y), z) ⇒ parse(y, cons(x, z))

parse(x, (VP NP . y)) ⇒ parse(x, (S . y))

parse(x, (N Adjs D . y)) ⇒ parse(x, (NP . y))

parse(x, y) ⇒ parse(x, (Adjs . y))

parse(x, (aardvark . y)) ⇒ parse(x, (N . y))

…
parse(nil, (S)) ⇒ parsed

66

An example parse

input((the professor slithers))

67

More careful

input(x) ∧ input(y) ⇒ (x = y)

NP ≠ VP ∧ NP ≠ S ∧ NP ≠ the ∧ avocado ≠
aardvark ∧ avocado ≠ the ∧ …

terminal(x) ⇔ x = avocado ∨ x = the ∨ …

input(x) ⇔ parse(x, nil)

parse(nil, (S)) ⇔ parsed

68

More careful (cont’d)

terminal(x) ⇒
[parse(cons(x, y), z) ⇔ parse(y, cons(x, z))]

[parse(x, (aardvark . y)) ∨ parse(x, (avocado . y))
∨ …] ⇔ parse(x, (N . y))

[parse(x, y) ∨ parse(x, (Adjs Adj . y)]
⇔ parse(x, (Adjs . y))

…

69

Extensions

Probabilistic CFG
Context-sensitive features (e.g.,
coreference: John and Mary like to sail.
His yacht is red, and hers is blue.)

70

