I 5-780: Grad Al Lec. 8: Linear programs, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Test your handin directories
 - /afs/cs/user/aothman/dropbox/USERID/
 - where USERID is your Andrew ID
- Poster session:
 - Mon 5/2, I:30–4:30PM, room TBA
- Readings for today & Tuesday on class site

Project idea

• Answer the question: what is fairness?

In case anyone thinks of slacking off

LPs, ILPs, and their ilk

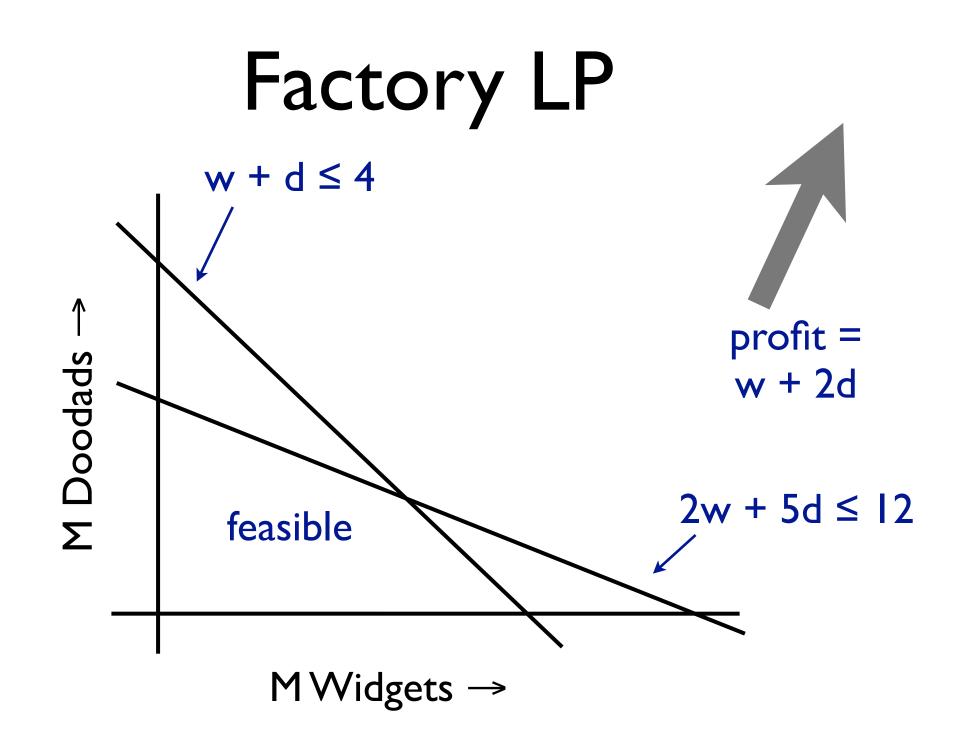
Boyd & Vandenberghe. Convex Optimization. Sec 4.3 and 4.3.1.

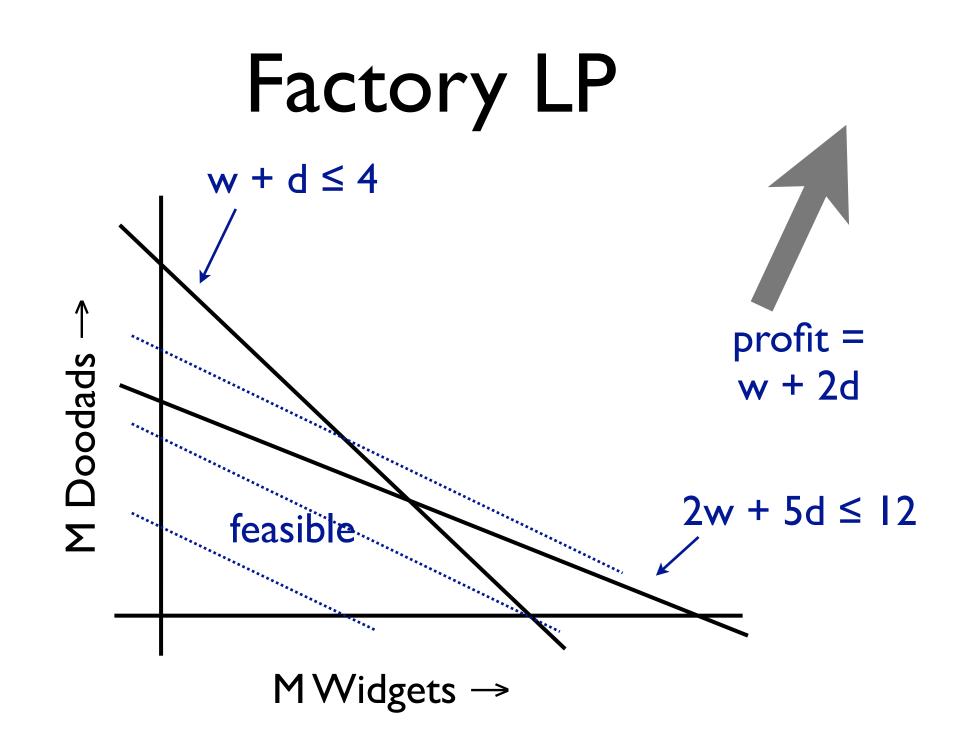
((M)I)LPs

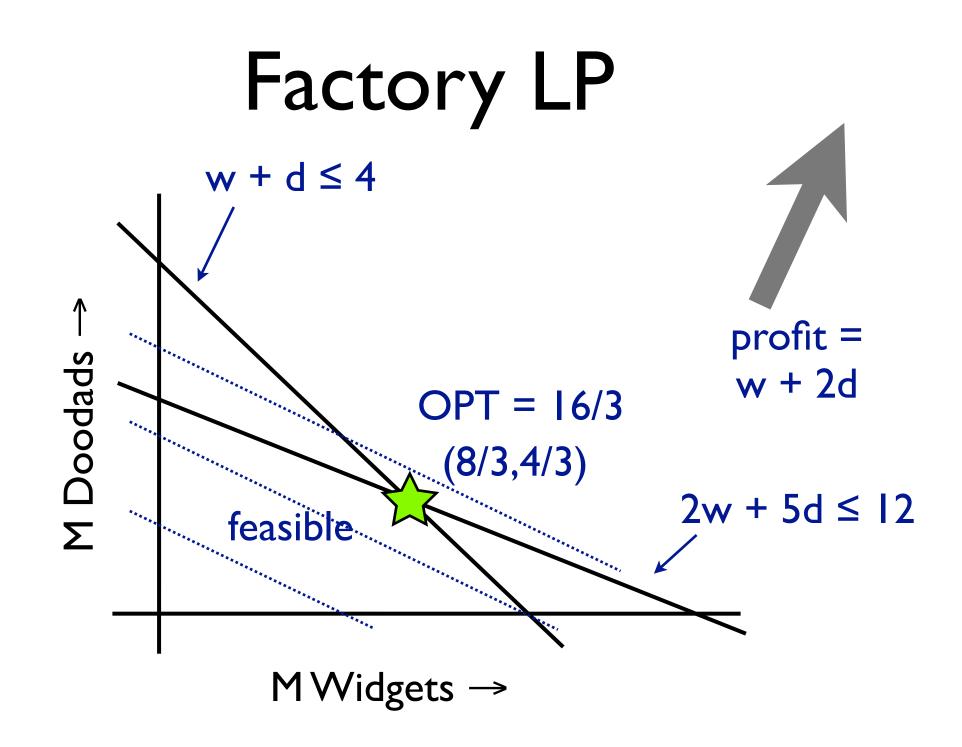
- Linear program: min 3x + 2y s.t. $x + 2y \le 3$ $x \le 2$ $x, y \ge 0$
- Integer linear program: constrain $x, y \in \mathbb{Z}$
- Mixed ILP: $x \in \mathbb{Z}, y \in \mathbb{R}$

Example LP

- Factory makes widgets and doodads
- Each widget takes I unit of wood and 2 units of steel to make
- Each doodad uses I unit wood, 5 of steel
- Have 4M units wood and 12M units steel
- Maximize profit: each widget nets \$1, each doodad nets \$2

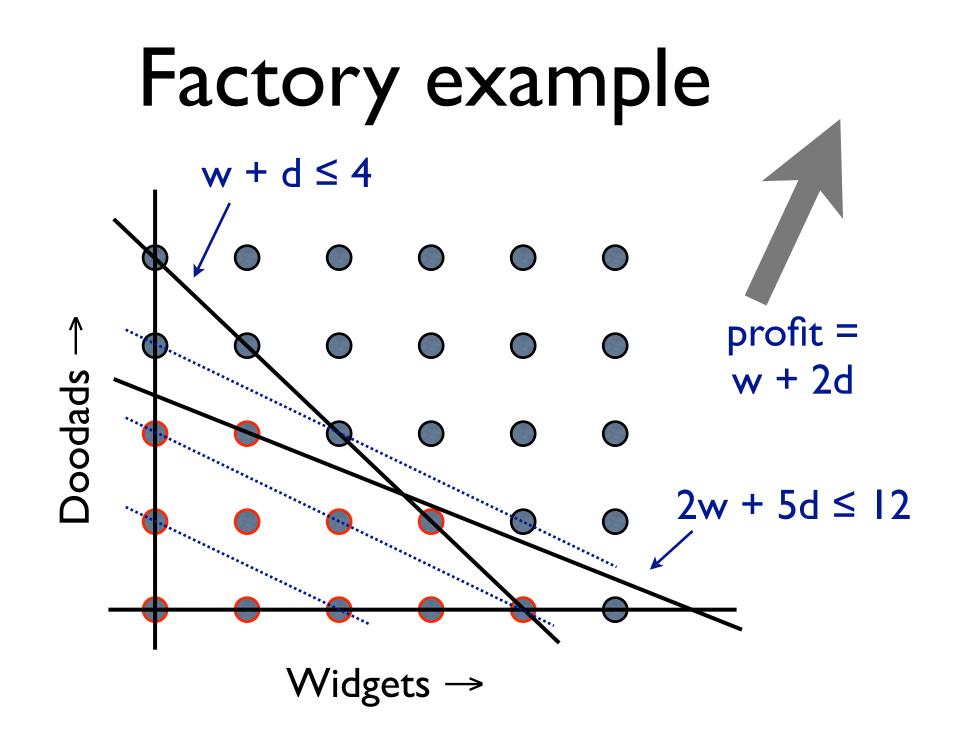


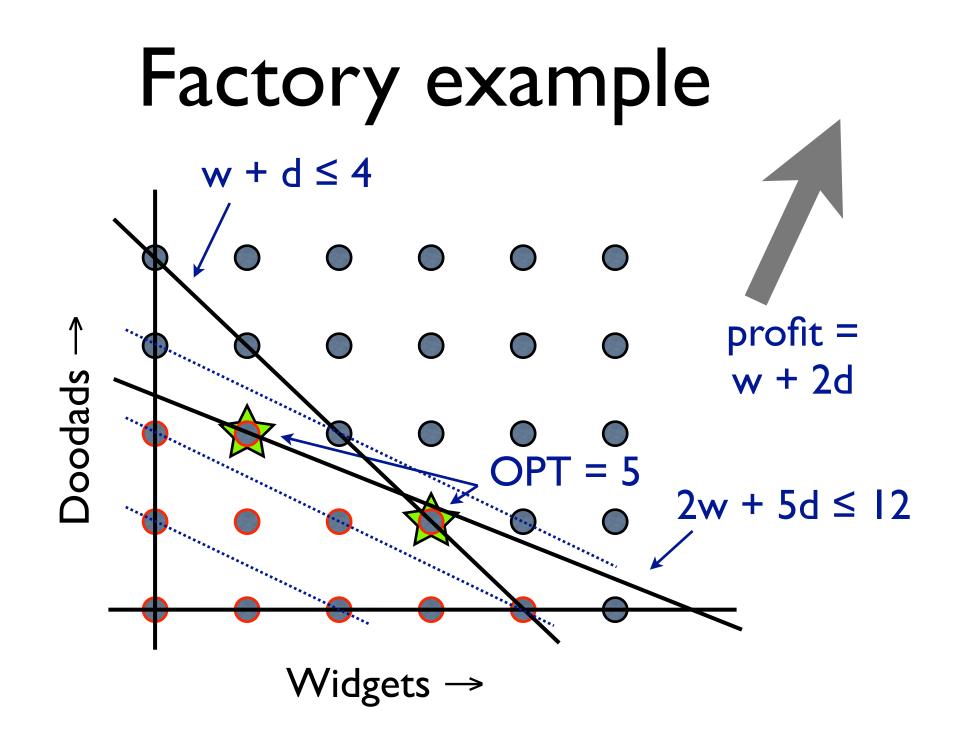




Example ILP

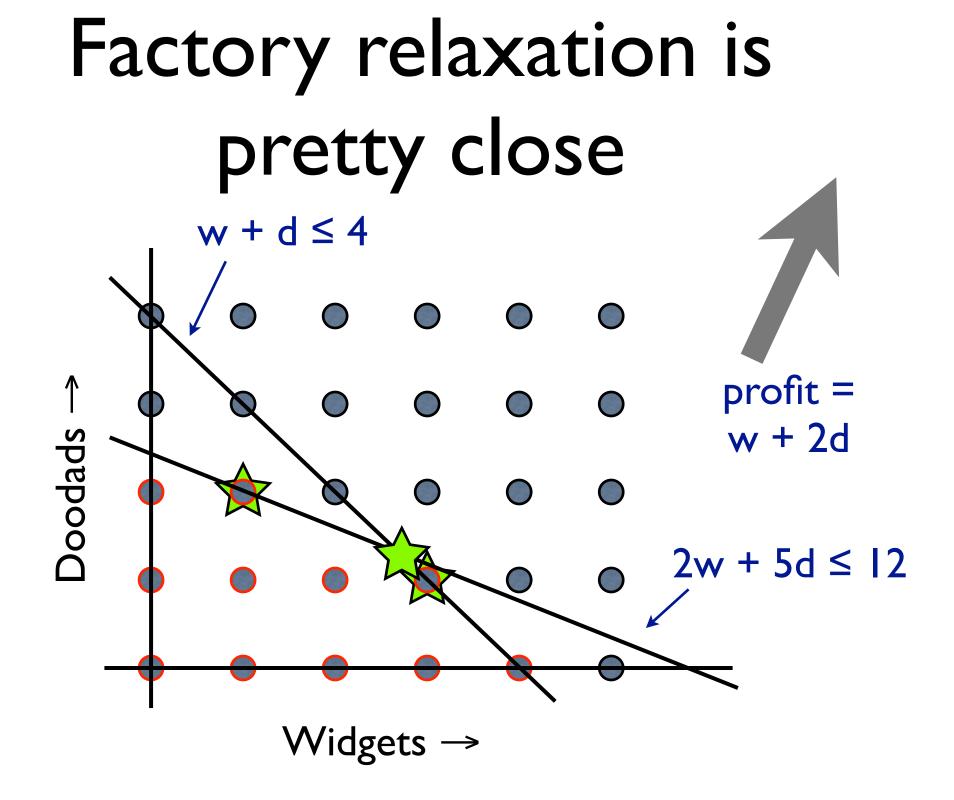
 Instead of 4M units of wood, I2M units of steel, have 4 units wood and I2 units steel

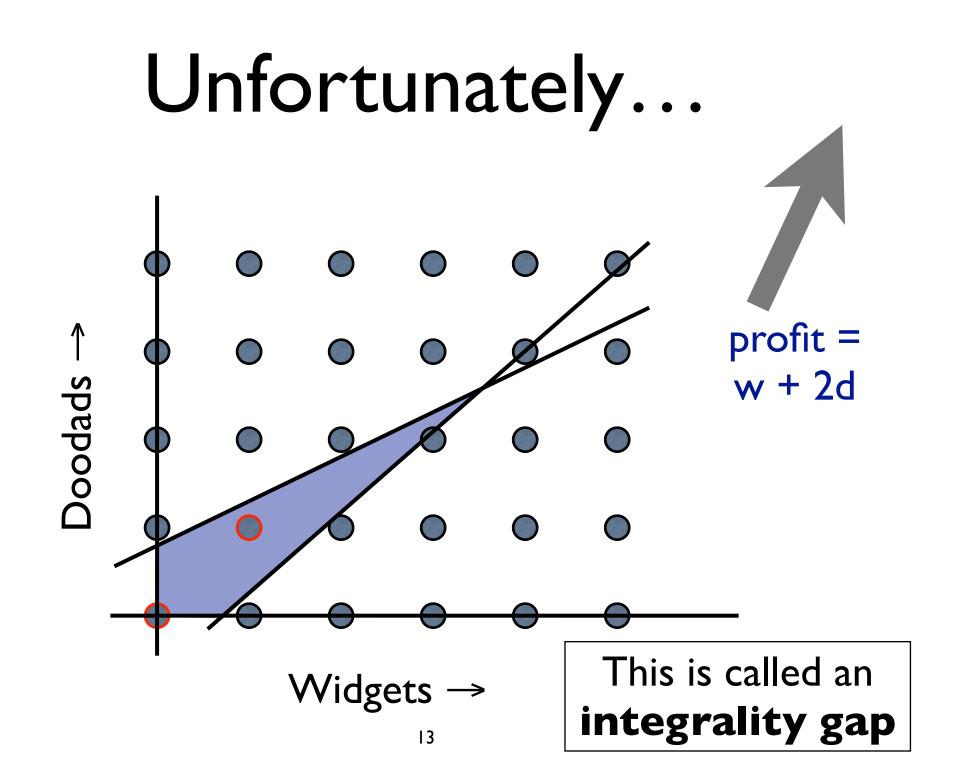




LP relaxations

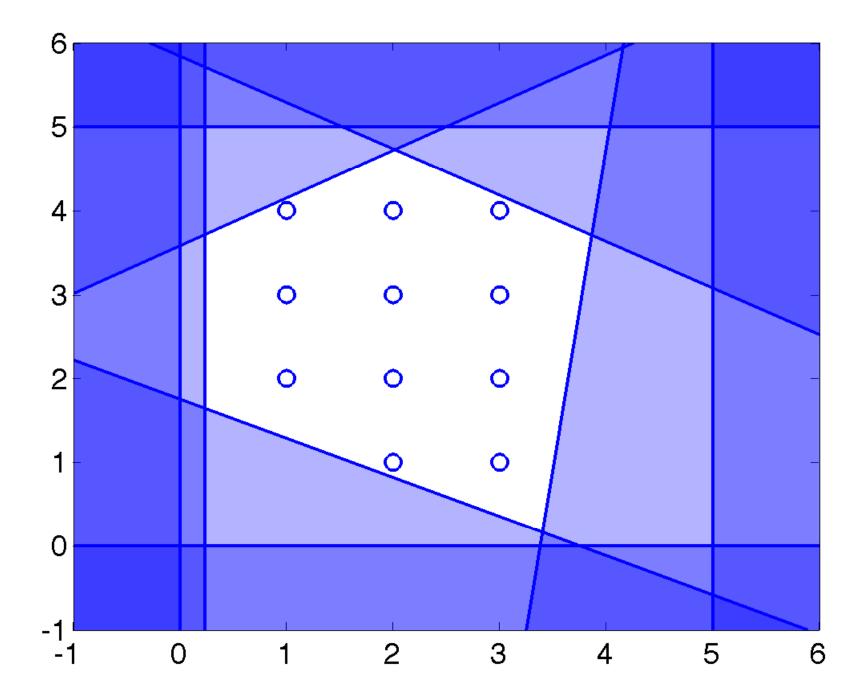
- Above LP and ILP are the same, except for constraint w, $d \in \mathbb{Z}$
- LP is a **relaxation** of ILP
- Adding any constraint makes optimal value same or worse
- So, OPT(relaxed) ≥ OPT(original) (in a maximization problem)

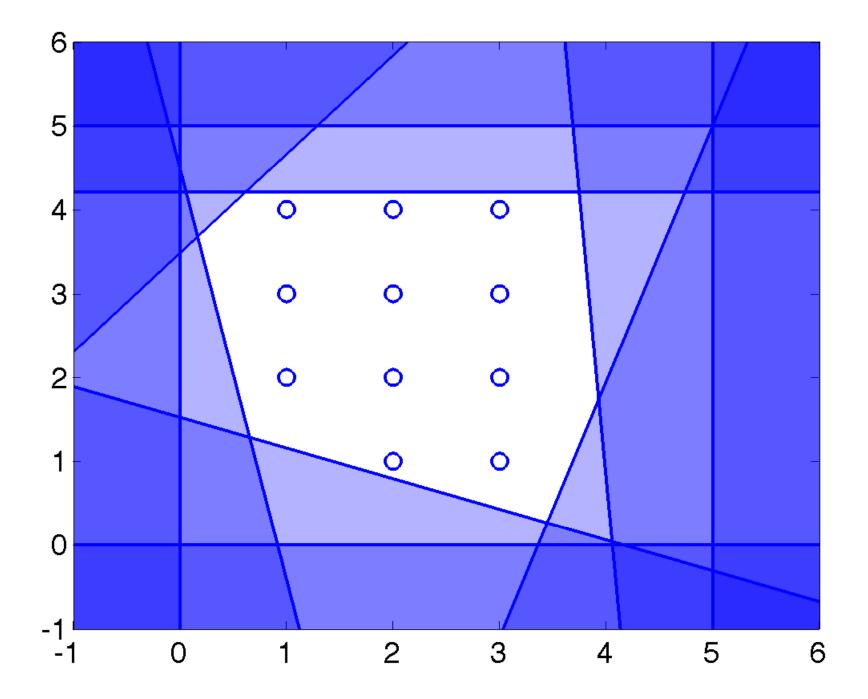


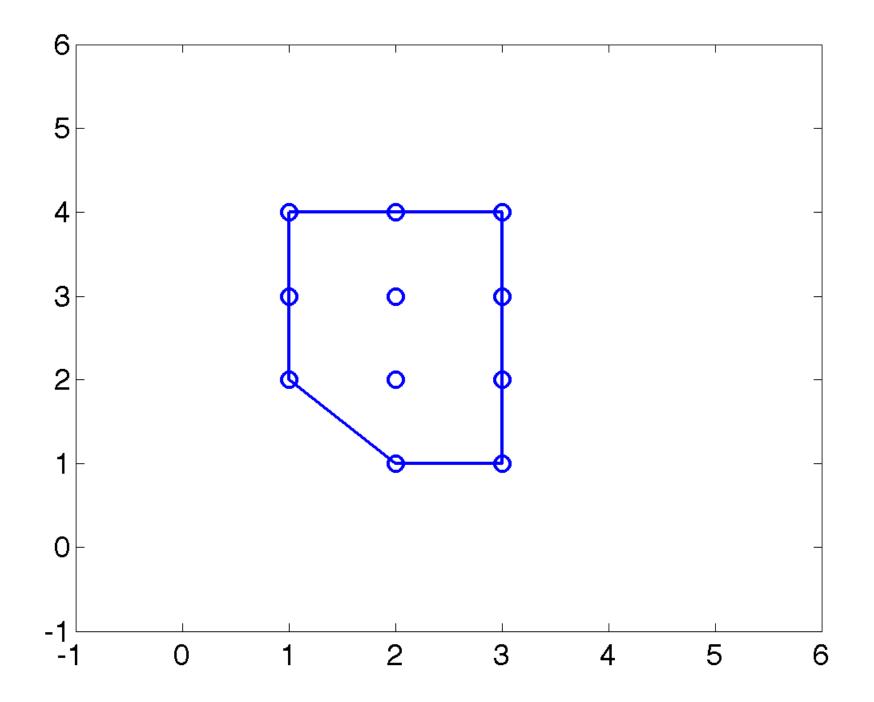


Falling into the gap

- In this example, gap is 3 vs 8.5, or about a ratio of 0.35
- Ratio can be arbitrarily bad
 - but, can sometimes bound it for classes of ILPs
- Gap can be different for different LP relaxations of "same" ILP







From ILP to SAT

- 0-1 ILP: all variables in {0, 1}
- SAT: 0-1 ILP, objective = constant, all constraints of form

 $x + (1-y) + (1-z) \ge 1$

• MAXSAT: 0-1 ILP, constraints of form $x + (I-y) + (I-z) \ge s_j$

maximize $s_1 + s_2 + \dots$

Pseudo-boolean inequalities

- Any inequality with integer coefficients on 0-1 variables is a PBI
- Collection of such inequalities (w/o objective): pseudo-boolean SAT
- Many SAT techniques work well on PB-SAT as well

Complexity

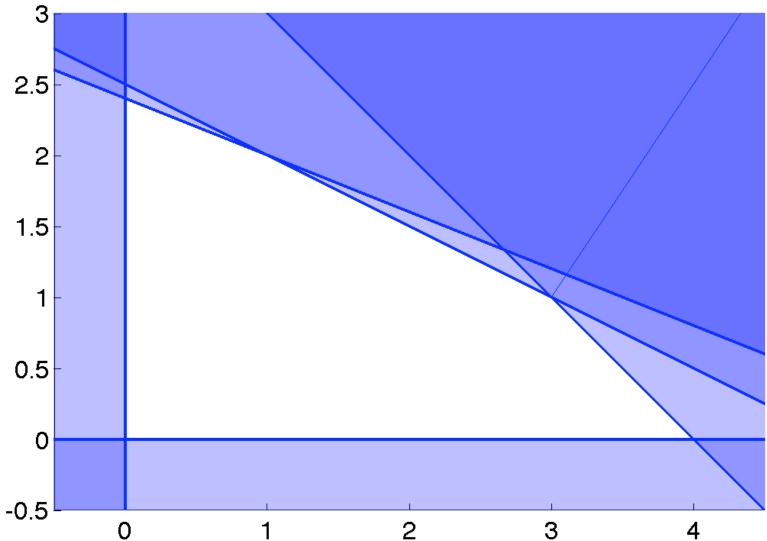
- Decision versions of ILPs and MILPs are NPcomplete (e.g., ILP feasibility contains SAT)
 - so, no poly-time algos unless P=NP
 - in fact, no poly-time algo can approximate
 OPT to within a constant factor unless P=NP
- Typically solved by search + smart techniques for ordering & pruning nodes
- E.g., branch & cut (in a few lectures)—like DPLL (DFS) but with more tricks for pruning

Complexity

- There are poly-time algorithms for LPs
 - e.g., ellipsoid, log-barrier methods
 - rough estimate: n vars, m constraints ⇒
 ~50–200 × cost of (n × m) regression
- No strongly polynomial LP algorithms known—interesting open question
 - simplex is "almost always" polynomial [Spielman & Teng]

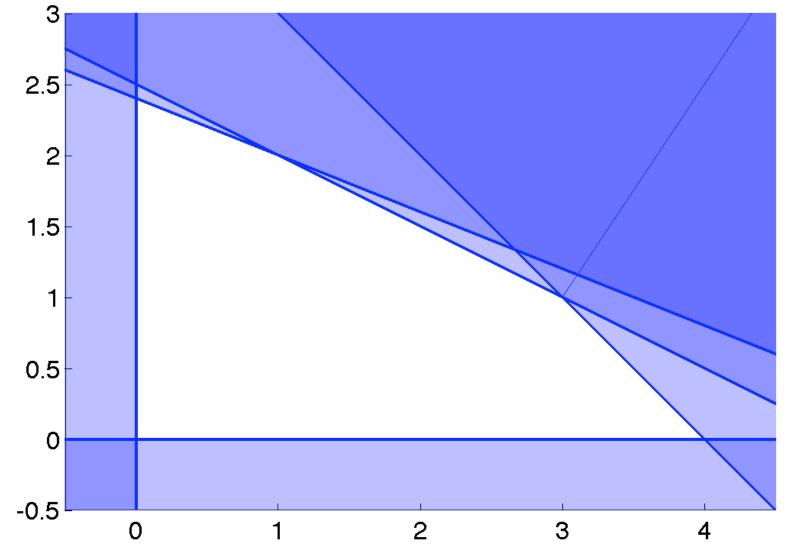
max 2x+3y s.t. $x + y \leq 4$ $2x + 5y \le 12$ $x + 2y \leq 5$ x, y ≥ 0

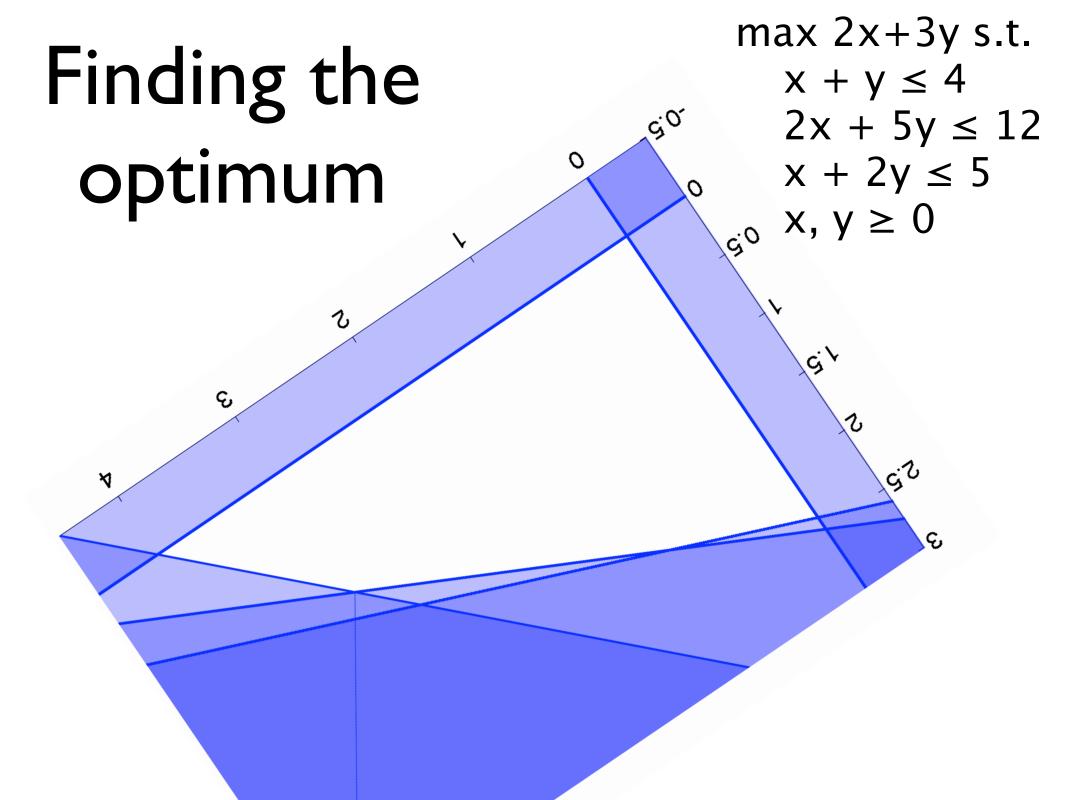
Terminology

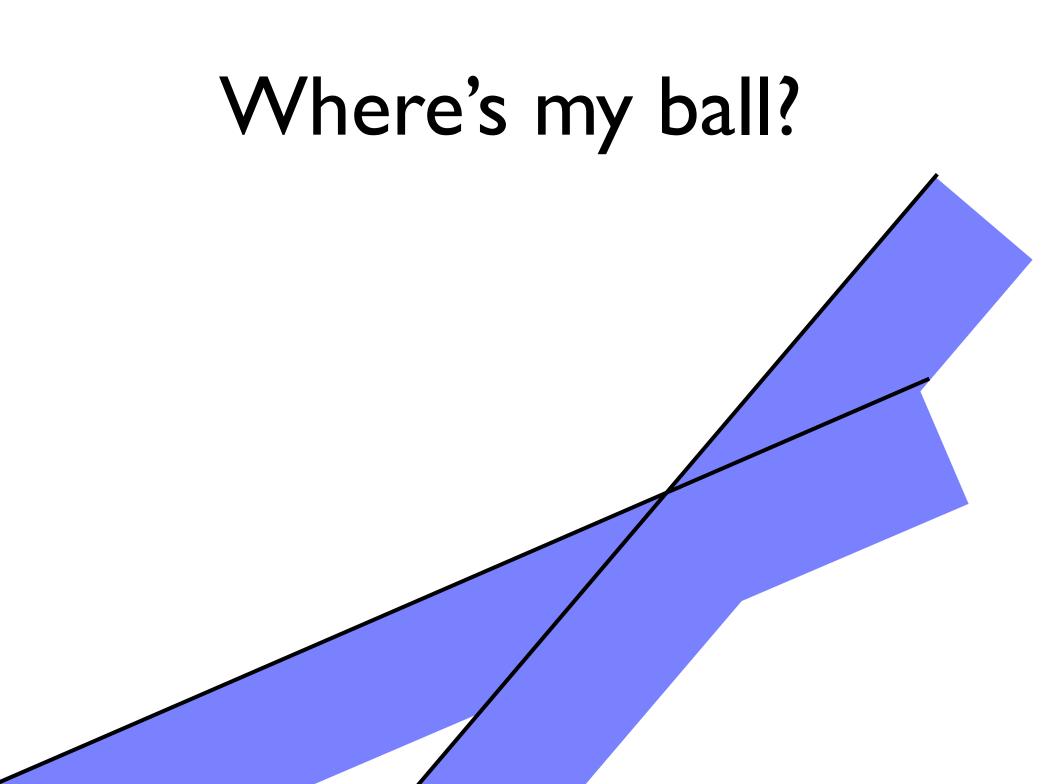


Finding the optimum

max 2x+3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$ $x, y \ge 0$







Unhappy ball

- min 2x + 3y subject to
- x ≥ 5
- ★ x ≤ |

Transforming LPs

• Getting rid of inequalities (except variable bounds)

• Getting rid of unbounded variables

Standard form LP

- all variables are nonnegative
- all constraints are equalities

• E.g.:
$$q = (x y u v w)^T$$

max 2x+3y s.t. x + y ≤ 4 $2x + 5y \leq 12$ x + $2y \leq 5$ x, y ≥ 0

max $c^T q$ s.t. Aq = b, q ≥ 0 (componentwise)

Why is standard form useful?

- Easy to find corners
- Easy to manipulate via row operations
- Basis of simplex algorithm

Bertsimas and Tsitsiklis. Introduction to Linear Optimization. Ch. 2–3.

Finding corners

- <u>x y u v w RHS</u>
 - set x, y = 0
- 2 5 0 1 0 12
- 1 2 0 0 1 5

1 1 1 0 0

1 1 1 0 0 4 set v, w = 0

4

- 2 5 0 1 0 12
- 1 2 0 0 1 5

1 1 1 0 0 4 set x, u = 0 2 5 0 1 0 12

1 2 0 0 1 5

Row operations

- Can replace any row with linear combination of existing rows
 - as long as we don't lose independence
- Elim. x from 2nd and 3rd rows of A

X	<u>y</u>	u	V	W	RHS
_	1	_	-	-	4
2	5	0	1	0	12
1	2	0	0	1	5
2	3	0	0	0	1

• And from c:

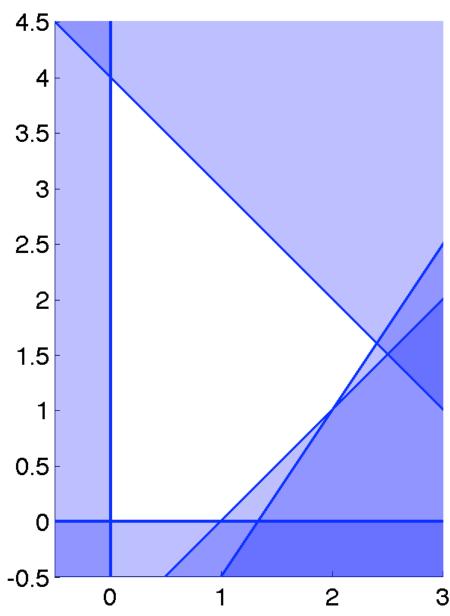
Presto change-o

- Which are the slacks now?
 - vars that appear in

• Terminology: "slack-like" variables are called **basic**

<u>X</u>	<u>y</u>	u	V	W	RHS
1	1	1	0	0	4
0	3	-2	1	0	4
0	1	-1	0	1	1
0	1	-2	0	0	1

The "new" LP



max y – 2u	<u>X</u>	y	u	v	W	RHS
y + u ≤ 4	1	1	1	0	0	4
$3y - 2u \le 4$	0	3	-2	1	0	4
, y – u ≤ I	0	1	-1	0	1	1
y, u ≥ 0	0	1	-2	0	0	1

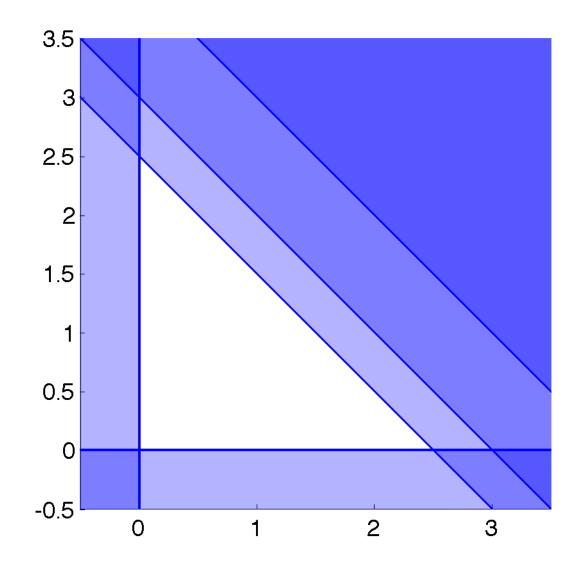
Many different-looking but equivalent LPs, depending on which variables we choose to make into slacks

Or, many corners of same LP

Basis

 Which variables can we choose to make basic?

<u>X</u>	<u>y</u>	u	V	W	RHS
1	1	1	0	0	4
2	2	0	1	0	5
<u>3</u>	3	0	0	1	9
2	1	0	0	0	1



Nonsingular

- We can assume
 - $n \ge m$ (at least as many vars as constrs)
 - A has full row rank
- Else, drop rows (w/o reducing rank) until true: dropped rows are either redundant or impossible to satisfy
 - easy to distinguish: pick a corner of reduced
 LP, check dropped = constraints
- Called *nonsingular* standard form LP
 - means basis is an invertible m × m submatrix

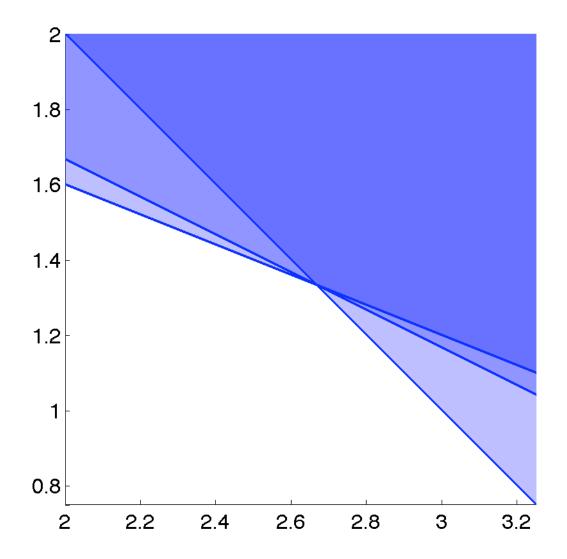
Naïve (slooow) algorithm

- Iterate through all subsets B of m vars
 - if m constraints, n vars, how many subsets?
- Check each B for
 - full rank ("basis-ness")
 - feasibility $(A(:,B) \setminus RHS \ge 0)$
- If pass both tests, compute objective
- Maintain running winner, return at end

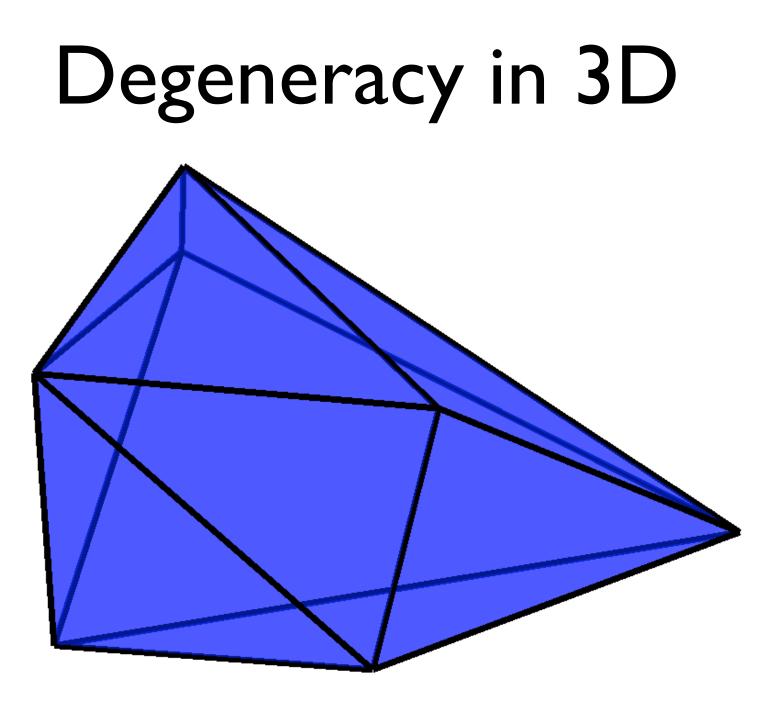
Degeneracy

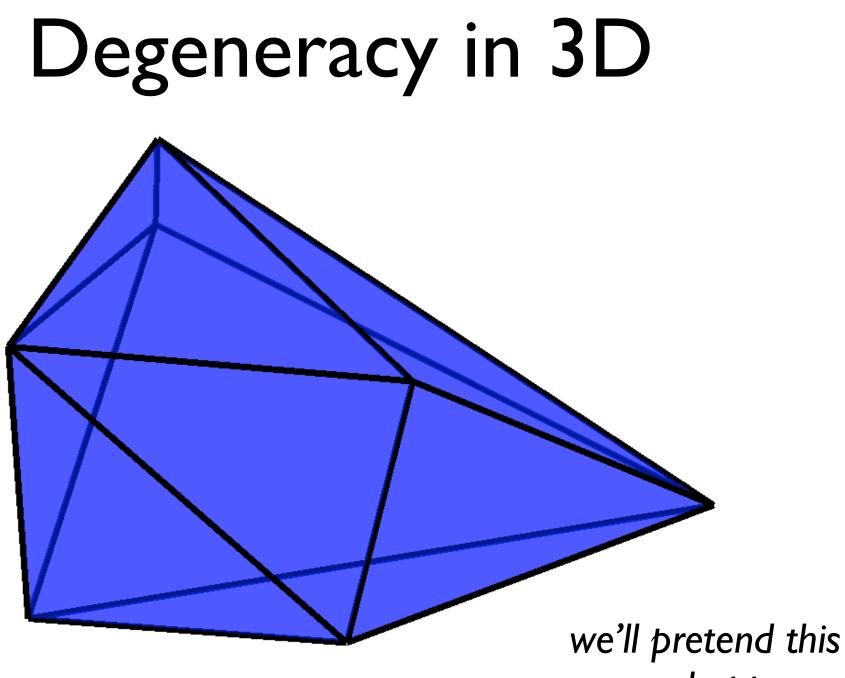
- Not every set of m variables yields a corner
 - some have rank < m (not a basis)</p>
 - some are infeasible
- Can the reverse be true? Can two bases yield the same corner? (Assume nonsingular standard-form LP.)

Degeneracy



<u>X</u>	_ <u>y</u> _	u	V	W	<u>RHS</u>
1	1	1	0	0	4
2	5	0	1	0	12
1	2	0	0	1	16/3
1	0	0	-2	5	8/3
0	1	0	1	-2	4/3
0	0	1	1	-3	0
1	0	2	0	-1	8/3
0	1	-1	0	1	4/3
0	0	1	1	-3	0



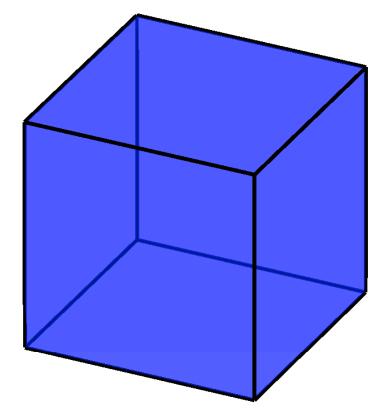


never happens

Neighboring bases

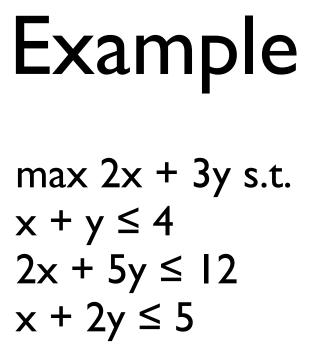
- Two bases are *neighbors* if they share (m–1) variables
- Neighboring feasible bases correspond to vertices connected by an edge (note: degeneracy)

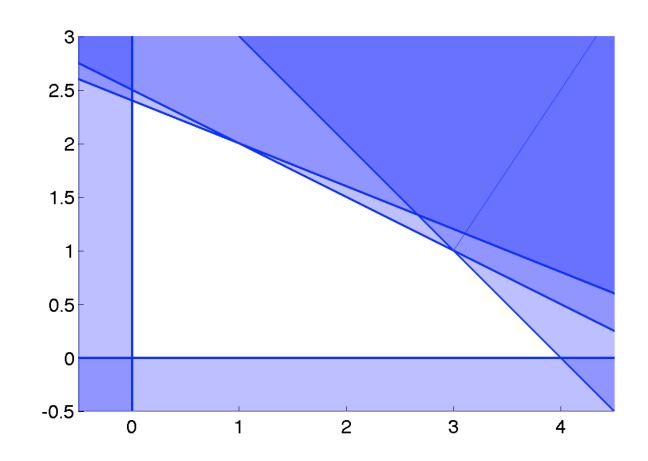
X	<u>y</u>	Z	u	V	W	RHS
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	0	1	0	0	1	1



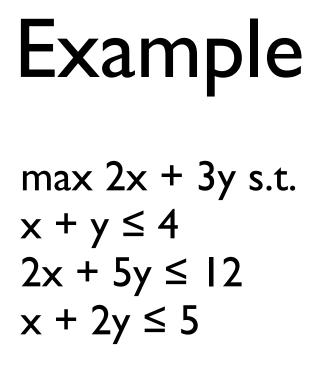
Improving our search

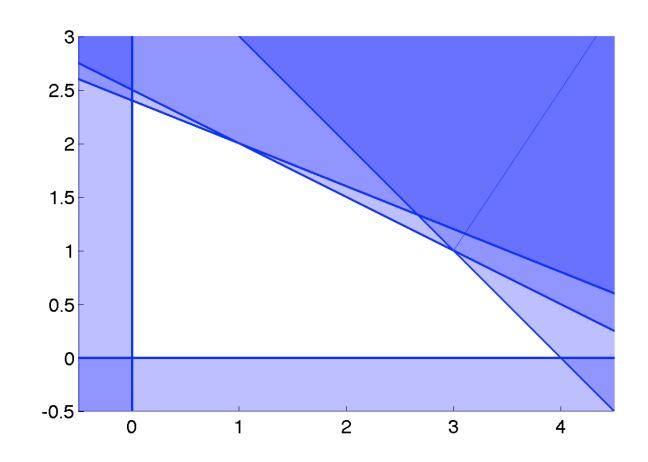
- Naïve: enumerate all possible bases
- Smarter: maybe neighbors of good bases are also good?
- **Simplex** algorithm: repeatedly move to a neighboring basis to improve objective
 - important advantage: rank-1 update is fast





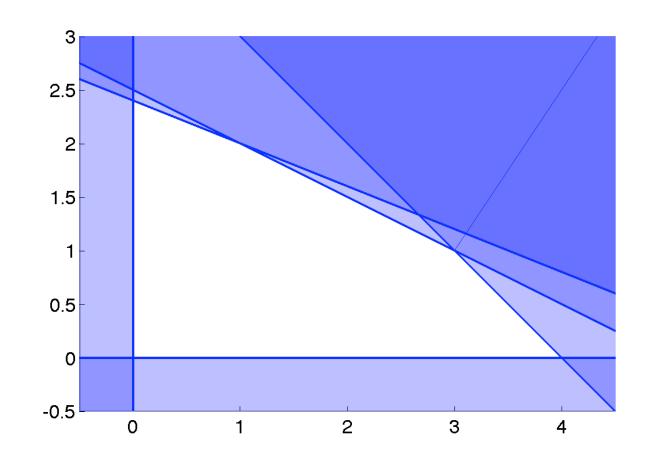
 X	У	S	t	u	RHS
1	1	1	0	0	4
2	5	0	1	0	12
 1	2	0	0	1	5
2	3	0	0	0	1





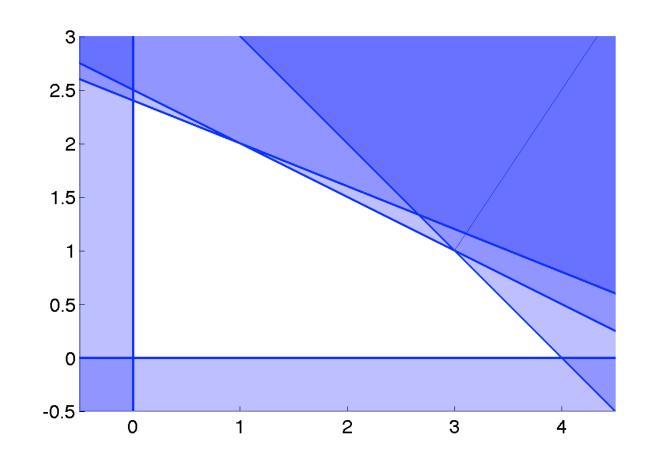
-	Х	У	S	t	u	RHS
	0.4	1	0	0.2	0	2.4
	0.6	0	1	-0.2	0	1.6
_	0.2	0	0	-0.4	1	0.2
	0.8	0	0	-0.6	0	1

Example max 2x + 3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$



_	X	<u> </u>	S	t	u	RHS
	1	0	0	-2	5	1
	0	1	0	1	-2	2
_	0	0	1	1	-3	1
	0	0	0	1	-4	1

Example max 2x + 3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$



_X	<u> </u>	S	t	u	RHS
1	0	2	0	-1	3
0	1	-1	0	1	1
0	0	1	1	-3	1
0	0	-1	0	-1	1