15-780: Grad Al Lec. 9: Linear programs, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Have you tested your handin directories?
 - /afs/cs/user/aothman/dropbox/USERID/
 - where USERID is your Andrew ID

Poster/session;

1:30-4:30 7th Floor atrium
GHC

Review

- LPs, ILPs, MILPs
 - $ightharpoonup \mathbb{R}$ or \mathbb{Z} variables
 - Iinear ≤ ≥ =
 - linear objective
 - ▶ LP relaxations, integrality gap
 - relation to SAT, MAXSAT, PBI
 - complexity (LP: P; ILP: NP & no approx)
 - ▶ (in)feasible, (sub)optimal, (in)active

Review

- Standard form: all vars ≥ 0 , all = constraints
- Nonsingular: n vars ≥ m constraints, rank m
- Basis
 - spans Rng(A) (m × m invertible submatrix)
 - corresponds to "corner"
 - ▶ using row ops to make basic variables into "slacks" → tableau notation
- Degeneracy: distinct bases yield same corner
- Naïve algorithm: check all bases

Finding corners

Simplex in one slide

(ignoring degeneracy, which is actually important)

- Given a nonsingular standard-form LP
 - make it nonsingular if needed
- Start from a feasible basis and its tableau
 - big-M if needed
- Pick non-basic variable w/ objective > 0 (max)
- Pivot it into basis, getting neighboring basis
 - select exiting variable to keep feasibility
- Repeat until all non-basic variables have objective < 0 (max)

 $\max 2x + 3y s.t.$

$$x + y \le 4$$

$$2x + 5y \le 12$$

$$x + 2y \le 5$$

	9	7 \	7 Pivot 631			
X	ý	S	Œ)	u	RHS	
1	1	1	0	0	4	
2	5	0	1	0	12	
1	2	0	0	1	5	
2	3	0	0	0	↑	

$$max 2x + 3y s.t.$$

$$x + y \le 4$$

$$2x + 5y \le 12$$

$$x + 2y \le 5$$

Х	У	S	t	u	RHS
0.4	1	0	0.2	0	2.4
0.6	0	1	-0.2	0	1.6
0.2	0	0	-0.4	1	0.2
0.8	0	0	-0.6	0	↑

$$max 2x + 3y s.t.$$

$$x + y \le 4$$

$$2x + 5y \le 12$$

$$x + 2y \le 5$$

X	У	S	t	u	RHS
1	0	0	-2	5	1
0	1	0	1	-2	2
0	0	1	1	- 3	1
0	0	0	1	-4	↑

$$max 2x + 3y s.t.$$

$$x + y \le 4$$

$$2x + 5y \le 12$$

$$x + 2y \le 5$$

	X	У	S	t	u	RHS
	1	0	2	0	-1	3
	0	1	-1	0	1	1
	0	0	1	1	- 3	1
•	0	0	-1	0	-1	<u></u>

multiple constraints
violated ==> multiple
extra variables, each with
-M in objective

Big M

X	У	7	t	u	V	W	RHS
1	1	2	1	0	0	0	4
3	-2	6	0	1	0	0	4
1	-1	O	0	0	1	0	1
<u>-3</u>	-2	1	0	0	0	1	<u>-1</u>
1	-2	- M	0	0	0	0	↑

 So far, assumed we started w/ initial feasible basis

- How do we get one?
 - ▶ for each violated constraint, add var w/ coeff -I
 - penalize in objective, include in initial basis

Ex: combinatorial auctions

- Goods: Newspaper, Magazine, L shoe, R shoe
- Bids (note use of bidding language: 7 rt 16 numbers for B₁ and 1 rt 16 for B₂):
 - N: +5; M: +4
 - ► N, M: –3
 - ▶ L, R: +10
 - N, L, R: −5;
 M, L, R: −4;
 N, M, L, R: +3

Bidder I

M: +10

Bidder 2

Winner determination

- Goods: Newspaper, Magazine
- Bids:
 - N: +5; M: +4
 - ► N, M: –3
 - Bidder I

(n, ~ m,) = (n, v m)

▶ N, M: +4

Bidder 2

$$0 \in N_1, N_2, M_1, M_2 \subseteq I$$
 $N_1 + N_2 \subseteq I$
 $M_1 + M_2 \subseteq I$
 $M_1 + M_2 \subseteq I$
 $M_2 \subseteq M_2$
 $M_1 + M_2 \subseteq I$
 $M_1 + M_2 \subseteq I$
 $M_2 \subseteq M_2$
 $M_1 + M_2 \subseteq I$
 $M_2 \subseteq M_2$
 M

Bounds in our = 65

- Any feasible point yields lower bd: (N to B_I, keep M) → 5
- Upper bound: solve
 LP relaxation
 - a bit expensive
 - can we be lazier?

Being lazy

A "hard" LP:
 max x + y s.t.
 x + y ≤ 3
 x ≤ I
 y ≤ I

OK, we got lucky

• What if it were:

max
$$x + 3y$$
 s.t.
 $x + y \le 3$
 $x \le 1$
 $y \le 1$

How general is this?

• What if it were:

max px + qy s.t.

$$a (x + y \le 3) \qquad a (x+y-3) + b (x-1) + c(y-1) \le 0$$

$$b (x \le 1) \qquad (a+b)x + (a+c)y \le 3a+b+c$$

$$c (y \le 1) \qquad px + qy \in 3a+b+c$$

$$a+b = p \qquad min 3a+b+c$$

$$a+c = q \qquad Dua$$

Let's do it again

• Note \geq , \leq , = constraints, min obj min x - 2y s.t.

$$a (x + y \ge 2)$$

$$b (y \le 3)$$

$$c (2x - y = 0)$$

$$d (x \ge 0)$$

$$e (y \ge 0)$$

a
$$(x + y ≥ 2)$$

b $(y ≤ 3)$
c $(2x - y = 0)$
d $(x ≥ 0)$
e $(y ≥ 0)$
e $(y ≥ 0)$
 $(x + y - 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + b(y - 3) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x - y)$
 $(x + y − 2) + c(2x$

Summary of LP duality

• Use multipliers to write combined constraints — www problem

- Constrain multipliers to give us a bound on objective (by matching coefficients)
- Optimize to get tightest bound
- Q: what happens if we take dual of dual?

Ordering

- For primal max problem (dual min):
 - ▶ primal feas ≤ primal opt ≤ dual feas
- For primal min problem (dual max):
 - ▶ primal feas ≥ primal opt ⊋dual opt ≥ dual feas

1050ally =

Geometrically

Geometrically

Geometrically

Dual widgets

Dual variables as multipliers

So why bother?

- Reason I: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with
- Reason 3: solvers can often work w/ primal and dual at the same time for no extra cost

Interpreting the dual variables

- Primal variables in the factory LP were how many widgets and doodads to produce
- Interpreted dual variables as multipliers for primal constraints—not much intuition
- Often possible to interpret dual variables as
 prices for primal constraints

Dual variables as prices

• Suppose someone offered us a quantity ϵ of wood, loosening constraint to

$$w + d \leq 4 + \varepsilon$$

• How much should we be willing to pay for this wood?

Dual variables as prices

- Dual constrs stay same: $a + 2b \ge 1$, $a + 5b \ge 2$
- Dual objective becomes: min $(4+\epsilon)a + 12b$
- Previous solution a = b = 1/3 still feasible
 - \blacktriangleright still optimal if ϵ small enough
- Bound changes to $(4+\epsilon)a + 12b$, increase by $\epsilon/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)

b=1/3 at opt, we would pay \$1/3 per unit in small quantities

Dual degeneracy

- Primal degenerate = two bases, same corner
- Dual can be degenerate too
 - so, 4 possibilities for degeneracy
- E.g., what if objective were w+d (not w+2d)?

Dual degeneracy

Dual degeneracy

Complementary slackness

- Suppose a constraint is inactive. Would we pay anything to have it relaxed?
- Write $s_i \ge 0$ for slack in primal constraint j
- Write $d_j \ge 0$ for dual variable (multiplier, price) for constraint j
- CS: at optimal primal and dual solutions,

 Uses: certificate of optimality, proving that optimal solution satisfies some property