15-780: Grad AI Lec. 9: Linear programs, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Have you tested your handin directories?
	- ‣ /afs/cs/user/aothman/dropbox/USERID/
	- ‣ where USERID is your Andrew ID
- Poster session:
	- \rightarrow ???

Review

- LPs, ILPs, MILPs
	- ‣ **ℝ** or **ℤ** variables
	- ‣ linear ≤ ≥ =
	- **I** linear objective
	- ‣ LP relaxations, integrality gap
	- ‣ relation to SAT, MAXSAT, PBI
	- ‣ complexity (LP: P; ILP: NP & no approx)
	- ‣ (in)feasible, (sub)optimal, (in)active

Review

- Standard form: all vars ≥ 0 , all = constraints
- Nonsingular: n vars ≥ m constraints, rank m
- **Basis**
	- \rightarrow spans Rng(A) (m \times m invertible submatrix)
	- ‣ corresponds to "corner"
	- ‣ using row ops to make basic variables into "slacks" → *tableau* notation
- Degeneracy: distinct bases yield same corner
- Naïve algorithm: check all bases

Finding corners

Simplex in one slide

(ignoring degeneracy, which is actually important)

- Given a nonsingular standard-form LP
	- ‣ make it nonsingular if needed
- Start from a feasible basis and its tableau
	- ‣ big-M if needed
- Pick non-basic variable w/ objective > 0 (max)
- Pivot it into basis, getting neighboring basis
	- ‣ select exiting variable to keep feasibility
- Repeat until all non-basic variables have objective ≤ 0 (max)

Example $max 2x + 3y$ s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \leq 5$

- So far, assumed we started w/ initial feasible basis
- How do we get one?
	- ‣ for each violated constraint, add var w/ coeff –1
	- ‣ penalize in objective, include in initial basis

Ex: combinatorial auctions

- Goods: Newspaper, Magazine, L shoe, R shoe
- Bids (note use of bidding language: 7 rt 16 numbers for B_1 and 1 rt 16 for B_2):
	- \triangleright N: +5; M: +4
	- \triangleright N, M: -3
	- \triangleright L, R: +10
	- \triangleright N, L, R: -5; M, L, R: –4; N, M, L, R: +3
		- *Bidder 1 Bidder 2*

 $\rightarrow M: +10$

Winner determination

- Goods: Newspaper, Magazine
- Bids:
	- \triangleright N: +5; M: +4
	- \triangleright N, M: -3
		-
- \triangleright N, M: +4
- *Bidder 1 Bidder 2*

Bounds

- Any feasible point yields lower bd: (N to B_1 , keep M) \rightarrow 5
- Upper bound: solve LP relaxation
	- ‣ a bit expensive
	- ‣ can we be lazier?

Being lazy

• A "hard" LP: max $x + y$ s.t. $x + y \leq 3$ $x \leq 1$ $y \leq 1$

 V. Vazirani. Approximation Algorithms. Ch 12.

OK, we got lucky

• What if it were: $max x + 3y$ s.t. $x + y \leq 3$ $x \leq 1$ $y \leq 1$

How general is this?

- What if it were:
	- max $px + qy$ s.t. $x + y \leq 3$ $x \leq 1$ $y \leq 1$

Let's do it again

• Note \geq, \leq, \equiv constraints, min obj min $x - 2y$ s.t. $x + y \ge 2$ $y \leq 3$ $2x - y = 0$

Summary of LP duality

- Use multipliers to write combined constraints
	- ≥
	- ≤

=

- Constrain multipliers to give us a bound on objective (by matching coefficients)
- Optimize to get tightest bound
- Q: what happens if we take dual of dual?

Ordering

- For primal max problem (dual min):
	- ‣ primal feas primal opt dual opt dual feas
- For primal min problem (dual max):
	- ‣ primal feas primal opt dual opt dual feas

Dual variables as multipliers

So why bother?

- Reason 1: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with
- Reason 3: solvers can often work w/ primal and dual at the same time for no extra cost

Interpreting the dual variables

- Primal variables in the factory LP were how many widgets and doodads to produce
- Interpreted dual variables as multipliers for primal constraints—not much intuition
- Often possible to interpret dual variables as *prices* for primal constraints

Dual variables as prices

- Suppose someone offered us a quantity ε of wood, loosening constraint to $w + d \leq 4 + g$
- How much should we be willing to pay for this wood?

Dual variables as prices

- Dual constrs stay same: $a + 2b \ge 1$, $a + 5b \ge 2$
- Dual objective becomes: min $(4+\epsilon)a + 12b$
- Previous solution $a = b = 1/3$ still feasible
	- \triangleright still optimal if ϵ small enough
- Bound changes to $(4+\epsilon)a + 12b$, increase by $\epsilon/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)

Dual degeneracy

- Primal degenerate $=$ two bases, same corner
- Dual can be degenerate too
	- ‣ so, 4 possibilities for degeneracy
- E.g., what if objective were w+d (not w+2d)?

Dual degeneracy

Complementary slackness

- Suppose a constraint is inactive. Would we pay anything to have it relaxed?
- Write *si* [≥] 0 for slack in primal constraint *^j*
- Write $d_i \geq 0$ for dual variable (multiplier, price) for constraint *j*
- CS: at optimal primal and dual solutions,

• Uses: certificate of optimality, proving that optimal solution satisfies some property