I5-780: Grad Al Lec. 9: Linear programs, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Have you tested your handin directories?
 - /afs/cs/user/aothman/dropbox/USERID/
 - where USERID is your Andrew ID
- Poster session:
 - ???

Review

- LPs, ILPs, MILPs
 - \mathbb{R} or \mathbb{Z} variables
 - linear $\leq \geq =$
 - linear objective
 - LP relaxations, integrality gap
 - relation to SAT, MAXSAT, PBI
 - complexity (LP: P; ILP: NP & no approx)
 - (in)feasible, (sub)optimal, (in)active

Review

- Standard form: all vars \geq 0, all = constraints
- Nonsingular: n vars \geq m constraints, rank m
- Basis
 - spans Rng(A) (m × m invertible submatrix)
 - corresponds to "corner"
 - using row ops to make basic variables into "slacks" → tableau notation
- Degeneracy: distinct bases yield same corner
- Naïve algorithm: check all bases

Finding corners

Simplex in one slide (ignoring degeneracy, which is actually important)

- Given a nonsingular standard-form LP
 - make it nonsingular if needed
- Start from a feasible basis and its tableau
 - big-M if needed
- Pick non-basic variable w/ objective > 0 (max)
- Pivot it into basis, getting neighboring basis
 - select exiting variable to keep feasibility
- Repeat until all non-basic variables have objective $< 0 \pmod{2}$

 X	<u> </u>	S	t	u	RHS
1	1	1	0	0	4
2	5	0	1	0	12
 1	2	0	0	1	5
2	3	0	0	0	Ť

X	<u> </u>	S	t	u	RHS
0.4	1	0	0.2	0	2.4
0.6	0	1	-0.2	0	1.6
0.2	0	0	-0.4	1	0.2
0.8	0	0	-0.6	0	Ť

Example max 2x + 3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$

X	<u> </u>	S	t	u	RHS
1	0	0	-2	5	1
0	1	0	1	-2	2
0	0	1	1	-3	1
0	0	0	1	-4	1

Example max 2x + 3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$

X	<u> </u>	S	t	u	RHS
1	0	2	0	-1	3
0	1	-1	0	1	1
0	0	1	1	-3	1
0	0	-1	0	-1	1

- So far, assumed we started w/ initial feasible basis
- How do we get one?
 - ▶ for each violated constraint, add var w/ coeff I
 - penalize in objective, include in initial basis

Ex: combinatorial auctions

- Goods: Newspaper, Magazine, L shoe, R shoe
- Bids (note use of bidding language: 7 rt 16 numbers for B₁ and 1 rt 16 for B₂):
 - ▶ N: +5; M: +4
 - ► N, M: -3
 - ► L, R: +10
 - ▶ N, L, R: -5;
 M, L, R: -4;
 N, M, L, R: +3

Bidder I

Bidder 2

▶ M:+10

Winner determination

- Goods: Newspaper, Magazine
- Bids:
 - ► N: +5; M: +4
 - ► N, M: -3
 - Bidder I

- ► N, M: +4
 - Bidder 2

Bounds

- Any feasible point yields lower bd: (N to B₁, keep M) → 5
- Upper bound: solve
 LP relaxation
 - a bit expensive
 - can we be lazier?

Being lazy

 A "hard" LP: max x + y s.t. x + y ≤ 3
 x ≤ 1
 y ≤ 1

V. Vazirani. Approximation Algorithms. Ch 12.

OK, we got lucky

 What if it were: max x + 3y s.t. x + y ≤ 3 x ≤ 1 y ≤ 1

How general is this?

• What if it were:

max px + qy s.t. $x + y \le 3$ $x \le 1$ $y \le 1$

Let's do it again

• Note \geq , \leq , = constraints, min obj min x - 2y s.t. x + y \geq 2 y \leq 3 2x - y = 0

Summary of LP duality

- Use multipliers to write combined constraints
 - 2
 - \leq

_

- Constrain multipliers to give us a bound on objective (by matching coefficients)
- Optimize to get tightest bound
- Q: what happens if we take dual of dual?

Ordering

- For primal max problem (dual min):
 - primal feas primal opt dual opt dual feas
- For primal min problem (dual max):
 - primal feas primal opt dual opt dual feas

Dual variables as multipliers

So why bother?

- Reason I: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with
- Reason 3: solvers can often work w/ primal and dual at the same time for no extra cost

Interpreting the dual variables

- Primal variables in the factory LP were how many widgets and doodads to produce
- Interpreted dual variables as multipliers for primal constraints—not much intuition
- Often possible to interpret dual variables as prices for primal constraints

Dual variables as prices

- Suppose someone offered us a quantity ϵ of wood, loosening constraint to w + d ≤ 4 + ϵ
- How much should we be willing to pay for this wood?

Dual variables as prices

- Dual constrs stay same: $a + 2b \ge 1$, $a + 5b \ge 2$
- Dual objective becomes: min $(4+\epsilon)a + 12b$
- Previous solution a = b = 1/3 still feasible
 - still optimal if ε small enough
- Bound changes to $(4+\epsilon)a + 12b$, increase by $\epsilon/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)

Dual degeneracy

- Primal degenerate = two bases, same corner
- Dual can be degenerate too
 - so, 4 possibilities for degeneracy
- E.g., what if objective were w+d (not w+2d)?

Dual degeneracy

Complementary slackness

- Suppose a constraint is inactive. Would we pay anything to have it relaxed?
- Write $s_i \ge 0$ for slack in primal constraint j
- Write $d_j \ge 0$ for dual variable (multiplier, price) for constraint j
- CS: at optimal primal and dual solutions,

• Uses: certificate of optimality, proving that optimal solution satisfies some property