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Admin

• Have you tested your handin directories?

‣ /afs/cs/user/aothman/dropbox/USERID/

‣ where USERID is your Andrew ID

• Poster session: 

‣ ???



Review
• LPs, ILPs, MILPs

‣ ℝ or ℤ variables

‣ linear ≤ ≥ =

‣ linear objective

‣ LP relaxations, integrality gap

‣ relation to SAT, MAXSAT, PBI

‣ complexity (LP: P;  ILP: NP & no approx)

‣ (in)feasible, (sub)optimal, (in)active



Review
• Standard form: all vars ≥ 0, all = constraints

• Nonsingular: n vars ≥ m constraints, rank m

• Basis

‣ spans Rng(A) (m × m invertible submatrix)

‣ corresponds to “corner”

‣ using row ops to make basic variables into 
“slacks” → tableau notation

• Degeneracy: distinct bases yield same corner

• Naïve algorithm: check all bases



Finding corners

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, y = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set v, w = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, u = 0

x y u v w  RHS



Simplex in one slide

• Given a nonsingular standard-form LP

‣ make it nonsingular if needed

• Start from a feasible basis and its tableau

‣ big-M if needed

• Pick non-basic variable w/ objective > 0 (max)

• Pivot it into basis, getting neighboring basis

‣ select exiting variable to keep feasibility

• Repeat until all non-basic variables have 
objective < 0 (max)

(ignoring degeneracy, which is actually important)



Example

  x   y   s   t   u  RHS
  1   1   1   0   0    4 
  2   5   0   1   0   12 
  1   2   0   0   1    5 
  2   3   0   0   0    ↑ 

max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

   x   y   s    t   u  RHS
 0.4   1   0  0.2   0  2.4
 0.6   0   1 -0.2   0  1.6
 0.2   0   0 -0.4   1  0.2
 0.8   0   0 -0.6   0    ↑



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

 x  y  s  t  u  RHS
 1  0  0 -2  5    1 
 0  1  0  1 -2    2 
 0  0  1  1 -3    1 
 0  0  0  1 -4    ↑ 



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

 x  y  s  t  u  RHS
 1  0  2  0 -1    3 
 0  1 -1  0  1    1 
 0  0  1  1 -3    1 
 0  0 -1  0 -1    ↑ 



Big M

• How do we get one? 

‣ for each violated constraint, add var w/ coeff –1

‣ penalize in objective, include in initial basis

 x  y     t u v w   RHS
 1  1     1 0 0 0     4 
 3 -2     0 1 0 0     4 
 1 -1     0 0 1 0     1 
-3 -2     0 0 0 1    -1
 1 -2     0 0 0 0     ↑

• So far, assumed we started 
w/ initial feasible basis



Ex: combinatorial auctions
• Goods: Newspaper, Magazine, L shoe, R shoe

• Bids (note use of bidding language: 7 rt 16 
numbers for B1 and 1 rt 16 for B2):

‣ N: +5;  M: +4

‣ N, M: –3

‣ L, R: +10

‣ N, L, R: –5;  
M, L, R: –4;  
N, M, L, R: +3

‣ M: +10

Bidder 1 Bidder 2



Winner determination
• Goods: Newspaper, Magazine

• Bids:

‣ N: +5;  M: +4

‣ N, M: –3
‣ N, M: +4

Bidder 1 Bidder 2



Bounds

• Any feasible point 
yields lower bd: (N 
to B1, keep M) → 5

• Upper bound: solve 
LP relaxation

‣ a bit expensive

‣ can we be lazier?

n1

m1
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Being lazy

• A “hard” LP:

	 max  x + y  s.t.


 x + y ≤ 3


 x ≤ 1

   y ≤ 1

 V.  Vazirani.  Approximation Algorithms. Ch 12.



OK, we got lucky
• What if it were:

	 max  x + 3y  s.t.


 x + y ≤ 3


 x ≤ 1

   y ≤ 1



How general is this?

• What if it were:

	 max  px + qy  s.t.


 x + y ≤ 3


 x ≤ 1

   y ≤ 1



Let’s do it again

• Note ≥, ≤, = constraints, min obj


 min  x – 2y  s.t.


 x + y ≥ 2


 y ≤ 3

   2x – y = 0



Summary of LP duality
• Use multipliers to write combined 

constraints

 ≥

 ≤
	 =

• Constrain multipliers to give us a bound on 
objective (by matching coefficients)

• Optimize to get tightest bound

• Q: what happens if we take dual of dual?



Ordering

• For primal max problem (dual min):

‣ primal feas    primal opt    dual opt    dual feas

• For primal min problem (dual max):

‣ primal feas    primal opt    dual opt    dual feas



Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d



Dual widgets

a →

b 
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound =  
4a + 12b

feasible



Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb



So why bother?

• Reason 1: any feasible solution to dual yields 
upper bound (compared with only optimal 
solution to primal)

• Reason 2: dual might be easier to work with

• Reason 3: solvers can often work w/ primal 
and dual at the same time for no extra cost



Interpreting the dual 
variables

• Primal variables in the factory LP were how 
many widgets and doodads to produce

• Interpreted dual variables as multipliers for 
primal constraints—not much intuition

• Often possible to interpret dual variables as 
prices for primal constraints



Dual variables as prices

• Suppose someone offered us a quantity ε of 
wood, loosening constraint to 

w + d ≤ 4 + ε

• How much should we be willing to pay for 
this wood?



Dual variables as prices

• Dual constrs stay same: a + 2b ≥ 1, a + 5b ≥ 2

• Dual objective becomes:  min (4+ε)a + 12b

• Previous solution a = b = 1/3 still feasible

‣ still optimal if ε small enough

• Bound changes to (4+ε)a + 12b, increase by ε/3

• So we should pay up to $1/3 per unit of wood 
(in small quantities)



Dual degeneracy

• Primal degenerate = two bases, same corner

• Dual can be degenerate too

‣ so, 4 possibilities for degeneracy

• E.g., what if objective were w+d (not w+2d)?



Dual degeneracy

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + d



Dual degeneracy

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 1

0.5

0.5

1 1.5

bound =  
4a + 12b

feasible

a + 5b ≥ 2



Complementary slackness
• Suppose a constraint is inactive.  Would we 

pay anything to have it relaxed?

• Write si ≥ 0 for slack in primal constraint j

• Write dj ≥ 0 for dual variable (multiplier, 
price) for constraint j

• CS: at optimal primal and dual solutions,

• Uses: certificate of optimality, proving that 
optimal solution satisfies some property


