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Review: probability

RVs, events, sample space Ω

Measures, distributions

‣ disjoint union property (law of total 
probability or “sum rule”)

Sample v. population

Law of large numbers

Marginals, conditionals



Suggested reading

Bishop, Pattern Recognition and Machine 
Learning, p1–4, sec 1–1.2, sec 2–2.3

http://research.microsoft.com/%7Ecmbishop/PRML/index.htm
http://research.microsoft.com/%7Ecmbishop/PRML/index.htm
http://research.microsoft.com/%7Ecmbishop/PRML/index.htm
http://research.microsoft.com/%7Ecmbishop/PRML/index.htm


Terminology

Experiment = 

Prior = 

Posterior = 



Example: model selection
You’re gambling to decide 
who has to clean the lab

You are accused of using 
weighted dice!

Two models:

‣ fair dice: all 36 rolls equally 
likely

‣ weighted: rolls summing to 
7 more likely

prior:
observation: 
posterior:



X and Y are independent if, for all possible 
values of y, P(X) = P(X | Y=y)

‣ equivalently, for all possible values of x,         
P(Y) = P(Y | X=x)

‣ equivalently, P(X, Y) = P(X) P(Y)

Knowing X or Y gives us no information about 
the other

Independence
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Expectations

How much should we 
expect to earn from our 
AAPL stock?
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Linearity of expectation

Expectation is a 
linear function of 
numbers in bottom 
table

E.g., suppose we 
own k shares
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Conditional expectation

What if we know it’s 
sunny?
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Independence and expectation

If X and Y are independent, E(XY) = E(X)E(Y)

Proof:



Sample means

Sample mean = 

Expectation of sample mean:

X̄ =
1
N
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Estimators

Common task: given a sample, infer something 
about the population

An estimator is a function of a sample that 
we use to tell us something about the 
population

E.g., sample mean is a good estimator of 
population mean

E.g., linear regression



Law of large numbers 
(more general form)

For r.v. X: if we take a sample of size N from a 
distribution P(x) with mean μ and compute 
sample mean X

Then X → μ as N → ∞–

–



Bias

Given estimator T of population quantity θ
The bias of T is E(T) – θ
Sample mean is unbiased estimator of 
population mean

(1 + ∑ xi) / (N+1) is biased, but 
asymptotically unbiased



Variance

Two estimators of population mean: sample 
mean, mean of every 2nd sample

Both unbiased, but one is more variable

Measure of variability: variance



Variance

If zero-mean: variance = E(X2)

‣ Ex: constant 0 v. coin-flip ±1

In general: E([X – E(X)]2)

‣ equivalently, E(X2) – E(X)2 (but note 
numerical problem)



Exercise

What is the variance of 3X?



Sample variance

Sample variance =

Expectation: 

Sample size correction:

N − 1
N
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Bias-variance decomposition

Estimator T of population quantity θ
Mean squared error = E((T – θ)2) =



Bias-variance tradeoff

It’s nice to have estimators w/ small MSE

There is a smallest possible MSE for a given 
amount of data

‣ limited data provides limited information

Estimator which achieves min is efficient 
(close for large N: asymptotically eff.)

Often can adjust estimator so MSE is due to 
bias or variance—the famed tradeoff



Covariance

Suppose we want an approximate numeric 
measure of (in)dependence

Let E(X) = E(Y) = 0 for simplicity

Consider the random variable XY

‣ if X, Y are typically both +ve or both -ve

‣ if X, Y are independent



Covariance

cov(X, Y) = E([X–E(X)][Y–E(Y)])

Is this a good measure of dependence?

‣ Suppose we scale X by 10

‣ cov(10X, Y) = E([10X–E(10X)][Y–E(Y)])

‣ cov(10X, Y) = 10 cov(X, Y)



Correlation

Like covariance, but controls for variance of 
individual r.v.s

cor(X, Y) = cov(X,Y)/√var(X)var(Y)

cor(10X, Y) = 



Correlation & independence

Equal probability on 
each point

Are X and Y 
independent?

Are X and Y 
uncorrelated?
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Correlation & independence

Do you think that all independent pairs of RVs 
are uncorrelated?

Do you think that all uncorrelated pairs of RVs 
are independent?



Correlation & independence

Equal probability on 
each point

Are X and Y 
independent?

Are X and Y 
uncorrelated?
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Law of iterated expectations

For any two RVs, X and Y, we have:

‣ EY(EX[X | Y]) = E(X)

Convention: note in subscript the RVs that are 
not yet conditioned on (in this E(.)) or 
marginalized away (inside this E(.))



Law of iterated expectations

EX[X | Y] =

EY(EX[X | Y]) =



For any X, Y, C

‣ P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)

Simple version (without context)

‣ P(X | Y) P(Y) = P(Y | X) P(X)

‣ more commonly, P(X | Y) = P(Y | X) P(X) / P(Y)

Can be taken as definition of conditioning

Bayes Rule
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Exercise

You are tested for a rare disease, 
emacsitis—prevalence 3 in 100,000

Your receive a test that is 99% sensitive 
and 99% specific

‣ sensitivity = P(yes | emacsitis) = 0.99

‣ specificity = P(no | ¬emacsitis) = 0.99

The test comes out positive

Do you have emacsitis?



Revisit: weighted dice

Fair dice: all 36 rolls equally likely

Weighted: rolls summing to 7 more likely

Data: 1-6 2-5



Learning from data

Given a model class

And some data, sampled from a model in this 
class

Decide which model best explains the sample



Bayesian model learning

P(model | data) = P(data | model) P(model) / Z

Z = P(data)

So, for each model,

‣ compute P(data | model) P(model)

‣ normalize

E.g., which parameters for face recognizer are 
best?

E.g., what is P(H) for a biased coin?
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Probability 
& AI



Why probability?

Point of working with probability is to make 
decisions

E.g., find an open-loop plan or closed-loop 
policy with highest success probability or 
lowest expected cost

Later: MDP, POMDP, …

Now: simple motivating example

‣ demonstrates that underlying problems are 
still familiar (related to SAT, PBI, MILP, #SAT)



Probabilistic STRIPS planning

Same as ordinary STRIPS except each effect 
happens w/ (known, independent) probability

Eat

‣ pre: have(Cake)

‣ post: ¬have(Cake),  
0.9 eaten(Cake)

Bake

‣ pre: ¬have(Cake)

‣ post: 0.8 have(Cake)

Actions have no effect if ¬preconds

Seek an (open-loop) plan with highest success 
probability



Translating to SAT-like problem

Recall deterministic STRIPS → SAT:

‣ actAt+1 ⇒ preA1t ∧ preA2t ∧ …

‣ actAt+1 ⇒ postA1t+2 ∧ postA2t+2 ∧ …

‣ postt+2 ⇒ actAt+1 ∨ actBt+1 ∨ …

‣ goal1T ∧ goal2T ∧ …

‣ init11 ∧ init21 ∧ …

‣ lots o’ mutexes

We need to modify 1–3 above, and handle 
maintenance and mutexes differently



Modified action constraints

‣ [actAt+1 ∧ preA1t ∧ preA2t ∧ … ∧ gateA1t ⇔ cA1t+1]                      

∧ cA1t+1 ⇒ postA1t+2

‣ [actAt+1 ∧ preA1t ∧ preA2t ∧ … ∧ gateA2t ⇔ cA2t+1]                      

∧ cA2t+1 ⇒ postA2t+2

‣ …

‣ pA1:gateA1t ∧ pA2:gateA2t 



Modified literal constraints

‣ litt+2 ⇒ cA3t+1 ∨ cB1t+1 ∨ …                        
∨ [¬c’A2t+1 ∧ ¬c’D5t+1 ∧ litt]



Mutexes

Need interference mutexes: if A deletes a 
precondition of B, (¬actAt ∨ ¬actBt)

Other mutexes possible to generalize too (but 
we’ll ignore, since they don’t change semantics)



Example: causes for each 
postcondition

¬have1 ∧ gatebake1 ∧ bake2 ⇔ Cbake2

have1 ∧ gateeat1 ∧ eat2 ⇔ Ceat2

have1 ∧ eat2 ⇔ Ceat’2

[Cbake2 ⇒ have3] ∧ [Ceat2 ⇒ eaten3] ∧                  

[Ceat’2 ⇒ ¬have3]

0.8:gatebake1 ∧ 0.9:gateeat1



Example: literal constraints

have3 ⇒ [Cbake2 ∨ (¬Ceat’2 ∧ have1)]

¬have3 ⇒ [Ceat’2 ∨ (¬Cbake2 ∧ ¬have1)]

eaten3 ⇒ [Ceat2 ∨ eaten1]

¬eaten3 ⇒ [¬eaten1]



Example: mutexes

¬bake2 ∨ ¬eat2

(pattern from past few slides is repeated for 
each pair of time slices)



Example: initial state and goals

¬have1 ∧ ¬ eaten1

haveT ∧ eatenT



Now what?

Problem is to set decision variables so that, 
when random choices are set by Nature,         
P(formula satisfiable) is large

I.e., if decision variables are X, Nature variables 
are Y, all other variables are Z, want:

‣ where F(X, Y, Z) is the formula we built on 
previous slides (with 1=true, 0=false)

max
X

EY [max
Z

F (X, Y, Z)]



General class of problems

where ℚi is max, min, or expectation

Problem: test whether value ≥ threshold

In general: difficulty determined by number of 
quantifier alternations

Contains QBF, so PSPACE-complete

Q1X1 Q2X2 Q3X3 . . . F (X1, X2, X3, . . .)



Simpler example
p(y) = p(z) = 0.5



How can we solve?

Scenario trick

‣ transform to PBI or 0-1 ILP

Dynamic programming

‣ related to algorithms for SAT, #SAT

‣ also to belief propagation in graphical models 
(next)


