I5-780: Grad Al Lecture 19: Graphical models, Monte Carlo methods

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

Review West 5- ish

- Reminder: midterm March 29
- Reminder: project milestone reports due March 3 I

Review: scenarios

- Converting QBF+ to PBI/MILP by scenarios
 - ▶ Replicate decision variables for each scenario
 - Replicate clauses: share first stage vars; set scenario vars by scenario index; replace decision vars by replicates
 - Sample random scenarios
- Example: PSTRIPS

Review: dynamic programming

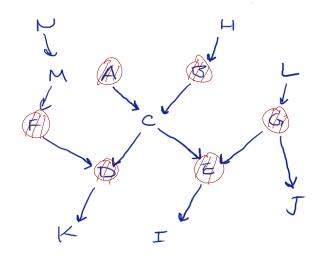
- Solving #SAT by dynamic programming (variable elimination)
 - repeatedly move sums inward, combine tables, sum out
 - treewidth and runtime/space

Review: graphical models

- Bayes net = DAG + CPTs
 - For each RV (say X), there is one CPT specifying P(X | pa(X))
 - Can simulate with propositional logic + random causes
- Inference: similar to #SAT DP—move sums inward
 - Can do partly analytically
 - Allows us to prove independences and conditional ind's from DAG alone

Review: graphical models

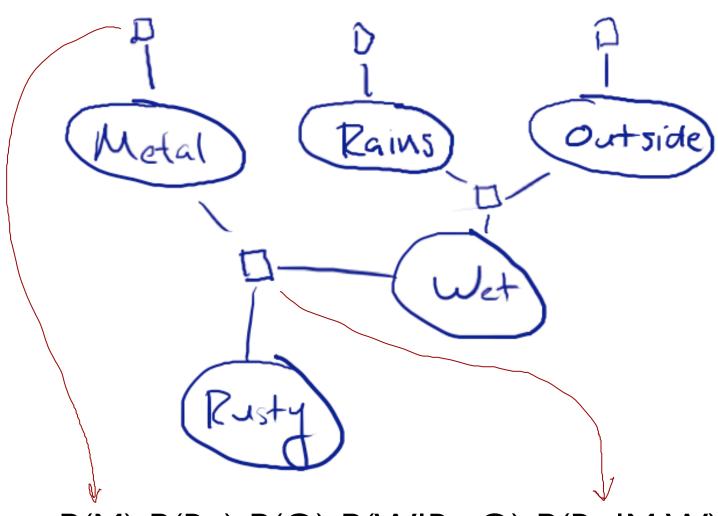
- Blocking, explaining away
- Markov blanket
- Learning: counting, Laplace smoothing
 - if hidden variables: take 10-708 or use a toolbox



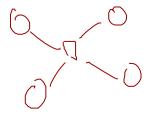
Factor graphs

- Another common type of graphical model
- Uses undirected, bipartite graph instead of DAG

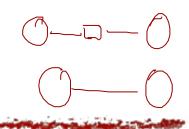
Rusty robot: factor graph

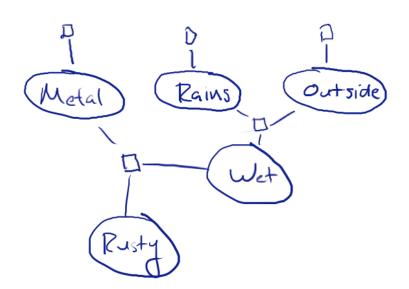


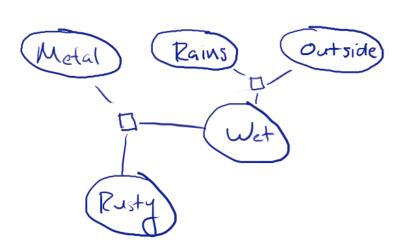
P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)



Convention







- Don't need to show unary factors
- Why? They don't affect algorithms below.

Non-CPT factors

- Oust saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed
- In general, $P(A, B, ...) = \frac{1}{7} \sum_{i \in A} O_i(X_{NS}(i))$

Hard v. soft factors

	Hard					Soft			
			X			X			
		0	I	2			0		2
	0	0	0	0		0	I	I	I
Υ	I	0	0	ı	Y	1	I	I	3
	2	0	I	I		2	I	3	3

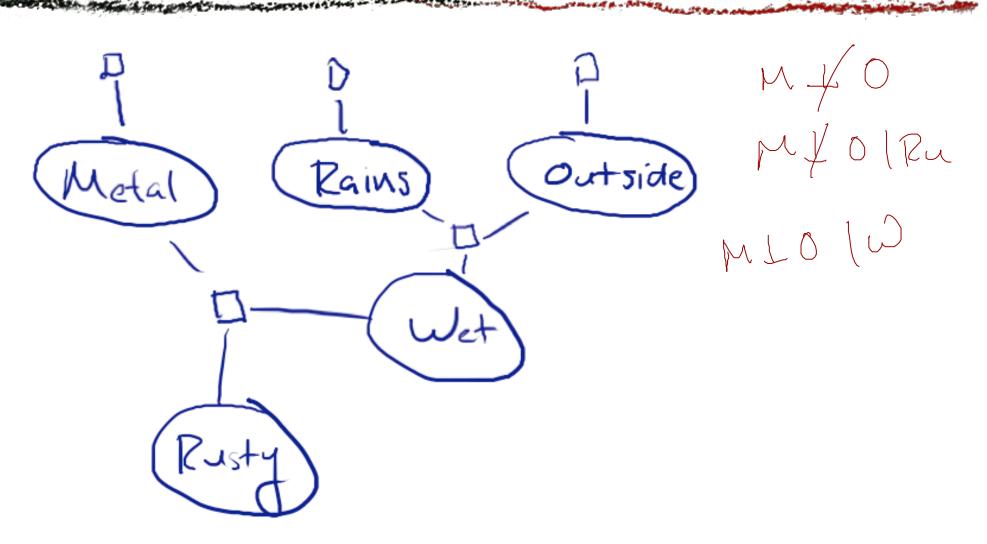
Factor graph → Bayes net

- Conversion possible, but more involved
 - ► Each representation can handle **any** distribution
 - ▶ But, size/complexity of graph may differ
- o 2 cases for conversion:
 - ▶ without adding nodes: # P-complete
 - ▶ adding nodes: linear time

Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
 - Cover up all observed nodes
 - Look for a path

Independence example



Modeling independence

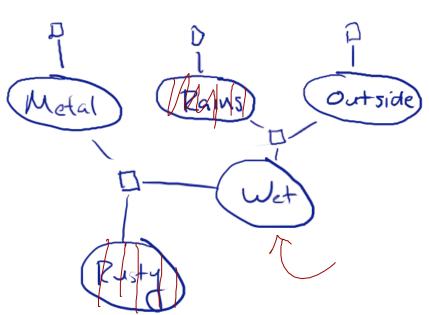
- Take a Bayes net, list the (conditional) independences
- Convert to a factor graph, list the (conditional) independences
- Are they the same list? Vo
- What happened?

Inference

- o Inference: prior + evidence → posterior
- We gave examples of inference in a Bayes net, but not a general algorithm
- Reason: general algorithm uses factor-graph representation
- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query

Inference

P(M, Ra, O, W, Ru) = 6, (M) & (Ra) & (0) & (Ra, 0, u) & (M, W, Ru) / 2



Typical Q: given Ra=F,

FTF 0.9

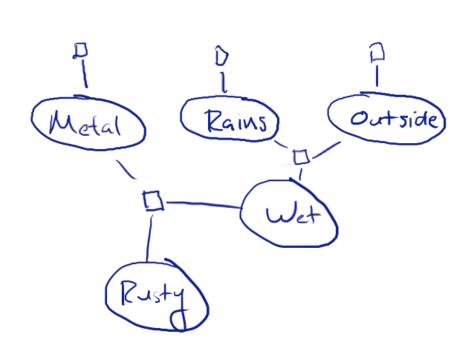
FFT OIL

FFF 0.9

Ru=T, what is P(W)?

Incorporate evidence

P(M, Ra, O, W, Ru) = 6, (M) \$= (M) \$=



Condition on Ra=F, Ru=T

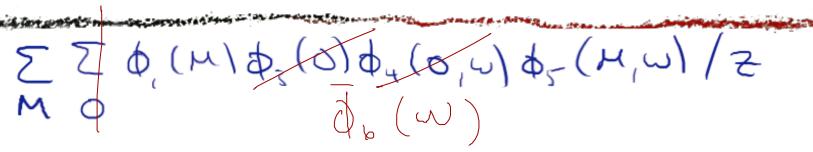
FFF 0.9

Eliminate nuisance nodes

P(M, R/, O, W, R/M) = 6, (M) 0/2 (R/M) 0/4 (R/N) 0, W) 0/4 (M/W, R/M)/2

- Remaining nodes: M, O, W
- Query: P(W)
- So, O&M are nuisance—marginalize away
- Marginal = $\frac{1}{2}$ \frac

Elimination order



- Sum out the nuisance variables in turn
- Can do it in any order, but some orders may be easier than others
- Let's do O, then M

FLOPS
$$TT .02 T.1$$

$$TK .18$$

$$FT .08$$

One last elimination

 $P(U|L) = \overline{\Phi}_{G}(U) \Phi_{T}(U) \frac{1}{7}$ 27 (M,W) 77 (W) 1.77 (W) φ(M)= + 09 δ6(w) = T 0.1 \$(H,U, X)= a 1

Checking our work

http://www.aispace.org/bayes/version5.1.6/bayes.jnlp

Discussion

- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query
 - each elimination introduces a new table, makes some old tables irrelevant
- Normalization
- Each elim. order introduces different tables
 - some tables bigger than others
- FLOP count; treewidth

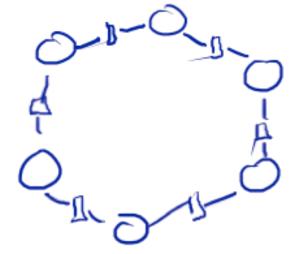
Treewidth examples

0-0-0-0-0 Chain Tree

Treewidth examples

Parallel chains

Cycle



Discussion

- Several relationships between GMs and logic (similar DP algorithm, use of independent choices + logical consequences to represent a GM, factor graph with 0-1 potentials = CSP, MAP assignment = ILP)
- Directed v. undirected: advantages to both
- Lifted reasoning
 - Propositional logic + objects = FOL
 - ▶ FO GMs are a current hot topic of research (plate models, MLNs, ICL)—not solved yet!

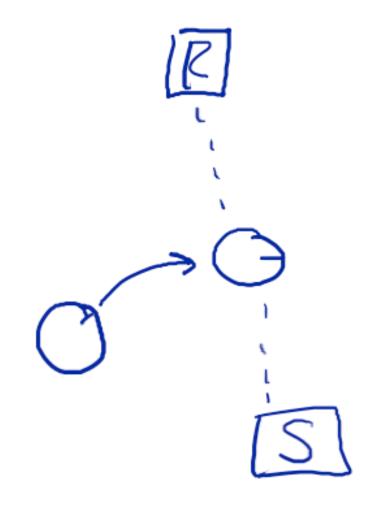
Discussion: belief propagation

- Suppose we want all I-variable marginals
- Could do N runs of variable elimination
- Or: the BP algorithm simulates N runs for the price of 2
- For details: Kschischang et al. reading

HMMs and DBNs

Inference over time

- Consider a robot:
 - true state (x, y, θ)
 - controls (v, w)
 - N range sensors (here N=2: r, s)



Model

$$x_{t+1} = x_t + v_t \cos \theta_t + \text{noise}$$

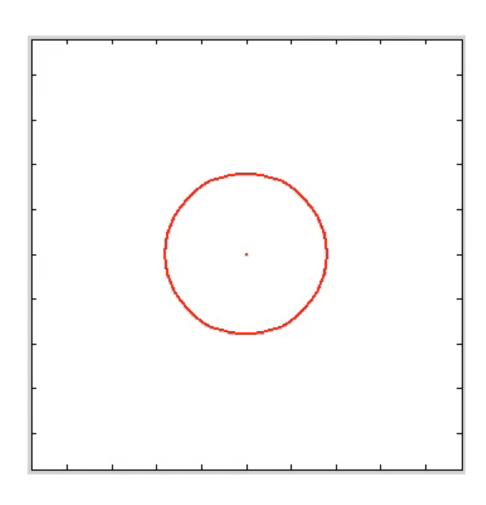
$$y_{t+1} = y_t + v_t \sin \theta_t + \text{noise}$$

$$\theta_{t+1} = \theta_t + w_t + \text{noise}$$

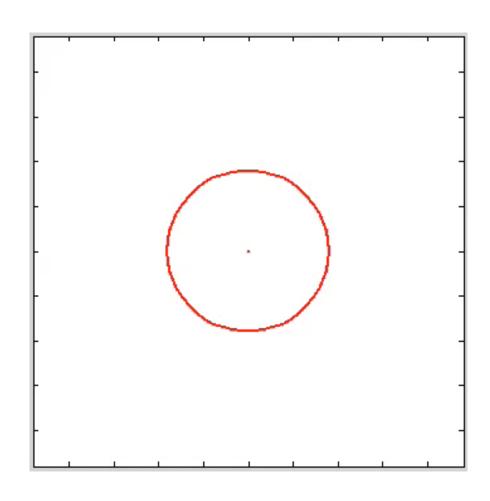
$$r_t = \sqrt{(x_t - x^R)^2 + (y_t - y^R)^2} + \text{noise}$$

$$s_t = \sqrt{(x_t - x^S)^2 + (y_t - y^S)^2} + \text{noise}$$

Model of x, y, θ (r, s unobserved)

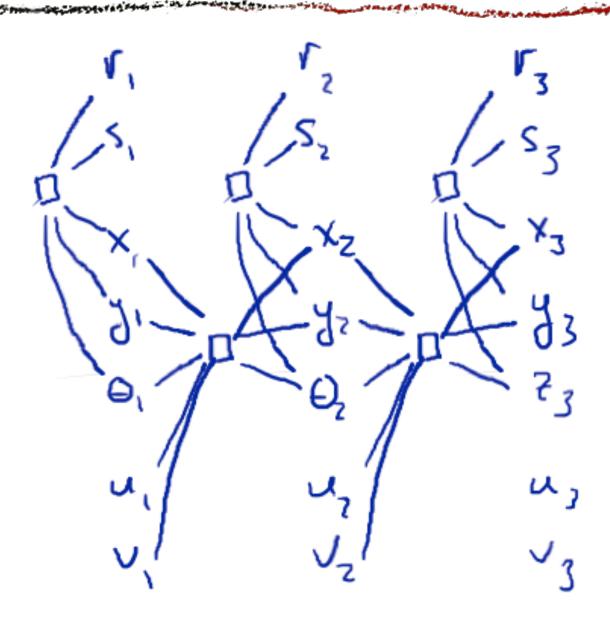


Goal: inference over time



N=I sensor, repeatedly observe range = Im + noise

Factor graph



Dynamic Bayes Network

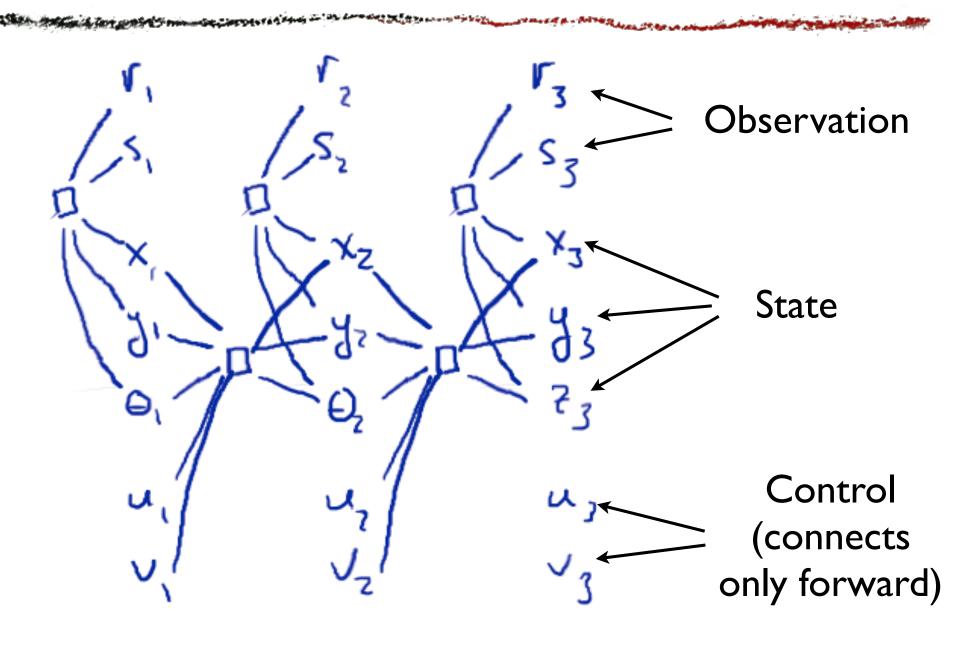
- DBN: factor graph composed of a single structural unit repeated over time
 - conceptually infinite to right, but in practice cut off at some maximum T
- Factors must be conditional distributions

Should be replaced by

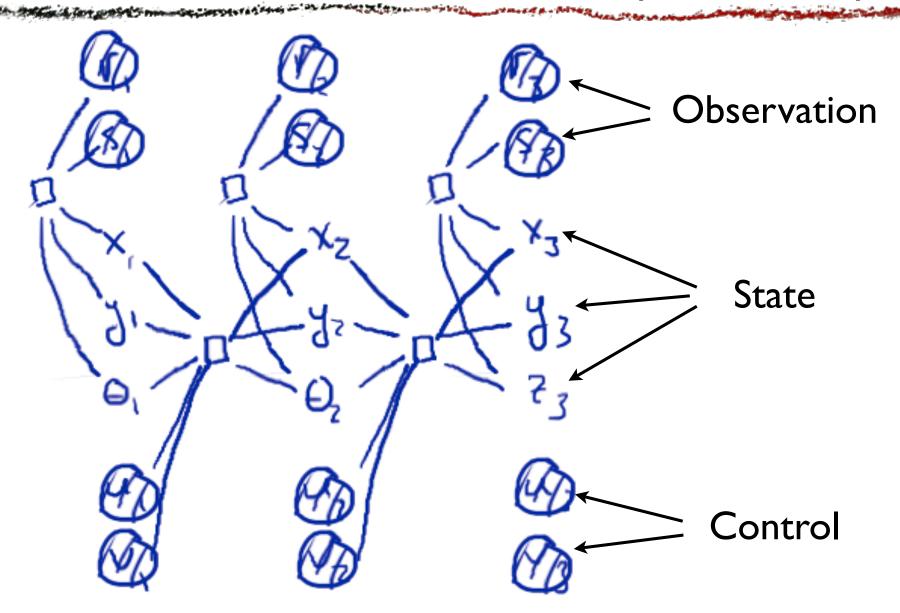
\begin{array}{rrcl}
\forall x_t, y_t, \theta_t, u_t, v_t& \sum_{x_{t+1},y_{t+1}, \theta_{t+1}} \phi(x_t, y_t, \theta_t, u_t, v_t, x_{t+1},y_{t+1}, \theta_{t+1}) &=& 1\\[2ex] \forall x_t, y_t, \theta_t& \sum_{r_{t},s_{t}} \phi(x_t, y_t, \theta_t, r_t, s_t) &=& 1 \end{array}

\(see unannotated slides for a latex'd version)

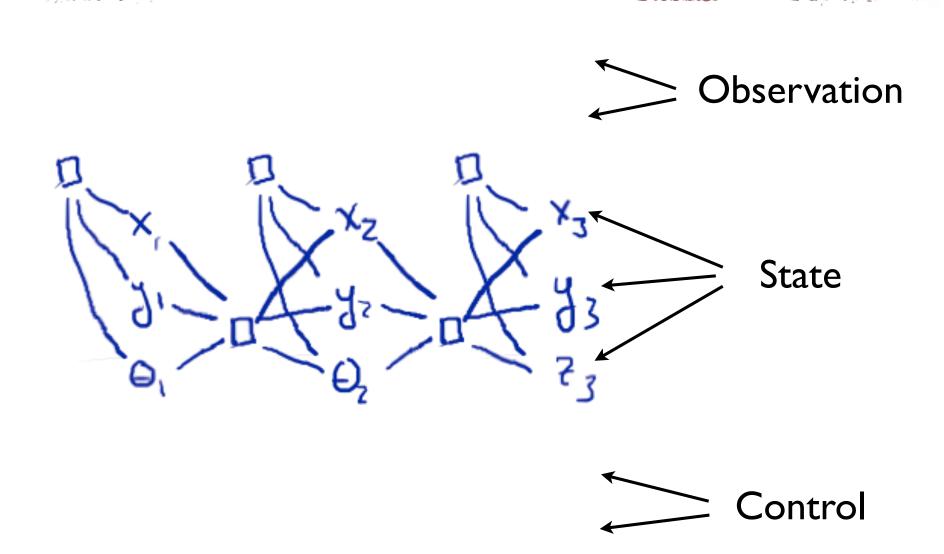
Three kinds of variable



Condition on obs, do(control)



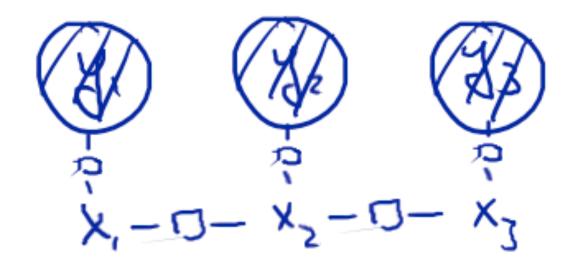
Condition on obs, do(control)



Simplified version

- \circ State: $x_t \in \{1, 2, 3\}$
- \circ Observation: y_t ∈ {L, H}
- Control: just one (i.e., no choice)—"keep going"

Hidden Markov Models



- This is an HMM—a DBN with:
 - one state variable
 - one observation variable

Potentials

		X_{t+1}		
			2	3
X_t		0.7	0.3	0
	2	0.3	0.3	0.3
	3	0	0.3	0.7

		L	Н
		0.67	0.33
X_t	2	0.5	0.5
	3	0.33	0.67

 Y_t

HMM inference

- \circ Condition on $y_1 = H, y_2 = H, y_3 = L$
- \circ What is $P(X_2 | HHL)$?

HMM factors after conditioning

Eliminate x₁ and x₃

Multiply remaining potentials and renormalize

$$\frac{X_{12}}{7/18}$$
 $\frac{X_{2}}{7/18}$
 $\frac{X_{12}}{1079}$
 $\frac{1}{125}$
 $\frac{1}{17}$
 $\frac{1}{17}$

Forward-backward

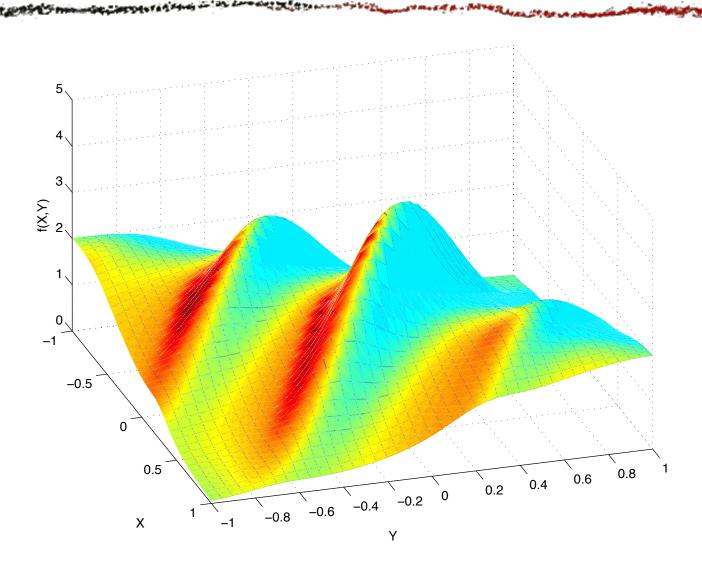
- You may recognize the above as the forwardbackward algorithm
- Special case of dynamic programming / variable elimination / belief propagation

Approximate Inference

Most of the time...

- Treewidth is big
- Variables are high-arity or continuous
- Can't afford exact inference
- Need numerical integration (and/or summation)
- We'll look at randomized algorithms

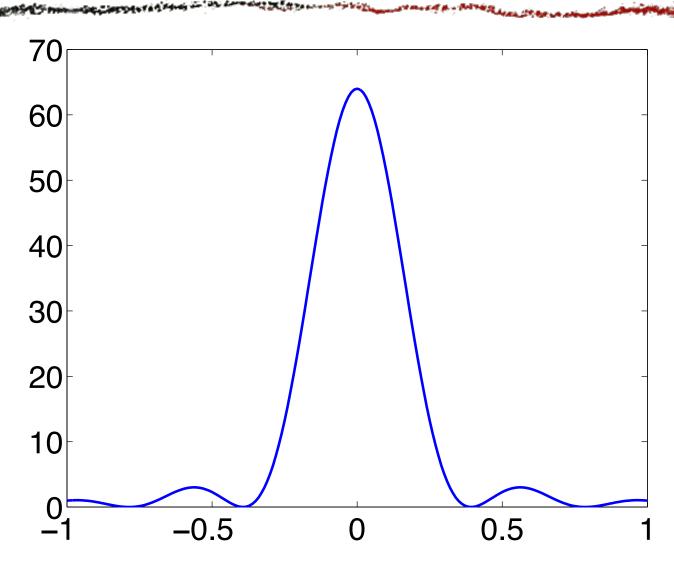
Numerical integration



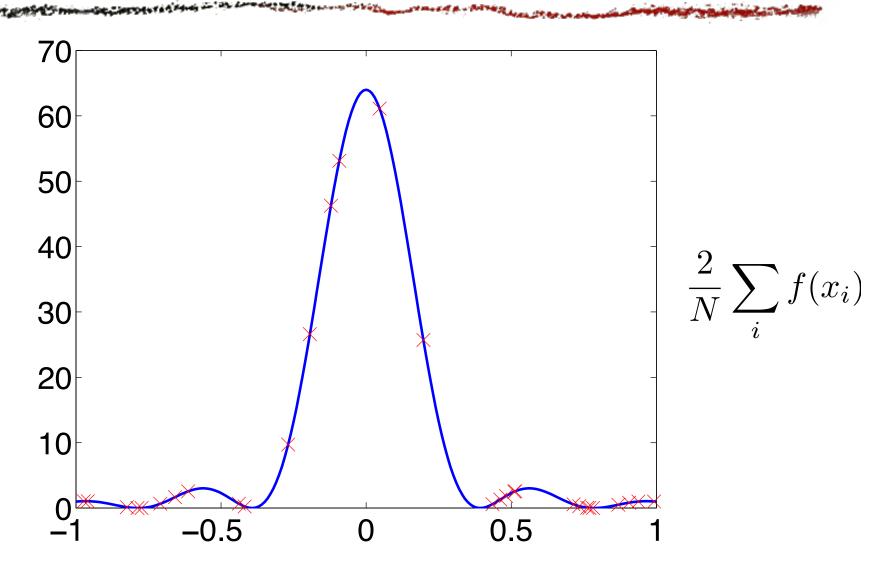
Integration in 1000s of dims



Simple ID problem



Uniform sampling



Uniform sampling

$$E(f(X)) = \int P(x)f(x)dx$$
$$= \frac{1}{V} \int f(x)dx$$

- So,V E(f(X)) is desired integral
- But standard deviation can be big
- Can reduce it by averaging many samples
- But only at rate I/sqrt(N)

- \circ Instead of x \sim uniform, use x \sim Q(x)
- Q = importance distribution
- Should have Q(x) large where f(x) is large
- Problem:

$$E_Q(f(X)) = \int Q(x)f(x)dx$$

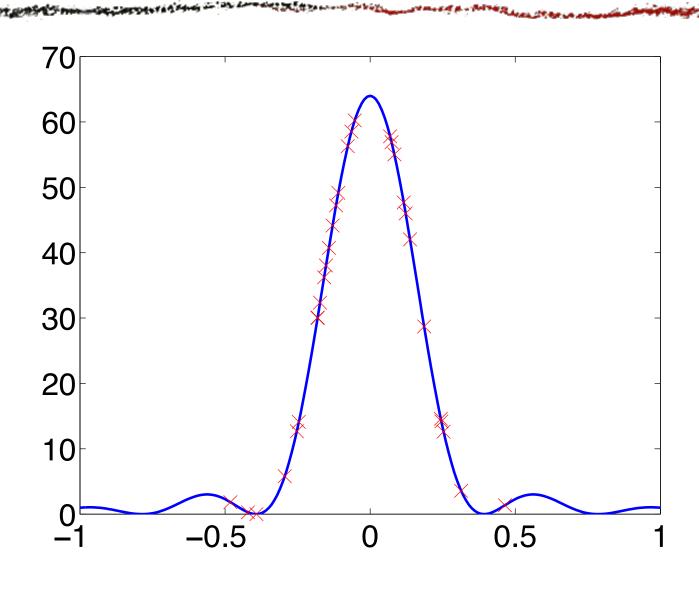
$$h(x) \equiv f(x)/Q(x)$$

$$E_{Q}(h(X)) = \int Q(x)h(x)dx$$

$$= \int Q(x)f(x)/Q(x)dx$$

$$= \int f(x)dx$$

- So, take samples of h(X) instead of f(X)
- \circ w_i = I/Q(x_i) is importance weight
- Q = I/V yields uniform sampling



Variance

- Our How does this help us control variance?
- Suppose f big ==> Q big
- And Q small ==> f small
- Then h = f/Q never gets too big
- Variance of each sample is lower ==> need fewer samples
- A good Q makes a good IS

Importance sampling, part II

Suppose

$$f(x) = R(x)g(x)$$

$$\int f(x)dx = \int R(x)g(x)dx$$

$$= \mathbb{E}_R[g(x)]$$

Importance sampling, part II

- Use importance sampling w/ proposal Q(X):
 - \blacktriangleright Pick N samples x_i from Q(X)
 - ▶ Average w_i g(x_i), where $w_i = R(x_i)/Q(x_i)$ is importance weight

$$\mathbb{E}_{Q}(Wg(X)) = \int Q(x) \frac{R(x)}{Q(x)} g(x)$$

$$= \int R(x)g(x)dx$$

$$= \int f(x)dx$$

Parallel IS

- Now suppose R(x) is unnormalized (e.g., represented by factor graph)—know only Z R(x)
- Pick N samples x_i from proposal Q(X)
- If we knew $w_i = R(x_i)/Q(x_i)$, could do IS
- o Instead, set

$$\hat{w}_i = ZR(x_i)/Q(x_i)$$

Parallel IS

$$\mathbb{E}(\hat{W}) = \int Q(x) \frac{ZR(x)}{Q(x)} dx$$
$$= \int ZR(x) dx$$
$$= Z$$

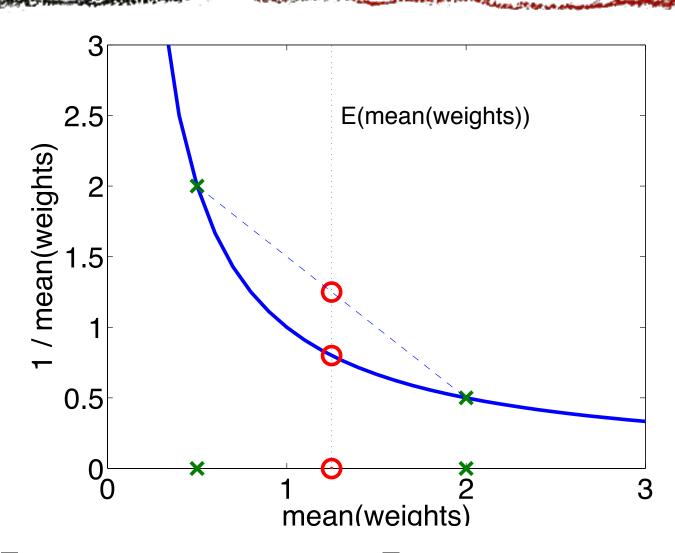
$$\circ$$
 So, $ar{w} = rac{1}{N} \sum_i \hat{w}_i$ is an unbiased estimate of Z

Parallel IS

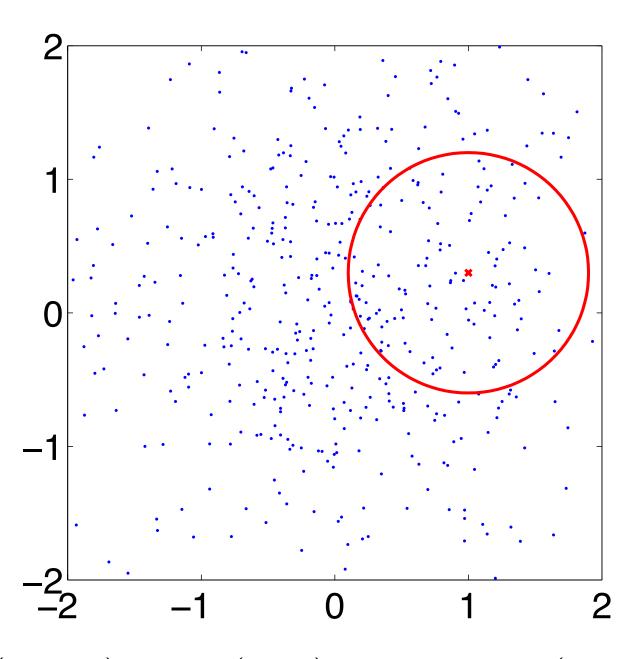
- \circ So, \hat{w}_i/\bar{w} is an estimate of $\mathbf{w_i},$ computed without knowing Z
- Final estimate:

$$\int f(x)dx \approx \frac{1}{n} \sum_{i} \frac{\hat{w}_{i}}{\bar{w}} g(x_{i})$$

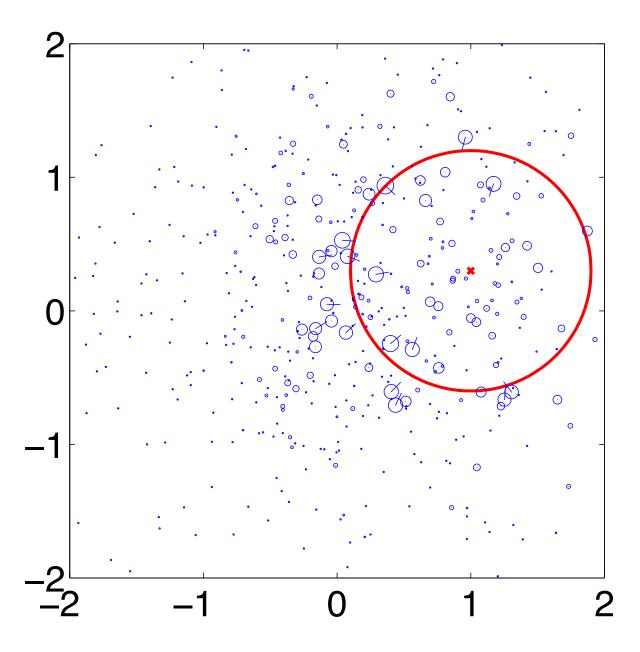
Parallel IS is biased



$$E(\overline{W}) = Z$$
, but $E(1/\overline{W}) \neq 1/Z$ in general



 $Q: (X, Y) \sim N(1, 1)$ $\theta \sim U(-\pi, \pi)$ $f(x, y, \theta) = Q(x, y, \theta)P(o = 0.8 \mid x, y, \theta)/Z$



Posterior $E(X, Y, \theta) = (0.496, 0.350, 0.084)$

MCMC

Integration problem

Recall: wanted

$$\int f(x)dx = \int R(x)g(x)dx$$

 And therefore, wanted good importance distribution Q(x) (close to R)

Back to high dimensions

- Picking a good importance distribution is hard in high-D
- Major contributions to integral can be hidden in small areas
 - recall, want (R big ==> Q big)
- \circ Would like to search for areas of high R(x)
- But searching could bias our estimates

Markov-Chain Monte Carlo

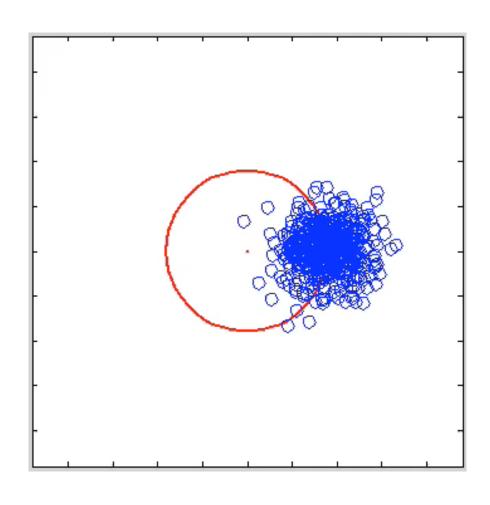
- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?

Markov-Chain Monte Carlo

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?
 - ▶ Q = stationary distribution of M...

Stationary distribution

- Run HMM or DBN for a long time; stop at a random point
- Do this again and again
- Resulting samples are from stationary distribution



Designing a search chain

$$\int f(x)dx = \int R(x)g(x)dx$$

- Would like Q(x) = R(x)
 - makes importance weight = I
- Turns out we can get this exactly, using Metropolis-Hastings

Metropolis-Hastings

- Way of designing chain w/ Q(x) = R(x)
- Basic strategy: start from arbitrary x
- Repeatedly tweak x to get x'
- ∘ If $R(x') \ge R(x)$, move to x'
- \circ If R(x') << R(x), stay at x
- o In intermediate cases, randomize

Proposal distribution

- Left open: what does "tweak" mean?
- Parameter of MH: Q(x' | x)
 - one-step proposal distribution
- Good proposals explore quickly, but remain in regions of high R(x)
- Optimal proposal?

MH algorithm

- \circ Sample x' \sim Q(x' | x)
- $\circ \text{ Compute p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$
- With probability min(I,p), set x := x'
- Repeat for T steps; sample is $x_1, ..., x_T$ (will usually contain duplicates)

MH algorithm

note: we don't need

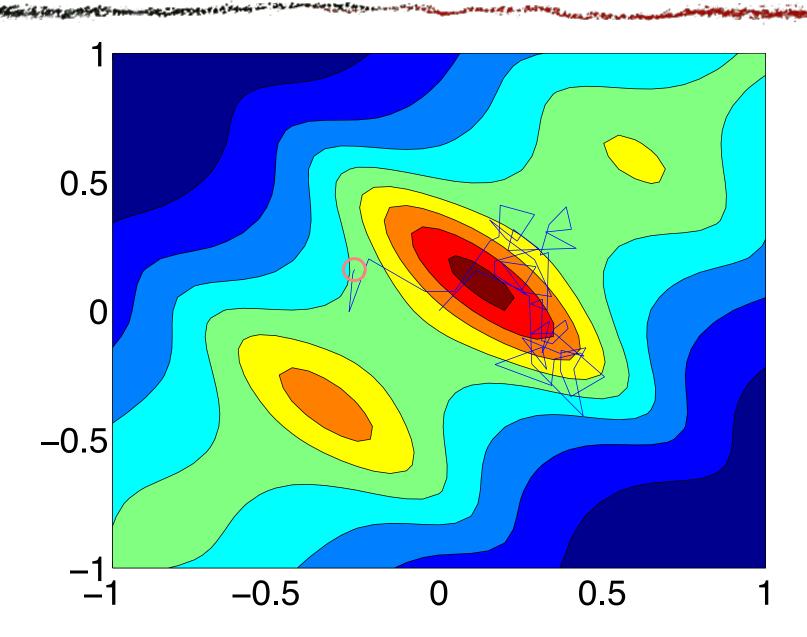
to know Z

$$\circ$$
 Sample x' \sim Q(x' | x)

$$\circ \text{ Compute p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

- With probability min(I, p), set x := x'
- Repeat for T steps; sample is $x_1, ..., x_T$ (will usually contain duplicates)

MH example



Acceptance rate

- Moving to new x' is accepting
- Want acceptance rate (avg p) to be large, so we don't get big runs of the same x
- Want Q(x' | x) to move long distances (to explore quickly)
- Tension between Q and P(accept):

$$p = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

Mixing rate, mixing time

- If we pick a good proposal, we will move rapidly around domain of R(x)
- After a short time, won't be able to tell where we started
- This is short mixing time = # steps until we can't tell which starting point we used
- Mixing rate = I / (mixing time)

MH estimate

- \circ Once we have our samples $x_1, x_2, ...$
- Optional: discard initial "burn-in" range
 - allows time to reach stationary dist'n
- Estimated integral:

$$\frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

In example

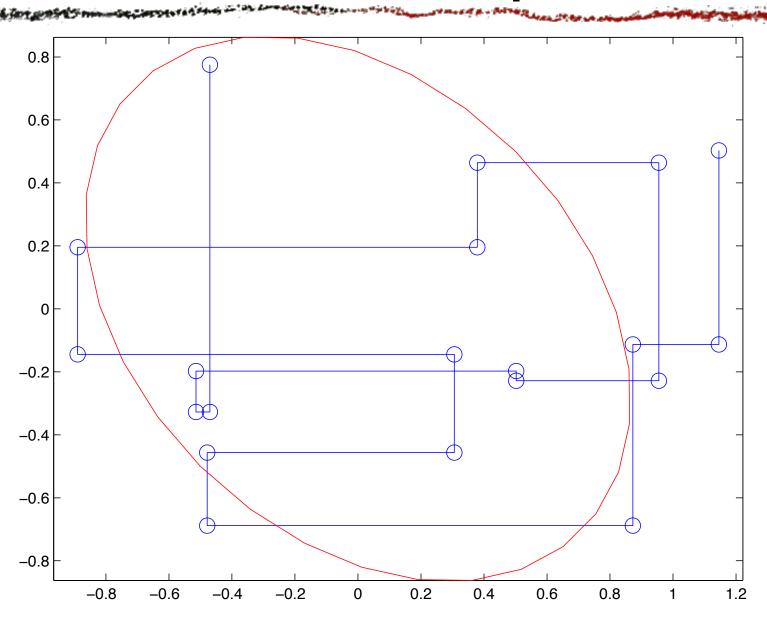
- \circ g(x) = x²
- True E(g(X)) = 0.28...
- Proposal: $Q(x' | x) = N(x' | x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

```
final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716
```

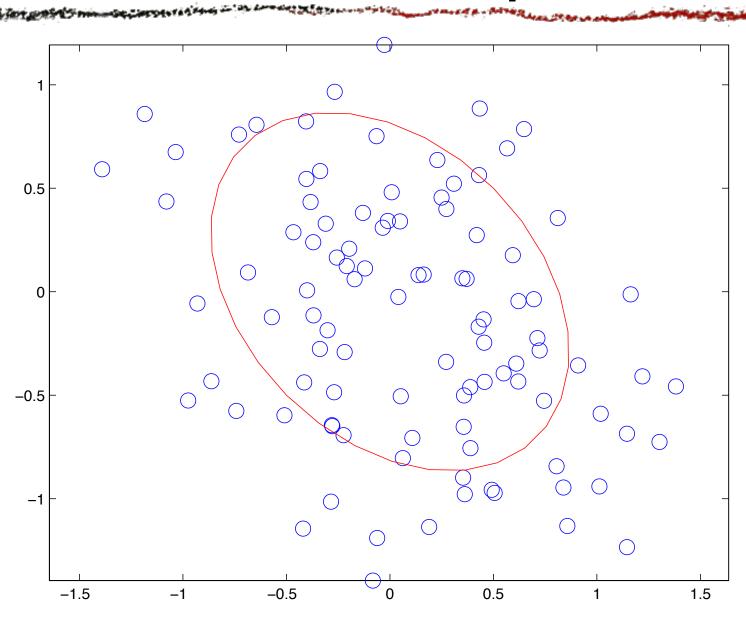
Gibbs sampler

- Special case of MH
- ∘ Divide **X** into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - ▶ sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$

Gibbs example



Gibbs example



Why is Gibbs useful?

$$\circ \text{ For Gibbs, p} = \frac{P(x_i', x_{\neg i}')}{P(x_i, x_{\neg i})} \frac{P(x_i \mid x_{\neg i}')}{P(x_i' \mid x_{\neg i})}$$

Gibbs derivation

$$\frac{P(x'_{i}, x'_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x'_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i}, x_{\neg i})/P(x_{\neg i})}{P(x'_{i}, x_{\neg i})/P(x_{\neg i})}$$

$$= 1$$