
15-780: Grad AI
Lecture 19: Graphical models,

Monte Carlo methods

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

Reminder: midterm March 29

Reminder: project milestone reports due
March 31

Review: scenarios

Converting QBF+ to PBI/MILP by scenarios

‣ Replicate decision variables for each scenario

‣ Replicate clauses: share first stage vars; set
scenario vars by scenario index; replace
decision vars by replicates

‣ Sample random scenarios

Example: PSTRIPS

Review: dynamic programming

Solving #SAT by dynamic programming
(variable elimination)

‣ repeatedly move sums inward, combine
tables, sum out

‣ treewidth and runtime/space

Review: graphical models
Bayes net = DAG + CPTs

‣ For each RV (say X), there is one CPT
specifying P(X | pa(X))

‣ Can simulate with propositional logic +
random causes

Inference: similar to #SAT DP—move sums
inward

‣ Can do partly analytically

‣ Allows us to prove independences and
conditional ind’s from DAG alone

Review: graphical models

Blocking, explaining away

Markov blanket

Learning: counting, Laplace smoothing

‣ if hidden variables: take 10-708 or use a
toolbox

Markov blanket

Markov blanket of
C = minimal set of
obs’ns to make C
independent of rest
of graph

Factor graphs

Another common type of graphical model

Uses undirected, bipartite graph instead of
DAG

Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Convention

Don’t need to show unary factors

Why? They don’t affect algorithms below.

Non-CPT factors

Just saw: easy to convert Bayes net → factor
graph

In general, factors need not be CPTs: any
nonnegative #s allowed

In general, P(A, B, …) =

Z =

Hard v. soft factors

0 1 2

0

1

2

1 1 1

1 1 3

1 3 3

X

Y

0 1 2

0

1

2

0 0 0

0 0 1

0 1 1

X

Y

Hard Soft

Factor graph → Bayes net

Conversion possible, but more involved

‣ Each representation can handle any
distribution

‣ But, size/complexity of graph may differ

2 cases for conversion:

‣ without adding nodes:

‣ adding nodes:

Independence

Just like Bayes nets, there are graphical tests
for independence and conditional
independence

Simpler, though:

‣ Cover up all observed nodes

‣ Look for a path

Independence example

Modeling independence

Take a Bayes net, list the (conditional)
independences

Convert to a factor graph, list the (conditional)
independences

Are they the same list?

What happened?

Inference

Inference: prior + evidence → posterior

We gave examples of inference in a Bayes net,
but not a general algorithm

Reason: general algorithm uses factor-graph
representation

Steps: instantiate evidence, eliminate nuisance
nodes, normalize, answer query

Inference

Typical Q: given Ra=F,
Ru=T, what is P(W)?

Incorporate evidence

Condition on Ra=F, Ru=T

Eliminate nuisance nodes

Remaining nodes: M, O, W

Query: P(W)

So, O&M are nuisance—marginalize away

Marginal =

Elimination order

Sum out the nuisance variables in turn

Can do it in any order, but some orders may
be easier than others

Let’s do O, then M

One last elimination

Checking our work

http://www.aispace.org/bayes/version5.1.6/bayes.jnlp

Discussion

Steps: instantiate evidence, eliminate nuisance
nodes, normalize, answer query

‣ each elimination introduces a new table,
makes some old tables irrelevant

Normalization

Each elim. order introduces different tables

‣ some tables bigger than others

FLOP count; treewidth

Treewidth examples

Chain

 Tree

Treewidth examples

Parallel chains

Cycle

Discussion
Several relationships between GMs and logic
(similar DP algorithm, use of independent
choices + logical consequences to represent a
GM, factor graph with 0-1 potentials = CSP,
MAP assignment = ILP)

Directed v. undirected: advantages to both

Lifted reasoning

‣ Propositional logic + objects = FOL

‣ FO GMs are a current hot topic of research
(plate models, MLNs, ICL)—not solved yet!

Discussion: belief propagation

Suppose we want all 1-variable marginals

Could do N runs of variable elimination

Or: the BP algorithm simulates N runs for the
price of 2

For details: Kschischang et al. reading

HMMs and
DBNs

Inference over time

Consider a robot:

‣ true state (x, y, θ)

‣ controls (v, w)

‣ N range sensors (here
N=2: r, s)

Model

xt+1 = xt + vt cos θt + noise
yt+1 = yt + vt sin θt + noise
θt+1 = θt + wt + noise

rt =
�

(xt − xR)2 + (yt − yR)2 + noise

st =
�

(xt − xS)2 + (yt − yS)2 + noise

Model of x, y, θ (r, s unobserved)

Goal: inference over time

N=1 sensor, repeatedly observe range = 1m + noise

Factor graph

Dynamic Bayes Network

DBN: factor graph composed of a single
structural unit repeated over time

‣ conceptually infinite to right, but in practice cut
off at some maximum T

Factors must be conditional distributions

∀xt.
�

xt+1

φ(xt, xt+1) = 1

∀xt.
�

yt

φ(xt, yt) = 1

Should be replaced by

\begin{array}{rrcl}

\forall x_t, y_t, \theta_t, u_t, v_t& \sum_{x_{t+1},y_{t+1},\theta_{t+1}} \phi(x_t, y_t, \theta_t, u_t, v_t, x_{t+1},y_{t+1},\theta_{t+1}) &=& 1\\[2ex]

\forall x_t, y_t, \theta_t& \sum_{r_{t},s_{t}} \phi(x_t, y_t, \theta_t, r_t, s_t) &=& 1

\end{array}

(see unannotated slides for a latex'd version)

Three kinds of variable

Control
(connects

only forward)

State

Observation

Condition on obs, do(control)

Control

State

Observation

Condition on obs, do(control)

Control

State

Observation

Simplified version

State: xt ∈ {1, 2, 3}

Observation: yt ∈ {L, H}

Control: just one (i.e., no choice)—“keep
going”

Hidden Markov Models

This is an HMM—a DBN with:

‣ one state variable

‣ one observation variable

Potentials

1 2 3

1

2

3

0.7 0.3 0

0.3 0.3 0.3

0 0.3 0.7

Xt+1

Xt

L H

1

2

3

0.67 0.33

0.5 0.5

0.33 0.67

Yt

Xt

HMM inference

Condition on y1 = H, y2 = H, y3 = L

What is P(X2 | HHL)?

HMM factors after conditioning

Eliminate x1 and x3

Multiply remaining potentials
and renormalize

Forward-backward

You may recognize the above as the forward-
backward algorithm

Special case of dynamic programming / variable
elimination / belief propagation

Approximate
Inference

Most of the time…

Treewidth is big

Variables are high-arity or continuous

Can’t afford exact inference

Need numerical integration (and/or summation)

We’ll look at randomized algorithms

Numerical integration

1

0.5

0

0.5

1
1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Y
X

f(X
,Y
)

Integration in 1000s of dims

El
ia

za
r

an
d

Pa
rr

, I
JC

A
I-0

3

Simple 1D problem

1 0.5 0 0.5 10

10

20

30

40

50

60

70

Uniform sampling

1 0.5 0 0.5 10

10

20

30

40

50

60

70

2
N

�

i

f(xi)

Uniform sampling

So, V E(f(X)) is desired integral

But standard deviation can be big

Can reduce it by averaging many samples

But only at rate 1/sqrt(N)

E(f(X)) =
�

P (x)f(x)dx

=
1
V

�
f(x)dx

Importance sampling

Instead of x ~ uniform, use x ~ Q(x)

Q = importance distribution

Should have Q(x) large where f(x) is large

Problem:

EQ(f(X)) =
�

Q(x)f(x)dx

Importance sampling

h(x) ≡ f(x)/Q(x)

EQ(h(X)) =
�

Q(x)h(x)dx

=
�

Q(x)f(x)/Q(x)dx

=
�

f(x)dx

Importance sampling

So, take samples of h(X) instead of f(X)

wi = 1/Q(xi) is importance weight

Q = 1/V yields uniform sampling

Importance sampling

1 0.5 0 0.5 10

10

20

30

40

50

60

70

Variance

How does this help us control variance?

Suppose f big ==> Q big

And Q small ==> f small

Then h = f/Q never gets too big

Variance of each sample is lower ==> need fewer
samples

A good Q makes a good IS

Importance sampling, part II

Suppose

f(x) = R(x)g(x)�
f(x)dx =

�
R(x)g(x)dx

= ER[g(x)]

Importance sampling, part II

Use importance sampling w/ proposal Q(X):

‣ Pick N samples xi from Q(X)

‣ Average wi g(xi), where wi = R(xi)/Q(xi) is
importance weight

EQ(Wg(X)) =
�

Q(x)
R(x)
Q(x)

g(x)

=
�

R(x)g(x)dx

=
�

f(x)dx

Parallel IS

Now suppose R(x) is unnormalized (e.g.,
represented by factor graph)—know only Z R(x)

Pick N samples xi from proposal Q(X)

If we knew wi = R(xi)/Q(xi), could do IS

Instead, set

ŵi = ZR(xi)/Q(xi)

Parallel IS

So, is an unbiased estimate of Zw̄ =
1
N

�

i

ŵi

E(Ŵ) =
�

Q(x)
ZR(x)
Q(x)

dx

=
�

ZR(x)dx

= Z

Parallel IS

So, is an estimate of wi, computed without
knowing Z

Final estimate:

ŵi/w̄

�
f(x)dx ≈ 1

n

�
i

ŵi
w̄ g(xi)

Parallel IS is biased

0 1 2 30

0.5

1

1.5

2

2.5

3

mean(weights)

1
/ m

ea
n(

w
ei

gh
ts

)

E(mean(weights))

E(W̄) = Z, but E(1/W̄) �= 1/Z in general

2 1 0 1 22

1

0

1

2

Q : (X, Y) ∼ N(1, 1) θ ∼ U(−π,π)
f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z

2 1 0 1 22

1

0

1

2

Posterior E(X, Y, θ) = (0.496, 0.350, 0.084)

MCMC

Integration problem

Recall: wanted

And therefore, wanted good importance
distribution Q(x) (close to R)

�
f(x)dx =

�
R(x)g(x)dx

Back to high dimensions

Picking a good importance distribution is hard
in high-D

Major contributions to integral can be hidden
in small areas

‣ recall, want (R big ==> Q big)

Would like to search for areas of high R(x)

But searching could bias our estimates

Markov-Chain Monte Carlo

Design a randomized search procedure M over
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?

Markov-Chain Monte Carlo

Design a randomized search procedure M over
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?

‣ Q = stationary distribution of M…

Stationary distribution

Run HMM or DBN
for a long time;
stop at a random
point

Do this again and
again

Resulting samples
are from stationary
distribution

Designing a search chain

Would like Q(x) = R(x)

‣ makes importance weight = 1

Turns out we can get this exactly, using
Metropolis-Hastings

�
f(x)dx =

�
R(x)g(x)dx

Metropolis-Hastings

Way of designing chain w/ Q(x) = R(x)

Basic strategy: start from arbitrary x

Repeatedly tweak x to get x’

If R(x’) ! R(x), move to x’

If R(x’) << R(x), stay at x

In intermediate cases, randomize

Proposal distribution

Left open: what does “tweak” mean?

Parameter of MH: Q(x’ | x)

‣ one-step proposal distribution

Good proposals explore quickly, but remain in
regions of high R(x)

Optimal proposal?

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’

Repeat for T steps; sample is x1, …, xT (will
usually contain duplicates)

R(x�)
R(x)

Q(x� | x)
Q(x | x�)

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’

Repeat for T steps; sample is x1, …, xT (will
usually contain duplicates)

note: we don’t need
to know Z

R(x�)
R(x)

Q(x� | x)
Q(x | x�)

MH example

1 0.5 0 0.5 11

0.5

0

0.5

1

Acceptance rate

Moving to new x’ is accepting

Want acceptance rate (avg p) to be large, so
we don’t get big runs of the same x

Want Q(x’ | x) to move long distances (to
explore quickly)

Tension between Q and P(accept):

p =
R(x�)
R(x)

Q(x� | x)
Q(x | x�)

Mixing rate, mixing time

If we pick a good proposal, we will move
rapidly around domain of R(x)

After a short time, won’t be able to tell where
we started

This is short mixing time = # steps until we
can’t tell which starting point we used

Mixing rate = 1 / (mixing time)

MH estimate

Once we have our samples x1, x2, …

Optional: discard initial “burn-in” range

‣ allows time to reach stationary dist’n

Estimated integral: 1
N

N�

i=1

g(xi)

In example

g(x) = x2

True E(g(X)) = 0.28…

Proposal:

Acceptance rate 55–60%

After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x� | x) = N(x� | x, 0.252I)

Gibbs sampler

Special case of MH

Divide X into blocks of r.v.s B(1), B(2), …

Proposal Q:

‣ pick a block i uniformly (or round robin, or
any other schedule)

‣ sample XB(i) ~ P(XB(i) | X¬B(i))

Gibbs example

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Gibbs example

1.5 1 0.5 0 0.5 1 1.5

1

0.5

0

0.5

1

Why is Gibbs useful?

For Gibbs, p = P (x�
i, x

�
¬i)

P (xi, x¬i)
P (xi | x�

¬i)
P (x�

i | x¬i)

Gibbs derivation

P (x�
i, x

�
¬i)

P (xi, x¬i)
P (xi | x�

¬i)
P (x�

i | x¬i)

=
P (x�

i, x¬i)
P (xi, x¬i)

P (xi | x¬i)
P (x�

i | x¬i)

=
P (x�

i, x¬i)
P (xi, x¬i)

P (xi, x¬i)/P (x¬i)
P (x�

i, x¬i)/P (x¬i)
= 1

