## I5-780: Grad Al Lecture 19: Graphical models, Monte Carlo methods

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

#### **Admin**

Review West 5- ish

- Reminder: midterm March 29
- Reminder: project milestone reports due March 3 I

#### Review: scenarios

- Converting QBF+ to PBI/MILP by scenarios
  - ▶ Replicate decision variables for each scenario
  - Replicate clauses: share first stage vars; set scenario vars by scenario index; replace decision vars by replicates
  - Sample random scenarios
- Example: PSTRIPS

## Review: dynamic programming

- Solving #SAT by dynamic programming (variable elimination)
  - repeatedly move sums inward, combine tables, sum out
  - treewidth and runtime/space

## Review: graphical models

- Bayes net = DAG + CPTs
  - For each RV (say X), there is one CPT specifying P(X | pa(X))
  - Can simulate with propositional logic + random causes
- Inference: similar to #SAT DP—move sums inward
  - Can do partly analytically
  - Allows us to prove independences and conditional ind's from DAG alone

## Review: graphical models

- Blocking, explaining away
- Markov blanket
- Learning: counting, Laplace smoothing
  - if hidden variables: take 10-708 or use a toolbox



## Factor graphs

- Another common type of graphical model
- Uses undirected, bipartite graph instead of DAG

## Rusty robot: factor graph



P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)



# Convention







- Don't need to show unary factors
- Why? They don't affect algorithms below.

#### Non-CPT factors

- Oust saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed
- In general,  $P(A, B, ...) = \frac{1}{7} \sum_{i \in A} O_i(X_{NS}(i))$

### Hard v. soft factors

|   | Hard |   |   |   |   | Soft |   |   |   |
|---|------|---|---|---|---|------|---|---|---|
|   |      |   | X |   |   | X    |   |   |   |
|   |      | 0 | I | 2 |   |      | 0 |   | 2 |
|   | 0    | 0 | 0 | 0 |   | 0    | I | I | I |
| Υ | I    | 0 | 0 | ı | Y | 1    | I | I | 3 |
|   | 2    | 0 | I | I |   | 2    | I | 3 | 3 |

## Factor graph → Bayes net

- Conversion possible, but more involved
  - ► Each representation can handle **any** distribution
  - ▶ But, size/complexity of graph may differ
- o 2 cases for conversion:
  - ▶ without adding nodes: # P-complete
  - ▶ adding nodes: linear time

## Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
  - Cover up all observed nodes
  - Look for a path

## Independence example



## Modeling independence

- Take a Bayes net, list the (conditional) independences
- Convert to a factor graph, list the (conditional) independences
- Are they the same list? Vo
- What happened?

#### Inference

- o Inference: prior + evidence → posterior
- We gave examples of inference in a Bayes net, but not a general algorithm
- Reason: general algorithm uses factor-graph representation
- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query

#### Inference

P(M, Ra, O, W, Ru) = 6, (M) & (Ra) & (0) & (Ra, 0, u) & (M, W, Ru) / 2



Typical Q: given Ra=F,

FTF 0.9

FFT OIL

FFF 0.9

Ru=T, what is P(W)?

## Incorporate evidence

P(M, Ra, O, W, Ru) = 6, (M) \$= (M) \$=



Condition on Ra=F, Ru=T

FFF 0.9

#### Eliminate nuisance nodes

P(M, R/, O, W, R/M) = 6, (M) 0/2 (R/M) 0/4 (R/N) 0, W) 0/4 (M/W, R/M)/2

- Remaining nodes: M, O, W
- Query: P(W)
- So, O&M are nuisance—marginalize away
- Marginal =  $\frac{1}{2}$   $\frac$

#### Elimination order



- Sum out the nuisance variables in turn
- Can do it in any order, but some orders may be easier than others
- Let's do O, then M

FLOPS
$$TT .02 T.1$$

$$TK .18$$

$$FT .08$$

#### One last elimination

 $P(U|L) = \overline{\Phi}_{G}(U) \Phi_{T}(U) \frac{1}{7}$ 27 (M,W) 77 (W) 1.77 (W) φ(M)= + 09 δ6(w) = T 0.1 \$(H,U, X)= a 1

## Checking our work

http://www.aispace.org/bayes/version5.1.6/bayes.jnlp

#### Discussion

- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query
  - each elimination introduces a new table, makes some old tables irrelevant
- Normalization
- Each elim. order introduces different tables
  - some tables bigger than others
- FLOP count; treewidth

## Treewidth examples

0-0-0-0-0 Chain Tree

## Treewidth examples

Parallel chains

Cycle



#### Discussion

- Several relationships between GMs and logic (similar DP algorithm, use of independent choices + logical consequences to represent a GM, factor graph with 0-1 potentials = CSP, MAP assignment = ILP)
- Directed v. undirected: advantages to both
- Lifted reasoning
  - Propositional logic + objects = FOL
  - ▶ FO GMs are a current hot topic of research (plate models, MLNs, ICL)—not solved yet!

## Discussion: belief propagation

- Suppose we want all I-variable marginals
- Could do N runs of variable elimination
- Or: the BP algorithm simulates N runs for the price of 2
- For details: Kschischang et al. reading

# HMMs and DBNs

#### Inference over time

- Consider a robot:
  - true state  $(x, y, \theta)$
  - controls (v, w)
  - N range sensors (here N=2: r, s)



#### Model

$$x_{t+1} = x_t + v_t \cos \theta_t + \text{noise}$$

$$y_{t+1} = y_t + v_t \sin \theta_t + \text{noise}$$

$$\theta_{t+1} = \theta_t + w_t + \text{noise}$$

$$r_t = \sqrt{(x_t - x^R)^2 + (y_t - y^R)^2} + \text{noise}$$

$$s_t = \sqrt{(x_t - x^S)^2 + (y_t - y^S)^2} + \text{noise}$$

# Model of x, y, $\theta$ (r, s unobserved)



#### Goal: inference over time



N=I sensor, repeatedly observe range = Im + noise

# Factor graph



## Dynamic Bayes Network

- DBN: factor graph composed of a single structural unit repeated over time
  - conceptually infinite to right, but in practice cut off at some maximum T
- Factors must be conditional distributions

Should be replaced by

\begin{array}{rrcl}
\forall x\_t, y\_t, \theta\_t, u\_t, v\_t& \sum\_{x\_{t+1},y\_{t+1}, \theta\_{t+1}} \phi(x\_t, y\_t, \theta\_t, u\_t, v\_t, x\_{t+1},y\_{t+1}, \theta\_{t+1}) &=& 1\\[2ex] \forall x\_t, y\_t, \theta\_t& \sum\_{r\_{t},s\_{t}} \phi(x\_t, y\_t, \theta\_t, r\_t, s\_t) &=& 1 \end{array}

\(see unannotated slides for a latex'd version)

#### Three kinds of variable



## Condition on obs, do(control)



# Condition on obs, do(control)



# Simplified version

- $\circ$  State:  $x_t \in \{1, 2, 3\}$
- $\circ$  Observation:  $y_t$  ∈ {L, H}
- Control: just one (i.e., no choice)—"keep going"

#### Hidden Markov Models



- This is an HMM—a DBN with:
  - one state variable
  - one observation variable

#### **Potentials**

|       |   | $X_{t+1}$ |     |     |
|-------|---|-----------|-----|-----|
|       |   |           | 2   | 3   |
| $X_t$ |   | 0.7       | 0.3 | 0   |
|       | 2 | 0.3       | 0.3 | 0.3 |
|       | 3 | 0         | 0.3 | 0.7 |

|       |   | L    | Н    |
|-------|---|------|------|
|       |   | 0.67 | 0.33 |
| $X_t$ | 2 | 0.5  | 0.5  |
|       | 3 | 0.33 | 0.67 |

 $Y_t$ 

#### HMM inference

- $\circ$  Condition on  $y_1 = H, y_2 = H, y_3 = L$
- $\circ$  What is  $P(X_2 | HHL)$ ?

# HMM factors after conditioning

#### Eliminate x<sub>1</sub> and x<sub>3</sub>

# Multiply remaining potentials and renormalize

$$\frac{X_{12}}{7/18}$$
 $\frac{X_{2}}{7/18}$ 
 $\frac{X_{12}}{1079}$ 
 $\frac{1}{125}$ 
 $\frac{1}{17}$ 
 $\frac{1}{17}$ 

#### Forward-backward

- You may recognize the above as the forwardbackward algorithm
- Special case of dynamic programming / variable elimination / belief propagation

# Approximate Inference

#### Most of the time...

- Treewidth is big
- Variables are high-arity or continuous
- Can't afford exact inference
- Need numerical integration (and/or summation)
- We'll look at randomized algorithms

# Numerical integration



## Integration in 1000s of dims



# Simple ID problem



# Uniform sampling



## Uniform sampling

$$E(f(X)) = \int P(x)f(x)dx$$
$$= \frac{1}{V} \int f(x)dx$$

- So,V E(f(X)) is desired integral
- But standard deviation can be big
- Can reduce it by averaging many samples
- But only at rate I/sqrt(N)

- $\circ$  Instead of x  $\sim$  uniform, use x  $\sim$  Q(x)
- Q = importance distribution
- Should have Q(x) large where f(x) is large
- Problem:

$$E_Q(f(X)) = \int Q(x)f(x)dx$$

$$h(x) \equiv f(x)/Q(x)$$

$$E_{Q}(h(X)) = \int Q(x)h(x)dx$$

$$= \int Q(x)f(x)/Q(x)dx$$

$$= \int f(x)dx$$

- So, take samples of h(X) instead of f(X)
- $\circ$  w<sub>i</sub> = I/Q(x<sub>i</sub>) is importance weight
- Q = I/V yields uniform sampling



#### Variance

- Our How does this help us control variance?
- Suppose f big ==> Q big
- And Q small ==> f small
- Then h = f/Q never gets too big
- Variance of each sample is lower ==> need fewer samples
- A good Q makes a good IS

# Importance sampling, part II

#### Suppose

$$f(x) = R(x)g(x)$$

$$\int f(x)dx = \int R(x)g(x)dx$$

$$= \mathbb{E}_R[g(x)]$$

### Importance sampling, part II

- Use importance sampling w/ proposal Q(X):
  - $\blacktriangleright$  Pick N samples  $x_i$  from Q(X)
  - ▶ Average  $w_i$  g( $x_i$ ), where  $w_i = R(x_i)/Q(x_i)$  is importance weight

$$\mathbb{E}_{Q}(Wg(X)) = \int Q(x) \frac{R(x)}{Q(x)} g(x)$$

$$= \int R(x)g(x)dx$$

$$= \int f(x)dx$$

#### Parallel IS

- Now suppose R(x) is unnormalized (e.g., represented by factor graph)—know only Z R(x)
- Pick N samples x<sub>i</sub> from proposal Q(X)
- If we knew  $w_i = R(x_i)/Q(x_i)$ , could do IS
- o Instead, set

$$\hat{w}_i = ZR(x_i)/Q(x_i)$$

#### Parallel IS

$$\mathbb{E}(\hat{W}) = \int Q(x) \frac{ZR(x)}{Q(x)} dx$$
$$= \int ZR(x) dx$$
$$= Z$$

$$\circ$$
 So,  $ar{w} = rac{1}{N} \sum_i \hat{w}_i$  is an unbiased estimate of Z

#### Parallel IS

- $\circ$  So,  $\hat{w}_i/\bar{w}$  is an estimate of  $\mathbf{w_i},$  computed without knowing Z
- Final estimate:

$$\int f(x)dx \approx \frac{1}{n} \sum_{i} \frac{\hat{w}_{i}}{\bar{w}} g(x_{i})$$

#### Parallel IS is biased



$$E(\overline{W}) = Z$$
, but  $E(1/\overline{W}) \neq 1/Z$  in general



 $Q: (X, Y) \sim N(1, 1)$   $\theta \sim U(-\pi, \pi)$  $f(x, y, \theta) = Q(x, y, \theta)P(o = 0.8 \mid x, y, \theta)/Z$ 



Posterior  $E(X, Y, \theta) = (0.496, 0.350, 0.084)$ 

# MCMC

### Integration problem

Recall: wanted

$$\int f(x)dx = \int R(x)g(x)dx$$

 And therefore, wanted good importance distribution Q(x) (close to R)

### Back to high dimensions

- Picking a good importance distribution is hard in high-D
- Major contributions to integral can be hidden in small areas
  - recall, want (R big ==> Q big)
- $\circ$  Would like to search for areas of high R(x)
- But searching could bias our estimates

#### Markov-Chain Monte Carlo

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?

#### Markov-Chain Monte Carlo

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?
  - ▶ Q = stationary distribution of M...

## Stationary distribution

- Run HMM or DBN for a long time; stop at a random point
- Do this again and again
- Resulting samples are from stationary distribution



# Designing a search chain

$$\int f(x)dx = \int R(x)g(x)dx$$

- Would like Q(x) = R(x)
  - makes importance weight = I
- Turns out we can get this exactly, using Metropolis-Hastings

## Metropolis-Hastings

- Way of designing chain w/ Q(x) = R(x)
- Basic strategy: start from arbitrary x
- Repeatedly tweak x to get x'
- ∘ If  $R(x') \ge R(x)$ , move to x'
- $\circ$  If R(x') << R(x), stay at x
- o In intermediate cases, randomize

### Proposal distribution

- Left open: what does "tweak" mean?
- Parameter of MH: Q(x' | x)
  - one-step proposal distribution
- Good proposals explore quickly, but remain in regions of high R(x)
- Optimal proposal?

## MH algorithm

- $\circ$  Sample x'  $\sim$  Q(x' | x)
- $\circ \text{ Compute p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$
- With probability min(I,p), set x := x'
- Repeat for T steps; sample is  $x_1, ..., x_T$  (will usually contain duplicates)

### MH algorithm

note: we don't need

to know Z

$$\circ$$
 Sample x'  $\sim$  Q(x' | x)

$$\circ \text{ Compute p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

- With probability min(I, p), set x := x'
- Repeat for T steps; sample is  $x_1, ..., x_T$  (will usually contain duplicates)

# MH example



### Acceptance rate

- Moving to new x' is accepting
- Want acceptance rate (avg p) to be large, so we don't get big runs of the same x
- Want Q(x' | x) to move long distances (to explore quickly)
- Tension between Q and P(accept):

$$p = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

## Mixing rate, mixing time

- If we pick a good proposal, we will move rapidly around domain of R(x)
- After a short time, won't be able to tell where we started
- This is short mixing time = # steps until we can't tell which starting point we used
- Mixing rate = I / (mixing time)

### MH estimate

- $\circ$  Once we have our samples  $x_1, x_2, ...$
- Optional: discard initial "burn-in" range
  - allows time to reach stationary dist'n
- Estimated integral:

$$\frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

### In example

- $\circ$  g(x) = x<sup>2</sup>
- True E(g(X)) = 0.28...
- Proposal:  $Q(x' | x) = N(x' | x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

```
final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716
```

### Gibbs sampler

- Special case of MH
- ∘ Divide **X** into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
  - pick a block i uniformly (or round robin, or any other schedule)
  - ▶ sample  $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$

### Gibbs example



### Gibbs example



## Why is Gibbs useful?

$$\circ \text{ For Gibbs, p} = \frac{P(x_i', x_{\neg i}')}{P(x_i, x_{\neg i})} \frac{P(x_i \mid x_{\neg i}')}{P(x_i' \mid x_{\neg i})}$$

#### Gibbs derivation

$$\frac{P(x'_{i}, x'_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x'_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i}, x_{\neg i})/P(x_{\neg i})}{P(x'_{i}, x_{\neg i})/P(x_{\neg i})}$$

$$= 1$$