15-780: Grad AI Lecture 21: Bayesian learning, MDPs

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- o Reminder: project milestone reports due today
- o Reminder: HW5 out

Review: numerical integration

- Parallel importance sampling
	- \triangleright allows ZR(x) instead of R(x)
	- ‣ biased, but asymptotically unbiased
- \circ Sequential sampling (for chains, trees)
- Parallel IS + *resampling* for sequential problems = *particle filter*

Review: MCMC

- Metropolis-Hastings: randomized search procedure for high $R(x)$
- \circ Leads to **stationary distribution** = $R(x)$
- \circ Repeatedly tweak current x to get x'
	- If $R(x') \ge R(x)$, move to x'
	- If $R(x') \ll R(x)$, stay at x
	- ‣ randomize in between
- \circ Requires good one-step proposal Q(x' | x) to get acceptable acceptance rate and mixing rate

Review: Gibbs

- Special case of MH for **X** divided into blocks
- Proposal Q:
	- ‣ pick a block i uniformly (or round robin, or any other fair schedule)
	- \triangleright sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} | \mathbf{X}_{\neg B(i)})$
- \circ Acceptance rate = 100%

Review: Learning

- $P(M | X) = P(X | M) P(M) / P(X)$
- *P(M | X, Y) = P(Y | X, M) P(X | M) / P(Y | M)*
- Example: framlings
- Version space algorithm: when prior is uniform and likelihood is 0 or 1

Bayesian Learning

Recall iris example

- θ \mathscr{H} = factor graphs of given structure
- Need to specify entries of ϕ s

Factors

BARA SERIE A ANTIQUA ANTIQUES DE PRODUCTOS DE LA CARACTER DE LA CARACTER DE LA CARACTER DE LA CARACTER DE LA C
DE LA CARACTER DE L **STATISTICS IN THE CALL OF THE REAL PROPERTY AND IN**

$$
\Phi_0 \qquad \qquad \Phi_1 - \Phi_4
$$

Continuous factors

 Φ_1

$$
\Phi_1(\ell, s) = \exp(-(\ell - \ell_s)^2 / 2\sigma^2)
$$

parameters $\ell_{\rm set}, \ell_{\rm vers}, \ell_{\rm vir};$ constant σ^2

Discretized petal length Continuous petal length

Simpler example

والأباط الاستعمام والتوالي المستعمل للاقتصاد والموادع والموادع والمستعمل **CONVERTING RANGE**

Coin toss

Parametric model class

- \circ $\mathscr H$ is a **parametric** model class: each H in $\mathscr H$ corresponds to a vector of parameters $\theta = (p)$ or $\theta = (p, q, p_1, q_1, r_1, s_1, ...)$
- \circ H_{θ}: **X** ~ P(**X** | θ) (or, Y ~ P(Y | **X**, θ))
- Contrast to *discrete H*, as in version space
- \circ Could also have **mixed** *H*: discrete choice among parametric (sub)classes

Continuous prior

ベルニー しゅくりくしずえん ブイハイク

$$
\circ
$$
 E.g., for coin toss, p \sim Beta(a, b):

$$
P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1-p)^{b-1}
$$

 \circ Specifying, e.g., $a = 2$, $b = 2$:

$$
P(p) = 6p(1-p)
$$

Prior for *p*

Coin toss, cont'd

\circ Joint dist'n of parameter p and data x_i :

$$
P(p, \mathbf{x}) = P(p) \prod_{i} P(x_i | p)
$$

= $6p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$

Coin flip posterior

BALLARIAN STATISTICS The state for a sport of the recommendation of the form of the form

$$
P(p | \mathbf{x}) = P(p) \prod_{i} P(x_i | p) / P(\mathbf{x})
$$

=
$$
\frac{1}{Z} p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}
$$

=
$$
\frac{1}{Z} p^{1+\sum_{i} x_i} (1-p)^{1+\sum_{i} (1-x_i)}
$$

= Beta(2 + $\sum_{i} x_i, 2 + \sum_{i} (1-x_i)$)

Prior for *p*

Posterior after 4 H, 7 T

Posterior after 10 H, 19 T

Predictive distribution

- Posterior is nice, but doesn't tell us directly what we need to know
- \circ We care more about $P(x_{N+1} | x_1, ..., x_N)$
- By law of total probability, conditional independence:

$$
P(x_{N+1} | \mathbf{D}) = \int P(x_{N+1}, \theta | \mathbf{D}) d\theta
$$

$$
= \int P(x_{N+1} | \theta) P(\theta | \mathbf{D}) d\theta
$$

Coin flip example

 \circ After 10 H, 19 T: p \sim Beta(12, 21)

$$
\circ E(x_{N+1} | p) = p
$$

- $E(x_{N+1} | \theta) = E(p | \theta) = a/(a+b) = 12/33$
- \circ So, predict 36.4% chance of H on next flip

Approximate Bayes

Approximate Bayes

- ^o Coin flip example was easy
- \circ In general, computing posterior (or predictive distribution) may be hard
- \circ Solution: use the approximate integration techniques we've studied!

Bayes as numerical integration

- Parameters θ, data **D**
- \circ P(θ | **D**) = P(\mathbf{D} | θ) P(θ) / P(\mathbf{D})
- ^o Usually, $P(\theta)$ is simple; so is $Z P(D | \theta)$
- \circ So, P(θ | **D**) $\circ \circ \circ P(D \mid \theta) P(\theta)$
	- ‣ similarly for conditional model: if **X** ⊥ θ,
	- \rightarrow P(θ | **X**, **Y**) \propto \angle P(**Y** | θ , **X**) P(θ)
- Perfect for MH

Posterior

SERVER TO SEE A POST OF CONTROL OF PRODUCTION OF CONTROL CONTROL CONTROL OF THE CONTROL OF CONTROL All made of the Post William and a

$$
P(a, b \mid x_i, y_i) =
$$

\n
$$
ZP(a, b) \prod_i \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i}
$$

\n
$$
P(a, b) = N(0, I)
$$

Sample from posterior

Predictive distribution

- \circ For each θ in sample, predict P(X) or P(Y | X)
- \circ Average predictions over all θ in sample

Cheaper approximations

Getting cheaper

- Maximum a posteriori (MAP)
- o Maximum likelihood (MLE)
- Conditional MLE / MAP

 \circ Instead of true posterior, just use single most probable hypothesis

MAP

$\arg\max_{\theta} P(D \mid \theta) P(\theta)$

^o Summarize entire posterior density using the maximum

MLE

$\arg\max_{\theta} P(D | \theta)$

- o Like MAP, but ignore prior term
	- ‣ often prior is overwhelmed if we have enough data

Conditional MLE, MAP

$$
\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta)
$$

arg max $P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)$

- \circ Split D = (\mathbf{x}, \mathbf{y})
- Condition on **x**, try to explain only **y**

Iris example: MAP vs. posterior

Irises: MAP vs. posterior

いしゅし しゅくりくしてんり ブラード

Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- ^o But, often gets better with more data
- Thm: MAP and MLE are consistent estimates of true θ , if "data per parameter" $\rightarrow \infty$

Sequential Decisions

Markov decision process: influence diagram

^o States, actions, initial state s₁, (expected) costs $C(s,a) \in [C_{min}, C_{max}]$, transitions $T(s' | s, a)$

Influence diagrams

- ^o Like a Bayes net, except:
	- ‣ diamond nodes are costs/rewards
		- ‣ must have no children
	- ‣ square nodes are decisions
		- ‣ we pick the CPTs (before seeing anything)
		- ‣ minimize expected cost
- Circles are ordinary r.v.s as before

Markov decision process: state space diagram

○ States, actions, costs $C(s,a) \in [C_{min}, C_{max}]$, transitions $T(s' | s, a)$, initial state s₁

Choosing actions

- Execution trace: $T = (s_1, a_1, c_1, s_2, a_2, c_2, ...)$
	- \triangleright c₁ = C(s₁, a₁), c₂ = C(s₂, a₂), etc.
	- \triangleright s₂ ~ T(s | s₁, a₁), s₃ ~ T(s | s₂, a₂), etc.
- Policy $\pi: S \rightarrow A$
	- \triangleright or randomized, $\pi(a \mid s)$
- \circ Trace from π : a₁ $\sim \pi$ (a | s₁), etc.
	- ‣ τ is then an r.v. with known distribution
	- \triangleright we'll write $\tau \sim \pi$ (rest of MDP implicit)

Choosing *good* actions

Objective: \circ

$$
J^* = \min_{\pi} J^{\pi}
$$

$$
\pi^* \in \arg \min_{\pi} J^{\pi}
$$

A SANT AND A STRONG TO A RECOVERED AND A STRONG TO THE REPORT OF THE CONSTRUCTION OF THE REAL PROPERTY AND THE

DE COMPANY PROVINCIAL CONTRACT A CAMBINE CONTRACT ON A PERSONAL CONTRACT OF A CAMBINE CONTRACT AND PROVINCIAL

A1: to make the sums finite

Self minimum content et al. Form

- A1: to make the sums finite
- A2: interest rate 1/γ 1 per period

- A1: to make the sums finite
- \circ A2: interest rate $1/\gamma 1$ per period
- A3: model mismatch
	- ‣ probability (1–γ) that something unexpected happens on each step and my plan goes out the window

Recursive expression

ニュマ のってく スープ・パン

$$
J^{\pi} = \mathbb{E}\left[\frac{1-\gamma}{\gamma} \sum_{t} \gamma^{t} c_{t} \middle| \tau \sim \pi\right]
$$

$$
= \mathbb{E}[J(\tau) \mid \tau \sim \pi]
$$

$$
J(\tau) = \frac{1-\gamma}{\gamma} [\gamma c_1 + \gamma^2 c_2 + \gamma^3 c_3 + ...]
$$

= $(1-\gamma)c_1 + \gamma \left[\frac{1-\gamma}{\gamma} (\gamma c_2 + \gamma^2 c_3 + ...) \right]$
= $(1-\gamma)c_1 + \gamma J(\tau^+)$

($1-y$) \times immediate cost + γ \times future cost

Tree search

- \circ Root node = current state
- Alternating levels: action and outcome
	- ‣ min and expectation
- Build out tree until goal or until γ^t small enough

Interpreting the result

- \circ Number at each \circ node: optimal cost if starting from state s instead of s₁
	- call this $J^*(s)$ —so, $J^* = J^*(s)$
	- ‣ *state-value* function
- Number at each ⋅ node: optimal cost if starting from parent's s, choosing incoming a
	- \triangleright call this $Q^*(s,a)$
	- ‣ *action-value* function
- \circ Similarly, $\Pi(s)$ and $Q^{\Pi}(s, a)$

The update equations

For ⋅ node

$$
Q^*(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^*(s') | s' \sim T(\cdot | s, a)]
$$

 \circ For \circ node

$$
J^*(s) = \min_a Q^*(s, a)
$$

($1-y$) \times immediate cost + γ \times future cost

Updates for a fixed policy

the two control of minimizes in

For ⋅ node

$$
Q^{\pi}(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^{\pi}(s') | s' \sim T(\cdot | s, a)]
$$

 \circ For \circ node

$$
J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s, a) | a \sim \pi(\cdot | s)]
$$

($1-y$) \times immediate cost + γ \times future cost

Speeding it up

- Can't do DPLL-style pruning: outcome node depends on *all* children
- Can do some pruning: e.g., low-probability outcomes when branch is already clearly bad
- Or, use scenarios: subsample outcomes at each expectation node
	- ‣ with enough samples, good estimate of value of each expectation

Receding-horizon planning

- ^o Stop building tree at 2k levels, evaluate leaf nodes with *heuristic* h(s)
	- \triangleright or at 2k–1 levels, evaluate with h(s, a)
- Minimal guarantees, but often works well in practice
- Can also use adaptive horizon \circ
- ^o Just as in deterministic search, a good heuristic is essential!

Good heuristic

- Good heuristic: $h(s) \approx J^*(s)$ or $h(s, a) \approx Q^*(s,a)$
- If we have $h(s) = J^*(s)$, only need to build first two levels of tree (action and outcome) to choose optimal action at s1
- With $h(s, a) = Q^*(s, a)$, only need to build first (action) level
- \circ Often try to use h \approx |^{π} or Q^{π} for some good π

Roll-outs

 \circ Want h(s) \approx $\int_{0}^{\pi}(s)$

- \circ Starting from s₁ = s, sample a₁ $\sim \pi(a \mid s_1)$, set $c_1 = c(s_1, a_1)$, sample $s_2 \sim T(s' \mid s_1, a_1)$
- Repeat until goal (or until y^t small)
- Take $h(s) = (1-\gamma)/\gamma \sum_{t} \gamma^{t} c_t$
- Used in *UCT* (best algorithm for Go)

Dynamic programming

- \circ If there are a small number of states and actions, makes sense to *memoize* tree search
	- ‣ compute an entire level of the tree at a time, working from bottom up
	- \triangleright store only S \times A numbers r.t. b^d

DP example: should I stay or should I go?

 $(1-T)$ + X^{-2} $\gamma = \frac{2}{3}$ $Q(A, stay)$ $Q(A, go)$ $J(A)$ \mathcal{Z} \subset) \bigcirc $\frac{1}{3}$ $2/3$ $1/3$ $5/a$ $2/3$ $5/9$ $415a$ $2/3$ $2/3$ $\frac{1}{7}$ $\frac{2}{3}$ $\frac{5}{9}$ = $\frac{19}{27}$ $2/3$ $2/3$ $11 + 2.2 = 7/a$ $Q^*(A, g) \quad J^*(A)$ $Q^{\mathcal{F}}(A,5)$

DP example 2

SECONDENTATIONS IN THE

- each step costs I
- discount 0.8

Discussion

• Terminology: backup, sweep, value iteration

- VI makes max error converge linearly to 0 at rate γ per sweep
- Works well for up to 1,000,000s of states, as long as we can evaluate min and expectation efficiently (e.g., few actions, sparse outcomes)
	- \triangleright tricks: replace \vert (s) by backed up value immediately (not at end of sweep); schedule backups by *priority* = estimate of how much J(s) will change

Curse of dimensionality

- ^o Sadly, 1,000,000s of states don't necessarily get us very far
- E.g., 10 state variables, each with 10 values: 1010 states
- ^o See below for ways around the curse