#### I 5-780: Grad AI Lecture 21: Bayesian learning, MDPs

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

#### Admin

A DESCRIPTION A THE STREET OF THE STREET OF

- Reminder: project milestone reports due today
- Reminder: HW5 out

#### Review: numerical integration

and the second second

- Parallel importance sampling
  - allows ZR(x) instead of R(x)
  - biased, but asymptotically unbiased
- Sequential sampling (for chains, trees)
- Parallel IS + *resampling* for sequential problems = *particle filter*

#### Review: MCMC

- Metropolis-Hastings: randomized search procedure for high R(x)
- Leads to stationary distribution = R(x)
- Repeatedly tweak current x to get x'
  - If  $R(x') \ge R(x)$ , move to x'
  - If R(x') << R(x), stay at x</p>
  - randomize in between
- Requires good one-step proposal Q(x' | x) to get acceptable acceptance rate and mixing rate

#### **Review:** Gibbs

- $^{\circ}\,$  Special case of MH for  $\boldsymbol{X}$  divided into blocks
- Proposal Q:
  - pick a block i uniformly (or round robin, or any other fair schedule)
  - ► sample  $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$
- Acceptance rate = 100%

#### **Review: Learning**

A DECK TO A DECK TO THE ADDECK TO A DECK TO A DECK

- $\circ P(M \mid \mathbf{X}) = P(\mathbf{X} \mid M) P(M) / P(\mathbf{X})$
- $\circ P(M \mid \boldsymbol{X}, \boldsymbol{Y}) = P(\boldsymbol{Y} \mid \boldsymbol{X}, M) P(\boldsymbol{X} \mid M) / P(\boldsymbol{Y} \mid M)$
- Example: framlings
- Version space algorithm: when prior is uniform and likelihood is 0 or 1



# Bayesian Learning

#### Recall iris example

The second state of the se



- $\mathcal{H}$  = factor graphs of given structure
- $\circ$  Need to specify entries of  $\varphi$ s

#### Factors

A CONTRACT OF THE ASSANCE OF THE ASS

**φ**<sub>0</sub>

| setosa     | Þ     |
|------------|-------|
| versicolor | q     |
| virginica  | I_p_q |

 $\phi_1 - \phi_4$ 

|       | lo | m          | hi                                    |
|-------|----|------------|---------------------------------------|
| set.  | Þi | <b>q</b> i | I—p;—qi                               |
| vers. | ri | Si         | I−r <sub>i</sub> −s <sub>i</sub>      |
| vir.  | Ui | Vi         | <i>I —u<sub>i</sub>—v<sub>i</sub></i> |

#### Continuous factors

Q

A CONTRACT OF THE AND THE AND

**φ**<sub>1</sub>

|       | lo  | m  | hi                                       |
|-------|-----|----|------------------------------------------|
| set.  | Þ١  | ٩ı | <i>I—</i> p <sub>1</sub> —q <sub>1</sub> |
| vers. | rı  | SI | I—rı—sı                                  |
| vir.  | U į | ٧ı | <i>I—u</i> 1—v1                          |

$$\Phi_1(\ell, s) = \exp(-(\ell - \ell_s)^2 / 2\sigma^2)$$

parameters  $\ell_{set}$ ,  $\ell_{vers}$ ,  $\ell_{vir}$ ; constant  $\sigma^2$ 

Discretized petal length

Continuous petal length

#### Simpler example

A CONTRACT OF A



#### Coin toss

#### Parametric model class

The all the second of the seco

- $\mathcal{H}$  is a **parametric** model class: each H in  $\mathcal{H}$ corresponds to a vector of parameters  $\theta = (p)$ or  $\theta = (p, q, p_1, q_1, r_1, s_1, ...)$
- $H_{\theta}$ : **X** ~  $P(\mathbf{X} \mid \theta)$  (or, **Y** ~  $P(\mathbf{Y} \mid \mathbf{X}, \theta)$ )
- Contrast to **discrete** *H*, as in version space
- Could also have *mixed H*: discrete choice among parametric (sub)classes

#### Continuous prior

And the second of the second o

$$P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1-p)^{b-1}$$

• Specifying, e.g., a = 2, b = 2:

$$P(p) = 6p(1-p)$$

#### Prior for *p*

A CONTRACT OF THE STORE OF THE



#### Coin toss, cont'd

A DESCRIPTION OF THE PARTY OF T

#### $\circ\,$ Joint dist'n of parameter p and data $x_i\!\!:$

$$P(p, \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p)$$
  
=  $6p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$ 

#### Coin flip posterior

A State of the second of the s

$$P(p \mid \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p) / P(\mathbf{x})$$
  
=  $\frac{1}{Z} p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$   
=  $\frac{1}{Z} p^{1+\sum_{i} x_i} (1-p)^{1+\sum_{i} (1-x_i)}$   
=  $\text{Beta}(2 + \sum_{i} x_i, 2 + \sum_{i} (1-x_i))$ 

#### Prior for *p*

A CONTRACT OF THE STORE OF THE



#### Posterior after 4 H, 7 T

A CONTRACT OF THE STORE OF THE



#### Posterior after 10 H, 19 T

A CONTRACT OF THE ACTION OF TH



#### Predictive distribution

- Posterior is nice, but doesn't tell us directly what we need to know
- We care more about  $P(x_{N+1} | x_1, ..., x_N)$
- By law of total probability, conditional independence:

$$P(x_{N+1} \mid \mathbf{D}) = \int P(x_{N+1}, \theta \mid \mathbf{D}) d\theta$$
$$= \int P(x_{N+1} \mid \theta) P(\theta \mid \mathbf{D}) d\theta$$

#### Coin flip example

The second state of the se

• After 10 H, 19 T: p ~ Beta(12, 21)

$$\circ E(x_{N+1} | p) = p$$

- $E(x_{N+1} | \theta) = E(p | \theta) = a/(a+b) = 12/33$
- So, predict 36.4% chance of H on next flip



# Approximate Bayes

#### **Approximate Bayes**

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we've studied!

#### Bayes as numerical integration

A State of the second of the s

- ° Parameters  $\theta$ , data **D**
- $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / P(\mathbf{D})$
- Usually,  $P(\theta)$  is simple; so is  $Z P(\mathbf{D} \mid \theta)$
- So,  $P(\theta \mid \mathbf{D}) \propto P(\mathbf{D} \mid \theta) P(\theta)$ 
  - similarly for conditional model: if  $\mathbf{X} \perp \boldsymbol{\theta}$ ,
  - ►  $P(\theta \mid \mathbf{X}, \mathbf{Y}) \propto P(\mathbf{Y} \mid \theta, \mathbf{X}) P(\theta)$
- Perfect for MH



#### Posterior

State of the state

$$P(a, b \mid x_i, y_i) =$$

$$ZP(a, b) \prod_i \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i}$$

$$P(a, b) = N(0, I)$$

#### Sample from posterior

A State of the second of the s



#### Predictive distribution

AND THE REAL PROPERTY AND THE ADDRESS OF THE ADDRES

- For each  $\theta$  in sample, predict P(X) or P(Y | X)
- $\circ$  Average predictions over all  $\theta$  in sample



## Cheaper approximations

#### Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP

 Instead of true posterior, just use single most probable hypothesis

#### MAP

And the second of the second o

## $\arg\max_{\theta} P(D \mid \theta) P(\theta)$

Summarize entire posterior density using the maximum

#### MLE

A CONTRACT OF THE ADDRESS OF THE ADD

## $\arg\max_{\theta} P(D \mid \theta)$

- Like MAP, but ignore prior term
  - often prior is overwhelmed if we have enough data

#### Conditional MLE, MAP

A State of the sta

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta)$$
$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)$$

- Split D =  $(\mathbf{x}, \mathbf{y})$
- Condition on **x**, try to explain only **y**

#### Iris example: MAP vs. posterior

A State of the second of the s



#### Irises: MAP vs. posterior

A CONTRACT OF THE STATE OF THE



#### Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Thm: MAP and MLE are consistent estimates of true  $\theta$ , if "data per parameter"  $\rightarrow \infty$



# Sequential Decisions

#### Markov decision process: influence diagram

A State of the sta



° States, actions, initial state  $s_1$ , (expected) costs  $C(s,a) \in [C_{min}, C_{max}]$ , transitions T(s' | s, a)

#### Influence diagrams

AND THE ADDIEST OF THE STORE TO A STORE TO A

- Like a Bayes net, except:
  - diamond nodes are costs/rewards
    - must have no children
  - square nodes are decisions
    - we pick the CPTs (before seeing anything)
    - minimize expected cost
- Circles are ordinary r.v.s as before

#### Markov decision process: state space diagram

A CONTRACT OF THE ADDRESS OF THE ADD



° States, actions, costs  $C(s,a) \in [C_{min}, C_{max}]$ , transitions T(s' | s, a), initial state s₁

#### Choosing actions

State of the second of the sec

- Execution trace:  $\tau = (s_1, a_1, c_1, s_2, a_2, c_2, ...)$ 
  - $c_1 = C(s_1, a_1), c_2 = C(s_2, a_2), etc.$
  - ▶  $s_2 \sim T(s | s_1, a_1), s_3 \sim T(s | s_2, a_2), etc.$
- Policy  $\pi: S \rightarrow A$ 
  - or randomized,  $\pi(a \mid s)$
- Trace from  $\pi: a_1 \sim \pi(a \mid s_1)$ , etc.
  - T is then an r.v. with known distribution
  - we'll write  $\tau \sim \pi$  (rest of MDP implicit)

## Choosing good actions



• Objective:

$$J^* = \min_{\pi} J^{\pi}$$
$$\pi^* \in \arg\min_{\pi} J^{\pi}$$

A CONTRACT OF THE ADDRESS OF THE ADD

A CONTRACT OF THE OWNER OWNER OF THE OWNER OWNE

#### • Al: to make the sums finite

AND THE REAL PROPERTY AND THE ADDRESS OF THE ADDRES

- Al: to make the sums finite
- A2: interest rate  $I/\gamma I$  per period

And the state of t

- Al: to make the sums finite
- $\circ$  A2: interest rate  $I/\gamma I$  per period
- A3: model mismatch
  - probability (I-\u03c6) that something unexpected happens on each step and my plan goes out the window

#### **Recursive expression**

States and the second of the s

$$J^{\pi} = \mathbb{E}\left[\frac{1-\gamma}{\gamma}\sum_{t}\gamma^{t}c_{t} \mid \tau \sim \pi\right]$$
$$= \mathbb{E}[J(\tau) \mid \tau \sim \pi]$$

$$J(\tau) = \frac{1-\gamma}{\gamma} \left[\gamma c_1 + \gamma^2 c_2 + \gamma^3 c_3 + \ldots\right]$$
  
=  $(1-\gamma)c_1 + \gamma \left[\frac{1-\gamma}{\gamma}(\gamma c_2 + \gamma^2 c_3 + \ldots)\right]$   
=  $(1-\gamma)c_1 + \gamma J(\tau^+)$ 

 $(I-\gamma)$  × immediate cost +  $\gamma$  × future cost

#### Tree search



- Root node = current state
- Alternating levels: action and outcome
  - min and expectation
- $^{\circ}~$  Build out tree until goal or until  $\gamma^{t}$  small enough

#### Interpreting the result

State of the second of the sec

- Number at each  $\circ$  node: optimal cost if starting from state s instead of s<sub>1</sub>
  - call this J\*(s)—so, J\* = J\*(s1)
  - state-value function
- Number at each · node: optimal cost if starting from parent's s, choosing incoming a
  - call this Q<sup>\*</sup>(s,a)
  - action-value function
- $\circ~$  Similarly,  $J^{\pi}(s)$  and  $Q^{\pi}(s,a)$

#### The update equations

And the state of the second of

 $\circ \ \ \text{For} \ \cdot \ node$ 

$$Q^{*}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{*}(s') \mid s' \sim T(\cdot \mid s,a)]$$

 $\circ$  For  $\circ$  node

$$J^*(s) = \min_a Q^*(s,a)$$

 $(I-\gamma)$  × immediate cost +  $\gamma$  × future cost

#### Updates for a fixed policy

and the second for the second of the second

 $\circ$  For  $\cdot$  node

$$Q^{\pi}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s,a)]$$

 $\circ$  For  $\circ$  node

$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s, a) \mid a \sim \pi(\cdot \mid s)]$$

 $(I-\gamma)$  × immediate cost +  $\gamma$  × future cost

#### Speeding it up

HARDER AND THE AREA T

- Can't do DPLL-style pruning: outcome node depends on *all* children
- Can do some pruning: e.g., low-probability outcomes when branch is already clearly bad
- Or, use scenarios: subsample outcomes at each expectation node
  - with enough samples, good estimate of value of each expectation

#### Receding-horizon planning

- Stop building tree at 2k levels, evaluate leaf nodes with *heuristic* h(s)
  - ▶ or at 2k−1 levels, evaluate with h(s, a)
- Minimal guarantees, but often works well in practice
- Can also use adaptive horizon
- Just as in deterministic search, a good heuristic is essential!

#### Good heuristic

- Good heuristic:  $h(s) \approx J^*(s)$  or  $h(s, a) \approx Q^*(s, a)$
- If we have h(s) = J\*(s), only need to build first two levels of tree (action and outcome) to choose optimal action at s1
- With h(s, a) = Q\*(s,a), only need to build first (action) level
- Often try to use  $h ≈ J^{\Pi}$  or  $Q^{\Pi}$  for some good  $\Pi$

#### **Roll-outs**

• Want  $h(s) \approx J^{T}(s)$ 

- Starting from  $s_1 = s$ , sample  $a_1 \sim \pi(a \mid s_1)$ , set  $c_1 = c(s_1, a_1)$ , sample  $s_2 \sim T(s' \mid s_1, a_1)$
- ° Repeat until goal (or until  $\gamma^t$  small)
- Take h(s) =  $(I \gamma)/\gamma \sum_{t} \gamma^{t} c_{t}$
- Used in **UCT** (best algorithm for Go)

#### Dynamic programming

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER

- If there are a small number of states and actions, makes sense to *memoize* tree search
  - compute an entire level of the tree at a time, working from bottom up
  - store only S × A numbers r.t. b<sup>d</sup>

## DP example: should I stay or should I go?

Contraction of the second of the

(1-7) +  $\chi^{-1}_{-3}$  $f = \frac{2}{3}$ (A) go 2  $\overline{}$  $\bigcirc$ 1/3 2/3 1/3 5/9 2/3 5/9 415.a 2/3 2/3 1 2 5 19 2/3 2/2 17 + 2; 2 = 7/9  $G^{+}(A,S) J^{+}(A)$ Q+ (A, 5)

#### DP example 2

A CONTRACT OF THE ASSANCE TO THE ASSANCE T



- each step costs I
- discount 0.8

A CONTRACT OF THE ADDRESS OF THE ADD



A CONTRACTOR OF THE ADDRESS OF THE A



A CONTRACT OF THE ADDRESS OF THE ADD



A CONTRACTOR OF THE STATE OF TH



A CONTRACTOR OF THE STATE OF TH



#### Discussion

• Terminology: backup, sweep, value iteration

- $\circ~VI$  makes max error converge linearly to 0 at rate  $\gamma$  per sweep
- Works well for up to 1,000,000s of states, as long as we can evaluate min and expectation efficiently (e.g., few actions, sparse outcomes)
  - tricks: replace J(s) by backed up value immediately (not at end of sweep); schedule backups by *priority* = estimate of how much J(s) will change

#### Curse of dimensionality

A CONTRACT OF THE ASSANCE OF THE ASS

- Sadly, I,000,000s of states don't necessarily get us very far
- E.g., 10 state variables, each with 10 values:
   10<sup>10</sup> states
- See below for ways around the curse