
15-780: Grad AI
Lecture 21: Bayesian learning,

MDPs

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

Reminder: project milestone reports due
today

Reminder: HW5 out

Review: numerical integration

Parallel importance sampling

‣ allows ZR(x) instead of R(x)

‣ biased, but asymptotically unbiased

Sequential sampling (for chains, trees)

Parallel IS + resampling for sequential
problems = particle filter

Review: MCMC

Metropolis-Hastings: randomized search procedure
for high R(x)

Leads to stationary distribution = R(x)

Repeatedly tweak current x to get x’

‣ If R(x’) ! R(x), move to x’

‣ If R(x’) << R(x), stay at x

‣ randomize in between

Requires good one-step proposal Q(x’ | x) to get
acceptable acceptance rate and mixing rate

Review: Gibbs

Special case of MH for X divided into blocks

Proposal Q:

‣ pick a block i uniformly (or round robin, or
any other fair schedule)

‣ sample XB(i) ~ P(XB(i) | X¬B(i))

Acceptance rate = 100%

Review: Learning

P(M | X) = P(X | M) P(M) / P(X)

P(M | X, Y) = P(Y | X, M) P(X | M) / P(Y | M)

Example: framlings

Version space algorithm: when prior is uniform
and likelihood is 0 or 1

Bayesian
Learning

Recall iris example

H = factor graphs of given structure

Need to specify entries of ϕs

ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1

…
Φ1 params…

X1

X2

X3

X4

Factors

lo m hi

set.

vers.

vir.

pi qi 1–pi–qi

ri si 1–ri–si

ui vi 1–ui–vi

setosa p

versicolor q

virginica 1–p–q

ϕ0 ϕ1–ϕ4

Continuous factors

lo m hi

set.

vers.

vir.

p1 q1 1–p1–q1

r1 s1 1–r1–s1

u1 v1 1–u1–v1

ϕ1

Discretized petal length Continuous petal length

Φ1(�, s) =
exp(−(�− �s)2/2σ2)

parameters �set, �vers, �vir;
constant σ2

Simpler example

H

T

p

1–p

Coin toss

Parametric model class

H is a parametric model class: each H in H
corresponds to a vector of parameters θ = (p)
or θ = (p, q, p1, q1, r1, s1, …)

Hθ: X ~ P(X | θ) (or, Y ~ P(Y | X, θ))

Contrast to discrete H, as in version space

Could also have mixed H: discrete choice among
parametric (sub)classes

Continuous prior

E.g., for coin toss, p ~ Beta(a, b):

Specifying, e.g., a = 2, b = 2:

P (p | a, b) =
1

B(a, b)
pa−1(1− p)b−1

P (p) = 6p(1− p)

Prior for p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Coin toss, cont’d

Joint dist’n of parameter p and data xi:

P (p,x) = P (p)
�

i

P (xi | p)

= 6p(1− p)
�

i

pxi(1− p)1−xi

Coin flip posterior

P (p | x) = P (p)
�

i

P (xi | p)/P (x)

=
1
Z

p(1− p)
�

i

pxi(1− p)1−xi

=
1
Z

p1+
P

i xi(1− p)1+
P

i(1−xi)

= Beta(2 +
�

i xi, 2 +
�

i(1− xi))

Prior for p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Posterior after 4 H, 7 T

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Posterior after 10 H, 19 T

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Predictive distribution

Posterior is nice, but doesn’t tell us directly what
we need to know

We care more about P(xN+1 | x1, …, xN)

By law of total probability, conditional
independence:

P (xN+1 | D) =
�

P (xN+1, θ | D)dθ

=
�

P (xN+1 | θ)P (θ | D)dθ

Coin flip example

After 10 H, 19 T: p ~ Beta(12, 21)

E(xN+1 | p) = p

E(xN+1 | θ) = E(p | θ) = a/(a+b) = 12/33

So, predict 36.4% chance of H on next flip

Approximate
Bayes

Approximate Bayes

Coin flip example was easy

In general, computing posterior (or predictive
distribution) may be hard

Solution: use the approximate integration
techniques we’ve studied!

Bayes as numerical integration

Parameters θ, data D

P(θ | D) = P(D | θ) P(θ) / P(D)

Usually, P(θ) is simple; so is Z P(D | θ)

So, P(θ | D) ! P(D | θ) P(θ)

‣ similarly for conditional model: if X ⊥ θ,

‣ P(θ | X, Y) ! P(Y | θ, X) P(θ)

Perfect for MH

P (y | x) = σ(ax + b)
σ(z) = 1/(1 + exp(−z))

petal length

P(
I.

vi
rg

in
ic

a)

Posterior

P (a, b | xi, yi) =

ZP (a, b)
�

i

σ(axi + b)yiσ(−axi − b)1−yi

P (a, b) = N(0, I)

a

b

Sample from posterior

a

b

!"# !"$!"% & &"' &"# &"$ &"%
!%

!(

!$

!)

!#

!*

!'

Predictive distribution

For each θ in sample, predict P(X) or P(Y | X)

Average predictions over all θ in sample

Cheaper
approximations

Getting cheaper

Maximum a posteriori (MAP)

Maximum likelihood (MLE)

Conditional MLE / MAP

Instead of true posterior, just use single most
probable hypothesis

MAP

Summarize entire posterior density using the
maximum

arg max
θ

P (D | θ)P (θ)

MLE

Like MAP, but ignore prior term

‣ often prior is overwhelmed if we have enough
data

arg max
θ

P (D | θ)

Conditional MLE, MAP

Split D = (x, y)

Condition on x, try to explain only y

arg max
θ

P (y | x, θ)

arg max
θ

P (y | x, θ)P (θ)

a

b

Iris example: MAP vs. posterior

!"# !"$!"% & &"' &"# &"$ &"%
!%

!(

!$

!)

!#

!*

!'

Irises: MAP vs. posterior

! " # $ %
!&'(

&

&'(

&'"

&'$

&')

*

*'(

Too certain

This behavior of MAP (or MLE) is typical: we
are too sure of ourselves

But, often gets better with more data

Thm: MAP and MLE are consistent estimates
of true θ, if “data per parameter” → "

Sequential
Decisions

Markov decision process:
influence diagram

States, actions, initial state s1, (expected) costs
C(s,a) ∈ [Cmin, Cmax], transitions T(s’ | s, a)

Influence diagrams

Like a Bayes net, except:

‣ diamond nodes are costs/rewards

‣ must have no children

‣ square nodes are decisions

‣ we pick the CPTs (before seeing anything)

‣ minimize expected cost

Circles are ordinary r.v.s as before

Markov decision process:
state space diagram

States, actions, costs C(s,a) ∈ [Cmin, Cmax],
transitions T(s’ | s, a), initial state s1

goal: all costs = 0,
self-transition 100%

Choosing actions

Execution trace: τ = (s1, a1, c1, s2, a2, c2, …)

‣ c1 = C(s1, a1), c2 = C(s2, a2), etc.

‣ s2 ~ T(s | s1, a1), s3 ~ T(s | s2, a2), etc.

Policy #: S → A

‣ or randomized, #(a | s)

Trace from #: a1 ~ #(a | s1), etc.

‣ τ is then an r.v. with known distribution

‣ we’ll write τ ~ # (rest of MDP implicit)

Choosing good actions

Value of a policy:

Objective:

discount factor
in (0,1)

Jπ =
1− γ

γ
E

�
�

t

γtct

���� τ ∼ π

�

J∗ = min
π

Jπ

π∗ ∈ arg min
π

Jπ

Why a discount factor?

Why a discount factor?

A1: to make the sums finite

Why a discount factor?

A1: to make the sums finite

A2: interest rate 1/γ – 1 per period

Why a discount factor?

A1: to make the sums finite

A2: interest rate 1/γ – 1 per period

A3: model mismatch

‣ probability (1–γ) that something unexpected
happens on each step and my plan goes out
the window

Recursive expression

(1–γ) $ immediate cost + γ $ future cost

Jπ = E
�

1− γ

γ

�

t

γtct

���� τ ∼ π

�

= E[J(τ) | τ ∼ π]

J(τ) =
1− γ

γ
[γc1 + γ2c2 + γ3c3 + . . .]

= (1− γ)c1 + γ

�
1− γ

γ
(γc2 + γ2c3 + . . .)

�

= (1− γ)c1 + γJ(τ+)

Tree search

Root node = current state

Alternating levels: action and outcome

‣ min and expectation

Build out tree until goal or until γt small enough

γ = 0.5
transitions = 0.5

Interpreting the result

Number at each node: optimal cost if starting
from state s instead of s1

‣ call this J*(s)—so, J* = J*(s1)

‣ state-value function

Number at each ⋅ node: optimal cost if starting
from parent’s s, choosing incoming a

‣ call this Q*(s,a)

‣ action-value function

Similarly, J#(s) and Q#(s, a)

The update equations

For ⋅ node

For node

Q∗(s, a) = (1− γ)C(s, a) + γE[J∗(s�) | s� ∼ T (· | s, a)]

J∗(s) = min
a

Q∗(s, a)

(1–γ) $ immediate cost + γ $ future cost

Updates for a fixed policy

For ⋅ node

For node

Qπ(s, a) = (1− γ)C(s, a) + γE[Jπ(s�) | s� ∼ T (· | s, a)]

Jπ(s) = E[Qπ(s, a) | a ∼ π(· | s)]

(1–γ) $ immediate cost + γ $ future cost

Speeding it up

Can’t do DPLL-style pruning: outcome node
depends on all children

Can do some pruning: e.g., low-probability
outcomes when branch is already clearly bad

Or, use scenarios: subsample outcomes at each
expectation node

‣ with enough samples, good estimate of value
of each expectation

Receding-horizon planning

Stop building tree at 2k levels, evaluate leaf
nodes with heuristic h(s)

‣ or at 2k–1 levels, evaluate with h(s, a)

Minimal guarantees, but often works well in
practice

Can also use adaptive horizon

Just as in deterministic search, a good heuristic
is essential!

Good heuristic

Good heuristic: h(s) % J*(s) or h(s, a) % Q*(s,a)

If we have h(s) = J*(s), only need to build first
two levels of tree (action and outcome) to
choose optimal action at s1

With h(s, a) = Q*(s,a), only need to build first
(action) level

Often try to use h % J# or Q# for some good #

Roll-outs

Want h(s) % J#(s)

Starting from s1 = s, sample a1 ~ #(a | s1), set
c1 = c(s1,a1), sample s2 ~ T(s’ | s1,a1)

Repeat until goal (or until γt small)

Take h(s) = (1–γ)/γ &t γtct

Used in UCT (best algorithm for Go)

Dynamic programming

If there are a small number of states and
actions, makes sense to memoize tree search

‣ compute an entire level of the tree at a time,
working from bottom up

‣ store only S $ A numbers r.t. bd

DP example: should I stay or
should I go?

Q(A, stay) Q(A, go) J(A)

DP example 2

each step costs 1

discount 0.8

0 5 10 15
0.5

0

0.5

1

1.5
Q
(s
,le
ft)

0 5 10 15
0.5

0

0.5

1

1.5

Q
(s
,ri
gh
t)

State

DP example 2—iteration 0

0 5 10 15
0.5

0

0.5

1

1.5
Q
(s
,le
ft)

0 5 10 15
0.5

0

0.5

1

1.5

Q
(s
,ri
gh
t)

State

DP example 2—iteration 1

0 5 10 15
0.5

0

0.5

1

1.5
Q
(s
,le
ft)

0 5 10 15
0.5

0

0.5

1

1.5

Q
(s
,ri
gh
t)

State

DP example 2—iteration 3

0 5 10 15
0.5

0

0.5

1

1.5
Q
(s
,le
ft)

0 5 10 15
0.5

0

0.5

1

1.5

Q
(s
,ri
gh
t)

State

DP example 2—iteration 4

0 5 10 15
0.5

0

0.5

1

1.5
Q
(s
,le
ft)

0 5 10 15
0.5

0

0.5

1

1.5

Q
(s
,ri
gh
t)

State

DP example 2—iteration 8

Discussion

Terminology: backup, sweep, value iteration

VI makes max error converge linearly to 0 at
rate γ per sweep

Works well for up to 1,000,000s of states, as
long as we can evaluate min and expectation
efficiently (e.g., few actions, sparse outcomes)

‣ tricks: replace J(s) by backed up value
immediately (not at end of sweep); schedule
backups by priority = estimate of how
much J(s) will change

Curse of dimensionality

Sadly, 1,000,000s of states don’t necessarily get
us very far

E.g., 10 state variables, each with 10 values:
1010 states

See below for ways around the curse

